]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
ceph: clean up on forwarded aborted mds request
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3
SV
308
309/* return group to which a task belongs */
4cf86d77 310static inline struct task_group *task_group(struct task_struct *p)
29f59db3 311{
4cf86d77 312 struct task_group *tg;
9b5b7751 313
7c941438 314#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
24e377a8 317#else
41a2d6cf 318 tg = &init_task_group;
24e377a8 319#endif
9b5b7751 320 return tg;
29f59db3
SV
321}
322
323/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 324static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 325{
8b08ca52
PZ
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
052f1dc7 335#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
052f1dc7 338#endif
6f505b16 339
052f1dc7 340#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 343#endif
8b08ca52 344 rcu_read_unlock();
29f59db3
SV
345}
346
347#else
348
6f505b16 349static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
350static inline struct task_group *task_group(struct task_struct *p)
351{
352 return NULL;
353}
29f59db3 354
7c941438 355#endif /* CONFIG_CGROUP_SCHED */
29f59db3 356
6aa645ea
IM
357/* CFS-related fields in a runqueue */
358struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
361
6aa645ea 362 u64 exec_clock;
e9acbff6 363 u64 min_vruntime;
6aa645ea
IM
364
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
4a55bd5e
PZ
367
368 struct list_head tasks;
369 struct list_head *balance_iterator;
370
371 /*
372 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
4793241b 375 struct sched_entity *curr, *next, *last;
ddc97297 376
5ac5c4d6 377 unsigned int nr_spread_over;
ddc97297 378
62160e3f 379#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
41a2d6cf
IM
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
41a2d6cf
IM
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
392
393#ifdef CONFIG_SMP
c09595f6 394 /*
c8cba857 395 * the part of load.weight contributed by tasks
c09595f6 396 */
c8cba857 397 unsigned long task_weight;
c09595f6 398
c8cba857
PZ
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
c09595f6 406
c8cba857
PZ
407 /*
408 * this cpu's part of tg->shares
409 */
410 unsigned long shares;
f1d239f7
PZ
411
412 /*
413 * load.weight at the time we set shares
414 */
415 unsigned long rq_weight;
c09595f6 416#endif
6aa645ea
IM
417#endif
418};
1da177e4 419
6aa645ea
IM
420/* Real-Time classes' related field in a runqueue: */
421struct rt_rq {
422 struct rt_prio_array active;
63489e45 423 unsigned long rt_nr_running;
052f1dc7 424#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
425 struct {
426 int curr; /* highest queued rt task prio */
398a153b 427#ifdef CONFIG_SMP
e864c499 428 int next; /* next highest */
398a153b 429#endif
e864c499 430 } highest_prio;
6f505b16 431#endif
fa85ae24 432#ifdef CONFIG_SMP
73fe6aae 433 unsigned long rt_nr_migratory;
a1ba4d8b 434 unsigned long rt_nr_total;
a22d7fc1 435 int overloaded;
917b627d 436 struct plist_head pushable_tasks;
fa85ae24 437#endif
6f505b16 438 int rt_throttled;
fa85ae24 439 u64 rt_time;
ac086bc2 440 u64 rt_runtime;
ea736ed5 441 /* Nests inside the rq lock: */
0986b11b 442 raw_spinlock_t rt_runtime_lock;
6f505b16 443
052f1dc7 444#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
445 unsigned long rt_nr_boosted;
446
6f505b16
PZ
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
6f505b16 450#endif
6aa645ea
IM
451};
452
57d885fe
GH
453#ifdef CONFIG_SMP
454
455/*
456 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
461 *
57d885fe
GH
462 */
463struct root_domain {
464 atomic_t refcount;
c6c4927b
RR
465 cpumask_var_t span;
466 cpumask_var_t online;
637f5085 467
0eab9146 468 /*
637f5085
GH
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
471 */
c6c4927b 472 cpumask_var_t rto_mask;
0eab9146 473 atomic_t rto_count;
6e0534f2
GH
474#ifdef CONFIG_SMP
475 struct cpupri cpupri;
476#endif
57d885fe
GH
477};
478
dc938520
GH
479/*
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
482 */
57d885fe
GH
483static struct root_domain def_root_domain;
484
485#endif
486
1da177e4
LT
487/*
488 * This is the main, per-CPU runqueue data structure.
489 *
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
493 */
70b97a7f 494struct rq {
d8016491 495 /* runqueue lock: */
05fa785c 496 raw_spinlock_t lock;
1da177e4
LT
497
498 /*
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
501 */
502 unsigned long nr_running;
6aa645ea
IM
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
505#ifdef CONFIG_NO_HZ
506 unsigned char in_nohz_recently;
507#endif
d8016491
IM
508 /* capture load from *all* tasks on this cpu: */
509 struct load_weight load;
6aa645ea
IM
510 unsigned long nr_load_updates;
511 u64 nr_switches;
512
513 struct cfs_rq cfs;
6f505b16 514 struct rt_rq rt;
6f505b16 515
6aa645ea 516#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
517 /* list of leaf cfs_rq on this cpu: */
518 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
519#endif
520#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 521 struct list_head leaf_rt_rq_list;
1da177e4 522#endif
1da177e4
LT
523
524 /*
525 * This is part of a global counter where only the total sum
526 * over all CPUs matters. A task can increase this counter on
527 * one CPU and if it got migrated afterwards it may decrease
528 * it on another CPU. Always updated under the runqueue lock:
529 */
530 unsigned long nr_uninterruptible;
531
36c8b586 532 struct task_struct *curr, *idle;
c9819f45 533 unsigned long next_balance;
1da177e4 534 struct mm_struct *prev_mm;
6aa645ea 535
3e51f33f 536 u64 clock;
6aa645ea 537
1da177e4
LT
538 atomic_t nr_iowait;
539
540#ifdef CONFIG_SMP
0eab9146 541 struct root_domain *rd;
1da177e4
LT
542 struct sched_domain *sd;
543
a0a522ce 544 unsigned char idle_at_tick;
1da177e4 545 /* For active balancing */
3f029d3c 546 int post_schedule;
1da177e4
LT
547 int active_balance;
548 int push_cpu;
d8016491
IM
549 /* cpu of this runqueue: */
550 int cpu;
1f11eb6a 551 int online;
1da177e4 552
a8a51d5e 553 unsigned long avg_load_per_task;
1da177e4 554
36c8b586 555 struct task_struct *migration_thread;
1da177e4 556 struct list_head migration_queue;
e9e9250b
PZ
557
558 u64 rt_avg;
559 u64 age_stamp;
1b9508f6
MG
560 u64 idle_stamp;
561 u64 avg_idle;
1da177e4
LT
562#endif
563
dce48a84
TG
564 /* calc_load related fields */
565 unsigned long calc_load_update;
566 long calc_load_active;
567
8f4d37ec 568#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
569#ifdef CONFIG_SMP
570 int hrtick_csd_pending;
571 struct call_single_data hrtick_csd;
572#endif
8f4d37ec
PZ
573 struct hrtimer hrtick_timer;
574#endif
575
1da177e4
LT
576#ifdef CONFIG_SCHEDSTATS
577 /* latency stats */
578 struct sched_info rq_sched_info;
9c2c4802
KC
579 unsigned long long rq_cpu_time;
580 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
581
582 /* sys_sched_yield() stats */
480b9434 583 unsigned int yld_count;
1da177e4
LT
584
585 /* schedule() stats */
480b9434
KC
586 unsigned int sched_switch;
587 unsigned int sched_count;
588 unsigned int sched_goidle;
1da177e4
LT
589
590 /* try_to_wake_up() stats */
480b9434
KC
591 unsigned int ttwu_count;
592 unsigned int ttwu_local;
b8efb561
IM
593
594 /* BKL stats */
480b9434 595 unsigned int bkl_count;
1da177e4
LT
596#endif
597};
598
f34e3b61 599static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 600
7d478721
PZ
601static inline
602void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 603{
7d478721 604 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
605}
606
0a2966b4
CL
607static inline int cpu_of(struct rq *rq)
608{
609#ifdef CONFIG_SMP
610 return rq->cpu;
611#else
612 return 0;
613#endif
614}
615
497f0ab3 616#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
617 rcu_dereference_check((p), \
618 rcu_read_lock_sched_held() || \
619 lockdep_is_held(&sched_domains_mutex))
620
674311d5
NP
621/*
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 623 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
624 *
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
627 */
48f24c4d 628#define for_each_domain(cpu, __sd) \
497f0ab3 629 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
630
631#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632#define this_rq() (&__get_cpu_var(runqueues))
633#define task_rq(p) cpu_rq(task_cpu(p))
634#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 635#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 636
aa9c4c0f 637inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
638{
639 rq->clock = sched_clock_cpu(cpu_of(rq));
640}
641
bf5c91ba
IM
642/*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645#ifdef CONFIG_SCHED_DEBUG
646# define const_debug __read_mostly
647#else
648# define const_debug static const
649#endif
650
017730c1
IM
651/**
652 * runqueue_is_locked
e17b38bf 653 * @cpu: the processor in question.
017730c1
IM
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
89f19f04 659int runqueue_is_locked(int cpu)
017730c1 660{
05fa785c 661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
662}
663
bf5c91ba
IM
664/*
665 * Debugging: various feature bits
666 */
f00b45c1
PZ
667
668#define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
670
bf5c91ba 671enum {
f00b45c1 672#include "sched_features.h"
bf5c91ba
IM
673};
674
f00b45c1
PZ
675#undef SCHED_FEAT
676
677#define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
679
bf5c91ba 680const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
681#include "sched_features.h"
682 0;
683
684#undef SCHED_FEAT
685
686#ifdef CONFIG_SCHED_DEBUG
687#define SCHED_FEAT(name, enabled) \
688 #name ,
689
983ed7a6 690static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
691#include "sched_features.h"
692 NULL
693};
694
695#undef SCHED_FEAT
696
34f3a814 697static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 698{
f00b45c1
PZ
699 int i;
700
701 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 705 }
34f3a814 706 seq_puts(m, "\n");
f00b45c1 707
34f3a814 708 return 0;
f00b45c1
PZ
709}
710
711static ssize_t
712sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
c24b7c52 728 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
42994724 748 *ppos += cnt;
f00b45c1
PZ
749
750 return cnt;
751}
752
34f3a814
LZ
753static int sched_feat_open(struct inode *inode, struct file *filp)
754{
755 return single_open(filp, sched_feat_show, NULL);
756}
757
828c0950 758static const struct file_operations sched_feat_fops = {
34f3a814
LZ
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
f00b45c1
PZ
764};
765
766static __init int sched_init_debug(void)
767{
f00b45c1
PZ
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772}
773late_initcall(sched_init_debug);
774
775#endif
776
777#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 778
b82d9fdd
PZ
779/*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
2398f2c6
PZ
785/*
786 * ratelimit for updating the group shares.
55cd5340 787 * default: 0.25ms
2398f2c6 788 */
55cd5340 789unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 790unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 791
ffda12a1
PZ
792/*
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
796 */
797unsigned int sysctl_sched_shares_thresh = 4;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299
PZ
916/*
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
919 *
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
923 */
924static inline int task_is_waking(struct task_struct *p)
925{
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
927}
928
b29739f9
IM
929/*
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
932 */
70b97a7f 933static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
934 __acquires(rq->lock)
935{
0970d299
PZ
936 struct rq *rq;
937
3a5c359a 938 for (;;) {
0970d299
PZ
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p);
05fa785c 942 raw_spin_lock(&rq->lock);
0970d299 943 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 944 return rq;
05fa785c 945 raw_spin_unlock(&rq->lock);
b29739f9 946 }
b29739f9
IM
947}
948
1da177e4
LT
949/*
950 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 951 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
952 * explicitly disabling preemption.
953 */
70b97a7f 954static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
955 __acquires(rq->lock)
956{
70b97a7f 957 struct rq *rq;
1da177e4 958
3a5c359a 959 for (;;) {
0970d299
PZ
960 while (task_is_waking(p))
961 cpu_relax();
3a5c359a
AK
962 local_irq_save(*flags);
963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
0970d299 965 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 966 return rq;
05fa785c 967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 968 }
1da177e4
LT
969}
970
ad474cac
ON
971void task_rq_unlock_wait(struct task_struct *p)
972{
973 struct rq *rq = task_rq(p);
974
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 976 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
977}
978
a9957449 979static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock(&rq->lock);
b29739f9
IM
983}
984
70b97a7f 985static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
986 __releases(rq->lock)
987{
05fa785c 988 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
989}
990
1da177e4 991/*
cc2a73b5 992 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 993 */
a9957449 994static struct rq *this_rq_lock(void)
1da177e4
LT
995 __acquires(rq->lock)
996{
70b97a7f 997 struct rq *rq;
1da177e4
LT
998
999 local_irq_disable();
1000 rq = this_rq();
05fa785c 1001 raw_spin_lock(&rq->lock);
1da177e4
LT
1002
1003 return rq;
1004}
1005
8f4d37ec
PZ
1006#ifdef CONFIG_SCHED_HRTICK
1007/*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
8f4d37ec
PZ
1017
1018/*
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1022 */
1023static inline int hrtick_enabled(struct rq *rq)
1024{
1025 if (!sched_feat(HRTICK))
1026 return 0;
ba42059f 1027 if (!cpu_active(cpu_of(rq)))
b328ca18 1028 return 0;
8f4d37ec
PZ
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032static void hrtick_clear(struct rq *rq)
1033{
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1036}
1037
8f4d37ec
PZ
1038/*
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1041 */
1042static enum hrtimer_restart hrtick(struct hrtimer *timer)
1043{
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
05fa785c 1048 raw_spin_lock(&rq->lock);
3e51f33f 1049 update_rq_clock(rq);
8f4d37ec 1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1051 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1052
1053 return HRTIMER_NORESTART;
1054}
1055
95e904c7 1056#ifdef CONFIG_SMP
31656519
PZ
1057/*
1058 * called from hardirq (IPI) context
1059 */
1060static void __hrtick_start(void *arg)
b328ca18 1061{
31656519 1062 struct rq *rq = arg;
b328ca18 1063
05fa785c 1064 raw_spin_lock(&rq->lock);
31656519
PZ
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
05fa785c 1067 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1068}
1069
31656519
PZ
1070/*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1076{
31656519
PZ
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1079
cc584b21 1080 hrtimer_set_expires(timer, time);
31656519
PZ
1081
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
6e275637 1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1086 rq->hrtick_csd_pending = 1;
1087 }
b328ca18
PZ
1088}
1089
1090static int
1091hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1092{
1093 int cpu = (int)(long)hcpu;
1094
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
31656519 1102 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1103 return NOTIFY_OK;
1104 }
1105
1106 return NOTIFY_DONE;
1107}
1108
fa748203 1109static __init void init_hrtick(void)
b328ca18
PZ
1110{
1111 hotcpu_notifier(hotplug_hrtick, 0);
1112}
31656519
PZ
1113#else
1114/*
1115 * Called to set the hrtick timer state.
1116 *
1117 * called with rq->lock held and irqs disabled
1118 */
1119static void hrtick_start(struct rq *rq, u64 delay)
1120{
7f1e2ca9 1121 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1122 HRTIMER_MODE_REL_PINNED, 0);
31656519 1123}
b328ca18 1124
006c75f1 1125static inline void init_hrtick(void)
8f4d37ec 1126{
8f4d37ec 1127}
31656519 1128#endif /* CONFIG_SMP */
8f4d37ec 1129
31656519 1130static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1131{
31656519
PZ
1132#ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
8f4d37ec 1134
31656519
PZ
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138#endif
8f4d37ec 1139
31656519
PZ
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
8f4d37ec 1142}
006c75f1 1143#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1144static inline void hrtick_clear(struct rq *rq)
1145{
1146}
1147
8f4d37ec
PZ
1148static inline void init_rq_hrtick(struct rq *rq)
1149{
1150}
1151
b328ca18
PZ
1152static inline void init_hrtick(void)
1153{
1154}
006c75f1 1155#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1156
c24d20db
IM
1157/*
1158 * resched_task - mark a task 'to be rescheduled now'.
1159 *
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1162 * the target CPU.
1163 */
1164#ifdef CONFIG_SMP
1165
1166#ifndef tsk_is_polling
1167#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168#endif
1169
31656519 1170static void resched_task(struct task_struct *p)
c24d20db
IM
1171{
1172 int cpu;
1173
05fa785c 1174 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1175
5ed0cec0 1176 if (test_tsk_need_resched(p))
c24d20db
IM
1177 return;
1178
5ed0cec0 1179 set_tsk_need_resched(p);
c24d20db
IM
1180
1181 cpu = task_cpu(p);
1182 if (cpu == smp_processor_id())
1183 return;
1184
1185 /* NEED_RESCHED must be visible before we test polling */
1186 smp_mb();
1187 if (!tsk_is_polling(p))
1188 smp_send_reschedule(cpu);
1189}
1190
1191static void resched_cpu(int cpu)
1192{
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long flags;
1195
05fa785c 1196 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1197 return;
1198 resched_task(cpu_curr(cpu));
05fa785c 1199 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1200}
06d8308c
TG
1201
1202#ifdef CONFIG_NO_HZ
1203/*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213void wake_up_idle_cpu(int cpu)
1214{
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
5ed0cec0 1235 set_tsk_need_resched(rq->idle);
06d8308c
TG
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241}
6d6bc0ad 1242#endif /* CONFIG_NO_HZ */
06d8308c 1243
e9e9250b
PZ
1244static u64 sched_avg_period(void)
1245{
1246 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1247}
1248
1249static void sched_avg_update(struct rq *rq)
1250{
1251 s64 period = sched_avg_period();
1252
1253 while ((s64)(rq->clock - rq->age_stamp) > period) {
1254 rq->age_stamp += period;
1255 rq->rt_avg /= 2;
1256 }
1257}
1258
1259static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1260{
1261 rq->rt_avg += rt_delta;
1262 sched_avg_update(rq);
1263}
1264
6d6bc0ad 1265#else /* !CONFIG_SMP */
31656519 1266static void resched_task(struct task_struct *p)
c24d20db 1267{
05fa785c 1268 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1269 set_tsk_need_resched(p);
c24d20db 1270}
e9e9250b
PZ
1271
1272static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1273{
1274}
6d6bc0ad 1275#endif /* CONFIG_SMP */
c24d20db 1276
45bf76df
IM
1277#if BITS_PER_LONG == 32
1278# define WMULT_CONST (~0UL)
1279#else
1280# define WMULT_CONST (1UL << 32)
1281#endif
1282
1283#define WMULT_SHIFT 32
1284
194081eb
IM
1285/*
1286 * Shift right and round:
1287 */
cf2ab469 1288#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1289
a7be37ac
PZ
1290/*
1291 * delta *= weight / lw
1292 */
cb1c4fc9 1293static unsigned long
45bf76df
IM
1294calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1295 struct load_weight *lw)
1296{
1297 u64 tmp;
1298
7a232e03
LJ
1299 if (!lw->inv_weight) {
1300 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1301 lw->inv_weight = 1;
1302 else
1303 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1304 / (lw->weight+1);
1305 }
45bf76df
IM
1306
1307 tmp = (u64)delta_exec * weight;
1308 /*
1309 * Check whether we'd overflow the 64-bit multiplication:
1310 */
194081eb 1311 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1312 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1313 WMULT_SHIFT/2);
1314 else
cf2ab469 1315 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1316
ecf691da 1317 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1318}
1319
1091985b 1320static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1321{
1322 lw->weight += inc;
e89996ae 1323 lw->inv_weight = 0;
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1327{
1328 lw->weight -= dec;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
2dd73a4f
PW
1332/*
1333 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1334 * of tasks with abnormal "nice" values across CPUs the contribution that
1335 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1336 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1337 * scaled version of the new time slice allocation that they receive on time
1338 * slice expiry etc.
1339 */
1340
cce7ade8
PZ
1341#define WEIGHT_IDLEPRIO 3
1342#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1343
1344/*
1345 * Nice levels are multiplicative, with a gentle 10% change for every
1346 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1347 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1348 * that remained on nice 0.
1349 *
1350 * The "10% effect" is relative and cumulative: from _any_ nice level,
1351 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1352 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1353 * If a task goes up by ~10% and another task goes down by ~10% then
1354 * the relative distance between them is ~25%.)
dd41f596
IM
1355 */
1356static const int prio_to_weight[40] = {
254753dc
IM
1357 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1358 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1359 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1360 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1361 /* 0 */ 1024, 820, 655, 526, 423,
1362 /* 5 */ 335, 272, 215, 172, 137,
1363 /* 10 */ 110, 87, 70, 56, 45,
1364 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1365};
1366
5714d2de
IM
1367/*
1368 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1369 *
1370 * In cases where the weight does not change often, we can use the
1371 * precalculated inverse to speed up arithmetics by turning divisions
1372 * into multiplications:
1373 */
dd41f596 1374static const u32 prio_to_wmult[40] = {
254753dc
IM
1375 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1376 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1377 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1378 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1379 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1380 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1381 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1382 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1383};
2dd73a4f 1384
ef12fefa
BR
1385/* Time spent by the tasks of the cpu accounting group executing in ... */
1386enum cpuacct_stat_index {
1387 CPUACCT_STAT_USER, /* ... user mode */
1388 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1389
1390 CPUACCT_STAT_NSTATS,
1391};
1392
d842de87
SV
1393#ifdef CONFIG_CGROUP_CPUACCT
1394static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1395static void cpuacct_update_stats(struct task_struct *tsk,
1396 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1397#else
1398static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1399static inline void cpuacct_update_stats(struct task_struct *tsk,
1400 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1401#endif
1402
18d95a28
PZ
1403static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1404{
1405 update_load_add(&rq->load, load);
1406}
1407
1408static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1409{
1410 update_load_sub(&rq->load, load);
1411}
1412
7940ca36 1413#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1414typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1415
1416/*
1417 * Iterate the full tree, calling @down when first entering a node and @up when
1418 * leaving it for the final time.
1419 */
eb755805 1420static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1421{
1422 struct task_group *parent, *child;
eb755805 1423 int ret;
c09595f6
PZ
1424
1425 rcu_read_lock();
1426 parent = &root_task_group;
1427down:
eb755805
PZ
1428 ret = (*down)(parent, data);
1429 if (ret)
1430 goto out_unlock;
c09595f6
PZ
1431 list_for_each_entry_rcu(child, &parent->children, siblings) {
1432 parent = child;
1433 goto down;
1434
1435up:
1436 continue;
1437 }
eb755805
PZ
1438 ret = (*up)(parent, data);
1439 if (ret)
1440 goto out_unlock;
c09595f6
PZ
1441
1442 child = parent;
1443 parent = parent->parent;
1444 if (parent)
1445 goto up;
eb755805 1446out_unlock:
c09595f6 1447 rcu_read_unlock();
eb755805
PZ
1448
1449 return ret;
c09595f6
PZ
1450}
1451
eb755805
PZ
1452static int tg_nop(struct task_group *tg, void *data)
1453{
1454 return 0;
c09595f6 1455}
eb755805
PZ
1456#endif
1457
1458#ifdef CONFIG_SMP
f5f08f39
PZ
1459/* Used instead of source_load when we know the type == 0 */
1460static unsigned long weighted_cpuload(const int cpu)
1461{
1462 return cpu_rq(cpu)->load.weight;
1463}
1464
1465/*
1466 * Return a low guess at the load of a migration-source cpu weighted
1467 * according to the scheduling class and "nice" value.
1468 *
1469 * We want to under-estimate the load of migration sources, to
1470 * balance conservatively.
1471 */
1472static unsigned long source_load(int cpu, int type)
1473{
1474 struct rq *rq = cpu_rq(cpu);
1475 unsigned long total = weighted_cpuload(cpu);
1476
1477 if (type == 0 || !sched_feat(LB_BIAS))
1478 return total;
1479
1480 return min(rq->cpu_load[type-1], total);
1481}
1482
1483/*
1484 * Return a high guess at the load of a migration-target cpu weighted
1485 * according to the scheduling class and "nice" value.
1486 */
1487static unsigned long target_load(int cpu, int type)
1488{
1489 struct rq *rq = cpu_rq(cpu);
1490 unsigned long total = weighted_cpuload(cpu);
1491
1492 if (type == 0 || !sched_feat(LB_BIAS))
1493 return total;
1494
1495 return max(rq->cpu_load[type-1], total);
1496}
1497
ae154be1
PZ
1498static struct sched_group *group_of(int cpu)
1499{
d11c563d 1500 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1501
1502 if (!sd)
1503 return NULL;
1504
1505 return sd->groups;
1506}
1507
1508static unsigned long power_of(int cpu)
1509{
1510 struct sched_group *group = group_of(cpu);
1511
1512 if (!group)
1513 return SCHED_LOAD_SCALE;
1514
1515 return group->cpu_power;
1516}
1517
eb755805
PZ
1518static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1519
1520static unsigned long cpu_avg_load_per_task(int cpu)
1521{
1522 struct rq *rq = cpu_rq(cpu);
af6d596f 1523 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1524
4cd42620
SR
1525 if (nr_running)
1526 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1527 else
1528 rq->avg_load_per_task = 0;
eb755805
PZ
1529
1530 return rq->avg_load_per_task;
1531}
1532
1533#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1534
43cf38eb 1535static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1536
c09595f6
PZ
1537static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1538
1539/*
1540 * Calculate and set the cpu's group shares.
1541 */
34d76c41
PZ
1542static void update_group_shares_cpu(struct task_group *tg, int cpu,
1543 unsigned long sd_shares,
1544 unsigned long sd_rq_weight,
4a6cc4bd 1545 unsigned long *usd_rq_weight)
18d95a28 1546{
34d76c41 1547 unsigned long shares, rq_weight;
a5004278 1548 int boost = 0;
c09595f6 1549
4a6cc4bd 1550 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1551 if (!rq_weight) {
1552 boost = 1;
1553 rq_weight = NICE_0_LOAD;
1554 }
c8cba857 1555
c09595f6 1556 /*
a8af7246
PZ
1557 * \Sum_j shares_j * rq_weight_i
1558 * shares_i = -----------------------------
1559 * \Sum_j rq_weight_j
c09595f6 1560 */
ec4e0e2f 1561 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1562 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1563
ffda12a1
PZ
1564 if (abs(shares - tg->se[cpu]->load.weight) >
1565 sysctl_sched_shares_thresh) {
1566 struct rq *rq = cpu_rq(cpu);
1567 unsigned long flags;
c09595f6 1568
05fa785c 1569 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1570 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1571 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1572 __set_se_shares(tg->se[cpu], shares);
05fa785c 1573 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1574 }
18d95a28 1575}
c09595f6
PZ
1576
1577/*
c8cba857
PZ
1578 * Re-compute the task group their per cpu shares over the given domain.
1579 * This needs to be done in a bottom-up fashion because the rq weight of a
1580 * parent group depends on the shares of its child groups.
c09595f6 1581 */
eb755805 1582static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1583{
cd8ad40d 1584 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1585 unsigned long *usd_rq_weight;
eb755805 1586 struct sched_domain *sd = data;
34d76c41 1587 unsigned long flags;
c8cba857 1588 int i;
c09595f6 1589
34d76c41
PZ
1590 if (!tg->se[0])
1591 return 0;
1592
1593 local_irq_save(flags);
4a6cc4bd 1594 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1595
758b2cdc 1596 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1597 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1598 usd_rq_weight[i] = weight;
34d76c41 1599
cd8ad40d 1600 rq_weight += weight;
ec4e0e2f
KC
1601 /*
1602 * If there are currently no tasks on the cpu pretend there
1603 * is one of average load so that when a new task gets to
1604 * run here it will not get delayed by group starvation.
1605 */
ec4e0e2f
KC
1606 if (!weight)
1607 weight = NICE_0_LOAD;
1608
cd8ad40d 1609 sum_weight += weight;
c8cba857 1610 shares += tg->cfs_rq[i]->shares;
c09595f6 1611 }
c09595f6 1612
cd8ad40d
PZ
1613 if (!rq_weight)
1614 rq_weight = sum_weight;
1615
c8cba857
PZ
1616 if ((!shares && rq_weight) || shares > tg->shares)
1617 shares = tg->shares;
1618
1619 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1620 shares = tg->shares;
c09595f6 1621
758b2cdc 1622 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1623 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1624
1625 local_irq_restore(flags);
eb755805
PZ
1626
1627 return 0;
c09595f6
PZ
1628}
1629
1630/*
c8cba857
PZ
1631 * Compute the cpu's hierarchical load factor for each task group.
1632 * This needs to be done in a top-down fashion because the load of a child
1633 * group is a fraction of its parents load.
c09595f6 1634 */
eb755805 1635static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1636{
c8cba857 1637 unsigned long load;
eb755805 1638 long cpu = (long)data;
c09595f6 1639
c8cba857
PZ
1640 if (!tg->parent) {
1641 load = cpu_rq(cpu)->load.weight;
1642 } else {
1643 load = tg->parent->cfs_rq[cpu]->h_load;
1644 load *= tg->cfs_rq[cpu]->shares;
1645 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1646 }
c09595f6 1647
c8cba857 1648 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1649
eb755805 1650 return 0;
c09595f6
PZ
1651}
1652
c8cba857 1653static void update_shares(struct sched_domain *sd)
4d8d595d 1654{
e7097159
PZ
1655 s64 elapsed;
1656 u64 now;
1657
1658 if (root_task_group_empty())
1659 return;
1660
1661 now = cpu_clock(raw_smp_processor_id());
1662 elapsed = now - sd->last_update;
2398f2c6
PZ
1663
1664 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1665 sd->last_update = now;
eb755805 1666 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1667 }
4d8d595d
PZ
1668}
1669
eb755805 1670static void update_h_load(long cpu)
c09595f6 1671{
e7097159
PZ
1672 if (root_task_group_empty())
1673 return;
1674
eb755805 1675 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1676}
1677
c09595f6
PZ
1678#else
1679
c8cba857 1680static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1681{
1682}
1683
18d95a28
PZ
1684#endif
1685
8f45e2b5
GH
1686#ifdef CONFIG_PREEMPT
1687
b78bb868
PZ
1688static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1689
70574a99 1690/*
8f45e2b5
GH
1691 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1692 * way at the expense of forcing extra atomic operations in all
1693 * invocations. This assures that the double_lock is acquired using the
1694 * same underlying policy as the spinlock_t on this architecture, which
1695 * reduces latency compared to the unfair variant below. However, it
1696 * also adds more overhead and therefore may reduce throughput.
70574a99 1697 */
8f45e2b5
GH
1698static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1699 __releases(this_rq->lock)
1700 __acquires(busiest->lock)
1701 __acquires(this_rq->lock)
1702{
05fa785c 1703 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1704 double_rq_lock(this_rq, busiest);
1705
1706 return 1;
1707}
1708
1709#else
1710/*
1711 * Unfair double_lock_balance: Optimizes throughput at the expense of
1712 * latency by eliminating extra atomic operations when the locks are
1713 * already in proper order on entry. This favors lower cpu-ids and will
1714 * grant the double lock to lower cpus over higher ids under contention,
1715 * regardless of entry order into the function.
1716 */
1717static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1718 __releases(this_rq->lock)
1719 __acquires(busiest->lock)
1720 __acquires(this_rq->lock)
1721{
1722 int ret = 0;
1723
05fa785c 1724 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1725 if (busiest < this_rq) {
05fa785c
TG
1726 raw_spin_unlock(&this_rq->lock);
1727 raw_spin_lock(&busiest->lock);
1728 raw_spin_lock_nested(&this_rq->lock,
1729 SINGLE_DEPTH_NESTING);
70574a99
AD
1730 ret = 1;
1731 } else
05fa785c
TG
1732 raw_spin_lock_nested(&busiest->lock,
1733 SINGLE_DEPTH_NESTING);
70574a99
AD
1734 }
1735 return ret;
1736}
1737
8f45e2b5
GH
1738#endif /* CONFIG_PREEMPT */
1739
1740/*
1741 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1742 */
1743static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744{
1745 if (unlikely(!irqs_disabled())) {
1746 /* printk() doesn't work good under rq->lock */
05fa785c 1747 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1748 BUG_ON(1);
1749 }
1750
1751 return _double_lock_balance(this_rq, busiest);
1752}
1753
70574a99
AD
1754static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1755 __releases(busiest->lock)
1756{
05fa785c 1757 raw_spin_unlock(&busiest->lock);
70574a99
AD
1758 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1759}
1e3c88bd
PZ
1760
1761/*
1762 * double_rq_lock - safely lock two runqueues
1763 *
1764 * Note this does not disable interrupts like task_rq_lock,
1765 * you need to do so manually before calling.
1766 */
1767static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1768 __acquires(rq1->lock)
1769 __acquires(rq2->lock)
1770{
1771 BUG_ON(!irqs_disabled());
1772 if (rq1 == rq2) {
1773 raw_spin_lock(&rq1->lock);
1774 __acquire(rq2->lock); /* Fake it out ;) */
1775 } else {
1776 if (rq1 < rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1779 } else {
1780 raw_spin_lock(&rq2->lock);
1781 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1782 }
1783 }
1784 update_rq_clock(rq1);
1785 update_rq_clock(rq2);
1786}
1787
1788/*
1789 * double_rq_unlock - safely unlock two runqueues
1790 *
1791 * Note this does not restore interrupts like task_rq_unlock,
1792 * you need to do so manually after calling.
1793 */
1794static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1795 __releases(rq1->lock)
1796 __releases(rq2->lock)
1797{
1798 raw_spin_unlock(&rq1->lock);
1799 if (rq1 != rq2)
1800 raw_spin_unlock(&rq2->lock);
1801 else
1802 __release(rq2->lock);
1803}
1804
18d95a28
PZ
1805#endif
1806
30432094 1807#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1808static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809{
30432094 1810#ifdef CONFIG_SMP
34e83e85
IM
1811 cfs_rq->shares = shares;
1812#endif
1813}
30432094 1814#endif
e7693a36 1815
dce48a84 1816static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1817static void update_sysctl(void);
acb4a848 1818static int get_update_sysctl_factor(void);
dce48a84 1819
cd29fe6f
PZ
1820static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1821{
1822 set_task_rq(p, cpu);
1823#ifdef CONFIG_SMP
1824 /*
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1828 */
1829 smp_wmb();
1830 task_thread_info(p)->cpu = cpu;
1831#endif
1832}
dce48a84 1833
1e3c88bd 1834static const struct sched_class rt_sched_class;
dd41f596
IM
1835
1836#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1837#define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
dd41f596 1839
1e3c88bd
PZ
1840#include "sched_stats.h"
1841
c09595f6 1842static void inc_nr_running(struct rq *rq)
9c217245
IM
1843{
1844 rq->nr_running++;
9c217245
IM
1845}
1846
c09595f6 1847static void dec_nr_running(struct rq *rq)
9c217245
IM
1848{
1849 rq->nr_running--;
9c217245
IM
1850}
1851
45bf76df
IM
1852static void set_load_weight(struct task_struct *p)
1853{
1854 if (task_has_rt_policy(p)) {
dd41f596
IM
1855 p->se.load.weight = prio_to_weight[0] * 2;
1856 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1857 return;
1858 }
45bf76df 1859
dd41f596
IM
1860 /*
1861 * SCHED_IDLE tasks get minimal weight:
1862 */
1863 if (p->policy == SCHED_IDLE) {
1864 p->se.load.weight = WEIGHT_IDLEPRIO;
1865 p->se.load.inv_weight = WMULT_IDLEPRIO;
1866 return;
1867 }
71f8bd46 1868
dd41f596
IM
1869 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1870 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1871}
1872
2087a1ad
GH
1873static void update_avg(u64 *avg, u64 sample)
1874{
1875 s64 diff = sample - *avg;
1876 *avg += diff >> 3;
1877}
1878
ea87bb78
TG
1879static void
1880enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
71f8bd46 1881{
831451ac
PZ
1882 if (wakeup)
1883 p->se.start_runtime = p->se.sum_exec_runtime;
1884
dd41f596 1885 sched_info_queued(p);
ea87bb78 1886 p->sched_class->enqueue_task(rq, p, wakeup, head);
dd41f596 1887 p->se.on_rq = 1;
71f8bd46
IM
1888}
1889
69be72c1 1890static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1891{
831451ac
PZ
1892 if (sleep) {
1893 if (p->se.last_wakeup) {
1894 update_avg(&p->se.avg_overlap,
1895 p->se.sum_exec_runtime - p->se.last_wakeup);
1896 p->se.last_wakeup = 0;
1897 } else {
1898 update_avg(&p->se.avg_wakeup,
1899 sysctl_sched_wakeup_granularity);
1900 }
2087a1ad
GH
1901 }
1902
46ac22ba 1903 sched_info_dequeued(p);
f02231e5 1904 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1905 p->se.on_rq = 0;
71f8bd46
IM
1906}
1907
1e3c88bd
PZ
1908/*
1909 * activate_task - move a task to the runqueue.
1910 */
1911static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1912{
1913 if (task_contributes_to_load(p))
1914 rq->nr_uninterruptible--;
1915
ea87bb78 1916 enqueue_task(rq, p, wakeup, false);
1e3c88bd
PZ
1917 inc_nr_running(rq);
1918}
1919
1920/*
1921 * deactivate_task - remove a task from the runqueue.
1922 */
1923static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1924{
1925 if (task_contributes_to_load(p))
1926 rq->nr_uninterruptible++;
1927
1928 dequeue_task(rq, p, sleep);
1929 dec_nr_running(rq);
1930}
1931
1932#include "sched_idletask.c"
1933#include "sched_fair.c"
1934#include "sched_rt.c"
1935#ifdef CONFIG_SCHED_DEBUG
1936# include "sched_debug.c"
1937#endif
1938
14531189 1939/*
dd41f596 1940 * __normal_prio - return the priority that is based on the static prio
14531189 1941 */
14531189
IM
1942static inline int __normal_prio(struct task_struct *p)
1943{
dd41f596 1944 return p->static_prio;
14531189
IM
1945}
1946
b29739f9
IM
1947/*
1948 * Calculate the expected normal priority: i.e. priority
1949 * without taking RT-inheritance into account. Might be
1950 * boosted by interactivity modifiers. Changes upon fork,
1951 * setprio syscalls, and whenever the interactivity
1952 * estimator recalculates.
1953 */
36c8b586 1954static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1955{
1956 int prio;
1957
e05606d3 1958 if (task_has_rt_policy(p))
b29739f9
IM
1959 prio = MAX_RT_PRIO-1 - p->rt_priority;
1960 else
1961 prio = __normal_prio(p);
1962 return prio;
1963}
1964
1965/*
1966 * Calculate the current priority, i.e. the priority
1967 * taken into account by the scheduler. This value might
1968 * be boosted by RT tasks, or might be boosted by
1969 * interactivity modifiers. Will be RT if the task got
1970 * RT-boosted. If not then it returns p->normal_prio.
1971 */
36c8b586 1972static int effective_prio(struct task_struct *p)
b29739f9
IM
1973{
1974 p->normal_prio = normal_prio(p);
1975 /*
1976 * If we are RT tasks or we were boosted to RT priority,
1977 * keep the priority unchanged. Otherwise, update priority
1978 * to the normal priority:
1979 */
1980 if (!rt_prio(p->prio))
1981 return p->normal_prio;
1982 return p->prio;
1983}
1984
1da177e4
LT
1985/**
1986 * task_curr - is this task currently executing on a CPU?
1987 * @p: the task in question.
1988 */
36c8b586 1989inline int task_curr(const struct task_struct *p)
1da177e4
LT
1990{
1991 return cpu_curr(task_cpu(p)) == p;
1992}
1993
cb469845
SR
1994static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1995 const struct sched_class *prev_class,
1996 int oldprio, int running)
1997{
1998 if (prev_class != p->sched_class) {
1999 if (prev_class->switched_from)
2000 prev_class->switched_from(rq, p, running);
2001 p->sched_class->switched_to(rq, p, running);
2002 } else
2003 p->sched_class->prio_changed(rq, p, oldprio, running);
2004}
2005
1da177e4 2006#ifdef CONFIG_SMP
cc367732
IM
2007/*
2008 * Is this task likely cache-hot:
2009 */
e7693a36 2010static int
cc367732
IM
2011task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2012{
2013 s64 delta;
2014
e6c8fba7
PZ
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
f540a608
IM
2018 /*
2019 * Buddy candidates are cache hot:
2020 */
f685ceac 2021 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2022 (&p->se == cfs_rq_of(&p->se)->next ||
2023 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2024 return 1;
2025
6bc1665b
IM
2026 if (sysctl_sched_migration_cost == -1)
2027 return 1;
2028 if (sysctl_sched_migration_cost == 0)
2029 return 0;
2030
cc367732
IM
2031 delta = now - p->se.exec_start;
2032
2033 return delta < (s64)sysctl_sched_migration_cost;
2034}
2035
dd41f596 2036void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2037{
e2912009
PZ
2038#ifdef CONFIG_SCHED_DEBUG
2039 /*
2040 * We should never call set_task_cpu() on a blocked task,
2041 * ttwu() will sort out the placement.
2042 */
077614ee
PZ
2043 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2044 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2045#endif
2046
de1d7286 2047 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2048
0c69774e
PZ
2049 if (task_cpu(p) != new_cpu) {
2050 p->se.nr_migrations++;
2051 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2052 }
dd41f596
IM
2053
2054 __set_task_cpu(p, new_cpu);
c65cc870
IM
2055}
2056
70b97a7f 2057struct migration_req {
1da177e4 2058 struct list_head list;
1da177e4 2059
36c8b586 2060 struct task_struct *task;
1da177e4
LT
2061 int dest_cpu;
2062
1da177e4 2063 struct completion done;
70b97a7f 2064};
1da177e4
LT
2065
2066/*
2067 * The task's runqueue lock must be held.
2068 * Returns true if you have to wait for migration thread.
2069 */
36c8b586 2070static int
70b97a7f 2071migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2072{
70b97a7f 2073 struct rq *rq = task_rq(p);
1da177e4
LT
2074
2075 /*
2076 * If the task is not on a runqueue (and not running), then
e2912009 2077 * the next wake-up will properly place the task.
1da177e4 2078 */
e2912009 2079 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2080 return 0;
1da177e4
LT
2081
2082 init_completion(&req->done);
1da177e4
LT
2083 req->task = p;
2084 req->dest_cpu = dest_cpu;
2085 list_add(&req->list, &rq->migration_queue);
48f24c4d 2086
1da177e4
LT
2087 return 1;
2088}
2089
a26b89f0
MM
2090/*
2091 * wait_task_context_switch - wait for a thread to complete at least one
2092 * context switch.
2093 *
2094 * @p must not be current.
2095 */
2096void wait_task_context_switch(struct task_struct *p)
2097{
2098 unsigned long nvcsw, nivcsw, flags;
2099 int running;
2100 struct rq *rq;
2101
2102 nvcsw = p->nvcsw;
2103 nivcsw = p->nivcsw;
2104 for (;;) {
2105 /*
2106 * The runqueue is assigned before the actual context
2107 * switch. We need to take the runqueue lock.
2108 *
2109 * We could check initially without the lock but it is
2110 * very likely that we need to take the lock in every
2111 * iteration.
2112 */
2113 rq = task_rq_lock(p, &flags);
2114 running = task_running(rq, p);
2115 task_rq_unlock(rq, &flags);
2116
2117 if (likely(!running))
2118 break;
2119 /*
2120 * The switch count is incremented before the actual
2121 * context switch. We thus wait for two switches to be
2122 * sure at least one completed.
2123 */
2124 if ((p->nvcsw - nvcsw) > 1)
2125 break;
2126 if ((p->nivcsw - nivcsw) > 1)
2127 break;
2128
2129 cpu_relax();
2130 }
2131}
2132
1da177e4
LT
2133/*
2134 * wait_task_inactive - wait for a thread to unschedule.
2135 *
85ba2d86
RM
2136 * If @match_state is nonzero, it's the @p->state value just checked and
2137 * not expected to change. If it changes, i.e. @p might have woken up,
2138 * then return zero. When we succeed in waiting for @p to be off its CPU,
2139 * we return a positive number (its total switch count). If a second call
2140 * a short while later returns the same number, the caller can be sure that
2141 * @p has remained unscheduled the whole time.
2142 *
1da177e4
LT
2143 * The caller must ensure that the task *will* unschedule sometime soon,
2144 * else this function might spin for a *long* time. This function can't
2145 * be called with interrupts off, or it may introduce deadlock with
2146 * smp_call_function() if an IPI is sent by the same process we are
2147 * waiting to become inactive.
2148 */
85ba2d86 2149unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2150{
2151 unsigned long flags;
dd41f596 2152 int running, on_rq;
85ba2d86 2153 unsigned long ncsw;
70b97a7f 2154 struct rq *rq;
1da177e4 2155
3a5c359a
AK
2156 for (;;) {
2157 /*
2158 * We do the initial early heuristics without holding
2159 * any task-queue locks at all. We'll only try to get
2160 * the runqueue lock when things look like they will
2161 * work out!
2162 */
2163 rq = task_rq(p);
fa490cfd 2164
3a5c359a
AK
2165 /*
2166 * If the task is actively running on another CPU
2167 * still, just relax and busy-wait without holding
2168 * any locks.
2169 *
2170 * NOTE! Since we don't hold any locks, it's not
2171 * even sure that "rq" stays as the right runqueue!
2172 * But we don't care, since "task_running()" will
2173 * return false if the runqueue has changed and p
2174 * is actually now running somewhere else!
2175 */
85ba2d86
RM
2176 while (task_running(rq, p)) {
2177 if (match_state && unlikely(p->state != match_state))
2178 return 0;
3a5c359a 2179 cpu_relax();
85ba2d86 2180 }
fa490cfd 2181
3a5c359a
AK
2182 /*
2183 * Ok, time to look more closely! We need the rq
2184 * lock now, to be *sure*. If we're wrong, we'll
2185 * just go back and repeat.
2186 */
2187 rq = task_rq_lock(p, &flags);
0a16b607 2188 trace_sched_wait_task(rq, p);
3a5c359a
AK
2189 running = task_running(rq, p);
2190 on_rq = p->se.on_rq;
85ba2d86 2191 ncsw = 0;
f31e11d8 2192 if (!match_state || p->state == match_state)
93dcf55f 2193 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2194 task_rq_unlock(rq, &flags);
fa490cfd 2195
85ba2d86
RM
2196 /*
2197 * If it changed from the expected state, bail out now.
2198 */
2199 if (unlikely(!ncsw))
2200 break;
2201
3a5c359a
AK
2202 /*
2203 * Was it really running after all now that we
2204 * checked with the proper locks actually held?
2205 *
2206 * Oops. Go back and try again..
2207 */
2208 if (unlikely(running)) {
2209 cpu_relax();
2210 continue;
2211 }
fa490cfd 2212
3a5c359a
AK
2213 /*
2214 * It's not enough that it's not actively running,
2215 * it must be off the runqueue _entirely_, and not
2216 * preempted!
2217 *
80dd99b3 2218 * So if it was still runnable (but just not actively
3a5c359a
AK
2219 * running right now), it's preempted, and we should
2220 * yield - it could be a while.
2221 */
2222 if (unlikely(on_rq)) {
2223 schedule_timeout_uninterruptible(1);
2224 continue;
2225 }
fa490cfd 2226
3a5c359a
AK
2227 /*
2228 * Ahh, all good. It wasn't running, and it wasn't
2229 * runnable, which means that it will never become
2230 * running in the future either. We're all done!
2231 */
2232 break;
2233 }
85ba2d86
RM
2234
2235 return ncsw;
1da177e4
LT
2236}
2237
2238/***
2239 * kick_process - kick a running thread to enter/exit the kernel
2240 * @p: the to-be-kicked thread
2241 *
2242 * Cause a process which is running on another CPU to enter
2243 * kernel-mode, without any delay. (to get signals handled.)
2244 *
2245 * NOTE: this function doesnt have to take the runqueue lock,
2246 * because all it wants to ensure is that the remote task enters
2247 * the kernel. If the IPI races and the task has been migrated
2248 * to another CPU then no harm is done and the purpose has been
2249 * achieved as well.
2250 */
36c8b586 2251void kick_process(struct task_struct *p)
1da177e4
LT
2252{
2253 int cpu;
2254
2255 preempt_disable();
2256 cpu = task_cpu(p);
2257 if ((cpu != smp_processor_id()) && task_curr(p))
2258 smp_send_reschedule(cpu);
2259 preempt_enable();
2260}
b43e3521 2261EXPORT_SYMBOL_GPL(kick_process);
476d139c 2262#endif /* CONFIG_SMP */
1da177e4 2263
0793a61d
TG
2264/**
2265 * task_oncpu_function_call - call a function on the cpu on which a task runs
2266 * @p: the task to evaluate
2267 * @func: the function to be called
2268 * @info: the function call argument
2269 *
2270 * Calls the function @func when the task is currently running. This might
2271 * be on the current CPU, which just calls the function directly
2272 */
2273void task_oncpu_function_call(struct task_struct *p,
2274 void (*func) (void *info), void *info)
2275{
2276 int cpu;
2277
2278 preempt_disable();
2279 cpu = task_cpu(p);
2280 if (task_curr(p))
2281 smp_call_function_single(cpu, func, info, 1);
2282 preempt_enable();
2283}
2284
970b13ba 2285#ifdef CONFIG_SMP
5da9a0fb
PZ
2286static int select_fallback_rq(int cpu, struct task_struct *p)
2287{
2288 int dest_cpu;
2289 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2290
2291 /* Look for allowed, online CPU in same node. */
2292 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2293 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2294 return dest_cpu;
2295
2296 /* Any allowed, online CPU? */
2297 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2298 if (dest_cpu < nr_cpu_ids)
2299 return dest_cpu;
2300
2301 /* No more Mr. Nice Guy. */
2302 if (dest_cpu >= nr_cpu_ids) {
2303 rcu_read_lock();
2304 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2305 rcu_read_unlock();
2306 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2307
2308 /*
2309 * Don't tell them about moving exiting tasks or
2310 * kernel threads (both mm NULL), since they never
2311 * leave kernel.
2312 */
2313 if (p->mm && printk_ratelimit()) {
2314 printk(KERN_INFO "process %d (%s) no "
2315 "longer affine to cpu%d\n",
2316 task_pid_nr(p), p->comm, cpu);
2317 }
2318 }
2319
2320 return dest_cpu;
2321}
2322
e2912009 2323/*
fabf318e
PZ
2324 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2325 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2326 * by:
e2912009 2327 *
fabf318e
PZ
2328 * exec: is unstable, retry loop
2329 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
e2912009 2330 */
970b13ba
PZ
2331static inline
2332int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2333{
e2912009
PZ
2334 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2335
2336 /*
2337 * In order not to call set_task_cpu() on a blocking task we need
2338 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2339 * cpu.
2340 *
2341 * Since this is common to all placement strategies, this lives here.
2342 *
2343 * [ this allows ->select_task() to simply return task_cpu(p) and
2344 * not worry about this generic constraint ]
2345 */
2346 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2347 !cpu_online(cpu)))
5da9a0fb 2348 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2349
2350 return cpu;
970b13ba
PZ
2351}
2352#endif
2353
1da177e4
LT
2354/***
2355 * try_to_wake_up - wake up a thread
2356 * @p: the to-be-woken-up thread
2357 * @state: the mask of task states that can be woken
2358 * @sync: do a synchronous wakeup?
2359 *
2360 * Put it on the run-queue if it's not already there. The "current"
2361 * thread is always on the run-queue (except when the actual
2362 * re-schedule is in progress), and as such you're allowed to do
2363 * the simpler "current->state = TASK_RUNNING" to mark yourself
2364 * runnable without the overhead of this.
2365 *
2366 * returns failure only if the task is already active.
2367 */
7d478721
PZ
2368static int try_to_wake_up(struct task_struct *p, unsigned int state,
2369 int wake_flags)
1da177e4 2370{
cc367732 2371 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2372 unsigned long flags;
ab3b3aa5 2373 struct rq *rq;
1da177e4 2374
b85d0667 2375 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2376 wake_flags &= ~WF_SYNC;
2398f2c6 2377
e9c84311 2378 this_cpu = get_cpu();
2398f2c6 2379
04e2f174 2380 smp_wmb();
ab3b3aa5 2381 rq = task_rq_lock(p, &flags);
03e89e45 2382 update_rq_clock(rq);
e9c84311 2383 if (!(p->state & state))
1da177e4
LT
2384 goto out;
2385
dd41f596 2386 if (p->se.on_rq)
1da177e4
LT
2387 goto out_running;
2388
2389 cpu = task_cpu(p);
cc367732 2390 orig_cpu = cpu;
1da177e4
LT
2391
2392#ifdef CONFIG_SMP
2393 if (unlikely(task_running(rq, p)))
2394 goto out_activate;
2395
e9c84311
PZ
2396 /*
2397 * In order to handle concurrent wakeups and release the rq->lock
2398 * we put the task in TASK_WAKING state.
eb24073b
IM
2399 *
2400 * First fix up the nr_uninterruptible count:
e9c84311 2401 */
eb24073b
IM
2402 if (task_contributes_to_load(p))
2403 rq->nr_uninterruptible--;
e9c84311 2404 p->state = TASK_WAKING;
efbbd05a
PZ
2405
2406 if (p->sched_class->task_waking)
2407 p->sched_class->task_waking(rq, p);
2408
ab19cb23 2409 __task_rq_unlock(rq);
e9c84311 2410
970b13ba 2411 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0970d299
PZ
2412 if (cpu != orig_cpu) {
2413 /*
2414 * Since we migrate the task without holding any rq->lock,
2415 * we need to be careful with task_rq_lock(), since that
2416 * might end up locking an invalid rq.
2417 */
5d2f5a61 2418 set_task_cpu(p, cpu);
0970d299 2419 }
ab19cb23 2420
0970d299
PZ
2421 rq = cpu_rq(cpu);
2422 raw_spin_lock(&rq->lock);
ab19cb23 2423 update_rq_clock(rq);
f5dc3753 2424
0970d299
PZ
2425 /*
2426 * We migrated the task without holding either rq->lock, however
2427 * since the task is not on the task list itself, nobody else
2428 * will try and migrate the task, hence the rq should match the
2429 * cpu we just moved it to.
2430 */
2431 WARN_ON(task_cpu(p) != cpu);
e9c84311 2432 WARN_ON(p->state != TASK_WAKING);
1da177e4 2433
e7693a36
GH
2434#ifdef CONFIG_SCHEDSTATS
2435 schedstat_inc(rq, ttwu_count);
2436 if (cpu == this_cpu)
2437 schedstat_inc(rq, ttwu_local);
2438 else {
2439 struct sched_domain *sd;
2440 for_each_domain(this_cpu, sd) {
758b2cdc 2441 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2442 schedstat_inc(sd, ttwu_wake_remote);
2443 break;
2444 }
2445 }
2446 }
6d6bc0ad 2447#endif /* CONFIG_SCHEDSTATS */
e7693a36 2448
1da177e4
LT
2449out_activate:
2450#endif /* CONFIG_SMP */
cc367732 2451 schedstat_inc(p, se.nr_wakeups);
7d478721 2452 if (wake_flags & WF_SYNC)
cc367732
IM
2453 schedstat_inc(p, se.nr_wakeups_sync);
2454 if (orig_cpu != cpu)
2455 schedstat_inc(p, se.nr_wakeups_migrate);
2456 if (cpu == this_cpu)
2457 schedstat_inc(p, se.nr_wakeups_local);
2458 else
2459 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2460 activate_task(rq, p, 1);
1da177e4
LT
2461 success = 1;
2462
831451ac
PZ
2463 /*
2464 * Only attribute actual wakeups done by this task.
2465 */
2466 if (!in_interrupt()) {
2467 struct sched_entity *se = &current->se;
2468 u64 sample = se->sum_exec_runtime;
2469
2470 if (se->last_wakeup)
2471 sample -= se->last_wakeup;
2472 else
2473 sample -= se->start_runtime;
2474 update_avg(&se->avg_wakeup, sample);
2475
2476 se->last_wakeup = se->sum_exec_runtime;
2477 }
2478
1da177e4 2479out_running:
468a15bb 2480 trace_sched_wakeup(rq, p, success);
7d478721 2481 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2482
1da177e4 2483 p->state = TASK_RUNNING;
9a897c5a 2484#ifdef CONFIG_SMP
efbbd05a
PZ
2485 if (p->sched_class->task_woken)
2486 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2487
2488 if (unlikely(rq->idle_stamp)) {
2489 u64 delta = rq->clock - rq->idle_stamp;
2490 u64 max = 2*sysctl_sched_migration_cost;
2491
2492 if (delta > max)
2493 rq->avg_idle = max;
2494 else
2495 update_avg(&rq->avg_idle, delta);
2496 rq->idle_stamp = 0;
2497 }
9a897c5a 2498#endif
1da177e4
LT
2499out:
2500 task_rq_unlock(rq, &flags);
e9c84311 2501 put_cpu();
1da177e4
LT
2502
2503 return success;
2504}
2505
50fa610a
DH
2506/**
2507 * wake_up_process - Wake up a specific process
2508 * @p: The process to be woken up.
2509 *
2510 * Attempt to wake up the nominated process and move it to the set of runnable
2511 * processes. Returns 1 if the process was woken up, 0 if it was already
2512 * running.
2513 *
2514 * It may be assumed that this function implies a write memory barrier before
2515 * changing the task state if and only if any tasks are woken up.
2516 */
7ad5b3a5 2517int wake_up_process(struct task_struct *p)
1da177e4 2518{
d9514f6c 2519 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2520}
1da177e4
LT
2521EXPORT_SYMBOL(wake_up_process);
2522
7ad5b3a5 2523int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2524{
2525 return try_to_wake_up(p, state, 0);
2526}
2527
1da177e4
LT
2528/*
2529 * Perform scheduler related setup for a newly forked process p.
2530 * p is forked by current.
dd41f596
IM
2531 *
2532 * __sched_fork() is basic setup used by init_idle() too:
2533 */
2534static void __sched_fork(struct task_struct *p)
2535{
dd41f596
IM
2536 p->se.exec_start = 0;
2537 p->se.sum_exec_runtime = 0;
f6cf891c 2538 p->se.prev_sum_exec_runtime = 0;
6c594c21 2539 p->se.nr_migrations = 0;
4ae7d5ce
IM
2540 p->se.last_wakeup = 0;
2541 p->se.avg_overlap = 0;
831451ac
PZ
2542 p->se.start_runtime = 0;
2543 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2544
2545#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2546 p->se.wait_start = 0;
2547 p->se.wait_max = 0;
2548 p->se.wait_count = 0;
2549 p->se.wait_sum = 0;
2550
2551 p->se.sleep_start = 0;
2552 p->se.sleep_max = 0;
2553 p->se.sum_sleep_runtime = 0;
2554
2555 p->se.block_start = 0;
2556 p->se.block_max = 0;
2557 p->se.exec_max = 0;
2558 p->se.slice_max = 0;
2559
2560 p->se.nr_migrations_cold = 0;
2561 p->se.nr_failed_migrations_affine = 0;
2562 p->se.nr_failed_migrations_running = 0;
2563 p->se.nr_failed_migrations_hot = 0;
2564 p->se.nr_forced_migrations = 0;
7793527b
LDM
2565
2566 p->se.nr_wakeups = 0;
2567 p->se.nr_wakeups_sync = 0;
2568 p->se.nr_wakeups_migrate = 0;
2569 p->se.nr_wakeups_local = 0;
2570 p->se.nr_wakeups_remote = 0;
2571 p->se.nr_wakeups_affine = 0;
2572 p->se.nr_wakeups_affine_attempts = 0;
2573 p->se.nr_wakeups_passive = 0;
2574 p->se.nr_wakeups_idle = 0;
2575
6cfb0d5d 2576#endif
476d139c 2577
fa717060 2578 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2579 p->se.on_rq = 0;
4a55bd5e 2580 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2581
e107be36
AK
2582#ifdef CONFIG_PREEMPT_NOTIFIERS
2583 INIT_HLIST_HEAD(&p->preempt_notifiers);
2584#endif
dd41f596
IM
2585}
2586
2587/*
2588 * fork()/clone()-time setup:
2589 */
2590void sched_fork(struct task_struct *p, int clone_flags)
2591{
2592 int cpu = get_cpu();
2593
2594 __sched_fork(p);
06b83b5f
PZ
2595 /*
2596 * We mark the process as waking here. This guarantees that
2597 * nobody will actually run it, and a signal or other external
2598 * event cannot wake it up and insert it on the runqueue either.
2599 */
2600 p->state = TASK_WAKING;
dd41f596 2601
b9dc29e7
MG
2602 /*
2603 * Revert to default priority/policy on fork if requested.
2604 */
2605 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2606 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2607 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2608 p->normal_prio = p->static_prio;
2609 }
b9dc29e7 2610
6c697bdf
MG
2611 if (PRIO_TO_NICE(p->static_prio) < 0) {
2612 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2613 p->normal_prio = p->static_prio;
6c697bdf
MG
2614 set_load_weight(p);
2615 }
2616
b9dc29e7
MG
2617 /*
2618 * We don't need the reset flag anymore after the fork. It has
2619 * fulfilled its duty:
2620 */
2621 p->sched_reset_on_fork = 0;
2622 }
ca94c442 2623
f83f9ac2
PW
2624 /*
2625 * Make sure we do not leak PI boosting priority to the child.
2626 */
2627 p->prio = current->normal_prio;
2628
2ddbf952
HS
2629 if (!rt_prio(p->prio))
2630 p->sched_class = &fair_sched_class;
b29739f9 2631
cd29fe6f
PZ
2632 if (p->sched_class->task_fork)
2633 p->sched_class->task_fork(p);
2634
5f3edc1b
PZ
2635 set_task_cpu(p, cpu);
2636
52f17b6c 2637#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2638 if (likely(sched_info_on()))
52f17b6c 2639 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2640#endif
d6077cb8 2641#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2642 p->oncpu = 0;
2643#endif
1da177e4 2644#ifdef CONFIG_PREEMPT
4866cde0 2645 /* Want to start with kernel preemption disabled. */
a1261f54 2646 task_thread_info(p)->preempt_count = 1;
1da177e4 2647#endif
917b627d
GH
2648 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2649
476d139c 2650 put_cpu();
1da177e4
LT
2651}
2652
2653/*
2654 * wake_up_new_task - wake up a newly created task for the first time.
2655 *
2656 * This function will do some initial scheduler statistics housekeeping
2657 * that must be done for every newly created context, then puts the task
2658 * on the runqueue and wakes it.
2659 */
7ad5b3a5 2660void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2661{
2662 unsigned long flags;
dd41f596 2663 struct rq *rq;
c890692b 2664 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2665
2666#ifdef CONFIG_SMP
2667 /*
2668 * Fork balancing, do it here and not earlier because:
2669 * - cpus_allowed can change in the fork path
2670 * - any previously selected cpu might disappear through hotplug
2671 *
2672 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2673 * ->cpus_allowed is stable, we have preemption disabled, meaning
2674 * cpu_online_mask is stable.
2675 */
2676 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2677 set_task_cpu(p, cpu);
2678#endif
1da177e4 2679
0970d299
PZ
2680 /*
2681 * Since the task is not on the rq and we still have TASK_WAKING set
2682 * nobody else will migrate this task.
2683 */
2684 rq = cpu_rq(cpu);
2685 raw_spin_lock_irqsave(&rq->lock, flags);
2686
06b83b5f
PZ
2687 BUG_ON(p->state != TASK_WAKING);
2688 p->state = TASK_RUNNING;
a8e504d2 2689 update_rq_clock(rq);
cd29fe6f 2690 activate_task(rq, p, 0);
c71dd42d 2691 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2692 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2693#ifdef CONFIG_SMP
efbbd05a
PZ
2694 if (p->sched_class->task_woken)
2695 p->sched_class->task_woken(rq, p);
9a897c5a 2696#endif
dd41f596 2697 task_rq_unlock(rq, &flags);
fabf318e 2698 put_cpu();
1da177e4
LT
2699}
2700
e107be36
AK
2701#ifdef CONFIG_PREEMPT_NOTIFIERS
2702
2703/**
80dd99b3 2704 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2705 * @notifier: notifier struct to register
e107be36
AK
2706 */
2707void preempt_notifier_register(struct preempt_notifier *notifier)
2708{
2709 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2710}
2711EXPORT_SYMBOL_GPL(preempt_notifier_register);
2712
2713/**
2714 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2715 * @notifier: notifier struct to unregister
e107be36
AK
2716 *
2717 * This is safe to call from within a preemption notifier.
2718 */
2719void preempt_notifier_unregister(struct preempt_notifier *notifier)
2720{
2721 hlist_del(&notifier->link);
2722}
2723EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2724
2725static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2726{
2727 struct preempt_notifier *notifier;
2728 struct hlist_node *node;
2729
2730 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2731 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2732}
2733
2734static void
2735fire_sched_out_preempt_notifiers(struct task_struct *curr,
2736 struct task_struct *next)
2737{
2738 struct preempt_notifier *notifier;
2739 struct hlist_node *node;
2740
2741 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2742 notifier->ops->sched_out(notifier, next);
2743}
2744
6d6bc0ad 2745#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2746
2747static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2748{
2749}
2750
2751static void
2752fire_sched_out_preempt_notifiers(struct task_struct *curr,
2753 struct task_struct *next)
2754{
2755}
2756
6d6bc0ad 2757#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2758
4866cde0
NP
2759/**
2760 * prepare_task_switch - prepare to switch tasks
2761 * @rq: the runqueue preparing to switch
421cee29 2762 * @prev: the current task that is being switched out
4866cde0
NP
2763 * @next: the task we are going to switch to.
2764 *
2765 * This is called with the rq lock held and interrupts off. It must
2766 * be paired with a subsequent finish_task_switch after the context
2767 * switch.
2768 *
2769 * prepare_task_switch sets up locking and calls architecture specific
2770 * hooks.
2771 */
e107be36
AK
2772static inline void
2773prepare_task_switch(struct rq *rq, struct task_struct *prev,
2774 struct task_struct *next)
4866cde0 2775{
e107be36 2776 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2777 prepare_lock_switch(rq, next);
2778 prepare_arch_switch(next);
2779}
2780
1da177e4
LT
2781/**
2782 * finish_task_switch - clean up after a task-switch
344babaa 2783 * @rq: runqueue associated with task-switch
1da177e4
LT
2784 * @prev: the thread we just switched away from.
2785 *
4866cde0
NP
2786 * finish_task_switch must be called after the context switch, paired
2787 * with a prepare_task_switch call before the context switch.
2788 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2789 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2790 *
2791 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2792 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2793 * with the lock held can cause deadlocks; see schedule() for
2794 * details.)
2795 */
a9957449 2796static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2797 __releases(rq->lock)
2798{
1da177e4 2799 struct mm_struct *mm = rq->prev_mm;
55a101f8 2800 long prev_state;
1da177e4
LT
2801
2802 rq->prev_mm = NULL;
2803
2804 /*
2805 * A task struct has one reference for the use as "current".
c394cc9f 2806 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2807 * schedule one last time. The schedule call will never return, and
2808 * the scheduled task must drop that reference.
c394cc9f 2809 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2810 * still held, otherwise prev could be scheduled on another cpu, die
2811 * there before we look at prev->state, and then the reference would
2812 * be dropped twice.
2813 * Manfred Spraul <manfred@colorfullife.com>
2814 */
55a101f8 2815 prev_state = prev->state;
4866cde0 2816 finish_arch_switch(prev);
8381f65d
JI
2817#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2818 local_irq_disable();
2819#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2820 perf_event_task_sched_in(current);
8381f65d
JI
2821#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2822 local_irq_enable();
2823#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2824 finish_lock_switch(rq, prev);
e8fa1362 2825
e107be36 2826 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2827 if (mm)
2828 mmdrop(mm);
c394cc9f 2829 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2830 /*
2831 * Remove function-return probe instances associated with this
2832 * task and put them back on the free list.
9761eea8 2833 */
c6fd91f0 2834 kprobe_flush_task(prev);
1da177e4 2835 put_task_struct(prev);
c6fd91f0 2836 }
1da177e4
LT
2837}
2838
3f029d3c
GH
2839#ifdef CONFIG_SMP
2840
2841/* assumes rq->lock is held */
2842static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2843{
2844 if (prev->sched_class->pre_schedule)
2845 prev->sched_class->pre_schedule(rq, prev);
2846}
2847
2848/* rq->lock is NOT held, but preemption is disabled */
2849static inline void post_schedule(struct rq *rq)
2850{
2851 if (rq->post_schedule) {
2852 unsigned long flags;
2853
05fa785c 2854 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2855 if (rq->curr->sched_class->post_schedule)
2856 rq->curr->sched_class->post_schedule(rq);
05fa785c 2857 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2858
2859 rq->post_schedule = 0;
2860 }
2861}
2862
2863#else
da19ab51 2864
3f029d3c
GH
2865static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2866{
2867}
2868
2869static inline void post_schedule(struct rq *rq)
2870{
1da177e4
LT
2871}
2872
3f029d3c
GH
2873#endif
2874
1da177e4
LT
2875/**
2876 * schedule_tail - first thing a freshly forked thread must call.
2877 * @prev: the thread we just switched away from.
2878 */
36c8b586 2879asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2880 __releases(rq->lock)
2881{
70b97a7f
IM
2882 struct rq *rq = this_rq();
2883
4866cde0 2884 finish_task_switch(rq, prev);
da19ab51 2885
3f029d3c
GH
2886 /*
2887 * FIXME: do we need to worry about rq being invalidated by the
2888 * task_switch?
2889 */
2890 post_schedule(rq);
70b97a7f 2891
4866cde0
NP
2892#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2893 /* In this case, finish_task_switch does not reenable preemption */
2894 preempt_enable();
2895#endif
1da177e4 2896 if (current->set_child_tid)
b488893a 2897 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2898}
2899
2900/*
2901 * context_switch - switch to the new MM and the new
2902 * thread's register state.
2903 */
dd41f596 2904static inline void
70b97a7f 2905context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2906 struct task_struct *next)
1da177e4 2907{
dd41f596 2908 struct mm_struct *mm, *oldmm;
1da177e4 2909
e107be36 2910 prepare_task_switch(rq, prev, next);
0a16b607 2911 trace_sched_switch(rq, prev, next);
dd41f596
IM
2912 mm = next->mm;
2913 oldmm = prev->active_mm;
9226d125
ZA
2914 /*
2915 * For paravirt, this is coupled with an exit in switch_to to
2916 * combine the page table reload and the switch backend into
2917 * one hypercall.
2918 */
224101ed 2919 arch_start_context_switch(prev);
9226d125 2920
710390d9 2921 if (likely(!mm)) {
1da177e4
LT
2922 next->active_mm = oldmm;
2923 atomic_inc(&oldmm->mm_count);
2924 enter_lazy_tlb(oldmm, next);
2925 } else
2926 switch_mm(oldmm, mm, next);
2927
710390d9 2928 if (likely(!prev->mm)) {
1da177e4 2929 prev->active_mm = NULL;
1da177e4
LT
2930 rq->prev_mm = oldmm;
2931 }
3a5f5e48
IM
2932 /*
2933 * Since the runqueue lock will be released by the next
2934 * task (which is an invalid locking op but in the case
2935 * of the scheduler it's an obvious special-case), so we
2936 * do an early lockdep release here:
2937 */
2938#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2939 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2940#endif
1da177e4
LT
2941
2942 /* Here we just switch the register state and the stack. */
2943 switch_to(prev, next, prev);
2944
dd41f596
IM
2945 barrier();
2946 /*
2947 * this_rq must be evaluated again because prev may have moved
2948 * CPUs since it called schedule(), thus the 'rq' on its stack
2949 * frame will be invalid.
2950 */
2951 finish_task_switch(this_rq(), prev);
1da177e4
LT
2952}
2953
2954/*
2955 * nr_running, nr_uninterruptible and nr_context_switches:
2956 *
2957 * externally visible scheduler statistics: current number of runnable
2958 * threads, current number of uninterruptible-sleeping threads, total
2959 * number of context switches performed since bootup.
2960 */
2961unsigned long nr_running(void)
2962{
2963 unsigned long i, sum = 0;
2964
2965 for_each_online_cpu(i)
2966 sum += cpu_rq(i)->nr_running;
2967
2968 return sum;
f711f609 2969}
1da177e4
LT
2970
2971unsigned long nr_uninterruptible(void)
f711f609 2972{
1da177e4 2973 unsigned long i, sum = 0;
f711f609 2974
0a945022 2975 for_each_possible_cpu(i)
1da177e4 2976 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2977
2978 /*
1da177e4
LT
2979 * Since we read the counters lockless, it might be slightly
2980 * inaccurate. Do not allow it to go below zero though:
f711f609 2981 */
1da177e4
LT
2982 if (unlikely((long)sum < 0))
2983 sum = 0;
f711f609 2984
1da177e4 2985 return sum;
f711f609 2986}
f711f609 2987
1da177e4 2988unsigned long long nr_context_switches(void)
46cb4b7c 2989{
cc94abfc
SR
2990 int i;
2991 unsigned long long sum = 0;
46cb4b7c 2992
0a945022 2993 for_each_possible_cpu(i)
1da177e4 2994 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2995
1da177e4
LT
2996 return sum;
2997}
483b4ee6 2998
1da177e4
LT
2999unsigned long nr_iowait(void)
3000{
3001 unsigned long i, sum = 0;
483b4ee6 3002
0a945022 3003 for_each_possible_cpu(i)
1da177e4 3004 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3005
1da177e4
LT
3006 return sum;
3007}
483b4ee6 3008
69d25870
AV
3009unsigned long nr_iowait_cpu(void)
3010{
3011 struct rq *this = this_rq();
3012 return atomic_read(&this->nr_iowait);
3013}
46cb4b7c 3014
69d25870
AV
3015unsigned long this_cpu_load(void)
3016{
3017 struct rq *this = this_rq();
3018 return this->cpu_load[0];
3019}
e790fb0b 3020
46cb4b7c 3021
dce48a84
TG
3022/* Variables and functions for calc_load */
3023static atomic_long_t calc_load_tasks;
3024static unsigned long calc_load_update;
3025unsigned long avenrun[3];
3026EXPORT_SYMBOL(avenrun);
46cb4b7c 3027
2d02494f
TG
3028/**
3029 * get_avenrun - get the load average array
3030 * @loads: pointer to dest load array
3031 * @offset: offset to add
3032 * @shift: shift count to shift the result left
3033 *
3034 * These values are estimates at best, so no need for locking.
3035 */
3036void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3037{
3038 loads[0] = (avenrun[0] + offset) << shift;
3039 loads[1] = (avenrun[1] + offset) << shift;
3040 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3041}
46cb4b7c 3042
dce48a84
TG
3043static unsigned long
3044calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3045{
dce48a84
TG
3046 load *= exp;
3047 load += active * (FIXED_1 - exp);
3048 return load >> FSHIFT;
3049}
46cb4b7c
SS
3050
3051/*
dce48a84
TG
3052 * calc_load - update the avenrun load estimates 10 ticks after the
3053 * CPUs have updated calc_load_tasks.
7835b98b 3054 */
dce48a84 3055void calc_global_load(void)
7835b98b 3056{
dce48a84
TG
3057 unsigned long upd = calc_load_update + 10;
3058 long active;
1da177e4 3059
dce48a84
TG
3060 if (time_before(jiffies, upd))
3061 return;
1da177e4 3062
dce48a84
TG
3063 active = atomic_long_read(&calc_load_tasks);
3064 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3065
dce48a84
TG
3066 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3067 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3068 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3069
dce48a84
TG
3070 calc_load_update += LOAD_FREQ;
3071}
1da177e4 3072
dce48a84
TG
3073/*
3074 * Either called from update_cpu_load() or from a cpu going idle
3075 */
3076static void calc_load_account_active(struct rq *this_rq)
3077{
3078 long nr_active, delta;
08c183f3 3079
dce48a84
TG
3080 nr_active = this_rq->nr_running;
3081 nr_active += (long) this_rq->nr_uninterruptible;
783609c6 3082
dce48a84
TG
3083 if (nr_active != this_rq->calc_load_active) {
3084 delta = nr_active - this_rq->calc_load_active;
3085 this_rq->calc_load_active = nr_active;
3086 atomic_long_add(delta, &calc_load_tasks);
1da177e4 3087 }
46cb4b7c
SS
3088}
3089
3090/*
dd41f596
IM
3091 * Update rq->cpu_load[] statistics. This function is usually called every
3092 * scheduler tick (TICK_NSEC).
46cb4b7c 3093 */
dd41f596 3094static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3095{
495eca49 3096 unsigned long this_load = this_rq->load.weight;
dd41f596 3097 int i, scale;
46cb4b7c 3098
dd41f596 3099 this_rq->nr_load_updates++;
46cb4b7c 3100
dd41f596
IM
3101 /* Update our load: */
3102 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3103 unsigned long old_load, new_load;
7d1e6a9b 3104
dd41f596 3105 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3106
dd41f596
IM
3107 old_load = this_rq->cpu_load[i];
3108 new_load = this_load;
a25707f3
IM
3109 /*
3110 * Round up the averaging division if load is increasing. This
3111 * prevents us from getting stuck on 9 if the load is 10, for
3112 * example.
3113 */
3114 if (new_load > old_load)
3115 new_load += scale-1;
dd41f596
IM
3116 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3117 }
46cb4b7c 3118
dce48a84
TG
3119 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3120 this_rq->calc_load_update += LOAD_FREQ;
3121 calc_load_account_active(this_rq);
46cb4b7c 3122 }
46cb4b7c
SS
3123}
3124
dd41f596 3125#ifdef CONFIG_SMP
8a0be9ef 3126
46cb4b7c 3127/*
38022906
PZ
3128 * sched_exec - execve() is a valuable balancing opportunity, because at
3129 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3130 */
38022906 3131void sched_exec(void)
46cb4b7c 3132{
38022906 3133 struct task_struct *p = current;
70b97a7f 3134 struct migration_req req;
38022906 3135 int dest_cpu, this_cpu;
1da177e4 3136 unsigned long flags;
70b97a7f 3137 struct rq *rq;
46cb4b7c 3138
38022906
PZ
3139again:
3140 this_cpu = get_cpu();
3141 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3142 if (dest_cpu == this_cpu) {
3143 put_cpu();
3144 return;
46cb4b7c
SS
3145 }
3146
1da177e4 3147 rq = task_rq_lock(p, &flags);
38022906
PZ
3148 put_cpu();
3149
46cb4b7c 3150 /*
38022906 3151 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3152 */
96f874e2 3153 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3154 || unlikely(!cpu_active(dest_cpu))) {
3155 task_rq_unlock(rq, &flags);
3156 goto again;
46cb4b7c
SS
3157 }
3158
1da177e4
LT
3159 /* force the process onto the specified CPU */
3160 if (migrate_task(p, dest_cpu, &req)) {
3161 /* Need to wait for migration thread (might exit: take ref). */
3162 struct task_struct *mt = rq->migration_thread;
dd41f596 3163
1da177e4
LT
3164 get_task_struct(mt);
3165 task_rq_unlock(rq, &flags);
3166 wake_up_process(mt);
3167 put_task_struct(mt);
3168 wait_for_completion(&req.done);
dd41f596 3169
1da177e4
LT
3170 return;
3171 }
1da177e4 3172 task_rq_unlock(rq, &flags);
1da177e4 3173}
dd41f596 3174
1da177e4
LT
3175#endif
3176
1da177e4
LT
3177DEFINE_PER_CPU(struct kernel_stat, kstat);
3178
3179EXPORT_PER_CPU_SYMBOL(kstat);
3180
3181/*
c5f8d995 3182 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3183 * @p in case that task is currently running.
c5f8d995
HS
3184 *
3185 * Called with task_rq_lock() held on @rq.
1da177e4 3186 */
c5f8d995
HS
3187static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3188{
3189 u64 ns = 0;
3190
3191 if (task_current(rq, p)) {
3192 update_rq_clock(rq);
3193 ns = rq->clock - p->se.exec_start;
3194 if ((s64)ns < 0)
3195 ns = 0;
3196 }
3197
3198 return ns;
3199}
3200
bb34d92f 3201unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3202{
1da177e4 3203 unsigned long flags;
41b86e9c 3204 struct rq *rq;
bb34d92f 3205 u64 ns = 0;
48f24c4d 3206
41b86e9c 3207 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3208 ns = do_task_delta_exec(p, rq);
3209 task_rq_unlock(rq, &flags);
1508487e 3210
c5f8d995
HS
3211 return ns;
3212}
f06febc9 3213
c5f8d995
HS
3214/*
3215 * Return accounted runtime for the task.
3216 * In case the task is currently running, return the runtime plus current's
3217 * pending runtime that have not been accounted yet.
3218 */
3219unsigned long long task_sched_runtime(struct task_struct *p)
3220{
3221 unsigned long flags;
3222 struct rq *rq;
3223 u64 ns = 0;
3224
3225 rq = task_rq_lock(p, &flags);
3226 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3227 task_rq_unlock(rq, &flags);
3228
3229 return ns;
3230}
48f24c4d 3231
c5f8d995
HS
3232/*
3233 * Return sum_exec_runtime for the thread group.
3234 * In case the task is currently running, return the sum plus current's
3235 * pending runtime that have not been accounted yet.
3236 *
3237 * Note that the thread group might have other running tasks as well,
3238 * so the return value not includes other pending runtime that other
3239 * running tasks might have.
3240 */
3241unsigned long long thread_group_sched_runtime(struct task_struct *p)
3242{
3243 struct task_cputime totals;
3244 unsigned long flags;
3245 struct rq *rq;
3246 u64 ns;
3247
3248 rq = task_rq_lock(p, &flags);
3249 thread_group_cputime(p, &totals);
3250 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3251 task_rq_unlock(rq, &flags);
48f24c4d 3252
1da177e4
LT
3253 return ns;
3254}
3255
1da177e4
LT
3256/*
3257 * Account user cpu time to a process.
3258 * @p: the process that the cpu time gets accounted to
1da177e4 3259 * @cputime: the cpu time spent in user space since the last update
457533a7 3260 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3261 */
457533a7
MS
3262void account_user_time(struct task_struct *p, cputime_t cputime,
3263 cputime_t cputime_scaled)
1da177e4
LT
3264{
3265 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3266 cputime64_t tmp;
3267
457533a7 3268 /* Add user time to process. */
1da177e4 3269 p->utime = cputime_add(p->utime, cputime);
457533a7 3270 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3271 account_group_user_time(p, cputime);
1da177e4
LT
3272
3273 /* Add user time to cpustat. */
3274 tmp = cputime_to_cputime64(cputime);
3275 if (TASK_NICE(p) > 0)
3276 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3277 else
3278 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3279
3280 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3281 /* Account for user time used */
3282 acct_update_integrals(p);
1da177e4
LT
3283}
3284
94886b84
LV
3285/*
3286 * Account guest cpu time to a process.
3287 * @p: the process that the cpu time gets accounted to
3288 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3289 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3290 */
457533a7
MS
3291static void account_guest_time(struct task_struct *p, cputime_t cputime,
3292 cputime_t cputime_scaled)
94886b84
LV
3293{
3294 cputime64_t tmp;
3295 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3296
3297 tmp = cputime_to_cputime64(cputime);
3298
457533a7 3299 /* Add guest time to process. */
94886b84 3300 p->utime = cputime_add(p->utime, cputime);
457533a7 3301 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3302 account_group_user_time(p, cputime);
94886b84
LV
3303 p->gtime = cputime_add(p->gtime, cputime);
3304
457533a7 3305 /* Add guest time to cpustat. */
ce0e7b28
RO
3306 if (TASK_NICE(p) > 0) {
3307 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3308 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3309 } else {
3310 cpustat->user = cputime64_add(cpustat->user, tmp);
3311 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3312 }
94886b84
LV
3313}
3314
1da177e4
LT
3315/*
3316 * Account system cpu time to a process.
3317 * @p: the process that the cpu time gets accounted to
3318 * @hardirq_offset: the offset to subtract from hardirq_count()
3319 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3320 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3321 */
3322void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3323 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3324{
3325 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3326 cputime64_t tmp;
3327
983ed7a6 3328 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3329 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3330 return;
3331 }
94886b84 3332
457533a7 3333 /* Add system time to process. */
1da177e4 3334 p->stime = cputime_add(p->stime, cputime);
457533a7 3335 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3336 account_group_system_time(p, cputime);
1da177e4
LT
3337
3338 /* Add system time to cpustat. */
3339 tmp = cputime_to_cputime64(cputime);
3340 if (hardirq_count() - hardirq_offset)
3341 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3342 else if (softirq_count())
3343 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3344 else
79741dd3
MS
3345 cpustat->system = cputime64_add(cpustat->system, tmp);
3346
ef12fefa
BR
3347 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3348
1da177e4
LT
3349 /* Account for system time used */
3350 acct_update_integrals(p);
1da177e4
LT
3351}
3352
c66f08be 3353/*
1da177e4 3354 * Account for involuntary wait time.
1da177e4 3355 * @steal: the cpu time spent in involuntary wait
c66f08be 3356 */
79741dd3 3357void account_steal_time(cputime_t cputime)
c66f08be 3358{
79741dd3
MS
3359 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3360 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3361
3362 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3363}
3364
1da177e4 3365/*
79741dd3
MS
3366 * Account for idle time.
3367 * @cputime: the cpu time spent in idle wait
1da177e4 3368 */
79741dd3 3369void account_idle_time(cputime_t cputime)
1da177e4
LT
3370{
3371 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3372 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3373 struct rq *rq = this_rq();
1da177e4 3374
79741dd3
MS
3375 if (atomic_read(&rq->nr_iowait) > 0)
3376 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3377 else
3378 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3379}
3380
79741dd3
MS
3381#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3382
3383/*
3384 * Account a single tick of cpu time.
3385 * @p: the process that the cpu time gets accounted to
3386 * @user_tick: indicates if the tick is a user or a system tick
3387 */
3388void account_process_tick(struct task_struct *p, int user_tick)
3389{
a42548a1 3390 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3391 struct rq *rq = this_rq();
3392
3393 if (user_tick)
a42548a1 3394 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3395 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3396 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3397 one_jiffy_scaled);
3398 else
a42548a1 3399 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3400}
3401
3402/*
3403 * Account multiple ticks of steal time.
3404 * @p: the process from which the cpu time has been stolen
3405 * @ticks: number of stolen ticks
3406 */
3407void account_steal_ticks(unsigned long ticks)
3408{
3409 account_steal_time(jiffies_to_cputime(ticks));
3410}
3411
3412/*
3413 * Account multiple ticks of idle time.
3414 * @ticks: number of stolen ticks
3415 */
3416void account_idle_ticks(unsigned long ticks)
3417{
3418 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3419}
3420
79741dd3
MS
3421#endif
3422
49048622
BS
3423/*
3424 * Use precise platform statistics if available:
3425 */
3426#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3427void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3428{
d99ca3b9
HS
3429 *ut = p->utime;
3430 *st = p->stime;
49048622
BS
3431}
3432
0cf55e1e 3433void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3434{
0cf55e1e
HS
3435 struct task_cputime cputime;
3436
3437 thread_group_cputime(p, &cputime);
3438
3439 *ut = cputime.utime;
3440 *st = cputime.stime;
49048622
BS
3441}
3442#else
761b1d26
HS
3443
3444#ifndef nsecs_to_cputime
b7b20df9 3445# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3446#endif
3447
d180c5bc 3448void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3449{
d99ca3b9 3450 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3451
3452 /*
3453 * Use CFS's precise accounting:
3454 */
d180c5bc 3455 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3456
3457 if (total) {
d180c5bc
HS
3458 u64 temp;
3459
3460 temp = (u64)(rtime * utime);
49048622 3461 do_div(temp, total);
d180c5bc
HS
3462 utime = (cputime_t)temp;
3463 } else
3464 utime = rtime;
49048622 3465
d180c5bc
HS
3466 /*
3467 * Compare with previous values, to keep monotonicity:
3468 */
761b1d26 3469 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3470 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3471
d99ca3b9
HS
3472 *ut = p->prev_utime;
3473 *st = p->prev_stime;
49048622
BS
3474}
3475
0cf55e1e
HS
3476/*
3477 * Must be called with siglock held.
3478 */
3479void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3480{
0cf55e1e
HS
3481 struct signal_struct *sig = p->signal;
3482 struct task_cputime cputime;
3483 cputime_t rtime, utime, total;
49048622 3484
0cf55e1e 3485 thread_group_cputime(p, &cputime);
49048622 3486
0cf55e1e
HS
3487 total = cputime_add(cputime.utime, cputime.stime);
3488 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3489
0cf55e1e
HS
3490 if (total) {
3491 u64 temp;
49048622 3492
0cf55e1e
HS
3493 temp = (u64)(rtime * cputime.utime);
3494 do_div(temp, total);
3495 utime = (cputime_t)temp;
3496 } else
3497 utime = rtime;
3498
3499 sig->prev_utime = max(sig->prev_utime, utime);
3500 sig->prev_stime = max(sig->prev_stime,
3501 cputime_sub(rtime, sig->prev_utime));
3502
3503 *ut = sig->prev_utime;
3504 *st = sig->prev_stime;
49048622 3505}
49048622 3506#endif
49048622 3507
7835b98b
CL
3508/*
3509 * This function gets called by the timer code, with HZ frequency.
3510 * We call it with interrupts disabled.
3511 *
3512 * It also gets called by the fork code, when changing the parent's
3513 * timeslices.
3514 */
3515void scheduler_tick(void)
3516{
7835b98b
CL
3517 int cpu = smp_processor_id();
3518 struct rq *rq = cpu_rq(cpu);
dd41f596 3519 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3520
3521 sched_clock_tick();
dd41f596 3522
05fa785c 3523 raw_spin_lock(&rq->lock);
3e51f33f 3524 update_rq_clock(rq);
f1a438d8 3525 update_cpu_load(rq);
fa85ae24 3526 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3527 raw_spin_unlock(&rq->lock);
7835b98b 3528
49f47433 3529 perf_event_task_tick(curr);
e220d2dc 3530
e418e1c2 3531#ifdef CONFIG_SMP
dd41f596
IM
3532 rq->idle_at_tick = idle_cpu(cpu);
3533 trigger_load_balance(rq, cpu);
e418e1c2 3534#endif
1da177e4
LT
3535}
3536
132380a0 3537notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3538{
3539 if (in_lock_functions(addr)) {
3540 addr = CALLER_ADDR2;
3541 if (in_lock_functions(addr))
3542 addr = CALLER_ADDR3;
3543 }
3544 return addr;
3545}
1da177e4 3546
7e49fcce
SR
3547#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3548 defined(CONFIG_PREEMPT_TRACER))
3549
43627582 3550void __kprobes add_preempt_count(int val)
1da177e4 3551{
6cd8a4bb 3552#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3553 /*
3554 * Underflow?
3555 */
9a11b49a
IM
3556 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3557 return;
6cd8a4bb 3558#endif
1da177e4 3559 preempt_count() += val;
6cd8a4bb 3560#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3561 /*
3562 * Spinlock count overflowing soon?
3563 */
33859f7f
MOS
3564 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3565 PREEMPT_MASK - 10);
6cd8a4bb
SR
3566#endif
3567 if (preempt_count() == val)
3568 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3569}
3570EXPORT_SYMBOL(add_preempt_count);
3571
43627582 3572void __kprobes sub_preempt_count(int val)
1da177e4 3573{
6cd8a4bb 3574#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3575 /*
3576 * Underflow?
3577 */
01e3eb82 3578 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3579 return;
1da177e4
LT
3580 /*
3581 * Is the spinlock portion underflowing?
3582 */
9a11b49a
IM
3583 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3584 !(preempt_count() & PREEMPT_MASK)))
3585 return;
6cd8a4bb 3586#endif
9a11b49a 3587
6cd8a4bb
SR
3588 if (preempt_count() == val)
3589 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3590 preempt_count() -= val;
3591}
3592EXPORT_SYMBOL(sub_preempt_count);
3593
3594#endif
3595
3596/*
dd41f596 3597 * Print scheduling while atomic bug:
1da177e4 3598 */
dd41f596 3599static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3600{
838225b4
SS
3601 struct pt_regs *regs = get_irq_regs();
3602
3df0fc5b
PZ
3603 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3604 prev->comm, prev->pid, preempt_count());
838225b4 3605
dd41f596 3606 debug_show_held_locks(prev);
e21f5b15 3607 print_modules();
dd41f596
IM
3608 if (irqs_disabled())
3609 print_irqtrace_events(prev);
838225b4
SS
3610
3611 if (regs)
3612 show_regs(regs);
3613 else
3614 dump_stack();
dd41f596 3615}
1da177e4 3616
dd41f596
IM
3617/*
3618 * Various schedule()-time debugging checks and statistics:
3619 */
3620static inline void schedule_debug(struct task_struct *prev)
3621{
1da177e4 3622 /*
41a2d6cf 3623 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3624 * schedule() atomically, we ignore that path for now.
3625 * Otherwise, whine if we are scheduling when we should not be.
3626 */
3f33a7ce 3627 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3628 __schedule_bug(prev);
3629
1da177e4
LT
3630 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3631
2d72376b 3632 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3633#ifdef CONFIG_SCHEDSTATS
3634 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3635 schedstat_inc(this_rq(), bkl_count);
3636 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3637 }
3638#endif
dd41f596
IM
3639}
3640
6cecd084 3641static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3642{
6cecd084
PZ
3643 if (prev->state == TASK_RUNNING) {
3644 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 3645
6cecd084
PZ
3646 runtime -= prev->se.prev_sum_exec_runtime;
3647 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
3648
3649 /*
3650 * In order to avoid avg_overlap growing stale when we are
3651 * indeed overlapping and hence not getting put to sleep, grow
3652 * the avg_overlap on preemption.
3653 *
3654 * We use the average preemption runtime because that
3655 * correlates to the amount of cache footprint a task can
3656 * build up.
3657 */
6cecd084 3658 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 3659 }
6cecd084 3660 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3661}
3662
dd41f596
IM
3663/*
3664 * Pick up the highest-prio task:
3665 */
3666static inline struct task_struct *
b67802ea 3667pick_next_task(struct rq *rq)
dd41f596 3668{
5522d5d5 3669 const struct sched_class *class;
dd41f596 3670 struct task_struct *p;
1da177e4
LT
3671
3672 /*
dd41f596
IM
3673 * Optimization: we know that if all tasks are in
3674 * the fair class we can call that function directly:
1da177e4 3675 */
dd41f596 3676 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3677 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3678 if (likely(p))
3679 return p;
1da177e4
LT
3680 }
3681
dd41f596
IM
3682 class = sched_class_highest;
3683 for ( ; ; ) {
fb8d4724 3684 p = class->pick_next_task(rq);
dd41f596
IM
3685 if (p)
3686 return p;
3687 /*
3688 * Will never be NULL as the idle class always
3689 * returns a non-NULL p:
3690 */
3691 class = class->next;
3692 }
3693}
1da177e4 3694
dd41f596
IM
3695/*
3696 * schedule() is the main scheduler function.
3697 */
ff743345 3698asmlinkage void __sched schedule(void)
dd41f596
IM
3699{
3700 struct task_struct *prev, *next;
67ca7bde 3701 unsigned long *switch_count;
dd41f596 3702 struct rq *rq;
31656519 3703 int cpu;
dd41f596 3704
ff743345
PZ
3705need_resched:
3706 preempt_disable();
dd41f596
IM
3707 cpu = smp_processor_id();
3708 rq = cpu_rq(cpu);
d6714c22 3709 rcu_sched_qs(cpu);
dd41f596
IM
3710 prev = rq->curr;
3711 switch_count = &prev->nivcsw;
3712
3713 release_kernel_lock(prev);
3714need_resched_nonpreemptible:
3715
3716 schedule_debug(prev);
1da177e4 3717
31656519 3718 if (sched_feat(HRTICK))
f333fdc9 3719 hrtick_clear(rq);
8f4d37ec 3720
05fa785c 3721 raw_spin_lock_irq(&rq->lock);
3e51f33f 3722 update_rq_clock(rq);
1e819950 3723 clear_tsk_need_resched(prev);
1da177e4 3724
1da177e4 3725 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3726 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3727 prev->state = TASK_RUNNING;
16882c1e 3728 else
2e1cb74a 3729 deactivate_task(rq, prev, 1);
dd41f596 3730 switch_count = &prev->nvcsw;
1da177e4
LT
3731 }
3732
3f029d3c 3733 pre_schedule(rq, prev);
f65eda4f 3734
dd41f596 3735 if (unlikely(!rq->nr_running))
1da177e4 3736 idle_balance(cpu, rq);
1da177e4 3737
df1c99d4 3738 put_prev_task(rq, prev);
b67802ea 3739 next = pick_next_task(rq);
1da177e4 3740
1da177e4 3741 if (likely(prev != next)) {
673a90a1 3742 sched_info_switch(prev, next);
49f47433 3743 perf_event_task_sched_out(prev, next);
673a90a1 3744
1da177e4
LT
3745 rq->nr_switches++;
3746 rq->curr = next;
3747 ++*switch_count;
3748
dd41f596 3749 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3750 /*
3751 * the context switch might have flipped the stack from under
3752 * us, hence refresh the local variables.
3753 */
3754 cpu = smp_processor_id();
3755 rq = cpu_rq(cpu);
1da177e4 3756 } else
05fa785c 3757 raw_spin_unlock_irq(&rq->lock);
1da177e4 3758
3f029d3c 3759 post_schedule(rq);
1da177e4 3760
6d558c3a
YZ
3761 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3762 prev = rq->curr;
3763 switch_count = &prev->nivcsw;
1da177e4 3764 goto need_resched_nonpreemptible;
6d558c3a 3765 }
8f4d37ec 3766
1da177e4 3767 preempt_enable_no_resched();
ff743345 3768 if (need_resched())
1da177e4
LT
3769 goto need_resched;
3770}
1da177e4
LT
3771EXPORT_SYMBOL(schedule);
3772
c08f7829 3773#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3774/*
3775 * Look out! "owner" is an entirely speculative pointer
3776 * access and not reliable.
3777 */
3778int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3779{
3780 unsigned int cpu;
3781 struct rq *rq;
3782
3783 if (!sched_feat(OWNER_SPIN))
3784 return 0;
3785
3786#ifdef CONFIG_DEBUG_PAGEALLOC
3787 /*
3788 * Need to access the cpu field knowing that
3789 * DEBUG_PAGEALLOC could have unmapped it if
3790 * the mutex owner just released it and exited.
3791 */
3792 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3793 return 0;
0d66bf6d
PZ
3794#else
3795 cpu = owner->cpu;
3796#endif
3797
3798 /*
3799 * Even if the access succeeded (likely case),
3800 * the cpu field may no longer be valid.
3801 */
3802 if (cpu >= nr_cpumask_bits)
4b402210 3803 return 0;
0d66bf6d
PZ
3804
3805 /*
3806 * We need to validate that we can do a
3807 * get_cpu() and that we have the percpu area.
3808 */
3809 if (!cpu_online(cpu))
4b402210 3810 return 0;
0d66bf6d
PZ
3811
3812 rq = cpu_rq(cpu);
3813
3814 for (;;) {
3815 /*
3816 * Owner changed, break to re-assess state.
3817 */
3818 if (lock->owner != owner)
3819 break;
3820
3821 /*
3822 * Is that owner really running on that cpu?
3823 */
3824 if (task_thread_info(rq->curr) != owner || need_resched())
3825 return 0;
3826
3827 cpu_relax();
3828 }
4b402210 3829
0d66bf6d
PZ
3830 return 1;
3831}
3832#endif
3833
1da177e4
LT
3834#ifdef CONFIG_PREEMPT
3835/*
2ed6e34f 3836 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3837 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3838 * occur there and call schedule directly.
3839 */
3840asmlinkage void __sched preempt_schedule(void)
3841{
3842 struct thread_info *ti = current_thread_info();
6478d880 3843
1da177e4
LT
3844 /*
3845 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3846 * we do not want to preempt the current task. Just return..
1da177e4 3847 */
beed33a8 3848 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3849 return;
3850
3a5c359a
AK
3851 do {
3852 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3853 schedule();
3a5c359a 3854 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3855
3a5c359a
AK
3856 /*
3857 * Check again in case we missed a preemption opportunity
3858 * between schedule and now.
3859 */
3860 barrier();
5ed0cec0 3861 } while (need_resched());
1da177e4 3862}
1da177e4
LT
3863EXPORT_SYMBOL(preempt_schedule);
3864
3865/*
2ed6e34f 3866 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3867 * off of irq context.
3868 * Note, that this is called and return with irqs disabled. This will
3869 * protect us against recursive calling from irq.
3870 */
3871asmlinkage void __sched preempt_schedule_irq(void)
3872{
3873 struct thread_info *ti = current_thread_info();
6478d880 3874
2ed6e34f 3875 /* Catch callers which need to be fixed */
1da177e4
LT
3876 BUG_ON(ti->preempt_count || !irqs_disabled());
3877
3a5c359a
AK
3878 do {
3879 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3880 local_irq_enable();
3881 schedule();
3882 local_irq_disable();
3a5c359a 3883 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3884
3a5c359a
AK
3885 /*
3886 * Check again in case we missed a preemption opportunity
3887 * between schedule and now.
3888 */
3889 barrier();
5ed0cec0 3890 } while (need_resched());
1da177e4
LT
3891}
3892
3893#endif /* CONFIG_PREEMPT */
3894
63859d4f 3895int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3896 void *key)
1da177e4 3897{
63859d4f 3898 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3899}
1da177e4
LT
3900EXPORT_SYMBOL(default_wake_function);
3901
3902/*
41a2d6cf
IM
3903 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3904 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3905 * number) then we wake all the non-exclusive tasks and one exclusive task.
3906 *
3907 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3908 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3909 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3910 */
78ddb08f 3911static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3912 int nr_exclusive, int wake_flags, void *key)
1da177e4 3913{
2e45874c 3914 wait_queue_t *curr, *next;
1da177e4 3915
2e45874c 3916 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3917 unsigned flags = curr->flags;
3918
63859d4f 3919 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3920 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3921 break;
3922 }
3923}
3924
3925/**
3926 * __wake_up - wake up threads blocked on a waitqueue.
3927 * @q: the waitqueue
3928 * @mode: which threads
3929 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3930 * @key: is directly passed to the wakeup function
50fa610a
DH
3931 *
3932 * It may be assumed that this function implies a write memory barrier before
3933 * changing the task state if and only if any tasks are woken up.
1da177e4 3934 */
7ad5b3a5 3935void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3936 int nr_exclusive, void *key)
1da177e4
LT
3937{
3938 unsigned long flags;
3939
3940 spin_lock_irqsave(&q->lock, flags);
3941 __wake_up_common(q, mode, nr_exclusive, 0, key);
3942 spin_unlock_irqrestore(&q->lock, flags);
3943}
1da177e4
LT
3944EXPORT_SYMBOL(__wake_up);
3945
3946/*
3947 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3948 */
7ad5b3a5 3949void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3950{
3951 __wake_up_common(q, mode, 1, 0, NULL);
3952}
3953
4ede816a
DL
3954void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3955{
3956 __wake_up_common(q, mode, 1, 0, key);
3957}
3958
1da177e4 3959/**
4ede816a 3960 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3961 * @q: the waitqueue
3962 * @mode: which threads
3963 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3964 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3965 *
3966 * The sync wakeup differs that the waker knows that it will schedule
3967 * away soon, so while the target thread will be woken up, it will not
3968 * be migrated to another CPU - ie. the two threads are 'synchronized'
3969 * with each other. This can prevent needless bouncing between CPUs.
3970 *
3971 * On UP it can prevent extra preemption.
50fa610a
DH
3972 *
3973 * It may be assumed that this function implies a write memory barrier before
3974 * changing the task state if and only if any tasks are woken up.
1da177e4 3975 */
4ede816a
DL
3976void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3977 int nr_exclusive, void *key)
1da177e4
LT
3978{
3979 unsigned long flags;
7d478721 3980 int wake_flags = WF_SYNC;
1da177e4
LT
3981
3982 if (unlikely(!q))
3983 return;
3984
3985 if (unlikely(!nr_exclusive))
7d478721 3986 wake_flags = 0;
1da177e4
LT
3987
3988 spin_lock_irqsave(&q->lock, flags);
7d478721 3989 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3990 spin_unlock_irqrestore(&q->lock, flags);
3991}
4ede816a
DL
3992EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3993
3994/*
3995 * __wake_up_sync - see __wake_up_sync_key()
3996 */
3997void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3998{
3999 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4000}
1da177e4
LT
4001EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4002
65eb3dc6
KD
4003/**
4004 * complete: - signals a single thread waiting on this completion
4005 * @x: holds the state of this particular completion
4006 *
4007 * This will wake up a single thread waiting on this completion. Threads will be
4008 * awakened in the same order in which they were queued.
4009 *
4010 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4011 *
4012 * It may be assumed that this function implies a write memory barrier before
4013 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4014 */
b15136e9 4015void complete(struct completion *x)
1da177e4
LT
4016{
4017 unsigned long flags;
4018
4019 spin_lock_irqsave(&x->wait.lock, flags);
4020 x->done++;
d9514f6c 4021 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4022 spin_unlock_irqrestore(&x->wait.lock, flags);
4023}
4024EXPORT_SYMBOL(complete);
4025
65eb3dc6
KD
4026/**
4027 * complete_all: - signals all threads waiting on this completion
4028 * @x: holds the state of this particular completion
4029 *
4030 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4031 *
4032 * It may be assumed that this function implies a write memory barrier before
4033 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4034 */
b15136e9 4035void complete_all(struct completion *x)
1da177e4
LT
4036{
4037 unsigned long flags;
4038
4039 spin_lock_irqsave(&x->wait.lock, flags);
4040 x->done += UINT_MAX/2;
d9514f6c 4041 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4042 spin_unlock_irqrestore(&x->wait.lock, flags);
4043}
4044EXPORT_SYMBOL(complete_all);
4045
8cbbe86d
AK
4046static inline long __sched
4047do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4048{
1da177e4
LT
4049 if (!x->done) {
4050 DECLARE_WAITQUEUE(wait, current);
4051
4052 wait.flags |= WQ_FLAG_EXCLUSIVE;
4053 __add_wait_queue_tail(&x->wait, &wait);
4054 do {
94d3d824 4055 if (signal_pending_state(state, current)) {
ea71a546
ON
4056 timeout = -ERESTARTSYS;
4057 break;
8cbbe86d
AK
4058 }
4059 __set_current_state(state);
1da177e4
LT
4060 spin_unlock_irq(&x->wait.lock);
4061 timeout = schedule_timeout(timeout);
4062 spin_lock_irq(&x->wait.lock);
ea71a546 4063 } while (!x->done && timeout);
1da177e4 4064 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4065 if (!x->done)
4066 return timeout;
1da177e4
LT
4067 }
4068 x->done--;
ea71a546 4069 return timeout ?: 1;
1da177e4 4070}
1da177e4 4071
8cbbe86d
AK
4072static long __sched
4073wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4074{
1da177e4
LT
4075 might_sleep();
4076
4077 spin_lock_irq(&x->wait.lock);
8cbbe86d 4078 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4079 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4080 return timeout;
4081}
1da177e4 4082
65eb3dc6
KD
4083/**
4084 * wait_for_completion: - waits for completion of a task
4085 * @x: holds the state of this particular completion
4086 *
4087 * This waits to be signaled for completion of a specific task. It is NOT
4088 * interruptible and there is no timeout.
4089 *
4090 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4091 * and interrupt capability. Also see complete().
4092 */
b15136e9 4093void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4094{
4095 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4096}
8cbbe86d 4097EXPORT_SYMBOL(wait_for_completion);
1da177e4 4098
65eb3dc6
KD
4099/**
4100 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4101 * @x: holds the state of this particular completion
4102 * @timeout: timeout value in jiffies
4103 *
4104 * This waits for either a completion of a specific task to be signaled or for a
4105 * specified timeout to expire. The timeout is in jiffies. It is not
4106 * interruptible.
4107 */
b15136e9 4108unsigned long __sched
8cbbe86d 4109wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4110{
8cbbe86d 4111 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4112}
8cbbe86d 4113EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4114
65eb3dc6
KD
4115/**
4116 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4117 * @x: holds the state of this particular completion
4118 *
4119 * This waits for completion of a specific task to be signaled. It is
4120 * interruptible.
4121 */
8cbbe86d 4122int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4123{
51e97990
AK
4124 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4125 if (t == -ERESTARTSYS)
4126 return t;
4127 return 0;
0fec171c 4128}
8cbbe86d 4129EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4130
65eb3dc6
KD
4131/**
4132 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4133 * @x: holds the state of this particular completion
4134 * @timeout: timeout value in jiffies
4135 *
4136 * This waits for either a completion of a specific task to be signaled or for a
4137 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4138 */
b15136e9 4139unsigned long __sched
8cbbe86d
AK
4140wait_for_completion_interruptible_timeout(struct completion *x,
4141 unsigned long timeout)
0fec171c 4142{
8cbbe86d 4143 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4144}
8cbbe86d 4145EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4146
65eb3dc6
KD
4147/**
4148 * wait_for_completion_killable: - waits for completion of a task (killable)
4149 * @x: holds the state of this particular completion
4150 *
4151 * This waits to be signaled for completion of a specific task. It can be
4152 * interrupted by a kill signal.
4153 */
009e577e
MW
4154int __sched wait_for_completion_killable(struct completion *x)
4155{
4156 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4157 if (t == -ERESTARTSYS)
4158 return t;
4159 return 0;
4160}
4161EXPORT_SYMBOL(wait_for_completion_killable);
4162
0aa12fb4
SW
4163/**
4164 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4165 * @x: holds the state of this particular completion
4166 * @timeout: timeout value in jiffies
4167 *
4168 * This waits for either a completion of a specific task to be
4169 * signaled or for a specified timeout to expire. It can be
4170 * interrupted by a kill signal. The timeout is in jiffies.
4171 */
4172unsigned long __sched
4173wait_for_completion_killable_timeout(struct completion *x,
4174 unsigned long timeout)
4175{
4176 return wait_for_common(x, timeout, TASK_KILLABLE);
4177}
4178EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4179
be4de352
DC
4180/**
4181 * try_wait_for_completion - try to decrement a completion without blocking
4182 * @x: completion structure
4183 *
4184 * Returns: 0 if a decrement cannot be done without blocking
4185 * 1 if a decrement succeeded.
4186 *
4187 * If a completion is being used as a counting completion,
4188 * attempt to decrement the counter without blocking. This
4189 * enables us to avoid waiting if the resource the completion
4190 * is protecting is not available.
4191 */
4192bool try_wait_for_completion(struct completion *x)
4193{
7539a3b3 4194 unsigned long flags;
be4de352
DC
4195 int ret = 1;
4196
7539a3b3 4197 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4198 if (!x->done)
4199 ret = 0;
4200 else
4201 x->done--;
7539a3b3 4202 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4203 return ret;
4204}
4205EXPORT_SYMBOL(try_wait_for_completion);
4206
4207/**
4208 * completion_done - Test to see if a completion has any waiters
4209 * @x: completion structure
4210 *
4211 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4212 * 1 if there are no waiters.
4213 *
4214 */
4215bool completion_done(struct completion *x)
4216{
7539a3b3 4217 unsigned long flags;
be4de352
DC
4218 int ret = 1;
4219
7539a3b3 4220 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4221 if (!x->done)
4222 ret = 0;
7539a3b3 4223 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4224 return ret;
4225}
4226EXPORT_SYMBOL(completion_done);
4227
8cbbe86d
AK
4228static long __sched
4229sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4230{
0fec171c
IM
4231 unsigned long flags;
4232 wait_queue_t wait;
4233
4234 init_waitqueue_entry(&wait, current);
1da177e4 4235
8cbbe86d 4236 __set_current_state(state);
1da177e4 4237
8cbbe86d
AK
4238 spin_lock_irqsave(&q->lock, flags);
4239 __add_wait_queue(q, &wait);
4240 spin_unlock(&q->lock);
4241 timeout = schedule_timeout(timeout);
4242 spin_lock_irq(&q->lock);
4243 __remove_wait_queue(q, &wait);
4244 spin_unlock_irqrestore(&q->lock, flags);
4245
4246 return timeout;
4247}
4248
4249void __sched interruptible_sleep_on(wait_queue_head_t *q)
4250{
4251 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4252}
1da177e4
LT
4253EXPORT_SYMBOL(interruptible_sleep_on);
4254
0fec171c 4255long __sched
95cdf3b7 4256interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4257{
8cbbe86d 4258 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4259}
1da177e4
LT
4260EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4261
0fec171c 4262void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4263{
8cbbe86d 4264 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4265}
1da177e4
LT
4266EXPORT_SYMBOL(sleep_on);
4267
0fec171c 4268long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4269{
8cbbe86d 4270 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4271}
1da177e4
LT
4272EXPORT_SYMBOL(sleep_on_timeout);
4273
b29739f9
IM
4274#ifdef CONFIG_RT_MUTEXES
4275
4276/*
4277 * rt_mutex_setprio - set the current priority of a task
4278 * @p: task
4279 * @prio: prio value (kernel-internal form)
4280 *
4281 * This function changes the 'effective' priority of a task. It does
4282 * not touch ->normal_prio like __setscheduler().
4283 *
4284 * Used by the rt_mutex code to implement priority inheritance logic.
4285 */
36c8b586 4286void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4287{
4288 unsigned long flags;
83b699ed 4289 int oldprio, on_rq, running;
70b97a7f 4290 struct rq *rq;
83ab0aa0 4291 const struct sched_class *prev_class;
b29739f9
IM
4292
4293 BUG_ON(prio < 0 || prio > MAX_PRIO);
4294
4295 rq = task_rq_lock(p, &flags);
a8e504d2 4296 update_rq_clock(rq);
b29739f9 4297
d5f9f942 4298 oldprio = p->prio;
83ab0aa0 4299 prev_class = p->sched_class;
dd41f596 4300 on_rq = p->se.on_rq;
051a1d1a 4301 running = task_current(rq, p);
0e1f3483 4302 if (on_rq)
69be72c1 4303 dequeue_task(rq, p, 0);
0e1f3483
HS
4304 if (running)
4305 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4306
4307 if (rt_prio(prio))
4308 p->sched_class = &rt_sched_class;
4309 else
4310 p->sched_class = &fair_sched_class;
4311
b29739f9
IM
4312 p->prio = prio;
4313
0e1f3483
HS
4314 if (running)
4315 p->sched_class->set_curr_task(rq);
dd41f596 4316 if (on_rq) {
60db48ca 4317 enqueue_task(rq, p, 0, oldprio < prio);
cb469845
SR
4318
4319 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4320 }
4321 task_rq_unlock(rq, &flags);
4322}
4323
4324#endif
4325
36c8b586 4326void set_user_nice(struct task_struct *p, long nice)
1da177e4 4327{
dd41f596 4328 int old_prio, delta, on_rq;
1da177e4 4329 unsigned long flags;
70b97a7f 4330 struct rq *rq;
1da177e4
LT
4331
4332 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4333 return;
4334 /*
4335 * We have to be careful, if called from sys_setpriority(),
4336 * the task might be in the middle of scheduling on another CPU.
4337 */
4338 rq = task_rq_lock(p, &flags);
a8e504d2 4339 update_rq_clock(rq);
1da177e4
LT
4340 /*
4341 * The RT priorities are set via sched_setscheduler(), but we still
4342 * allow the 'normal' nice value to be set - but as expected
4343 * it wont have any effect on scheduling until the task is
dd41f596 4344 * SCHED_FIFO/SCHED_RR:
1da177e4 4345 */
e05606d3 4346 if (task_has_rt_policy(p)) {
1da177e4
LT
4347 p->static_prio = NICE_TO_PRIO(nice);
4348 goto out_unlock;
4349 }
dd41f596 4350 on_rq = p->se.on_rq;
c09595f6 4351 if (on_rq)
69be72c1 4352 dequeue_task(rq, p, 0);
1da177e4 4353
1da177e4 4354 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4355 set_load_weight(p);
b29739f9
IM
4356 old_prio = p->prio;
4357 p->prio = effective_prio(p);
4358 delta = p->prio - old_prio;
1da177e4 4359
dd41f596 4360 if (on_rq) {
ea87bb78 4361 enqueue_task(rq, p, 0, false);
1da177e4 4362 /*
d5f9f942
AM
4363 * If the task increased its priority or is running and
4364 * lowered its priority, then reschedule its CPU:
1da177e4 4365 */
d5f9f942 4366 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4367 resched_task(rq->curr);
4368 }
4369out_unlock:
4370 task_rq_unlock(rq, &flags);
4371}
1da177e4
LT
4372EXPORT_SYMBOL(set_user_nice);
4373
e43379f1
MM
4374/*
4375 * can_nice - check if a task can reduce its nice value
4376 * @p: task
4377 * @nice: nice value
4378 */
36c8b586 4379int can_nice(const struct task_struct *p, const int nice)
e43379f1 4380{
024f4747
MM
4381 /* convert nice value [19,-20] to rlimit style value [1,40] */
4382 int nice_rlim = 20 - nice;
48f24c4d 4383
78d7d407 4384 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4385 capable(CAP_SYS_NICE));
4386}
4387
1da177e4
LT
4388#ifdef __ARCH_WANT_SYS_NICE
4389
4390/*
4391 * sys_nice - change the priority of the current process.
4392 * @increment: priority increment
4393 *
4394 * sys_setpriority is a more generic, but much slower function that
4395 * does similar things.
4396 */
5add95d4 4397SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4398{
48f24c4d 4399 long nice, retval;
1da177e4
LT
4400
4401 /*
4402 * Setpriority might change our priority at the same moment.
4403 * We don't have to worry. Conceptually one call occurs first
4404 * and we have a single winner.
4405 */
e43379f1
MM
4406 if (increment < -40)
4407 increment = -40;
1da177e4
LT
4408 if (increment > 40)
4409 increment = 40;
4410
2b8f836f 4411 nice = TASK_NICE(current) + increment;
1da177e4
LT
4412 if (nice < -20)
4413 nice = -20;
4414 if (nice > 19)
4415 nice = 19;
4416
e43379f1
MM
4417 if (increment < 0 && !can_nice(current, nice))
4418 return -EPERM;
4419
1da177e4
LT
4420 retval = security_task_setnice(current, nice);
4421 if (retval)
4422 return retval;
4423
4424 set_user_nice(current, nice);
4425 return 0;
4426}
4427
4428#endif
4429
4430/**
4431 * task_prio - return the priority value of a given task.
4432 * @p: the task in question.
4433 *
4434 * This is the priority value as seen by users in /proc.
4435 * RT tasks are offset by -200. Normal tasks are centered
4436 * around 0, value goes from -16 to +15.
4437 */
36c8b586 4438int task_prio(const struct task_struct *p)
1da177e4
LT
4439{
4440 return p->prio - MAX_RT_PRIO;
4441}
4442
4443/**
4444 * task_nice - return the nice value of a given task.
4445 * @p: the task in question.
4446 */
36c8b586 4447int task_nice(const struct task_struct *p)
1da177e4
LT
4448{
4449 return TASK_NICE(p);
4450}
150d8bed 4451EXPORT_SYMBOL(task_nice);
1da177e4
LT
4452
4453/**
4454 * idle_cpu - is a given cpu idle currently?
4455 * @cpu: the processor in question.
4456 */
4457int idle_cpu(int cpu)
4458{
4459 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4460}
4461
1da177e4
LT
4462/**
4463 * idle_task - return the idle task for a given cpu.
4464 * @cpu: the processor in question.
4465 */
36c8b586 4466struct task_struct *idle_task(int cpu)
1da177e4
LT
4467{
4468 return cpu_rq(cpu)->idle;
4469}
4470
4471/**
4472 * find_process_by_pid - find a process with a matching PID value.
4473 * @pid: the pid in question.
4474 */
a9957449 4475static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4476{
228ebcbe 4477 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4478}
4479
4480/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4481static void
4482__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4483{
dd41f596 4484 BUG_ON(p->se.on_rq);
48f24c4d 4485
1da177e4
LT
4486 p->policy = policy;
4487 p->rt_priority = prio;
b29739f9
IM
4488 p->normal_prio = normal_prio(p);
4489 /* we are holding p->pi_lock already */
4490 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4491 if (rt_prio(p->prio))
4492 p->sched_class = &rt_sched_class;
4493 else
4494 p->sched_class = &fair_sched_class;
2dd73a4f 4495 set_load_weight(p);
1da177e4
LT
4496}
4497
c69e8d9c
DH
4498/*
4499 * check the target process has a UID that matches the current process's
4500 */
4501static bool check_same_owner(struct task_struct *p)
4502{
4503 const struct cred *cred = current_cred(), *pcred;
4504 bool match;
4505
4506 rcu_read_lock();
4507 pcred = __task_cred(p);
4508 match = (cred->euid == pcred->euid ||
4509 cred->euid == pcred->uid);
4510 rcu_read_unlock();
4511 return match;
4512}
4513
961ccddd
RR
4514static int __sched_setscheduler(struct task_struct *p, int policy,
4515 struct sched_param *param, bool user)
1da177e4 4516{
83b699ed 4517 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4518 unsigned long flags;
83ab0aa0 4519 const struct sched_class *prev_class;
70b97a7f 4520 struct rq *rq;
ca94c442 4521 int reset_on_fork;
1da177e4 4522
66e5393a
SR
4523 /* may grab non-irq protected spin_locks */
4524 BUG_ON(in_interrupt());
1da177e4
LT
4525recheck:
4526 /* double check policy once rq lock held */
ca94c442
LP
4527 if (policy < 0) {
4528 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4529 policy = oldpolicy = p->policy;
ca94c442
LP
4530 } else {
4531 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4532 policy &= ~SCHED_RESET_ON_FORK;
4533
4534 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4535 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4536 policy != SCHED_IDLE)
4537 return -EINVAL;
4538 }
4539
1da177e4
LT
4540 /*
4541 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4542 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4543 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4544 */
4545 if (param->sched_priority < 0 ||
95cdf3b7 4546 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4547 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4548 return -EINVAL;
e05606d3 4549 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4550 return -EINVAL;
4551
37e4ab3f
OC
4552 /*
4553 * Allow unprivileged RT tasks to decrease priority:
4554 */
961ccddd 4555 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4556 if (rt_policy(policy)) {
8dc3e909 4557 unsigned long rlim_rtprio;
8dc3e909
ON
4558
4559 if (!lock_task_sighand(p, &flags))
4560 return -ESRCH;
78d7d407 4561 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4562 unlock_task_sighand(p, &flags);
4563
4564 /* can't set/change the rt policy */
4565 if (policy != p->policy && !rlim_rtprio)
4566 return -EPERM;
4567
4568 /* can't increase priority */
4569 if (param->sched_priority > p->rt_priority &&
4570 param->sched_priority > rlim_rtprio)
4571 return -EPERM;
4572 }
dd41f596
IM
4573 /*
4574 * Like positive nice levels, dont allow tasks to
4575 * move out of SCHED_IDLE either:
4576 */
4577 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4578 return -EPERM;
5fe1d75f 4579
37e4ab3f 4580 /* can't change other user's priorities */
c69e8d9c 4581 if (!check_same_owner(p))
37e4ab3f 4582 return -EPERM;
ca94c442
LP
4583
4584 /* Normal users shall not reset the sched_reset_on_fork flag */
4585 if (p->sched_reset_on_fork && !reset_on_fork)
4586 return -EPERM;
37e4ab3f 4587 }
1da177e4 4588
725aad24 4589 if (user) {
b68aa230 4590#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4591 /*
4592 * Do not allow realtime tasks into groups that have no runtime
4593 * assigned.
4594 */
9a7e0b18
PZ
4595 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4596 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4597 return -EPERM;
b68aa230
PZ
4598#endif
4599
725aad24
JF
4600 retval = security_task_setscheduler(p, policy, param);
4601 if (retval)
4602 return retval;
4603 }
4604
b29739f9
IM
4605 /*
4606 * make sure no PI-waiters arrive (or leave) while we are
4607 * changing the priority of the task:
4608 */
1d615482 4609 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4610 /*
4611 * To be able to change p->policy safely, the apropriate
4612 * runqueue lock must be held.
4613 */
b29739f9 4614 rq = __task_rq_lock(p);
1da177e4
LT
4615 /* recheck policy now with rq lock held */
4616 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4617 policy = oldpolicy = -1;
b29739f9 4618 __task_rq_unlock(rq);
1d615482 4619 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4620 goto recheck;
4621 }
2daa3577 4622 update_rq_clock(rq);
dd41f596 4623 on_rq = p->se.on_rq;
051a1d1a 4624 running = task_current(rq, p);
0e1f3483 4625 if (on_rq)
2e1cb74a 4626 deactivate_task(rq, p, 0);
0e1f3483
HS
4627 if (running)
4628 p->sched_class->put_prev_task(rq, p);
f6b53205 4629
ca94c442
LP
4630 p->sched_reset_on_fork = reset_on_fork;
4631
1da177e4 4632 oldprio = p->prio;
83ab0aa0 4633 prev_class = p->sched_class;
dd41f596 4634 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4635
0e1f3483
HS
4636 if (running)
4637 p->sched_class->set_curr_task(rq);
dd41f596
IM
4638 if (on_rq) {
4639 activate_task(rq, p, 0);
cb469845
SR
4640
4641 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4642 }
b29739f9 4643 __task_rq_unlock(rq);
1d615482 4644 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4645
95e02ca9
TG
4646 rt_mutex_adjust_pi(p);
4647
1da177e4
LT
4648 return 0;
4649}
961ccddd
RR
4650
4651/**
4652 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4653 * @p: the task in question.
4654 * @policy: new policy.
4655 * @param: structure containing the new RT priority.
4656 *
4657 * NOTE that the task may be already dead.
4658 */
4659int sched_setscheduler(struct task_struct *p, int policy,
4660 struct sched_param *param)
4661{
4662 return __sched_setscheduler(p, policy, param, true);
4663}
1da177e4
LT
4664EXPORT_SYMBOL_GPL(sched_setscheduler);
4665
961ccddd
RR
4666/**
4667 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4668 * @p: the task in question.
4669 * @policy: new policy.
4670 * @param: structure containing the new RT priority.
4671 *
4672 * Just like sched_setscheduler, only don't bother checking if the
4673 * current context has permission. For example, this is needed in
4674 * stop_machine(): we create temporary high priority worker threads,
4675 * but our caller might not have that capability.
4676 */
4677int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4678 struct sched_param *param)
4679{
4680 return __sched_setscheduler(p, policy, param, false);
4681}
4682
95cdf3b7
IM
4683static int
4684do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4685{
1da177e4
LT
4686 struct sched_param lparam;
4687 struct task_struct *p;
36c8b586 4688 int retval;
1da177e4
LT
4689
4690 if (!param || pid < 0)
4691 return -EINVAL;
4692 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4693 return -EFAULT;
5fe1d75f
ON
4694
4695 rcu_read_lock();
4696 retval = -ESRCH;
1da177e4 4697 p = find_process_by_pid(pid);
5fe1d75f
ON
4698 if (p != NULL)
4699 retval = sched_setscheduler(p, policy, &lparam);
4700 rcu_read_unlock();
36c8b586 4701
1da177e4
LT
4702 return retval;
4703}
4704
4705/**
4706 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4707 * @pid: the pid in question.
4708 * @policy: new policy.
4709 * @param: structure containing the new RT priority.
4710 */
5add95d4
HC
4711SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4712 struct sched_param __user *, param)
1da177e4 4713{
c21761f1
JB
4714 /* negative values for policy are not valid */
4715 if (policy < 0)
4716 return -EINVAL;
4717
1da177e4
LT
4718 return do_sched_setscheduler(pid, policy, param);
4719}
4720
4721/**
4722 * sys_sched_setparam - set/change the RT priority of a thread
4723 * @pid: the pid in question.
4724 * @param: structure containing the new RT priority.
4725 */
5add95d4 4726SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4727{
4728 return do_sched_setscheduler(pid, -1, param);
4729}
4730
4731/**
4732 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4733 * @pid: the pid in question.
4734 */
5add95d4 4735SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4736{
36c8b586 4737 struct task_struct *p;
3a5c359a 4738 int retval;
1da177e4
LT
4739
4740 if (pid < 0)
3a5c359a 4741 return -EINVAL;
1da177e4
LT
4742
4743 retval = -ESRCH;
5fe85be0 4744 rcu_read_lock();
1da177e4
LT
4745 p = find_process_by_pid(pid);
4746 if (p) {
4747 retval = security_task_getscheduler(p);
4748 if (!retval)
ca94c442
LP
4749 retval = p->policy
4750 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4751 }
5fe85be0 4752 rcu_read_unlock();
1da177e4
LT
4753 return retval;
4754}
4755
4756/**
ca94c442 4757 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4758 * @pid: the pid in question.
4759 * @param: structure containing the RT priority.
4760 */
5add95d4 4761SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4762{
4763 struct sched_param lp;
36c8b586 4764 struct task_struct *p;
3a5c359a 4765 int retval;
1da177e4
LT
4766
4767 if (!param || pid < 0)
3a5c359a 4768 return -EINVAL;
1da177e4 4769
5fe85be0 4770 rcu_read_lock();
1da177e4
LT
4771 p = find_process_by_pid(pid);
4772 retval = -ESRCH;
4773 if (!p)
4774 goto out_unlock;
4775
4776 retval = security_task_getscheduler(p);
4777 if (retval)
4778 goto out_unlock;
4779
4780 lp.sched_priority = p->rt_priority;
5fe85be0 4781 rcu_read_unlock();
1da177e4
LT
4782
4783 /*
4784 * This one might sleep, we cannot do it with a spinlock held ...
4785 */
4786 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4787
1da177e4
LT
4788 return retval;
4789
4790out_unlock:
5fe85be0 4791 rcu_read_unlock();
1da177e4
LT
4792 return retval;
4793}
4794
96f874e2 4795long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4796{
5a16f3d3 4797 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4798 struct task_struct *p;
4799 int retval;
1da177e4 4800
95402b38 4801 get_online_cpus();
23f5d142 4802 rcu_read_lock();
1da177e4
LT
4803
4804 p = find_process_by_pid(pid);
4805 if (!p) {
23f5d142 4806 rcu_read_unlock();
95402b38 4807 put_online_cpus();
1da177e4
LT
4808 return -ESRCH;
4809 }
4810
23f5d142 4811 /* Prevent p going away */
1da177e4 4812 get_task_struct(p);
23f5d142 4813 rcu_read_unlock();
1da177e4 4814
5a16f3d3
RR
4815 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4816 retval = -ENOMEM;
4817 goto out_put_task;
4818 }
4819 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4820 retval = -ENOMEM;
4821 goto out_free_cpus_allowed;
4822 }
1da177e4 4823 retval = -EPERM;
c69e8d9c 4824 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4825 goto out_unlock;
4826
e7834f8f
DQ
4827 retval = security_task_setscheduler(p, 0, NULL);
4828 if (retval)
4829 goto out_unlock;
4830
5a16f3d3
RR
4831 cpuset_cpus_allowed(p, cpus_allowed);
4832 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4833 again:
5a16f3d3 4834 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4835
8707d8b8 4836 if (!retval) {
5a16f3d3
RR
4837 cpuset_cpus_allowed(p, cpus_allowed);
4838 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4839 /*
4840 * We must have raced with a concurrent cpuset
4841 * update. Just reset the cpus_allowed to the
4842 * cpuset's cpus_allowed
4843 */
5a16f3d3 4844 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4845 goto again;
4846 }
4847 }
1da177e4 4848out_unlock:
5a16f3d3
RR
4849 free_cpumask_var(new_mask);
4850out_free_cpus_allowed:
4851 free_cpumask_var(cpus_allowed);
4852out_put_task:
1da177e4 4853 put_task_struct(p);
95402b38 4854 put_online_cpus();
1da177e4
LT
4855 return retval;
4856}
4857
4858static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4859 struct cpumask *new_mask)
1da177e4 4860{
96f874e2
RR
4861 if (len < cpumask_size())
4862 cpumask_clear(new_mask);
4863 else if (len > cpumask_size())
4864 len = cpumask_size();
4865
1da177e4
LT
4866 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4867}
4868
4869/**
4870 * sys_sched_setaffinity - set the cpu affinity of a process
4871 * @pid: pid of the process
4872 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4873 * @user_mask_ptr: user-space pointer to the new cpu mask
4874 */
5add95d4
HC
4875SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4876 unsigned long __user *, user_mask_ptr)
1da177e4 4877{
5a16f3d3 4878 cpumask_var_t new_mask;
1da177e4
LT
4879 int retval;
4880
5a16f3d3
RR
4881 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4882 return -ENOMEM;
1da177e4 4883
5a16f3d3
RR
4884 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4885 if (retval == 0)
4886 retval = sched_setaffinity(pid, new_mask);
4887 free_cpumask_var(new_mask);
4888 return retval;
1da177e4
LT
4889}
4890
96f874e2 4891long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4892{
36c8b586 4893 struct task_struct *p;
31605683
TG
4894 unsigned long flags;
4895 struct rq *rq;
1da177e4 4896 int retval;
1da177e4 4897
95402b38 4898 get_online_cpus();
23f5d142 4899 rcu_read_lock();
1da177e4
LT
4900
4901 retval = -ESRCH;
4902 p = find_process_by_pid(pid);
4903 if (!p)
4904 goto out_unlock;
4905
e7834f8f
DQ
4906 retval = security_task_getscheduler(p);
4907 if (retval)
4908 goto out_unlock;
4909
31605683 4910 rq = task_rq_lock(p, &flags);
96f874e2 4911 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4912 task_rq_unlock(rq, &flags);
1da177e4
LT
4913
4914out_unlock:
23f5d142 4915 rcu_read_unlock();
95402b38 4916 put_online_cpus();
1da177e4 4917
9531b62f 4918 return retval;
1da177e4
LT
4919}
4920
4921/**
4922 * sys_sched_getaffinity - get the cpu affinity of a process
4923 * @pid: pid of the process
4924 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4925 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4926 */
5add95d4
HC
4927SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4928 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4929{
4930 int ret;
f17c8607 4931 cpumask_var_t mask;
1da177e4 4932
84fba5ec 4933 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4934 return -EINVAL;
4935 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4936 return -EINVAL;
4937
f17c8607
RR
4938 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4939 return -ENOMEM;
1da177e4 4940
f17c8607
RR
4941 ret = sched_getaffinity(pid, mask);
4942 if (ret == 0) {
8bc037fb 4943 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4944
4945 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4946 ret = -EFAULT;
4947 else
cd3d8031 4948 ret = retlen;
f17c8607
RR
4949 }
4950 free_cpumask_var(mask);
1da177e4 4951
f17c8607 4952 return ret;
1da177e4
LT
4953}
4954
4955/**
4956 * sys_sched_yield - yield the current processor to other threads.
4957 *
dd41f596
IM
4958 * This function yields the current CPU to other tasks. If there are no
4959 * other threads running on this CPU then this function will return.
1da177e4 4960 */
5add95d4 4961SYSCALL_DEFINE0(sched_yield)
1da177e4 4962{
70b97a7f 4963 struct rq *rq = this_rq_lock();
1da177e4 4964
2d72376b 4965 schedstat_inc(rq, yld_count);
4530d7ab 4966 current->sched_class->yield_task(rq);
1da177e4
LT
4967
4968 /*
4969 * Since we are going to call schedule() anyway, there's
4970 * no need to preempt or enable interrupts:
4971 */
4972 __release(rq->lock);
8a25d5de 4973 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4974 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4975 preempt_enable_no_resched();
4976
4977 schedule();
4978
4979 return 0;
4980}
4981
d86ee480
PZ
4982static inline int should_resched(void)
4983{
4984 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4985}
4986
e7b38404 4987static void __cond_resched(void)
1da177e4 4988{
e7aaaa69
FW
4989 add_preempt_count(PREEMPT_ACTIVE);
4990 schedule();
4991 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4992}
4993
02b67cc3 4994int __sched _cond_resched(void)
1da177e4 4995{
d86ee480 4996 if (should_resched()) {
1da177e4
LT
4997 __cond_resched();
4998 return 1;
4999 }
5000 return 0;
5001}
02b67cc3 5002EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5003
5004/*
613afbf8 5005 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5006 * call schedule, and on return reacquire the lock.
5007 *
41a2d6cf 5008 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5009 * operations here to prevent schedule() from being called twice (once via
5010 * spin_unlock(), once by hand).
5011 */
613afbf8 5012int __cond_resched_lock(spinlock_t *lock)
1da177e4 5013{
d86ee480 5014 int resched = should_resched();
6df3cecb
JK
5015 int ret = 0;
5016
f607c668
PZ
5017 lockdep_assert_held(lock);
5018
95c354fe 5019 if (spin_needbreak(lock) || resched) {
1da177e4 5020 spin_unlock(lock);
d86ee480 5021 if (resched)
95c354fe
NP
5022 __cond_resched();
5023 else
5024 cpu_relax();
6df3cecb 5025 ret = 1;
1da177e4 5026 spin_lock(lock);
1da177e4 5027 }
6df3cecb 5028 return ret;
1da177e4 5029}
613afbf8 5030EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5031
613afbf8 5032int __sched __cond_resched_softirq(void)
1da177e4
LT
5033{
5034 BUG_ON(!in_softirq());
5035
d86ee480 5036 if (should_resched()) {
98d82567 5037 local_bh_enable();
1da177e4
LT
5038 __cond_resched();
5039 local_bh_disable();
5040 return 1;
5041 }
5042 return 0;
5043}
613afbf8 5044EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5045
1da177e4
LT
5046/**
5047 * yield - yield the current processor to other threads.
5048 *
72fd4a35 5049 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5050 * thread runnable and calls sys_sched_yield().
5051 */
5052void __sched yield(void)
5053{
5054 set_current_state(TASK_RUNNING);
5055 sys_sched_yield();
5056}
1da177e4
LT
5057EXPORT_SYMBOL(yield);
5058
5059/*
41a2d6cf 5060 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5061 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5062 */
5063void __sched io_schedule(void)
5064{
54d35f29 5065 struct rq *rq = raw_rq();
1da177e4 5066
0ff92245 5067 delayacct_blkio_start();
1da177e4 5068 atomic_inc(&rq->nr_iowait);
8f0dfc34 5069 current->in_iowait = 1;
1da177e4 5070 schedule();
8f0dfc34 5071 current->in_iowait = 0;
1da177e4 5072 atomic_dec(&rq->nr_iowait);
0ff92245 5073 delayacct_blkio_end();
1da177e4 5074}
1da177e4
LT
5075EXPORT_SYMBOL(io_schedule);
5076
5077long __sched io_schedule_timeout(long timeout)
5078{
54d35f29 5079 struct rq *rq = raw_rq();
1da177e4
LT
5080 long ret;
5081
0ff92245 5082 delayacct_blkio_start();
1da177e4 5083 atomic_inc(&rq->nr_iowait);
8f0dfc34 5084 current->in_iowait = 1;
1da177e4 5085 ret = schedule_timeout(timeout);
8f0dfc34 5086 current->in_iowait = 0;
1da177e4 5087 atomic_dec(&rq->nr_iowait);
0ff92245 5088 delayacct_blkio_end();
1da177e4
LT
5089 return ret;
5090}
5091
5092/**
5093 * sys_sched_get_priority_max - return maximum RT priority.
5094 * @policy: scheduling class.
5095 *
5096 * this syscall returns the maximum rt_priority that can be used
5097 * by a given scheduling class.
5098 */
5add95d4 5099SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5100{
5101 int ret = -EINVAL;
5102
5103 switch (policy) {
5104 case SCHED_FIFO:
5105 case SCHED_RR:
5106 ret = MAX_USER_RT_PRIO-1;
5107 break;
5108 case SCHED_NORMAL:
b0a9499c 5109 case SCHED_BATCH:
dd41f596 5110 case SCHED_IDLE:
1da177e4
LT
5111 ret = 0;
5112 break;
5113 }
5114 return ret;
5115}
5116
5117/**
5118 * sys_sched_get_priority_min - return minimum RT priority.
5119 * @policy: scheduling class.
5120 *
5121 * this syscall returns the minimum rt_priority that can be used
5122 * by a given scheduling class.
5123 */
5add95d4 5124SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5125{
5126 int ret = -EINVAL;
5127
5128 switch (policy) {
5129 case SCHED_FIFO:
5130 case SCHED_RR:
5131 ret = 1;
5132 break;
5133 case SCHED_NORMAL:
b0a9499c 5134 case SCHED_BATCH:
dd41f596 5135 case SCHED_IDLE:
1da177e4
LT
5136 ret = 0;
5137 }
5138 return ret;
5139}
5140
5141/**
5142 * sys_sched_rr_get_interval - return the default timeslice of a process.
5143 * @pid: pid of the process.
5144 * @interval: userspace pointer to the timeslice value.
5145 *
5146 * this syscall writes the default timeslice value of a given process
5147 * into the user-space timespec buffer. A value of '0' means infinity.
5148 */
17da2bd9 5149SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5150 struct timespec __user *, interval)
1da177e4 5151{
36c8b586 5152 struct task_struct *p;
a4ec24b4 5153 unsigned int time_slice;
dba091b9
TG
5154 unsigned long flags;
5155 struct rq *rq;
3a5c359a 5156 int retval;
1da177e4 5157 struct timespec t;
1da177e4
LT
5158
5159 if (pid < 0)
3a5c359a 5160 return -EINVAL;
1da177e4
LT
5161
5162 retval = -ESRCH;
1a551ae7 5163 rcu_read_lock();
1da177e4
LT
5164 p = find_process_by_pid(pid);
5165 if (!p)
5166 goto out_unlock;
5167
5168 retval = security_task_getscheduler(p);
5169 if (retval)
5170 goto out_unlock;
5171
dba091b9
TG
5172 rq = task_rq_lock(p, &flags);
5173 time_slice = p->sched_class->get_rr_interval(rq, p);
5174 task_rq_unlock(rq, &flags);
a4ec24b4 5175
1a551ae7 5176 rcu_read_unlock();
a4ec24b4 5177 jiffies_to_timespec(time_slice, &t);
1da177e4 5178 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5179 return retval;
3a5c359a 5180
1da177e4 5181out_unlock:
1a551ae7 5182 rcu_read_unlock();
1da177e4
LT
5183 return retval;
5184}
5185
7c731e0a 5186static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5187
82a1fcb9 5188void sched_show_task(struct task_struct *p)
1da177e4 5189{
1da177e4 5190 unsigned long free = 0;
36c8b586 5191 unsigned state;
1da177e4 5192
1da177e4 5193 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5194 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5195 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5196#if BITS_PER_LONG == 32
1da177e4 5197 if (state == TASK_RUNNING)
3df0fc5b 5198 printk(KERN_CONT " running ");
1da177e4 5199 else
3df0fc5b 5200 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5201#else
5202 if (state == TASK_RUNNING)
3df0fc5b 5203 printk(KERN_CONT " running task ");
1da177e4 5204 else
3df0fc5b 5205 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5206#endif
5207#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5208 free = stack_not_used(p);
1da177e4 5209#endif
3df0fc5b 5210 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5211 task_pid_nr(p), task_pid_nr(p->real_parent),
5212 (unsigned long)task_thread_info(p)->flags);
1da177e4 5213
5fb5e6de 5214 show_stack(p, NULL);
1da177e4
LT
5215}
5216
e59e2ae2 5217void show_state_filter(unsigned long state_filter)
1da177e4 5218{
36c8b586 5219 struct task_struct *g, *p;
1da177e4 5220
4bd77321 5221#if BITS_PER_LONG == 32
3df0fc5b
PZ
5222 printk(KERN_INFO
5223 " task PC stack pid father\n");
1da177e4 5224#else
3df0fc5b
PZ
5225 printk(KERN_INFO
5226 " task PC stack pid father\n");
1da177e4
LT
5227#endif
5228 read_lock(&tasklist_lock);
5229 do_each_thread(g, p) {
5230 /*
5231 * reset the NMI-timeout, listing all files on a slow
5232 * console might take alot of time:
5233 */
5234 touch_nmi_watchdog();
39bc89fd 5235 if (!state_filter || (p->state & state_filter))
82a1fcb9 5236 sched_show_task(p);
1da177e4
LT
5237 } while_each_thread(g, p);
5238
04c9167f
JF
5239 touch_all_softlockup_watchdogs();
5240
dd41f596
IM
5241#ifdef CONFIG_SCHED_DEBUG
5242 sysrq_sched_debug_show();
5243#endif
1da177e4 5244 read_unlock(&tasklist_lock);
e59e2ae2
IM
5245 /*
5246 * Only show locks if all tasks are dumped:
5247 */
93335a21 5248 if (!state_filter)
e59e2ae2 5249 debug_show_all_locks();
1da177e4
LT
5250}
5251
1df21055
IM
5252void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5253{
dd41f596 5254 idle->sched_class = &idle_sched_class;
1df21055
IM
5255}
5256
f340c0d1
IM
5257/**
5258 * init_idle - set up an idle thread for a given CPU
5259 * @idle: task in question
5260 * @cpu: cpu the idle task belongs to
5261 *
5262 * NOTE: this function does not set the idle thread's NEED_RESCHED
5263 * flag, to make booting more robust.
5264 */
5c1e1767 5265void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5266{
70b97a7f 5267 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5268 unsigned long flags;
5269
05fa785c 5270 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5271
dd41f596 5272 __sched_fork(idle);
06b83b5f 5273 idle->state = TASK_RUNNING;
dd41f596
IM
5274 idle->se.exec_start = sched_clock();
5275
96f874e2 5276 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5277 __set_task_cpu(idle, cpu);
1da177e4 5278
1da177e4 5279 rq->curr = rq->idle = idle;
4866cde0
NP
5280#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5281 idle->oncpu = 1;
5282#endif
05fa785c 5283 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5284
5285 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5286#if defined(CONFIG_PREEMPT)
5287 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5288#else
a1261f54 5289 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5290#endif
dd41f596
IM
5291 /*
5292 * The idle tasks have their own, simple scheduling class:
5293 */
5294 idle->sched_class = &idle_sched_class;
fb52607a 5295 ftrace_graph_init_task(idle);
1da177e4
LT
5296}
5297
5298/*
5299 * In a system that switches off the HZ timer nohz_cpu_mask
5300 * indicates which cpus entered this state. This is used
5301 * in the rcu update to wait only for active cpus. For system
5302 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5303 * always be CPU_BITS_NONE.
1da177e4 5304 */
6a7b3dc3 5305cpumask_var_t nohz_cpu_mask;
1da177e4 5306
19978ca6
IM
5307/*
5308 * Increase the granularity value when there are more CPUs,
5309 * because with more CPUs the 'effective latency' as visible
5310 * to users decreases. But the relationship is not linear,
5311 * so pick a second-best guess by going with the log2 of the
5312 * number of CPUs.
5313 *
5314 * This idea comes from the SD scheduler of Con Kolivas:
5315 */
acb4a848 5316static int get_update_sysctl_factor(void)
19978ca6 5317{
4ca3ef71 5318 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5319 unsigned int factor;
5320
5321 switch (sysctl_sched_tunable_scaling) {
5322 case SCHED_TUNABLESCALING_NONE:
5323 factor = 1;
5324 break;
5325 case SCHED_TUNABLESCALING_LINEAR:
5326 factor = cpus;
5327 break;
5328 case SCHED_TUNABLESCALING_LOG:
5329 default:
5330 factor = 1 + ilog2(cpus);
5331 break;
5332 }
19978ca6 5333
acb4a848
CE
5334 return factor;
5335}
19978ca6 5336
acb4a848
CE
5337static void update_sysctl(void)
5338{
5339 unsigned int factor = get_update_sysctl_factor();
19978ca6 5340
0bcdcf28
CE
5341#define SET_SYSCTL(name) \
5342 (sysctl_##name = (factor) * normalized_sysctl_##name)
5343 SET_SYSCTL(sched_min_granularity);
5344 SET_SYSCTL(sched_latency);
5345 SET_SYSCTL(sched_wakeup_granularity);
5346 SET_SYSCTL(sched_shares_ratelimit);
5347#undef SET_SYSCTL
5348}
55cd5340 5349
0bcdcf28
CE
5350static inline void sched_init_granularity(void)
5351{
5352 update_sysctl();
19978ca6
IM
5353}
5354
1da177e4
LT
5355#ifdef CONFIG_SMP
5356/*
5357 * This is how migration works:
5358 *
70b97a7f 5359 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5360 * runqueue and wake up that CPU's migration thread.
5361 * 2) we down() the locked semaphore => thread blocks.
5362 * 3) migration thread wakes up (implicitly it forces the migrated
5363 * thread off the CPU)
5364 * 4) it gets the migration request and checks whether the migrated
5365 * task is still in the wrong runqueue.
5366 * 5) if it's in the wrong runqueue then the migration thread removes
5367 * it and puts it into the right queue.
5368 * 6) migration thread up()s the semaphore.
5369 * 7) we wake up and the migration is done.
5370 */
5371
5372/*
5373 * Change a given task's CPU affinity. Migrate the thread to a
5374 * proper CPU and schedule it away if the CPU it's executing on
5375 * is removed from the allowed bitmask.
5376 *
5377 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5378 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5379 * call is not atomic; no spinlocks may be held.
5380 */
96f874e2 5381int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5382{
70b97a7f 5383 struct migration_req req;
1da177e4 5384 unsigned long flags;
70b97a7f 5385 struct rq *rq;
48f24c4d 5386 int ret = 0;
1da177e4
LT
5387
5388 rq = task_rq_lock(p, &flags);
e2912009 5389
6ad4c188 5390 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5391 ret = -EINVAL;
5392 goto out;
5393 }
5394
9985b0ba 5395 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5396 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5397 ret = -EINVAL;
5398 goto out;
5399 }
5400
73fe6aae 5401 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5402 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5403 else {
96f874e2
RR
5404 cpumask_copy(&p->cpus_allowed, new_mask);
5405 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5406 }
5407
1da177e4 5408 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5409 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5410 goto out;
5411
6ad4c188 5412 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5413 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5414 struct task_struct *mt = rq->migration_thread;
5415
5416 get_task_struct(mt);
1da177e4 5417 task_rq_unlock(rq, &flags);
47a70985 5418 wake_up_process(mt);
693525e3 5419 put_task_struct(mt);
1da177e4
LT
5420 wait_for_completion(&req.done);
5421 tlb_migrate_finish(p->mm);
5422 return 0;
5423 }
5424out:
5425 task_rq_unlock(rq, &flags);
48f24c4d 5426
1da177e4
LT
5427 return ret;
5428}
cd8ba7cd 5429EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5430
5431/*
41a2d6cf 5432 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5433 * this because either it can't run here any more (set_cpus_allowed()
5434 * away from this CPU, or CPU going down), or because we're
5435 * attempting to rebalance this task on exec (sched_exec).
5436 *
5437 * So we race with normal scheduler movements, but that's OK, as long
5438 * as the task is no longer on this CPU.
efc30814
KK
5439 *
5440 * Returns non-zero if task was successfully migrated.
1da177e4 5441 */
efc30814 5442static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5443{
70b97a7f 5444 struct rq *rq_dest, *rq_src;
e2912009 5445 int ret = 0;
1da177e4 5446
e761b772 5447 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5448 return ret;
1da177e4
LT
5449
5450 rq_src = cpu_rq(src_cpu);
5451 rq_dest = cpu_rq(dest_cpu);
5452
5453 double_rq_lock(rq_src, rq_dest);
5454 /* Already moved. */
5455 if (task_cpu(p) != src_cpu)
b1e38734 5456 goto done;
1da177e4 5457 /* Affinity changed (again). */
96f874e2 5458 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5459 goto fail;
1da177e4 5460
e2912009
PZ
5461 /*
5462 * If we're not on a rq, the next wake-up will ensure we're
5463 * placed properly.
5464 */
5465 if (p->se.on_rq) {
2e1cb74a 5466 deactivate_task(rq_src, p, 0);
e2912009 5467 set_task_cpu(p, dest_cpu);
dd41f596 5468 activate_task(rq_dest, p, 0);
15afe09b 5469 check_preempt_curr(rq_dest, p, 0);
1da177e4 5470 }
b1e38734 5471done:
efc30814 5472 ret = 1;
b1e38734 5473fail:
1da177e4 5474 double_rq_unlock(rq_src, rq_dest);
efc30814 5475 return ret;
1da177e4
LT
5476}
5477
03b042bf
PM
5478#define RCU_MIGRATION_IDLE 0
5479#define RCU_MIGRATION_NEED_QS 1
5480#define RCU_MIGRATION_GOT_QS 2
5481#define RCU_MIGRATION_MUST_SYNC 3
5482
1da177e4
LT
5483/*
5484 * migration_thread - this is a highprio system thread that performs
5485 * thread migration by bumping thread off CPU then 'pushing' onto
5486 * another runqueue.
5487 */
95cdf3b7 5488static int migration_thread(void *data)
1da177e4 5489{
03b042bf 5490 int badcpu;
1da177e4 5491 int cpu = (long)data;
70b97a7f 5492 struct rq *rq;
1da177e4
LT
5493
5494 rq = cpu_rq(cpu);
5495 BUG_ON(rq->migration_thread != current);
5496
5497 set_current_state(TASK_INTERRUPTIBLE);
5498 while (!kthread_should_stop()) {
70b97a7f 5499 struct migration_req *req;
1da177e4 5500 struct list_head *head;
1da177e4 5501
05fa785c 5502 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5503
5504 if (cpu_is_offline(cpu)) {
05fa785c 5505 raw_spin_unlock_irq(&rq->lock);
371cbb38 5506 break;
1da177e4
LT
5507 }
5508
5509 if (rq->active_balance) {
5510 active_load_balance(rq, cpu);
5511 rq->active_balance = 0;
5512 }
5513
5514 head = &rq->migration_queue;
5515
5516 if (list_empty(head)) {
05fa785c 5517 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5518 schedule();
5519 set_current_state(TASK_INTERRUPTIBLE);
5520 continue;
5521 }
70b97a7f 5522 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5523 list_del_init(head->next);
5524
03b042bf 5525 if (req->task != NULL) {
05fa785c 5526 raw_spin_unlock(&rq->lock);
03b042bf
PM
5527 __migrate_task(req->task, cpu, req->dest_cpu);
5528 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5529 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5530 raw_spin_unlock(&rq->lock);
03b042bf
PM
5531 } else {
5532 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5533 raw_spin_unlock(&rq->lock);
03b042bf
PM
5534 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5535 }
674311d5 5536 local_irq_enable();
1da177e4
LT
5537
5538 complete(&req->done);
5539 }
5540 __set_current_state(TASK_RUNNING);
1da177e4 5541
1da177e4
LT
5542 return 0;
5543}
5544
5545#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5546
5547static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5548{
5549 int ret;
5550
5551 local_irq_disable();
5552 ret = __migrate_task(p, src_cpu, dest_cpu);
5553 local_irq_enable();
5554 return ret;
5555}
5556
054b9108 5557/*
3a4fa0a2 5558 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5559 */
48f24c4d 5560static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5561{
70b97a7f 5562 int dest_cpu;
e76bd8d9
RR
5563
5564again:
5da9a0fb 5565 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 5566
e76bd8d9
RR
5567 /* It can have affinity changed while we were choosing. */
5568 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5569 goto again;
1da177e4
LT
5570}
5571
5572/*
5573 * While a dead CPU has no uninterruptible tasks queued at this point,
5574 * it might still have a nonzero ->nr_uninterruptible counter, because
5575 * for performance reasons the counter is not stricly tracking tasks to
5576 * their home CPUs. So we just add the counter to another CPU's counter,
5577 * to keep the global sum constant after CPU-down:
5578 */
70b97a7f 5579static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5580{
6ad4c188 5581 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5582 unsigned long flags;
5583
5584 local_irq_save(flags);
5585 double_rq_lock(rq_src, rq_dest);
5586 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5587 rq_src->nr_uninterruptible = 0;
5588 double_rq_unlock(rq_src, rq_dest);
5589 local_irq_restore(flags);
5590}
5591
5592/* Run through task list and migrate tasks from the dead cpu. */
5593static void migrate_live_tasks(int src_cpu)
5594{
48f24c4d 5595 struct task_struct *p, *t;
1da177e4 5596
f7b4cddc 5597 read_lock(&tasklist_lock);
1da177e4 5598
48f24c4d
IM
5599 do_each_thread(t, p) {
5600 if (p == current)
1da177e4
LT
5601 continue;
5602
48f24c4d
IM
5603 if (task_cpu(p) == src_cpu)
5604 move_task_off_dead_cpu(src_cpu, p);
5605 } while_each_thread(t, p);
1da177e4 5606
f7b4cddc 5607 read_unlock(&tasklist_lock);
1da177e4
LT
5608}
5609
dd41f596
IM
5610/*
5611 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5612 * It does so by boosting its priority to highest possible.
5613 * Used by CPU offline code.
1da177e4
LT
5614 */
5615void sched_idle_next(void)
5616{
48f24c4d 5617 int this_cpu = smp_processor_id();
70b97a7f 5618 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5619 struct task_struct *p = rq->idle;
5620 unsigned long flags;
5621
5622 /* cpu has to be offline */
48f24c4d 5623 BUG_ON(cpu_online(this_cpu));
1da177e4 5624
48f24c4d
IM
5625 /*
5626 * Strictly not necessary since rest of the CPUs are stopped by now
5627 * and interrupts disabled on the current cpu.
1da177e4 5628 */
05fa785c 5629 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5630
dd41f596 5631 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5632
94bc9a7b
DA
5633 update_rq_clock(rq);
5634 activate_task(rq, p, 0);
1da177e4 5635
05fa785c 5636 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5637}
5638
48f24c4d
IM
5639/*
5640 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5641 * offline.
5642 */
5643void idle_task_exit(void)
5644{
5645 struct mm_struct *mm = current->active_mm;
5646
5647 BUG_ON(cpu_online(smp_processor_id()));
5648
5649 if (mm != &init_mm)
5650 switch_mm(mm, &init_mm, current);
5651 mmdrop(mm);
5652}
5653
054b9108 5654/* called under rq->lock with disabled interrupts */
36c8b586 5655static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5656{
70b97a7f 5657 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5658
5659 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5660 BUG_ON(!p->exit_state);
1da177e4
LT
5661
5662 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5663 BUG_ON(p->state == TASK_DEAD);
1da177e4 5664
48f24c4d 5665 get_task_struct(p);
1da177e4
LT
5666
5667 /*
5668 * Drop lock around migration; if someone else moves it,
41a2d6cf 5669 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5670 * fine.
5671 */
05fa785c 5672 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5673 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5674 raw_spin_lock_irq(&rq->lock);
1da177e4 5675
48f24c4d 5676 put_task_struct(p);
1da177e4
LT
5677}
5678
5679/* release_task() removes task from tasklist, so we won't find dead tasks. */
5680static void migrate_dead_tasks(unsigned int dead_cpu)
5681{
70b97a7f 5682 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5683 struct task_struct *next;
48f24c4d 5684
dd41f596
IM
5685 for ( ; ; ) {
5686 if (!rq->nr_running)
5687 break;
a8e504d2 5688 update_rq_clock(rq);
b67802ea 5689 next = pick_next_task(rq);
dd41f596
IM
5690 if (!next)
5691 break;
79c53799 5692 next->sched_class->put_prev_task(rq, next);
dd41f596 5693 migrate_dead(dead_cpu, next);
e692ab53 5694
1da177e4
LT
5695 }
5696}
dce48a84
TG
5697
5698/*
5699 * remove the tasks which were accounted by rq from calc_load_tasks.
5700 */
5701static void calc_global_load_remove(struct rq *rq)
5702{
5703 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5704 rq->calc_load_active = 0;
dce48a84 5705}
1da177e4
LT
5706#endif /* CONFIG_HOTPLUG_CPU */
5707
e692ab53
NP
5708#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5709
5710static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5711 {
5712 .procname = "sched_domain",
c57baf1e 5713 .mode = 0555,
e0361851 5714 },
56992309 5715 {}
e692ab53
NP
5716};
5717
5718static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5719 {
5720 .procname = "kernel",
c57baf1e 5721 .mode = 0555,
e0361851
AD
5722 .child = sd_ctl_dir,
5723 },
56992309 5724 {}
e692ab53
NP
5725};
5726
5727static struct ctl_table *sd_alloc_ctl_entry(int n)
5728{
5729 struct ctl_table *entry =
5cf9f062 5730 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5731
e692ab53
NP
5732 return entry;
5733}
5734
6382bc90
MM
5735static void sd_free_ctl_entry(struct ctl_table **tablep)
5736{
cd790076 5737 struct ctl_table *entry;
6382bc90 5738
cd790076
MM
5739 /*
5740 * In the intermediate directories, both the child directory and
5741 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5742 * will always be set. In the lowest directory the names are
cd790076
MM
5743 * static strings and all have proc handlers.
5744 */
5745 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5746 if (entry->child)
5747 sd_free_ctl_entry(&entry->child);
cd790076
MM
5748 if (entry->proc_handler == NULL)
5749 kfree(entry->procname);
5750 }
6382bc90
MM
5751
5752 kfree(*tablep);
5753 *tablep = NULL;
5754}
5755
e692ab53 5756static void
e0361851 5757set_table_entry(struct ctl_table *entry,
e692ab53
NP
5758 const char *procname, void *data, int maxlen,
5759 mode_t mode, proc_handler *proc_handler)
5760{
e692ab53
NP
5761 entry->procname = procname;
5762 entry->data = data;
5763 entry->maxlen = maxlen;
5764 entry->mode = mode;
5765 entry->proc_handler = proc_handler;
5766}
5767
5768static struct ctl_table *
5769sd_alloc_ctl_domain_table(struct sched_domain *sd)
5770{
a5d8c348 5771 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5772
ad1cdc1d
MM
5773 if (table == NULL)
5774 return NULL;
5775
e0361851 5776 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5777 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5778 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5779 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5780 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5781 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5782 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5783 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5784 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5785 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5786 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5787 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5788 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5789 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5790 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5791 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5792 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5793 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5794 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5795 &sd->cache_nice_tries,
5796 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5797 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5798 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5799 set_table_entry(&table[11], "name", sd->name,
5800 CORENAME_MAX_SIZE, 0444, proc_dostring);
5801 /* &table[12] is terminator */
e692ab53
NP
5802
5803 return table;
5804}
5805
9a4e7159 5806static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5807{
5808 struct ctl_table *entry, *table;
5809 struct sched_domain *sd;
5810 int domain_num = 0, i;
5811 char buf[32];
5812
5813 for_each_domain(cpu, sd)
5814 domain_num++;
5815 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5816 if (table == NULL)
5817 return NULL;
e692ab53
NP
5818
5819 i = 0;
5820 for_each_domain(cpu, sd) {
5821 snprintf(buf, 32, "domain%d", i);
e692ab53 5822 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5823 entry->mode = 0555;
e692ab53
NP
5824 entry->child = sd_alloc_ctl_domain_table(sd);
5825 entry++;
5826 i++;
5827 }
5828 return table;
5829}
5830
5831static struct ctl_table_header *sd_sysctl_header;
6382bc90 5832static void register_sched_domain_sysctl(void)
e692ab53 5833{
6ad4c188 5834 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5835 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5836 char buf[32];
5837
7378547f
MM
5838 WARN_ON(sd_ctl_dir[0].child);
5839 sd_ctl_dir[0].child = entry;
5840
ad1cdc1d
MM
5841 if (entry == NULL)
5842 return;
5843
6ad4c188 5844 for_each_possible_cpu(i) {
e692ab53 5845 snprintf(buf, 32, "cpu%d", i);
e692ab53 5846 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5847 entry->mode = 0555;
e692ab53 5848 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5849 entry++;
e692ab53 5850 }
7378547f
MM
5851
5852 WARN_ON(sd_sysctl_header);
e692ab53
NP
5853 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5854}
6382bc90 5855
7378547f 5856/* may be called multiple times per register */
6382bc90
MM
5857static void unregister_sched_domain_sysctl(void)
5858{
7378547f
MM
5859 if (sd_sysctl_header)
5860 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5861 sd_sysctl_header = NULL;
7378547f
MM
5862 if (sd_ctl_dir[0].child)
5863 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5864}
e692ab53 5865#else
6382bc90
MM
5866static void register_sched_domain_sysctl(void)
5867{
5868}
5869static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5870{
5871}
5872#endif
5873
1f11eb6a
GH
5874static void set_rq_online(struct rq *rq)
5875{
5876 if (!rq->online) {
5877 const struct sched_class *class;
5878
c6c4927b 5879 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5880 rq->online = 1;
5881
5882 for_each_class(class) {
5883 if (class->rq_online)
5884 class->rq_online(rq);
5885 }
5886 }
5887}
5888
5889static void set_rq_offline(struct rq *rq)
5890{
5891 if (rq->online) {
5892 const struct sched_class *class;
5893
5894 for_each_class(class) {
5895 if (class->rq_offline)
5896 class->rq_offline(rq);
5897 }
5898
c6c4927b 5899 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5900 rq->online = 0;
5901 }
5902}
5903
1da177e4
LT
5904/*
5905 * migration_call - callback that gets triggered when a CPU is added.
5906 * Here we can start up the necessary migration thread for the new CPU.
5907 */
48f24c4d
IM
5908static int __cpuinit
5909migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5910{
1da177e4 5911 struct task_struct *p;
48f24c4d 5912 int cpu = (long)hcpu;
1da177e4 5913 unsigned long flags;
70b97a7f 5914 struct rq *rq;
1da177e4
LT
5915
5916 switch (action) {
5be9361c 5917
1da177e4 5918 case CPU_UP_PREPARE:
8bb78442 5919 case CPU_UP_PREPARE_FROZEN:
dd41f596 5920 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5921 if (IS_ERR(p))
5922 return NOTIFY_BAD;
1da177e4
LT
5923 kthread_bind(p, cpu);
5924 /* Must be high prio: stop_machine expects to yield to it. */
5925 rq = task_rq_lock(p, &flags);
dd41f596 5926 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5927 task_rq_unlock(rq, &flags);
371cbb38 5928 get_task_struct(p);
1da177e4 5929 cpu_rq(cpu)->migration_thread = p;
a468d389 5930 rq->calc_load_update = calc_load_update;
1da177e4 5931 break;
48f24c4d 5932
1da177e4 5933 case CPU_ONLINE:
8bb78442 5934 case CPU_ONLINE_FROZEN:
3a4fa0a2 5935 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5936 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5937
5938 /* Update our root-domain */
5939 rq = cpu_rq(cpu);
05fa785c 5940 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5941 if (rq->rd) {
c6c4927b 5942 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5943
5944 set_rq_online(rq);
1f94ef59 5945 }
05fa785c 5946 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5947 break;
48f24c4d 5948
1da177e4
LT
5949#ifdef CONFIG_HOTPLUG_CPU
5950 case CPU_UP_CANCELED:
8bb78442 5951 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5952 if (!cpu_rq(cpu)->migration_thread)
5953 break;
41a2d6cf 5954 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5955 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5956 cpumask_any(cpu_online_mask));
1da177e4 5957 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5958 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5959 cpu_rq(cpu)->migration_thread = NULL;
5960 break;
48f24c4d 5961
1da177e4 5962 case CPU_DEAD:
8bb78442 5963 case CPU_DEAD_FROZEN:
470fd646 5964 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5965 migrate_live_tasks(cpu);
5966 rq = cpu_rq(cpu);
5967 kthread_stop(rq->migration_thread);
371cbb38 5968 put_task_struct(rq->migration_thread);
1da177e4
LT
5969 rq->migration_thread = NULL;
5970 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5971 raw_spin_lock_irq(&rq->lock);
a8e504d2 5972 update_rq_clock(rq);
2e1cb74a 5973 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5974 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5975 rq->idle->sched_class = &idle_sched_class;
1da177e4 5976 migrate_dead_tasks(cpu);
05fa785c 5977 raw_spin_unlock_irq(&rq->lock);
470fd646 5978 cpuset_unlock();
1da177e4
LT
5979 migrate_nr_uninterruptible(rq);
5980 BUG_ON(rq->nr_running != 0);
dce48a84 5981 calc_global_load_remove(rq);
41a2d6cf
IM
5982 /*
5983 * No need to migrate the tasks: it was best-effort if
5984 * they didn't take sched_hotcpu_mutex. Just wake up
5985 * the requestors.
5986 */
05fa785c 5987 raw_spin_lock_irq(&rq->lock);
1da177e4 5988 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5989 struct migration_req *req;
5990
1da177e4 5991 req = list_entry(rq->migration_queue.next,
70b97a7f 5992 struct migration_req, list);
1da177e4 5993 list_del_init(&req->list);
05fa785c 5994 raw_spin_unlock_irq(&rq->lock);
1da177e4 5995 complete(&req->done);
05fa785c 5996 raw_spin_lock_irq(&rq->lock);
1da177e4 5997 }
05fa785c 5998 raw_spin_unlock_irq(&rq->lock);
1da177e4 5999 break;
57d885fe 6000
08f503b0
GH
6001 case CPU_DYING:
6002 case CPU_DYING_FROZEN:
57d885fe
GH
6003 /* Update our root-domain */
6004 rq = cpu_rq(cpu);
05fa785c 6005 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6006 if (rq->rd) {
c6c4927b 6007 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6008 set_rq_offline(rq);
57d885fe 6009 }
05fa785c 6010 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 6011 break;
1da177e4
LT
6012#endif
6013 }
6014 return NOTIFY_OK;
6015}
6016
f38b0820
PM
6017/*
6018 * Register at high priority so that task migration (migrate_all_tasks)
6019 * happens before everything else. This has to be lower priority than
cdd6c482 6020 * the notifier in the perf_event subsystem, though.
1da177e4 6021 */
26c2143b 6022static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6023 .notifier_call = migration_call,
6024 .priority = 10
6025};
6026
7babe8db 6027static int __init migration_init(void)
1da177e4
LT
6028{
6029 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6030 int err;
48f24c4d
IM
6031
6032 /* Start one for the boot CPU: */
07dccf33
AM
6033 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6034 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6035 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6036 register_cpu_notifier(&migration_notifier);
7babe8db 6037
a004cd42 6038 return 0;
1da177e4 6039}
7babe8db 6040early_initcall(migration_init);
1da177e4
LT
6041#endif
6042
6043#ifdef CONFIG_SMP
476f3534 6044
3e9830dc 6045#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6046
f6630114
MT
6047static __read_mostly int sched_domain_debug_enabled;
6048
6049static int __init sched_domain_debug_setup(char *str)
6050{
6051 sched_domain_debug_enabled = 1;
6052
6053 return 0;
6054}
6055early_param("sched_debug", sched_domain_debug_setup);
6056
7c16ec58 6057static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6058 struct cpumask *groupmask)
1da177e4 6059{
4dcf6aff 6060 struct sched_group *group = sd->groups;
434d53b0 6061 char str[256];
1da177e4 6062
968ea6d8 6063 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6064 cpumask_clear(groupmask);
4dcf6aff
IM
6065
6066 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6067
6068 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6069 printk("does not load-balance\n");
4dcf6aff 6070 if (sd->parent)
3df0fc5b
PZ
6071 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6072 " has parent");
4dcf6aff 6073 return -1;
41c7ce9a
NP
6074 }
6075
3df0fc5b 6076 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6077
758b2cdc 6078 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6079 printk(KERN_ERR "ERROR: domain->span does not contain "
6080 "CPU%d\n", cpu);
4dcf6aff 6081 }
758b2cdc 6082 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6083 printk(KERN_ERR "ERROR: domain->groups does not contain"
6084 " CPU%d\n", cpu);
4dcf6aff 6085 }
1da177e4 6086
4dcf6aff 6087 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6088 do {
4dcf6aff 6089 if (!group) {
3df0fc5b
PZ
6090 printk("\n");
6091 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6092 break;
6093 }
6094
18a3885f 6095 if (!group->cpu_power) {
3df0fc5b
PZ
6096 printk(KERN_CONT "\n");
6097 printk(KERN_ERR "ERROR: domain->cpu_power not "
6098 "set\n");
4dcf6aff
IM
6099 break;
6100 }
1da177e4 6101
758b2cdc 6102 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6103 printk(KERN_CONT "\n");
6104 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6105 break;
6106 }
1da177e4 6107
758b2cdc 6108 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6109 printk(KERN_CONT "\n");
6110 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6111 break;
6112 }
1da177e4 6113
758b2cdc 6114 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6115
968ea6d8 6116 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6117
3df0fc5b 6118 printk(KERN_CONT " %s", str);
18a3885f 6119 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6120 printk(KERN_CONT " (cpu_power = %d)",
6121 group->cpu_power);
381512cf 6122 }
1da177e4 6123
4dcf6aff
IM
6124 group = group->next;
6125 } while (group != sd->groups);
3df0fc5b 6126 printk(KERN_CONT "\n");
1da177e4 6127
758b2cdc 6128 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6129 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6130
758b2cdc
RR
6131 if (sd->parent &&
6132 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6133 printk(KERN_ERR "ERROR: parent span is not a superset "
6134 "of domain->span\n");
4dcf6aff
IM
6135 return 0;
6136}
1da177e4 6137
4dcf6aff
IM
6138static void sched_domain_debug(struct sched_domain *sd, int cpu)
6139{
d5dd3db1 6140 cpumask_var_t groupmask;
4dcf6aff 6141 int level = 0;
1da177e4 6142
f6630114
MT
6143 if (!sched_domain_debug_enabled)
6144 return;
6145
4dcf6aff
IM
6146 if (!sd) {
6147 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6148 return;
6149 }
1da177e4 6150
4dcf6aff
IM
6151 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6152
d5dd3db1 6153 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6154 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6155 return;
6156 }
6157
4dcf6aff 6158 for (;;) {
7c16ec58 6159 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6160 break;
1da177e4
LT
6161 level++;
6162 sd = sd->parent;
33859f7f 6163 if (!sd)
4dcf6aff
IM
6164 break;
6165 }
d5dd3db1 6166 free_cpumask_var(groupmask);
1da177e4 6167}
6d6bc0ad 6168#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6169# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6170#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6171
1a20ff27 6172static int sd_degenerate(struct sched_domain *sd)
245af2c7 6173{
758b2cdc 6174 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6175 return 1;
6176
6177 /* Following flags need at least 2 groups */
6178 if (sd->flags & (SD_LOAD_BALANCE |
6179 SD_BALANCE_NEWIDLE |
6180 SD_BALANCE_FORK |
89c4710e
SS
6181 SD_BALANCE_EXEC |
6182 SD_SHARE_CPUPOWER |
6183 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6184 if (sd->groups != sd->groups->next)
6185 return 0;
6186 }
6187
6188 /* Following flags don't use groups */
c88d5910 6189 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6190 return 0;
6191
6192 return 1;
6193}
6194
48f24c4d
IM
6195static int
6196sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6197{
6198 unsigned long cflags = sd->flags, pflags = parent->flags;
6199
6200 if (sd_degenerate(parent))
6201 return 1;
6202
758b2cdc 6203 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6204 return 0;
6205
245af2c7
SS
6206 /* Flags needing groups don't count if only 1 group in parent */
6207 if (parent->groups == parent->groups->next) {
6208 pflags &= ~(SD_LOAD_BALANCE |
6209 SD_BALANCE_NEWIDLE |
6210 SD_BALANCE_FORK |
89c4710e
SS
6211 SD_BALANCE_EXEC |
6212 SD_SHARE_CPUPOWER |
6213 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6214 if (nr_node_ids == 1)
6215 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6216 }
6217 if (~cflags & pflags)
6218 return 0;
6219
6220 return 1;
6221}
6222
c6c4927b
RR
6223static void free_rootdomain(struct root_domain *rd)
6224{
047106ad
PZ
6225 synchronize_sched();
6226
68e74568
RR
6227 cpupri_cleanup(&rd->cpupri);
6228
c6c4927b
RR
6229 free_cpumask_var(rd->rto_mask);
6230 free_cpumask_var(rd->online);
6231 free_cpumask_var(rd->span);
6232 kfree(rd);
6233}
6234
57d885fe
GH
6235static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6236{
a0490fa3 6237 struct root_domain *old_rd = NULL;
57d885fe 6238 unsigned long flags;
57d885fe 6239
05fa785c 6240 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6241
6242 if (rq->rd) {
a0490fa3 6243 old_rd = rq->rd;
57d885fe 6244
c6c4927b 6245 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6246 set_rq_offline(rq);
57d885fe 6247
c6c4927b 6248 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6249
a0490fa3
IM
6250 /*
6251 * If we dont want to free the old_rt yet then
6252 * set old_rd to NULL to skip the freeing later
6253 * in this function:
6254 */
6255 if (!atomic_dec_and_test(&old_rd->refcount))
6256 old_rd = NULL;
57d885fe
GH
6257 }
6258
6259 atomic_inc(&rd->refcount);
6260 rq->rd = rd;
6261
c6c4927b 6262 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6263 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6264 set_rq_online(rq);
57d885fe 6265
05fa785c 6266 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6267
6268 if (old_rd)
6269 free_rootdomain(old_rd);
57d885fe
GH
6270}
6271
fd5e1b5d 6272static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6273{
36b7b6d4
PE
6274 gfp_t gfp = GFP_KERNEL;
6275
57d885fe
GH
6276 memset(rd, 0, sizeof(*rd));
6277
36b7b6d4
PE
6278 if (bootmem)
6279 gfp = GFP_NOWAIT;
c6c4927b 6280
36b7b6d4 6281 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6282 goto out;
36b7b6d4 6283 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6284 goto free_span;
36b7b6d4 6285 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6286 goto free_online;
6e0534f2 6287
0fb53029 6288 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6289 goto free_rto_mask;
c6c4927b 6290 return 0;
6e0534f2 6291
68e74568
RR
6292free_rto_mask:
6293 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6294free_online:
6295 free_cpumask_var(rd->online);
6296free_span:
6297 free_cpumask_var(rd->span);
0c910d28 6298out:
c6c4927b 6299 return -ENOMEM;
57d885fe
GH
6300}
6301
6302static void init_defrootdomain(void)
6303{
c6c4927b
RR
6304 init_rootdomain(&def_root_domain, true);
6305
57d885fe
GH
6306 atomic_set(&def_root_domain.refcount, 1);
6307}
6308
dc938520 6309static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6310{
6311 struct root_domain *rd;
6312
6313 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6314 if (!rd)
6315 return NULL;
6316
c6c4927b
RR
6317 if (init_rootdomain(rd, false) != 0) {
6318 kfree(rd);
6319 return NULL;
6320 }
57d885fe
GH
6321
6322 return rd;
6323}
6324
1da177e4 6325/*
0eab9146 6326 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6327 * hold the hotplug lock.
6328 */
0eab9146
IM
6329static void
6330cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6331{
70b97a7f 6332 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6333 struct sched_domain *tmp;
6334
6335 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6336 for (tmp = sd; tmp; ) {
245af2c7
SS
6337 struct sched_domain *parent = tmp->parent;
6338 if (!parent)
6339 break;
f29c9b1c 6340
1a848870 6341 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6342 tmp->parent = parent->parent;
1a848870
SS
6343 if (parent->parent)
6344 parent->parent->child = tmp;
f29c9b1c
LZ
6345 } else
6346 tmp = tmp->parent;
245af2c7
SS
6347 }
6348
1a848870 6349 if (sd && sd_degenerate(sd)) {
245af2c7 6350 sd = sd->parent;
1a848870
SS
6351 if (sd)
6352 sd->child = NULL;
6353 }
1da177e4
LT
6354
6355 sched_domain_debug(sd, cpu);
6356
57d885fe 6357 rq_attach_root(rq, rd);
674311d5 6358 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6359}
6360
6361/* cpus with isolated domains */
dcc30a35 6362static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6363
6364/* Setup the mask of cpus configured for isolated domains */
6365static int __init isolated_cpu_setup(char *str)
6366{
bdddd296 6367 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6368 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6369 return 1;
6370}
6371
8927f494 6372__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6373
6374/*
6711cab4
SS
6375 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6376 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6377 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6378 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6379 *
6380 * init_sched_build_groups will build a circular linked list of the groups
6381 * covered by the given span, and will set each group's ->cpumask correctly,
6382 * and ->cpu_power to 0.
6383 */
a616058b 6384static void
96f874e2
RR
6385init_sched_build_groups(const struct cpumask *span,
6386 const struct cpumask *cpu_map,
6387 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6388 struct sched_group **sg,
96f874e2
RR
6389 struct cpumask *tmpmask),
6390 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6391{
6392 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6393 int i;
6394
96f874e2 6395 cpumask_clear(covered);
7c16ec58 6396
abcd083a 6397 for_each_cpu(i, span) {
6711cab4 6398 struct sched_group *sg;
7c16ec58 6399 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6400 int j;
6401
758b2cdc 6402 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6403 continue;
6404
758b2cdc 6405 cpumask_clear(sched_group_cpus(sg));
18a3885f 6406 sg->cpu_power = 0;
1da177e4 6407
abcd083a 6408 for_each_cpu(j, span) {
7c16ec58 6409 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6410 continue;
6411
96f874e2 6412 cpumask_set_cpu(j, covered);
758b2cdc 6413 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6414 }
6415 if (!first)
6416 first = sg;
6417 if (last)
6418 last->next = sg;
6419 last = sg;
6420 }
6421 last->next = first;
6422}
6423
9c1cfda2 6424#define SD_NODES_PER_DOMAIN 16
1da177e4 6425
9c1cfda2 6426#ifdef CONFIG_NUMA
198e2f18 6427
9c1cfda2
JH
6428/**
6429 * find_next_best_node - find the next node to include in a sched_domain
6430 * @node: node whose sched_domain we're building
6431 * @used_nodes: nodes already in the sched_domain
6432 *
41a2d6cf 6433 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6434 * finds the closest node not already in the @used_nodes map.
6435 *
6436 * Should use nodemask_t.
6437 */
c5f59f08 6438static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6439{
6440 int i, n, val, min_val, best_node = 0;
6441
6442 min_val = INT_MAX;
6443
076ac2af 6444 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6445 /* Start at @node */
076ac2af 6446 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6447
6448 if (!nr_cpus_node(n))
6449 continue;
6450
6451 /* Skip already used nodes */
c5f59f08 6452 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6453 continue;
6454
6455 /* Simple min distance search */
6456 val = node_distance(node, n);
6457
6458 if (val < min_val) {
6459 min_val = val;
6460 best_node = n;
6461 }
6462 }
6463
c5f59f08 6464 node_set(best_node, *used_nodes);
9c1cfda2
JH
6465 return best_node;
6466}
6467
6468/**
6469 * sched_domain_node_span - get a cpumask for a node's sched_domain
6470 * @node: node whose cpumask we're constructing
73486722 6471 * @span: resulting cpumask
9c1cfda2 6472 *
41a2d6cf 6473 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6474 * should be one that prevents unnecessary balancing, but also spreads tasks
6475 * out optimally.
6476 */
96f874e2 6477static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6478{
c5f59f08 6479 nodemask_t used_nodes;
48f24c4d 6480 int i;
9c1cfda2 6481
6ca09dfc 6482 cpumask_clear(span);
c5f59f08 6483 nodes_clear(used_nodes);
9c1cfda2 6484
6ca09dfc 6485 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6486 node_set(node, used_nodes);
9c1cfda2
JH
6487
6488 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6489 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6490
6ca09dfc 6491 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6492 }
9c1cfda2 6493}
6d6bc0ad 6494#endif /* CONFIG_NUMA */
9c1cfda2 6495
5c45bf27 6496int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6497
6c99e9ad
RR
6498/*
6499 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6500 *
6501 * ( See the the comments in include/linux/sched.h:struct sched_group
6502 * and struct sched_domain. )
6c99e9ad
RR
6503 */
6504struct static_sched_group {
6505 struct sched_group sg;
6506 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6507};
6508
6509struct static_sched_domain {
6510 struct sched_domain sd;
6511 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6512};
6513
49a02c51
AH
6514struct s_data {
6515#ifdef CONFIG_NUMA
6516 int sd_allnodes;
6517 cpumask_var_t domainspan;
6518 cpumask_var_t covered;
6519 cpumask_var_t notcovered;
6520#endif
6521 cpumask_var_t nodemask;
6522 cpumask_var_t this_sibling_map;
6523 cpumask_var_t this_core_map;
6524 cpumask_var_t send_covered;
6525 cpumask_var_t tmpmask;
6526 struct sched_group **sched_group_nodes;
6527 struct root_domain *rd;
6528};
6529
2109b99e
AH
6530enum s_alloc {
6531 sa_sched_groups = 0,
6532 sa_rootdomain,
6533 sa_tmpmask,
6534 sa_send_covered,
6535 sa_this_core_map,
6536 sa_this_sibling_map,
6537 sa_nodemask,
6538 sa_sched_group_nodes,
6539#ifdef CONFIG_NUMA
6540 sa_notcovered,
6541 sa_covered,
6542 sa_domainspan,
6543#endif
6544 sa_none,
6545};
6546
9c1cfda2 6547/*
48f24c4d 6548 * SMT sched-domains:
9c1cfda2 6549 */
1da177e4 6550#ifdef CONFIG_SCHED_SMT
6c99e9ad 6551static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6552static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6553
41a2d6cf 6554static int
96f874e2
RR
6555cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6556 struct sched_group **sg, struct cpumask *unused)
1da177e4 6557{
6711cab4 6558 if (sg)
1871e52c 6559 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6560 return cpu;
6561}
6d6bc0ad 6562#endif /* CONFIG_SCHED_SMT */
1da177e4 6563
48f24c4d
IM
6564/*
6565 * multi-core sched-domains:
6566 */
1e9f28fa 6567#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6568static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6569static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6570#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6571
6572#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6573static int
96f874e2
RR
6574cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6575 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6576{
6711cab4 6577 int group;
7c16ec58 6578
c69fc56d 6579 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6580 group = cpumask_first(mask);
6711cab4 6581 if (sg)
6c99e9ad 6582 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6583 return group;
1e9f28fa
SS
6584}
6585#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6586static int
96f874e2
RR
6587cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6588 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6589{
6711cab4 6590 if (sg)
6c99e9ad 6591 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6592 return cpu;
6593}
6594#endif
6595
6c99e9ad
RR
6596static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6597static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6598
41a2d6cf 6599static int
96f874e2
RR
6600cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6601 struct sched_group **sg, struct cpumask *mask)
1da177e4 6602{
6711cab4 6603 int group;
48f24c4d 6604#ifdef CONFIG_SCHED_MC
6ca09dfc 6605 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6606 group = cpumask_first(mask);
1e9f28fa 6607#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6608 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6609 group = cpumask_first(mask);
1da177e4 6610#else
6711cab4 6611 group = cpu;
1da177e4 6612#endif
6711cab4 6613 if (sg)
6c99e9ad 6614 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6615 return group;
1da177e4
LT
6616}
6617
6618#ifdef CONFIG_NUMA
1da177e4 6619/*
9c1cfda2
JH
6620 * The init_sched_build_groups can't handle what we want to do with node
6621 * groups, so roll our own. Now each node has its own list of groups which
6622 * gets dynamically allocated.
1da177e4 6623 */
62ea9ceb 6624static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6625static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6626
62ea9ceb 6627static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6628static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6629
96f874e2
RR
6630static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6631 struct sched_group **sg,
6632 struct cpumask *nodemask)
9c1cfda2 6633{
6711cab4
SS
6634 int group;
6635
6ca09dfc 6636 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6637 group = cpumask_first(nodemask);
6711cab4
SS
6638
6639 if (sg)
6c99e9ad 6640 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6641 return group;
1da177e4 6642}
6711cab4 6643
08069033
SS
6644static void init_numa_sched_groups_power(struct sched_group *group_head)
6645{
6646 struct sched_group *sg = group_head;
6647 int j;
6648
6649 if (!sg)
6650 return;
3a5c359a 6651 do {
758b2cdc 6652 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6653 struct sched_domain *sd;
08069033 6654
6c99e9ad 6655 sd = &per_cpu(phys_domains, j).sd;
13318a71 6656 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6657 /*
6658 * Only add "power" once for each
6659 * physical package.
6660 */
6661 continue;
6662 }
08069033 6663
18a3885f 6664 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6665 }
6666 sg = sg->next;
6667 } while (sg != group_head);
08069033 6668}
0601a88d
AH
6669
6670static int build_numa_sched_groups(struct s_data *d,
6671 const struct cpumask *cpu_map, int num)
6672{
6673 struct sched_domain *sd;
6674 struct sched_group *sg, *prev;
6675 int n, j;
6676
6677 cpumask_clear(d->covered);
6678 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6679 if (cpumask_empty(d->nodemask)) {
6680 d->sched_group_nodes[num] = NULL;
6681 goto out;
6682 }
6683
6684 sched_domain_node_span(num, d->domainspan);
6685 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6686
6687 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6688 GFP_KERNEL, num);
6689 if (!sg) {
3df0fc5b
PZ
6690 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6691 num);
0601a88d
AH
6692 return -ENOMEM;
6693 }
6694 d->sched_group_nodes[num] = sg;
6695
6696 for_each_cpu(j, d->nodemask) {
6697 sd = &per_cpu(node_domains, j).sd;
6698 sd->groups = sg;
6699 }
6700
18a3885f 6701 sg->cpu_power = 0;
0601a88d
AH
6702 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6703 sg->next = sg;
6704 cpumask_or(d->covered, d->covered, d->nodemask);
6705
6706 prev = sg;
6707 for (j = 0; j < nr_node_ids; j++) {
6708 n = (num + j) % nr_node_ids;
6709 cpumask_complement(d->notcovered, d->covered);
6710 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6711 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6712 if (cpumask_empty(d->tmpmask))
6713 break;
6714 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6715 if (cpumask_empty(d->tmpmask))
6716 continue;
6717 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6718 GFP_KERNEL, num);
6719 if (!sg) {
3df0fc5b
PZ
6720 printk(KERN_WARNING
6721 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6722 return -ENOMEM;
6723 }
18a3885f 6724 sg->cpu_power = 0;
0601a88d
AH
6725 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6726 sg->next = prev->next;
6727 cpumask_or(d->covered, d->covered, d->tmpmask);
6728 prev->next = sg;
6729 prev = sg;
6730 }
6731out:
6732 return 0;
6733}
6d6bc0ad 6734#endif /* CONFIG_NUMA */
1da177e4 6735
a616058b 6736#ifdef CONFIG_NUMA
51888ca2 6737/* Free memory allocated for various sched_group structures */
96f874e2
RR
6738static void free_sched_groups(const struct cpumask *cpu_map,
6739 struct cpumask *nodemask)
51888ca2 6740{
a616058b 6741 int cpu, i;
51888ca2 6742
abcd083a 6743 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6744 struct sched_group **sched_group_nodes
6745 = sched_group_nodes_bycpu[cpu];
6746
51888ca2
SV
6747 if (!sched_group_nodes)
6748 continue;
6749
076ac2af 6750 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6751 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6752
6ca09dfc 6753 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6754 if (cpumask_empty(nodemask))
51888ca2
SV
6755 continue;
6756
6757 if (sg == NULL)
6758 continue;
6759 sg = sg->next;
6760next_sg:
6761 oldsg = sg;
6762 sg = sg->next;
6763 kfree(oldsg);
6764 if (oldsg != sched_group_nodes[i])
6765 goto next_sg;
6766 }
6767 kfree(sched_group_nodes);
6768 sched_group_nodes_bycpu[cpu] = NULL;
6769 }
51888ca2 6770}
6d6bc0ad 6771#else /* !CONFIG_NUMA */
96f874e2
RR
6772static void free_sched_groups(const struct cpumask *cpu_map,
6773 struct cpumask *nodemask)
a616058b
SS
6774{
6775}
6d6bc0ad 6776#endif /* CONFIG_NUMA */
51888ca2 6777
89c4710e
SS
6778/*
6779 * Initialize sched groups cpu_power.
6780 *
6781 * cpu_power indicates the capacity of sched group, which is used while
6782 * distributing the load between different sched groups in a sched domain.
6783 * Typically cpu_power for all the groups in a sched domain will be same unless
6784 * there are asymmetries in the topology. If there are asymmetries, group
6785 * having more cpu_power will pickup more load compared to the group having
6786 * less cpu_power.
89c4710e
SS
6787 */
6788static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6789{
6790 struct sched_domain *child;
6791 struct sched_group *group;
f93e65c1
PZ
6792 long power;
6793 int weight;
89c4710e
SS
6794
6795 WARN_ON(!sd || !sd->groups);
6796
13318a71 6797 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6798 return;
6799
6800 child = sd->child;
6801
18a3885f 6802 sd->groups->cpu_power = 0;
5517d86b 6803
f93e65c1
PZ
6804 if (!child) {
6805 power = SCHED_LOAD_SCALE;
6806 weight = cpumask_weight(sched_domain_span(sd));
6807 /*
6808 * SMT siblings share the power of a single core.
a52bfd73
PZ
6809 * Usually multiple threads get a better yield out of
6810 * that one core than a single thread would have,
6811 * reflect that in sd->smt_gain.
f93e65c1 6812 */
a52bfd73
PZ
6813 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6814 power *= sd->smt_gain;
f93e65c1 6815 power /= weight;
a52bfd73
PZ
6816 power >>= SCHED_LOAD_SHIFT;
6817 }
18a3885f 6818 sd->groups->cpu_power += power;
89c4710e
SS
6819 return;
6820 }
6821
89c4710e 6822 /*
f93e65c1 6823 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6824 */
6825 group = child->groups;
6826 do {
18a3885f 6827 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6828 group = group->next;
6829 } while (group != child->groups);
6830}
6831
7c16ec58
MT
6832/*
6833 * Initializers for schedule domains
6834 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6835 */
6836
a5d8c348
IM
6837#ifdef CONFIG_SCHED_DEBUG
6838# define SD_INIT_NAME(sd, type) sd->name = #type
6839#else
6840# define SD_INIT_NAME(sd, type) do { } while (0)
6841#endif
6842
7c16ec58 6843#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6844
7c16ec58
MT
6845#define SD_INIT_FUNC(type) \
6846static noinline void sd_init_##type(struct sched_domain *sd) \
6847{ \
6848 memset(sd, 0, sizeof(*sd)); \
6849 *sd = SD_##type##_INIT; \
1d3504fc 6850 sd->level = SD_LV_##type; \
a5d8c348 6851 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6852}
6853
6854SD_INIT_FUNC(CPU)
6855#ifdef CONFIG_NUMA
6856 SD_INIT_FUNC(ALLNODES)
6857 SD_INIT_FUNC(NODE)
6858#endif
6859#ifdef CONFIG_SCHED_SMT
6860 SD_INIT_FUNC(SIBLING)
6861#endif
6862#ifdef CONFIG_SCHED_MC
6863 SD_INIT_FUNC(MC)
6864#endif
6865
1d3504fc
HS
6866static int default_relax_domain_level = -1;
6867
6868static int __init setup_relax_domain_level(char *str)
6869{
30e0e178
LZ
6870 unsigned long val;
6871
6872 val = simple_strtoul(str, NULL, 0);
6873 if (val < SD_LV_MAX)
6874 default_relax_domain_level = val;
6875
1d3504fc
HS
6876 return 1;
6877}
6878__setup("relax_domain_level=", setup_relax_domain_level);
6879
6880static void set_domain_attribute(struct sched_domain *sd,
6881 struct sched_domain_attr *attr)
6882{
6883 int request;
6884
6885 if (!attr || attr->relax_domain_level < 0) {
6886 if (default_relax_domain_level < 0)
6887 return;
6888 else
6889 request = default_relax_domain_level;
6890 } else
6891 request = attr->relax_domain_level;
6892 if (request < sd->level) {
6893 /* turn off idle balance on this domain */
c88d5910 6894 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6895 } else {
6896 /* turn on idle balance on this domain */
c88d5910 6897 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6898 }
6899}
6900
2109b99e
AH
6901static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6902 const struct cpumask *cpu_map)
6903{
6904 switch (what) {
6905 case sa_sched_groups:
6906 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6907 d->sched_group_nodes = NULL;
6908 case sa_rootdomain:
6909 free_rootdomain(d->rd); /* fall through */
6910 case sa_tmpmask:
6911 free_cpumask_var(d->tmpmask); /* fall through */
6912 case sa_send_covered:
6913 free_cpumask_var(d->send_covered); /* fall through */
6914 case sa_this_core_map:
6915 free_cpumask_var(d->this_core_map); /* fall through */
6916 case sa_this_sibling_map:
6917 free_cpumask_var(d->this_sibling_map); /* fall through */
6918 case sa_nodemask:
6919 free_cpumask_var(d->nodemask); /* fall through */
6920 case sa_sched_group_nodes:
d1b55138 6921#ifdef CONFIG_NUMA
2109b99e
AH
6922 kfree(d->sched_group_nodes); /* fall through */
6923 case sa_notcovered:
6924 free_cpumask_var(d->notcovered); /* fall through */
6925 case sa_covered:
6926 free_cpumask_var(d->covered); /* fall through */
6927 case sa_domainspan:
6928 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6929#endif
2109b99e
AH
6930 case sa_none:
6931 break;
6932 }
6933}
3404c8d9 6934
2109b99e
AH
6935static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6936 const struct cpumask *cpu_map)
6937{
3404c8d9 6938#ifdef CONFIG_NUMA
2109b99e
AH
6939 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6940 return sa_none;
6941 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6942 return sa_domainspan;
6943 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6944 return sa_covered;
6945 /* Allocate the per-node list of sched groups */
6946 d->sched_group_nodes = kcalloc(nr_node_ids,
6947 sizeof(struct sched_group *), GFP_KERNEL);
6948 if (!d->sched_group_nodes) {
3df0fc5b 6949 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6950 return sa_notcovered;
d1b55138 6951 }
2109b99e 6952 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6953#endif
2109b99e
AH
6954 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6955 return sa_sched_group_nodes;
6956 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6957 return sa_nodemask;
6958 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6959 return sa_this_sibling_map;
6960 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6961 return sa_this_core_map;
6962 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6963 return sa_send_covered;
6964 d->rd = alloc_rootdomain();
6965 if (!d->rd) {
3df0fc5b 6966 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6967 return sa_tmpmask;
57d885fe 6968 }
2109b99e
AH
6969 return sa_rootdomain;
6970}
57d885fe 6971
7f4588f3
AH
6972static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6973 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6974{
6975 struct sched_domain *sd = NULL;
7c16ec58 6976#ifdef CONFIG_NUMA
7f4588f3 6977 struct sched_domain *parent;
1da177e4 6978
7f4588f3
AH
6979 d->sd_allnodes = 0;
6980 if (cpumask_weight(cpu_map) >
6981 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6982 sd = &per_cpu(allnodes_domains, i).sd;
6983 SD_INIT(sd, ALLNODES);
1d3504fc 6984 set_domain_attribute(sd, attr);
7f4588f3
AH
6985 cpumask_copy(sched_domain_span(sd), cpu_map);
6986 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6987 d->sd_allnodes = 1;
6988 }
6989 parent = sd;
6990
6991 sd = &per_cpu(node_domains, i).sd;
6992 SD_INIT(sd, NODE);
6993 set_domain_attribute(sd, attr);
6994 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6995 sd->parent = parent;
6996 if (parent)
6997 parent->child = sd;
6998 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6999#endif
7f4588f3
AH
7000 return sd;
7001}
1da177e4 7002
87cce662
AH
7003static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7004 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7005 struct sched_domain *parent, int i)
7006{
7007 struct sched_domain *sd;
7008 sd = &per_cpu(phys_domains, i).sd;
7009 SD_INIT(sd, CPU);
7010 set_domain_attribute(sd, attr);
7011 cpumask_copy(sched_domain_span(sd), d->nodemask);
7012 sd->parent = parent;
7013 if (parent)
7014 parent->child = sd;
7015 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7016 return sd;
7017}
1da177e4 7018
410c4081
AH
7019static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7020 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7021 struct sched_domain *parent, int i)
7022{
7023 struct sched_domain *sd = parent;
1e9f28fa 7024#ifdef CONFIG_SCHED_MC
410c4081
AH
7025 sd = &per_cpu(core_domains, i).sd;
7026 SD_INIT(sd, MC);
7027 set_domain_attribute(sd, attr);
7028 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7029 sd->parent = parent;
7030 parent->child = sd;
7031 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7032#endif
410c4081
AH
7033 return sd;
7034}
1e9f28fa 7035
d8173535
AH
7036static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7037 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7038 struct sched_domain *parent, int i)
7039{
7040 struct sched_domain *sd = parent;
1da177e4 7041#ifdef CONFIG_SCHED_SMT
d8173535
AH
7042 sd = &per_cpu(cpu_domains, i).sd;
7043 SD_INIT(sd, SIBLING);
7044 set_domain_attribute(sd, attr);
7045 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7046 sd->parent = parent;
7047 parent->child = sd;
7048 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7049#endif
d8173535
AH
7050 return sd;
7051}
1da177e4 7052
0e8e85c9
AH
7053static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7054 const struct cpumask *cpu_map, int cpu)
7055{
7056 switch (l) {
1da177e4 7057#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7058 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7059 cpumask_and(d->this_sibling_map, cpu_map,
7060 topology_thread_cpumask(cpu));
7061 if (cpu == cpumask_first(d->this_sibling_map))
7062 init_sched_build_groups(d->this_sibling_map, cpu_map,
7063 &cpu_to_cpu_group,
7064 d->send_covered, d->tmpmask);
7065 break;
1da177e4 7066#endif
1e9f28fa 7067#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7068 case SD_LV_MC: /* set up multi-core groups */
7069 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7070 if (cpu == cpumask_first(d->this_core_map))
7071 init_sched_build_groups(d->this_core_map, cpu_map,
7072 &cpu_to_core_group,
7073 d->send_covered, d->tmpmask);
7074 break;
1e9f28fa 7075#endif
86548096
AH
7076 case SD_LV_CPU: /* set up physical groups */
7077 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7078 if (!cpumask_empty(d->nodemask))
7079 init_sched_build_groups(d->nodemask, cpu_map,
7080 &cpu_to_phys_group,
7081 d->send_covered, d->tmpmask);
7082 break;
1da177e4 7083#ifdef CONFIG_NUMA
de616e36
AH
7084 case SD_LV_ALLNODES:
7085 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7086 d->send_covered, d->tmpmask);
7087 break;
7088#endif
0e8e85c9
AH
7089 default:
7090 break;
7c16ec58 7091 }
0e8e85c9 7092}
9c1cfda2 7093
2109b99e
AH
7094/*
7095 * Build sched domains for a given set of cpus and attach the sched domains
7096 * to the individual cpus
7097 */
7098static int __build_sched_domains(const struct cpumask *cpu_map,
7099 struct sched_domain_attr *attr)
7100{
7101 enum s_alloc alloc_state = sa_none;
7102 struct s_data d;
294b0c96 7103 struct sched_domain *sd;
2109b99e 7104 int i;
7c16ec58 7105#ifdef CONFIG_NUMA
2109b99e 7106 d.sd_allnodes = 0;
7c16ec58 7107#endif
9c1cfda2 7108
2109b99e
AH
7109 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7110 if (alloc_state != sa_rootdomain)
7111 goto error;
7112 alloc_state = sa_sched_groups;
9c1cfda2 7113
1da177e4 7114 /*
1a20ff27 7115 * Set up domains for cpus specified by the cpu_map.
1da177e4 7116 */
abcd083a 7117 for_each_cpu(i, cpu_map) {
49a02c51
AH
7118 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7119 cpu_map);
9761eea8 7120
7f4588f3 7121 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7122 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7123 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7124 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7125 }
9c1cfda2 7126
abcd083a 7127 for_each_cpu(i, cpu_map) {
0e8e85c9 7128 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7129 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7130 }
9c1cfda2 7131
1da177e4 7132 /* Set up physical groups */
86548096
AH
7133 for (i = 0; i < nr_node_ids; i++)
7134 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7135
1da177e4
LT
7136#ifdef CONFIG_NUMA
7137 /* Set up node groups */
de616e36
AH
7138 if (d.sd_allnodes)
7139 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7140
0601a88d
AH
7141 for (i = 0; i < nr_node_ids; i++)
7142 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7143 goto error;
1da177e4
LT
7144#endif
7145
7146 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7147#ifdef CONFIG_SCHED_SMT
abcd083a 7148 for_each_cpu(i, cpu_map) {
294b0c96 7149 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7150 init_sched_groups_power(i, sd);
5c45bf27 7151 }
1da177e4 7152#endif
1e9f28fa 7153#ifdef CONFIG_SCHED_MC
abcd083a 7154 for_each_cpu(i, cpu_map) {
294b0c96 7155 sd = &per_cpu(core_domains, i).sd;
89c4710e 7156 init_sched_groups_power(i, sd);
5c45bf27
SS
7157 }
7158#endif
1e9f28fa 7159
abcd083a 7160 for_each_cpu(i, cpu_map) {
294b0c96 7161 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7162 init_sched_groups_power(i, sd);
1da177e4
LT
7163 }
7164
9c1cfda2 7165#ifdef CONFIG_NUMA
076ac2af 7166 for (i = 0; i < nr_node_ids; i++)
49a02c51 7167 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7168
49a02c51 7169 if (d.sd_allnodes) {
6711cab4 7170 struct sched_group *sg;
f712c0c7 7171
96f874e2 7172 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7173 d.tmpmask);
f712c0c7
SS
7174 init_numa_sched_groups_power(sg);
7175 }
9c1cfda2
JH
7176#endif
7177
1da177e4 7178 /* Attach the domains */
abcd083a 7179 for_each_cpu(i, cpu_map) {
1da177e4 7180#ifdef CONFIG_SCHED_SMT
6c99e9ad 7181 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7182#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7183 sd = &per_cpu(core_domains, i).sd;
1da177e4 7184#else
6c99e9ad 7185 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7186#endif
49a02c51 7187 cpu_attach_domain(sd, d.rd, i);
1da177e4 7188 }
51888ca2 7189
2109b99e
AH
7190 d.sched_group_nodes = NULL; /* don't free this we still need it */
7191 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7192 return 0;
51888ca2 7193
51888ca2 7194error:
2109b99e
AH
7195 __free_domain_allocs(&d, alloc_state, cpu_map);
7196 return -ENOMEM;
1da177e4 7197}
029190c5 7198
96f874e2 7199static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7200{
7201 return __build_sched_domains(cpu_map, NULL);
7202}
7203
acc3f5d7 7204static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7205static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7206static struct sched_domain_attr *dattr_cur;
7207 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7208
7209/*
7210 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7211 * cpumask) fails, then fallback to a single sched domain,
7212 * as determined by the single cpumask fallback_doms.
029190c5 7213 */
4212823f 7214static cpumask_var_t fallback_doms;
029190c5 7215
ee79d1bd
HC
7216/*
7217 * arch_update_cpu_topology lets virtualized architectures update the
7218 * cpu core maps. It is supposed to return 1 if the topology changed
7219 * or 0 if it stayed the same.
7220 */
7221int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7222{
ee79d1bd 7223 return 0;
22e52b07
HC
7224}
7225
acc3f5d7
RR
7226cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7227{
7228 int i;
7229 cpumask_var_t *doms;
7230
7231 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7232 if (!doms)
7233 return NULL;
7234 for (i = 0; i < ndoms; i++) {
7235 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7236 free_sched_domains(doms, i);
7237 return NULL;
7238 }
7239 }
7240 return doms;
7241}
7242
7243void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7244{
7245 unsigned int i;
7246 for (i = 0; i < ndoms; i++)
7247 free_cpumask_var(doms[i]);
7248 kfree(doms);
7249}
7250
1a20ff27 7251/*
41a2d6cf 7252 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7253 * For now this just excludes isolated cpus, but could be used to
7254 * exclude other special cases in the future.
1a20ff27 7255 */
96f874e2 7256static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7257{
7378547f
MM
7258 int err;
7259
22e52b07 7260 arch_update_cpu_topology();
029190c5 7261 ndoms_cur = 1;
acc3f5d7 7262 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7263 if (!doms_cur)
acc3f5d7
RR
7264 doms_cur = &fallback_doms;
7265 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7266 dattr_cur = NULL;
acc3f5d7 7267 err = build_sched_domains(doms_cur[0]);
6382bc90 7268 register_sched_domain_sysctl();
7378547f
MM
7269
7270 return err;
1a20ff27
DG
7271}
7272
96f874e2
RR
7273static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7274 struct cpumask *tmpmask)
1da177e4 7275{
7c16ec58 7276 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7277}
1da177e4 7278
1a20ff27
DG
7279/*
7280 * Detach sched domains from a group of cpus specified in cpu_map
7281 * These cpus will now be attached to the NULL domain
7282 */
96f874e2 7283static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7284{
96f874e2
RR
7285 /* Save because hotplug lock held. */
7286 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7287 int i;
7288
abcd083a 7289 for_each_cpu(i, cpu_map)
57d885fe 7290 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7291 synchronize_sched();
96f874e2 7292 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7293}
7294
1d3504fc
HS
7295/* handle null as "default" */
7296static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7297 struct sched_domain_attr *new, int idx_new)
7298{
7299 struct sched_domain_attr tmp;
7300
7301 /* fast path */
7302 if (!new && !cur)
7303 return 1;
7304
7305 tmp = SD_ATTR_INIT;
7306 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7307 new ? (new + idx_new) : &tmp,
7308 sizeof(struct sched_domain_attr));
7309}
7310
029190c5
PJ
7311/*
7312 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7313 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7314 * doms_new[] to the current sched domain partitioning, doms_cur[].
7315 * It destroys each deleted domain and builds each new domain.
7316 *
acc3f5d7 7317 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7318 * The masks don't intersect (don't overlap.) We should setup one
7319 * sched domain for each mask. CPUs not in any of the cpumasks will
7320 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7321 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7322 * it as it is.
7323 *
acc3f5d7
RR
7324 * The passed in 'doms_new' should be allocated using
7325 * alloc_sched_domains. This routine takes ownership of it and will
7326 * free_sched_domains it when done with it. If the caller failed the
7327 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7328 * and partition_sched_domains() will fallback to the single partition
7329 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7330 *
96f874e2 7331 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7332 * ndoms_new == 0 is a special case for destroying existing domains,
7333 * and it will not create the default domain.
dfb512ec 7334 *
029190c5
PJ
7335 * Call with hotplug lock held
7336 */
acc3f5d7 7337void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7338 struct sched_domain_attr *dattr_new)
029190c5 7339{
dfb512ec 7340 int i, j, n;
d65bd5ec 7341 int new_topology;
029190c5 7342
712555ee 7343 mutex_lock(&sched_domains_mutex);
a1835615 7344
7378547f
MM
7345 /* always unregister in case we don't destroy any domains */
7346 unregister_sched_domain_sysctl();
7347
d65bd5ec
HC
7348 /* Let architecture update cpu core mappings. */
7349 new_topology = arch_update_cpu_topology();
7350
dfb512ec 7351 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7352
7353 /* Destroy deleted domains */
7354 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7355 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7356 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7357 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7358 goto match1;
7359 }
7360 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7361 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7362match1:
7363 ;
7364 }
7365
e761b772
MK
7366 if (doms_new == NULL) {
7367 ndoms_cur = 0;
acc3f5d7 7368 doms_new = &fallback_doms;
6ad4c188 7369 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7370 WARN_ON_ONCE(dattr_new);
e761b772
MK
7371 }
7372
029190c5
PJ
7373 /* Build new domains */
7374 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7375 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7376 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7377 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7378 goto match2;
7379 }
7380 /* no match - add a new doms_new */
acc3f5d7 7381 __build_sched_domains(doms_new[i],
1d3504fc 7382 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7383match2:
7384 ;
7385 }
7386
7387 /* Remember the new sched domains */
acc3f5d7
RR
7388 if (doms_cur != &fallback_doms)
7389 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7390 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7391 doms_cur = doms_new;
1d3504fc 7392 dattr_cur = dattr_new;
029190c5 7393 ndoms_cur = ndoms_new;
7378547f
MM
7394
7395 register_sched_domain_sysctl();
a1835615 7396
712555ee 7397 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7398}
7399
5c45bf27 7400#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7401static void arch_reinit_sched_domains(void)
5c45bf27 7402{
95402b38 7403 get_online_cpus();
dfb512ec
MK
7404
7405 /* Destroy domains first to force the rebuild */
7406 partition_sched_domains(0, NULL, NULL);
7407
e761b772 7408 rebuild_sched_domains();
95402b38 7409 put_online_cpus();
5c45bf27
SS
7410}
7411
7412static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7413{
afb8a9b7 7414 unsigned int level = 0;
5c45bf27 7415
afb8a9b7
GS
7416 if (sscanf(buf, "%u", &level) != 1)
7417 return -EINVAL;
7418
7419 /*
7420 * level is always be positive so don't check for
7421 * level < POWERSAVINGS_BALANCE_NONE which is 0
7422 * What happens on 0 or 1 byte write,
7423 * need to check for count as well?
7424 */
7425
7426 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7427 return -EINVAL;
7428
7429 if (smt)
afb8a9b7 7430 sched_smt_power_savings = level;
5c45bf27 7431 else
afb8a9b7 7432 sched_mc_power_savings = level;
5c45bf27 7433
c70f22d2 7434 arch_reinit_sched_domains();
5c45bf27 7435
c70f22d2 7436 return count;
5c45bf27
SS
7437}
7438
5c45bf27 7439#ifdef CONFIG_SCHED_MC
f718cd4a 7440static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7441 struct sysdev_class_attribute *attr,
f718cd4a 7442 char *page)
5c45bf27
SS
7443{
7444 return sprintf(page, "%u\n", sched_mc_power_savings);
7445}
f718cd4a 7446static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7447 struct sysdev_class_attribute *attr,
48f24c4d 7448 const char *buf, size_t count)
5c45bf27
SS
7449{
7450 return sched_power_savings_store(buf, count, 0);
7451}
f718cd4a
AK
7452static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7453 sched_mc_power_savings_show,
7454 sched_mc_power_savings_store);
5c45bf27
SS
7455#endif
7456
7457#ifdef CONFIG_SCHED_SMT
f718cd4a 7458static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7459 struct sysdev_class_attribute *attr,
f718cd4a 7460 char *page)
5c45bf27
SS
7461{
7462 return sprintf(page, "%u\n", sched_smt_power_savings);
7463}
f718cd4a 7464static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7465 struct sysdev_class_attribute *attr,
48f24c4d 7466 const char *buf, size_t count)
5c45bf27
SS
7467{
7468 return sched_power_savings_store(buf, count, 1);
7469}
f718cd4a
AK
7470static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7471 sched_smt_power_savings_show,
6707de00
AB
7472 sched_smt_power_savings_store);
7473#endif
7474
39aac648 7475int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7476{
7477 int err = 0;
7478
7479#ifdef CONFIG_SCHED_SMT
7480 if (smt_capable())
7481 err = sysfs_create_file(&cls->kset.kobj,
7482 &attr_sched_smt_power_savings.attr);
7483#endif
7484#ifdef CONFIG_SCHED_MC
7485 if (!err && mc_capable())
7486 err = sysfs_create_file(&cls->kset.kobj,
7487 &attr_sched_mc_power_savings.attr);
7488#endif
7489 return err;
7490}
6d6bc0ad 7491#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7492
e761b772 7493#ifndef CONFIG_CPUSETS
1da177e4 7494/*
e761b772
MK
7495 * Add online and remove offline CPUs from the scheduler domains.
7496 * When cpusets are enabled they take over this function.
1da177e4
LT
7497 */
7498static int update_sched_domains(struct notifier_block *nfb,
7499 unsigned long action, void *hcpu)
e761b772
MK
7500{
7501 switch (action) {
7502 case CPU_ONLINE:
7503 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7504 case CPU_DOWN_PREPARE:
7505 case CPU_DOWN_PREPARE_FROZEN:
7506 case CPU_DOWN_FAILED:
7507 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7508 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7509 return NOTIFY_OK;
7510
7511 default:
7512 return NOTIFY_DONE;
7513 }
7514}
7515#endif
7516
7517static int update_runtime(struct notifier_block *nfb,
7518 unsigned long action, void *hcpu)
1da177e4 7519{
7def2be1
PZ
7520 int cpu = (int)(long)hcpu;
7521
1da177e4 7522 switch (action) {
1da177e4 7523 case CPU_DOWN_PREPARE:
8bb78442 7524 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7525 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7526 return NOTIFY_OK;
7527
1da177e4 7528 case CPU_DOWN_FAILED:
8bb78442 7529 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7530 case CPU_ONLINE:
8bb78442 7531 case CPU_ONLINE_FROZEN:
7def2be1 7532 enable_runtime(cpu_rq(cpu));
e761b772
MK
7533 return NOTIFY_OK;
7534
1da177e4
LT
7535 default:
7536 return NOTIFY_DONE;
7537 }
1da177e4 7538}
1da177e4
LT
7539
7540void __init sched_init_smp(void)
7541{
dcc30a35
RR
7542 cpumask_var_t non_isolated_cpus;
7543
7544 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7545 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7546
434d53b0
MT
7547#if defined(CONFIG_NUMA)
7548 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7549 GFP_KERNEL);
7550 BUG_ON(sched_group_nodes_bycpu == NULL);
7551#endif
95402b38 7552 get_online_cpus();
712555ee 7553 mutex_lock(&sched_domains_mutex);
6ad4c188 7554 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7555 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7556 if (cpumask_empty(non_isolated_cpus))
7557 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7558 mutex_unlock(&sched_domains_mutex);
95402b38 7559 put_online_cpus();
e761b772
MK
7560
7561#ifndef CONFIG_CPUSETS
1da177e4
LT
7562 /* XXX: Theoretical race here - CPU may be hotplugged now */
7563 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7564#endif
7565
7566 /* RT runtime code needs to handle some hotplug events */
7567 hotcpu_notifier(update_runtime, 0);
7568
b328ca18 7569 init_hrtick();
5c1e1767
NP
7570
7571 /* Move init over to a non-isolated CPU */
dcc30a35 7572 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7573 BUG();
19978ca6 7574 sched_init_granularity();
dcc30a35 7575 free_cpumask_var(non_isolated_cpus);
4212823f 7576
0e3900e6 7577 init_sched_rt_class();
1da177e4
LT
7578}
7579#else
7580void __init sched_init_smp(void)
7581{
19978ca6 7582 sched_init_granularity();
1da177e4
LT
7583}
7584#endif /* CONFIG_SMP */
7585
cd1bb94b
AB
7586const_debug unsigned int sysctl_timer_migration = 1;
7587
1da177e4
LT
7588int in_sched_functions(unsigned long addr)
7589{
1da177e4
LT
7590 return in_lock_functions(addr) ||
7591 (addr >= (unsigned long)__sched_text_start
7592 && addr < (unsigned long)__sched_text_end);
7593}
7594
a9957449 7595static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7596{
7597 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7598 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7599#ifdef CONFIG_FAIR_GROUP_SCHED
7600 cfs_rq->rq = rq;
7601#endif
67e9fb2a 7602 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7603}
7604
fa85ae24
PZ
7605static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7606{
7607 struct rt_prio_array *array;
7608 int i;
7609
7610 array = &rt_rq->active;
7611 for (i = 0; i < MAX_RT_PRIO; i++) {
7612 INIT_LIST_HEAD(array->queue + i);
7613 __clear_bit(i, array->bitmap);
7614 }
7615 /* delimiter for bitsearch: */
7616 __set_bit(MAX_RT_PRIO, array->bitmap);
7617
052f1dc7 7618#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7619 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7620#ifdef CONFIG_SMP
e864c499 7621 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7622#endif
48d5e258 7623#endif
fa85ae24
PZ
7624#ifdef CONFIG_SMP
7625 rt_rq->rt_nr_migratory = 0;
fa85ae24 7626 rt_rq->overloaded = 0;
05fa785c 7627 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7628#endif
7629
7630 rt_rq->rt_time = 0;
7631 rt_rq->rt_throttled = 0;
ac086bc2 7632 rt_rq->rt_runtime = 0;
0986b11b 7633 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7634
052f1dc7 7635#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7636 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7637 rt_rq->rq = rq;
7638#endif
fa85ae24
PZ
7639}
7640
6f505b16 7641#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7642static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7643 struct sched_entity *se, int cpu, int add,
7644 struct sched_entity *parent)
6f505b16 7645{
ec7dc8ac 7646 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7647 tg->cfs_rq[cpu] = cfs_rq;
7648 init_cfs_rq(cfs_rq, rq);
7649 cfs_rq->tg = tg;
7650 if (add)
7651 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7652
7653 tg->se[cpu] = se;
354d60c2
DG
7654 /* se could be NULL for init_task_group */
7655 if (!se)
7656 return;
7657
ec7dc8ac
DG
7658 if (!parent)
7659 se->cfs_rq = &rq->cfs;
7660 else
7661 se->cfs_rq = parent->my_q;
7662
6f505b16
PZ
7663 se->my_q = cfs_rq;
7664 se->load.weight = tg->shares;
e05510d0 7665 se->load.inv_weight = 0;
ec7dc8ac 7666 se->parent = parent;
6f505b16 7667}
052f1dc7 7668#endif
6f505b16 7669
052f1dc7 7670#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7671static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7672 struct sched_rt_entity *rt_se, int cpu, int add,
7673 struct sched_rt_entity *parent)
6f505b16 7674{
ec7dc8ac
DG
7675 struct rq *rq = cpu_rq(cpu);
7676
6f505b16
PZ
7677 tg->rt_rq[cpu] = rt_rq;
7678 init_rt_rq(rt_rq, rq);
7679 rt_rq->tg = tg;
ac086bc2 7680 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7681 if (add)
7682 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7683
7684 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7685 if (!rt_se)
7686 return;
7687
ec7dc8ac
DG
7688 if (!parent)
7689 rt_se->rt_rq = &rq->rt;
7690 else
7691 rt_se->rt_rq = parent->my_q;
7692
6f505b16 7693 rt_se->my_q = rt_rq;
ec7dc8ac 7694 rt_se->parent = parent;
6f505b16
PZ
7695 INIT_LIST_HEAD(&rt_se->run_list);
7696}
7697#endif
7698
1da177e4
LT
7699void __init sched_init(void)
7700{
dd41f596 7701 int i, j;
434d53b0
MT
7702 unsigned long alloc_size = 0, ptr;
7703
7704#ifdef CONFIG_FAIR_GROUP_SCHED
7705 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7706#endif
7707#ifdef CONFIG_RT_GROUP_SCHED
7708 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7709#endif
df7c8e84 7710#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7711 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7712#endif
434d53b0 7713 if (alloc_size) {
36b7b6d4 7714 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7715
7716#ifdef CONFIG_FAIR_GROUP_SCHED
7717 init_task_group.se = (struct sched_entity **)ptr;
7718 ptr += nr_cpu_ids * sizeof(void **);
7719
7720 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7721 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7722
6d6bc0ad 7723#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7724#ifdef CONFIG_RT_GROUP_SCHED
7725 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7726 ptr += nr_cpu_ids * sizeof(void **);
7727
7728 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7729 ptr += nr_cpu_ids * sizeof(void **);
7730
6d6bc0ad 7731#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7732#ifdef CONFIG_CPUMASK_OFFSTACK
7733 for_each_possible_cpu(i) {
7734 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7735 ptr += cpumask_size();
7736 }
7737#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7738 }
dd41f596 7739
57d885fe
GH
7740#ifdef CONFIG_SMP
7741 init_defrootdomain();
7742#endif
7743
d0b27fa7
PZ
7744 init_rt_bandwidth(&def_rt_bandwidth,
7745 global_rt_period(), global_rt_runtime());
7746
7747#ifdef CONFIG_RT_GROUP_SCHED
7748 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7749 global_rt_period(), global_rt_runtime());
6d6bc0ad 7750#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7751
7c941438 7752#ifdef CONFIG_CGROUP_SCHED
6f505b16 7753 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7754 INIT_LIST_HEAD(&init_task_group.children);
7755
7c941438 7756#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7757
4a6cc4bd
JK
7758#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7759 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7760 __alignof__(unsigned long));
7761#endif
0a945022 7762 for_each_possible_cpu(i) {
70b97a7f 7763 struct rq *rq;
1da177e4
LT
7764
7765 rq = cpu_rq(i);
05fa785c 7766 raw_spin_lock_init(&rq->lock);
7897986b 7767 rq->nr_running = 0;
dce48a84
TG
7768 rq->calc_load_active = 0;
7769 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7770 init_cfs_rq(&rq->cfs, rq);
6f505b16 7771 init_rt_rq(&rq->rt, rq);
dd41f596 7772#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7773 init_task_group.shares = init_task_group_load;
6f505b16 7774 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7775#ifdef CONFIG_CGROUP_SCHED
7776 /*
7777 * How much cpu bandwidth does init_task_group get?
7778 *
7779 * In case of task-groups formed thr' the cgroup filesystem, it
7780 * gets 100% of the cpu resources in the system. This overall
7781 * system cpu resource is divided among the tasks of
7782 * init_task_group and its child task-groups in a fair manner,
7783 * based on each entity's (task or task-group's) weight
7784 * (se->load.weight).
7785 *
7786 * In other words, if init_task_group has 10 tasks of weight
7787 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7788 * then A0's share of the cpu resource is:
7789 *
0d905bca 7790 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7791 *
7792 * We achieve this by letting init_task_group's tasks sit
7793 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7794 */
ec7dc8ac 7795 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7796#endif
354d60c2
DG
7797#endif /* CONFIG_FAIR_GROUP_SCHED */
7798
7799 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7800#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7801 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7802#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7803 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7804#endif
dd41f596 7805#endif
1da177e4 7806
dd41f596
IM
7807 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7808 rq->cpu_load[j] = 0;
1da177e4 7809#ifdef CONFIG_SMP
41c7ce9a 7810 rq->sd = NULL;
57d885fe 7811 rq->rd = NULL;
3f029d3c 7812 rq->post_schedule = 0;
1da177e4 7813 rq->active_balance = 0;
dd41f596 7814 rq->next_balance = jiffies;
1da177e4 7815 rq->push_cpu = 0;
0a2966b4 7816 rq->cpu = i;
1f11eb6a 7817 rq->online = 0;
1da177e4 7818 rq->migration_thread = NULL;
eae0c9df
MG
7819 rq->idle_stamp = 0;
7820 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7821 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7822 rq_attach_root(rq, &def_root_domain);
1da177e4 7823#endif
8f4d37ec 7824 init_rq_hrtick(rq);
1da177e4 7825 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7826 }
7827
2dd73a4f 7828 set_load_weight(&init_task);
b50f60ce 7829
e107be36
AK
7830#ifdef CONFIG_PREEMPT_NOTIFIERS
7831 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7832#endif
7833
c9819f45 7834#ifdef CONFIG_SMP
962cf36c 7835 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7836#endif
7837
b50f60ce 7838#ifdef CONFIG_RT_MUTEXES
1d615482 7839 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7840#endif
7841
1da177e4
LT
7842 /*
7843 * The boot idle thread does lazy MMU switching as well:
7844 */
7845 atomic_inc(&init_mm.mm_count);
7846 enter_lazy_tlb(&init_mm, current);
7847
7848 /*
7849 * Make us the idle thread. Technically, schedule() should not be
7850 * called from this thread, however somewhere below it might be,
7851 * but because we are the idle thread, we just pick up running again
7852 * when this runqueue becomes "idle".
7853 */
7854 init_idle(current, smp_processor_id());
dce48a84
TG
7855
7856 calc_load_update = jiffies + LOAD_FREQ;
7857
dd41f596
IM
7858 /*
7859 * During early bootup we pretend to be a normal task:
7860 */
7861 current->sched_class = &fair_sched_class;
6892b75e 7862
6a7b3dc3 7863 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7864 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7865#ifdef CONFIG_SMP
7d1e6a9b 7866#ifdef CONFIG_NO_HZ
49557e62 7867 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7868 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7869#endif
bdddd296
RR
7870 /* May be allocated at isolcpus cmdline parse time */
7871 if (cpu_isolated_map == NULL)
7872 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7873#endif /* SMP */
6a7b3dc3 7874
cdd6c482 7875 perf_event_init();
0d905bca 7876
6892b75e 7877 scheduler_running = 1;
1da177e4
LT
7878}
7879
7880#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7881static inline int preempt_count_equals(int preempt_offset)
7882{
234da7bc 7883 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7884
7885 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7886}
7887
d894837f 7888void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7889{
48f24c4d 7890#ifdef in_atomic
1da177e4
LT
7891 static unsigned long prev_jiffy; /* ratelimiting */
7892
e4aafea2
FW
7893 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7894 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7895 return;
7896 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7897 return;
7898 prev_jiffy = jiffies;
7899
3df0fc5b
PZ
7900 printk(KERN_ERR
7901 "BUG: sleeping function called from invalid context at %s:%d\n",
7902 file, line);
7903 printk(KERN_ERR
7904 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7905 in_atomic(), irqs_disabled(),
7906 current->pid, current->comm);
aef745fc
IM
7907
7908 debug_show_held_locks(current);
7909 if (irqs_disabled())
7910 print_irqtrace_events(current);
7911 dump_stack();
1da177e4
LT
7912#endif
7913}
7914EXPORT_SYMBOL(__might_sleep);
7915#endif
7916
7917#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7918static void normalize_task(struct rq *rq, struct task_struct *p)
7919{
7920 int on_rq;
3e51f33f 7921
3a5e4dc1
AK
7922 update_rq_clock(rq);
7923 on_rq = p->se.on_rq;
7924 if (on_rq)
7925 deactivate_task(rq, p, 0);
7926 __setscheduler(rq, p, SCHED_NORMAL, 0);
7927 if (on_rq) {
7928 activate_task(rq, p, 0);
7929 resched_task(rq->curr);
7930 }
7931}
7932
1da177e4
LT
7933void normalize_rt_tasks(void)
7934{
a0f98a1c 7935 struct task_struct *g, *p;
1da177e4 7936 unsigned long flags;
70b97a7f 7937 struct rq *rq;
1da177e4 7938
4cf5d77a 7939 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7940 do_each_thread(g, p) {
178be793
IM
7941 /*
7942 * Only normalize user tasks:
7943 */
7944 if (!p->mm)
7945 continue;
7946
6cfb0d5d 7947 p->se.exec_start = 0;
6cfb0d5d 7948#ifdef CONFIG_SCHEDSTATS
dd41f596 7949 p->se.wait_start = 0;
dd41f596 7950 p->se.sleep_start = 0;
dd41f596 7951 p->se.block_start = 0;
6cfb0d5d 7952#endif
dd41f596
IM
7953
7954 if (!rt_task(p)) {
7955 /*
7956 * Renice negative nice level userspace
7957 * tasks back to 0:
7958 */
7959 if (TASK_NICE(p) < 0 && p->mm)
7960 set_user_nice(p, 0);
1da177e4 7961 continue;
dd41f596 7962 }
1da177e4 7963
1d615482 7964 raw_spin_lock(&p->pi_lock);
b29739f9 7965 rq = __task_rq_lock(p);
1da177e4 7966
178be793 7967 normalize_task(rq, p);
3a5e4dc1 7968
b29739f9 7969 __task_rq_unlock(rq);
1d615482 7970 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7971 } while_each_thread(g, p);
7972
4cf5d77a 7973 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7974}
7975
7976#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7977
7978#ifdef CONFIG_IA64
7979/*
7980 * These functions are only useful for the IA64 MCA handling.
7981 *
7982 * They can only be called when the whole system has been
7983 * stopped - every CPU needs to be quiescent, and no scheduling
7984 * activity can take place. Using them for anything else would
7985 * be a serious bug, and as a result, they aren't even visible
7986 * under any other configuration.
7987 */
7988
7989/**
7990 * curr_task - return the current task for a given cpu.
7991 * @cpu: the processor in question.
7992 *
7993 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7994 */
36c8b586 7995struct task_struct *curr_task(int cpu)
1df5c10a
LT
7996{
7997 return cpu_curr(cpu);
7998}
7999
8000/**
8001 * set_curr_task - set the current task for a given cpu.
8002 * @cpu: the processor in question.
8003 * @p: the task pointer to set.
8004 *
8005 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8006 * are serviced on a separate stack. It allows the architecture to switch the
8007 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8008 * must be called with all CPU's synchronized, and interrupts disabled, the
8009 * and caller must save the original value of the current task (see
8010 * curr_task() above) and restore that value before reenabling interrupts and
8011 * re-starting the system.
8012 *
8013 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8014 */
36c8b586 8015void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8016{
8017 cpu_curr(cpu) = p;
8018}
8019
8020#endif
29f59db3 8021
bccbe08a
PZ
8022#ifdef CONFIG_FAIR_GROUP_SCHED
8023static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8024{
8025 int i;
8026
8027 for_each_possible_cpu(i) {
8028 if (tg->cfs_rq)
8029 kfree(tg->cfs_rq[i]);
8030 if (tg->se)
8031 kfree(tg->se[i]);
6f505b16
PZ
8032 }
8033
8034 kfree(tg->cfs_rq);
8035 kfree(tg->se);
6f505b16
PZ
8036}
8037
ec7dc8ac
DG
8038static
8039int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8040{
29f59db3 8041 struct cfs_rq *cfs_rq;
eab17229 8042 struct sched_entity *se;
9b5b7751 8043 struct rq *rq;
29f59db3
SV
8044 int i;
8045
434d53b0 8046 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8047 if (!tg->cfs_rq)
8048 goto err;
434d53b0 8049 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8050 if (!tg->se)
8051 goto err;
052f1dc7
PZ
8052
8053 tg->shares = NICE_0_LOAD;
29f59db3
SV
8054
8055 for_each_possible_cpu(i) {
9b5b7751 8056 rq = cpu_rq(i);
29f59db3 8057
eab17229
LZ
8058 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8059 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8060 if (!cfs_rq)
8061 goto err;
8062
eab17229
LZ
8063 se = kzalloc_node(sizeof(struct sched_entity),
8064 GFP_KERNEL, cpu_to_node(i));
29f59db3 8065 if (!se)
dfc12eb2 8066 goto err_free_rq;
29f59db3 8067
eab17229 8068 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8069 }
8070
8071 return 1;
8072
dfc12eb2
PC
8073 err_free_rq:
8074 kfree(cfs_rq);
bccbe08a
PZ
8075 err:
8076 return 0;
8077}
8078
8079static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8080{
8081 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8082 &cpu_rq(cpu)->leaf_cfs_rq_list);
8083}
8084
8085static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8086{
8087 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8088}
6d6bc0ad 8089#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8090static inline void free_fair_sched_group(struct task_group *tg)
8091{
8092}
8093
ec7dc8ac
DG
8094static inline
8095int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8096{
8097 return 1;
8098}
8099
8100static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8101{
8102}
8103
8104static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8105{
8106}
6d6bc0ad 8107#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8108
8109#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8110static void free_rt_sched_group(struct task_group *tg)
8111{
8112 int i;
8113
d0b27fa7
PZ
8114 destroy_rt_bandwidth(&tg->rt_bandwidth);
8115
bccbe08a
PZ
8116 for_each_possible_cpu(i) {
8117 if (tg->rt_rq)
8118 kfree(tg->rt_rq[i]);
8119 if (tg->rt_se)
8120 kfree(tg->rt_se[i]);
8121 }
8122
8123 kfree(tg->rt_rq);
8124 kfree(tg->rt_se);
8125}
8126
ec7dc8ac
DG
8127static
8128int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8129{
8130 struct rt_rq *rt_rq;
eab17229 8131 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8132 struct rq *rq;
8133 int i;
8134
434d53b0 8135 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8136 if (!tg->rt_rq)
8137 goto err;
434d53b0 8138 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8139 if (!tg->rt_se)
8140 goto err;
8141
d0b27fa7
PZ
8142 init_rt_bandwidth(&tg->rt_bandwidth,
8143 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8144
8145 for_each_possible_cpu(i) {
8146 rq = cpu_rq(i);
8147
eab17229
LZ
8148 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8149 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8150 if (!rt_rq)
8151 goto err;
29f59db3 8152
eab17229
LZ
8153 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8154 GFP_KERNEL, cpu_to_node(i));
6f505b16 8155 if (!rt_se)
dfc12eb2 8156 goto err_free_rq;
29f59db3 8157
eab17229 8158 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8159 }
8160
bccbe08a
PZ
8161 return 1;
8162
dfc12eb2
PC
8163 err_free_rq:
8164 kfree(rt_rq);
bccbe08a
PZ
8165 err:
8166 return 0;
8167}
8168
8169static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8170{
8171 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8172 &cpu_rq(cpu)->leaf_rt_rq_list);
8173}
8174
8175static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8176{
8177 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8178}
6d6bc0ad 8179#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8180static inline void free_rt_sched_group(struct task_group *tg)
8181{
8182}
8183
ec7dc8ac
DG
8184static inline
8185int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8186{
8187 return 1;
8188}
8189
8190static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8191{
8192}
8193
8194static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8195{
8196}
6d6bc0ad 8197#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8198
7c941438 8199#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8200static void free_sched_group(struct task_group *tg)
8201{
8202 free_fair_sched_group(tg);
8203 free_rt_sched_group(tg);
8204 kfree(tg);
8205}
8206
8207/* allocate runqueue etc for a new task group */
ec7dc8ac 8208struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8209{
8210 struct task_group *tg;
8211 unsigned long flags;
8212 int i;
8213
8214 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8215 if (!tg)
8216 return ERR_PTR(-ENOMEM);
8217
ec7dc8ac 8218 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8219 goto err;
8220
ec7dc8ac 8221 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8222 goto err;
8223
8ed36996 8224 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8225 for_each_possible_cpu(i) {
bccbe08a
PZ
8226 register_fair_sched_group(tg, i);
8227 register_rt_sched_group(tg, i);
9b5b7751 8228 }
6f505b16 8229 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8230
8231 WARN_ON(!parent); /* root should already exist */
8232
8233 tg->parent = parent;
f473aa5e 8234 INIT_LIST_HEAD(&tg->children);
09f2724a 8235 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8236 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8237
9b5b7751 8238 return tg;
29f59db3
SV
8239
8240err:
6f505b16 8241 free_sched_group(tg);
29f59db3
SV
8242 return ERR_PTR(-ENOMEM);
8243}
8244
9b5b7751 8245/* rcu callback to free various structures associated with a task group */
6f505b16 8246static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8247{
29f59db3 8248 /* now it should be safe to free those cfs_rqs */
6f505b16 8249 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8250}
8251
9b5b7751 8252/* Destroy runqueue etc associated with a task group */
4cf86d77 8253void sched_destroy_group(struct task_group *tg)
29f59db3 8254{
8ed36996 8255 unsigned long flags;
9b5b7751 8256 int i;
29f59db3 8257
8ed36996 8258 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8259 for_each_possible_cpu(i) {
bccbe08a
PZ
8260 unregister_fair_sched_group(tg, i);
8261 unregister_rt_sched_group(tg, i);
9b5b7751 8262 }
6f505b16 8263 list_del_rcu(&tg->list);
f473aa5e 8264 list_del_rcu(&tg->siblings);
8ed36996 8265 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8266
9b5b7751 8267 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8268 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8269}
8270
9b5b7751 8271/* change task's runqueue when it moves between groups.
3a252015
IM
8272 * The caller of this function should have put the task in its new group
8273 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8274 * reflect its new group.
9b5b7751
SV
8275 */
8276void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8277{
8278 int on_rq, running;
8279 unsigned long flags;
8280 struct rq *rq;
8281
8282 rq = task_rq_lock(tsk, &flags);
8283
29f59db3
SV
8284 update_rq_clock(rq);
8285
051a1d1a 8286 running = task_current(rq, tsk);
29f59db3
SV
8287 on_rq = tsk->se.on_rq;
8288
0e1f3483 8289 if (on_rq)
29f59db3 8290 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8291 if (unlikely(running))
8292 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8293
6f505b16 8294 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8295
810b3817
PZ
8296#ifdef CONFIG_FAIR_GROUP_SCHED
8297 if (tsk->sched_class->moved_group)
88ec22d3 8298 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8299#endif
8300
0e1f3483
HS
8301 if (unlikely(running))
8302 tsk->sched_class->set_curr_task(rq);
8303 if (on_rq)
ea87bb78 8304 enqueue_task(rq, tsk, 0, false);
29f59db3 8305
29f59db3
SV
8306 task_rq_unlock(rq, &flags);
8307}
7c941438 8308#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8309
052f1dc7 8310#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8311static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8312{
8313 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8314 int on_rq;
8315
29f59db3 8316 on_rq = se->on_rq;
62fb1851 8317 if (on_rq)
29f59db3
SV
8318 dequeue_entity(cfs_rq, se, 0);
8319
8320 se->load.weight = shares;
e05510d0 8321 se->load.inv_weight = 0;
29f59db3 8322
62fb1851 8323 if (on_rq)
29f59db3 8324 enqueue_entity(cfs_rq, se, 0);
c09595f6 8325}
62fb1851 8326
c09595f6
PZ
8327static void set_se_shares(struct sched_entity *se, unsigned long shares)
8328{
8329 struct cfs_rq *cfs_rq = se->cfs_rq;
8330 struct rq *rq = cfs_rq->rq;
8331 unsigned long flags;
8332
05fa785c 8333 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8334 __set_se_shares(se, shares);
05fa785c 8335 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8336}
8337
8ed36996
PZ
8338static DEFINE_MUTEX(shares_mutex);
8339
4cf86d77 8340int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8341{
8342 int i;
8ed36996 8343 unsigned long flags;
c61935fd 8344
ec7dc8ac
DG
8345 /*
8346 * We can't change the weight of the root cgroup.
8347 */
8348 if (!tg->se[0])
8349 return -EINVAL;
8350
18d95a28
PZ
8351 if (shares < MIN_SHARES)
8352 shares = MIN_SHARES;
cb4ad1ff
MX
8353 else if (shares > MAX_SHARES)
8354 shares = MAX_SHARES;
62fb1851 8355
8ed36996 8356 mutex_lock(&shares_mutex);
9b5b7751 8357 if (tg->shares == shares)
5cb350ba 8358 goto done;
29f59db3 8359
8ed36996 8360 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8361 for_each_possible_cpu(i)
8362 unregister_fair_sched_group(tg, i);
f473aa5e 8363 list_del_rcu(&tg->siblings);
8ed36996 8364 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8365
8366 /* wait for any ongoing reference to this group to finish */
8367 synchronize_sched();
8368
8369 /*
8370 * Now we are free to modify the group's share on each cpu
8371 * w/o tripping rebalance_share or load_balance_fair.
8372 */
9b5b7751 8373 tg->shares = shares;
c09595f6
PZ
8374 for_each_possible_cpu(i) {
8375 /*
8376 * force a rebalance
8377 */
8378 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8379 set_se_shares(tg->se[i], shares);
c09595f6 8380 }
29f59db3 8381
6b2d7700
SV
8382 /*
8383 * Enable load balance activity on this group, by inserting it back on
8384 * each cpu's rq->leaf_cfs_rq_list.
8385 */
8ed36996 8386 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8387 for_each_possible_cpu(i)
8388 register_fair_sched_group(tg, i);
f473aa5e 8389 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8390 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8391done:
8ed36996 8392 mutex_unlock(&shares_mutex);
9b5b7751 8393 return 0;
29f59db3
SV
8394}
8395
5cb350ba
DG
8396unsigned long sched_group_shares(struct task_group *tg)
8397{
8398 return tg->shares;
8399}
052f1dc7 8400#endif
5cb350ba 8401
052f1dc7 8402#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8403/*
9f0c1e56 8404 * Ensure that the real time constraints are schedulable.
6f505b16 8405 */
9f0c1e56
PZ
8406static DEFINE_MUTEX(rt_constraints_mutex);
8407
8408static unsigned long to_ratio(u64 period, u64 runtime)
8409{
8410 if (runtime == RUNTIME_INF)
9a7e0b18 8411 return 1ULL << 20;
9f0c1e56 8412
9a7e0b18 8413 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8414}
8415
9a7e0b18
PZ
8416/* Must be called with tasklist_lock held */
8417static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8418{
9a7e0b18 8419 struct task_struct *g, *p;
b40b2e8e 8420
9a7e0b18
PZ
8421 do_each_thread(g, p) {
8422 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8423 return 1;
8424 } while_each_thread(g, p);
b40b2e8e 8425
9a7e0b18
PZ
8426 return 0;
8427}
b40b2e8e 8428
9a7e0b18
PZ
8429struct rt_schedulable_data {
8430 struct task_group *tg;
8431 u64 rt_period;
8432 u64 rt_runtime;
8433};
b40b2e8e 8434
9a7e0b18
PZ
8435static int tg_schedulable(struct task_group *tg, void *data)
8436{
8437 struct rt_schedulable_data *d = data;
8438 struct task_group *child;
8439 unsigned long total, sum = 0;
8440 u64 period, runtime;
b40b2e8e 8441
9a7e0b18
PZ
8442 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8443 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8444
9a7e0b18
PZ
8445 if (tg == d->tg) {
8446 period = d->rt_period;
8447 runtime = d->rt_runtime;
b40b2e8e 8448 }
b40b2e8e 8449
4653f803
PZ
8450 /*
8451 * Cannot have more runtime than the period.
8452 */
8453 if (runtime > period && runtime != RUNTIME_INF)
8454 return -EINVAL;
6f505b16 8455
4653f803
PZ
8456 /*
8457 * Ensure we don't starve existing RT tasks.
8458 */
9a7e0b18
PZ
8459 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8460 return -EBUSY;
6f505b16 8461
9a7e0b18 8462 total = to_ratio(period, runtime);
6f505b16 8463
4653f803
PZ
8464 /*
8465 * Nobody can have more than the global setting allows.
8466 */
8467 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8468 return -EINVAL;
6f505b16 8469
4653f803
PZ
8470 /*
8471 * The sum of our children's runtime should not exceed our own.
8472 */
9a7e0b18
PZ
8473 list_for_each_entry_rcu(child, &tg->children, siblings) {
8474 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8475 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8476
9a7e0b18
PZ
8477 if (child == d->tg) {
8478 period = d->rt_period;
8479 runtime = d->rt_runtime;
8480 }
6f505b16 8481
9a7e0b18 8482 sum += to_ratio(period, runtime);
9f0c1e56 8483 }
6f505b16 8484
9a7e0b18
PZ
8485 if (sum > total)
8486 return -EINVAL;
8487
8488 return 0;
6f505b16
PZ
8489}
8490
9a7e0b18 8491static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8492{
9a7e0b18
PZ
8493 struct rt_schedulable_data data = {
8494 .tg = tg,
8495 .rt_period = period,
8496 .rt_runtime = runtime,
8497 };
8498
8499 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8500}
8501
d0b27fa7
PZ
8502static int tg_set_bandwidth(struct task_group *tg,
8503 u64 rt_period, u64 rt_runtime)
6f505b16 8504{
ac086bc2 8505 int i, err = 0;
9f0c1e56 8506
9f0c1e56 8507 mutex_lock(&rt_constraints_mutex);
521f1a24 8508 read_lock(&tasklist_lock);
9a7e0b18
PZ
8509 err = __rt_schedulable(tg, rt_period, rt_runtime);
8510 if (err)
9f0c1e56 8511 goto unlock;
ac086bc2 8512
0986b11b 8513 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8514 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8515 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8516
8517 for_each_possible_cpu(i) {
8518 struct rt_rq *rt_rq = tg->rt_rq[i];
8519
0986b11b 8520 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8521 rt_rq->rt_runtime = rt_runtime;
0986b11b 8522 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8523 }
0986b11b 8524 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8525 unlock:
521f1a24 8526 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8527 mutex_unlock(&rt_constraints_mutex);
8528
8529 return err;
6f505b16
PZ
8530}
8531
d0b27fa7
PZ
8532int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8533{
8534 u64 rt_runtime, rt_period;
8535
8536 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8537 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8538 if (rt_runtime_us < 0)
8539 rt_runtime = RUNTIME_INF;
8540
8541 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8542}
8543
9f0c1e56
PZ
8544long sched_group_rt_runtime(struct task_group *tg)
8545{
8546 u64 rt_runtime_us;
8547
d0b27fa7 8548 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8549 return -1;
8550
d0b27fa7 8551 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8552 do_div(rt_runtime_us, NSEC_PER_USEC);
8553 return rt_runtime_us;
8554}
d0b27fa7
PZ
8555
8556int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8557{
8558 u64 rt_runtime, rt_period;
8559
8560 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8561 rt_runtime = tg->rt_bandwidth.rt_runtime;
8562
619b0488
R
8563 if (rt_period == 0)
8564 return -EINVAL;
8565
d0b27fa7
PZ
8566 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8567}
8568
8569long sched_group_rt_period(struct task_group *tg)
8570{
8571 u64 rt_period_us;
8572
8573 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8574 do_div(rt_period_us, NSEC_PER_USEC);
8575 return rt_period_us;
8576}
8577
8578static int sched_rt_global_constraints(void)
8579{
4653f803 8580 u64 runtime, period;
d0b27fa7
PZ
8581 int ret = 0;
8582
ec5d4989
HS
8583 if (sysctl_sched_rt_period <= 0)
8584 return -EINVAL;
8585
4653f803
PZ
8586 runtime = global_rt_runtime();
8587 period = global_rt_period();
8588
8589 /*
8590 * Sanity check on the sysctl variables.
8591 */
8592 if (runtime > period && runtime != RUNTIME_INF)
8593 return -EINVAL;
10b612f4 8594
d0b27fa7 8595 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8596 read_lock(&tasklist_lock);
4653f803 8597 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8598 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8599 mutex_unlock(&rt_constraints_mutex);
8600
8601 return ret;
8602}
54e99124
DG
8603
8604int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8605{
8606 /* Don't accept realtime tasks when there is no way for them to run */
8607 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8608 return 0;
8609
8610 return 1;
8611}
8612
6d6bc0ad 8613#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8614static int sched_rt_global_constraints(void)
8615{
ac086bc2
PZ
8616 unsigned long flags;
8617 int i;
8618
ec5d4989
HS
8619 if (sysctl_sched_rt_period <= 0)
8620 return -EINVAL;
8621
60aa605d
PZ
8622 /*
8623 * There's always some RT tasks in the root group
8624 * -- migration, kstopmachine etc..
8625 */
8626 if (sysctl_sched_rt_runtime == 0)
8627 return -EBUSY;
8628
0986b11b 8629 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8630 for_each_possible_cpu(i) {
8631 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8632
0986b11b 8633 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8634 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8635 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8636 }
0986b11b 8637 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8638
d0b27fa7
PZ
8639 return 0;
8640}
6d6bc0ad 8641#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8642
8643int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8644 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8645 loff_t *ppos)
8646{
8647 int ret;
8648 int old_period, old_runtime;
8649 static DEFINE_MUTEX(mutex);
8650
8651 mutex_lock(&mutex);
8652 old_period = sysctl_sched_rt_period;
8653 old_runtime = sysctl_sched_rt_runtime;
8654
8d65af78 8655 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8656
8657 if (!ret && write) {
8658 ret = sched_rt_global_constraints();
8659 if (ret) {
8660 sysctl_sched_rt_period = old_period;
8661 sysctl_sched_rt_runtime = old_runtime;
8662 } else {
8663 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8664 def_rt_bandwidth.rt_period =
8665 ns_to_ktime(global_rt_period());
8666 }
8667 }
8668 mutex_unlock(&mutex);
8669
8670 return ret;
8671}
68318b8e 8672
052f1dc7 8673#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8674
8675/* return corresponding task_group object of a cgroup */
2b01dfe3 8676static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8677{
2b01dfe3
PM
8678 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8679 struct task_group, css);
68318b8e
SV
8680}
8681
8682static struct cgroup_subsys_state *
2b01dfe3 8683cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8684{
ec7dc8ac 8685 struct task_group *tg, *parent;
68318b8e 8686
2b01dfe3 8687 if (!cgrp->parent) {
68318b8e 8688 /* This is early initialization for the top cgroup */
68318b8e
SV
8689 return &init_task_group.css;
8690 }
8691
ec7dc8ac
DG
8692 parent = cgroup_tg(cgrp->parent);
8693 tg = sched_create_group(parent);
68318b8e
SV
8694 if (IS_ERR(tg))
8695 return ERR_PTR(-ENOMEM);
8696
68318b8e
SV
8697 return &tg->css;
8698}
8699
41a2d6cf
IM
8700static void
8701cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8702{
2b01dfe3 8703 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8704
8705 sched_destroy_group(tg);
8706}
8707
41a2d6cf 8708static int
be367d09 8709cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8710{
b68aa230 8711#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8712 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8713 return -EINVAL;
8714#else
68318b8e
SV
8715 /* We don't support RT-tasks being in separate groups */
8716 if (tsk->sched_class != &fair_sched_class)
8717 return -EINVAL;
b68aa230 8718#endif
be367d09
BB
8719 return 0;
8720}
68318b8e 8721
be367d09
BB
8722static int
8723cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8724 struct task_struct *tsk, bool threadgroup)
8725{
8726 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8727 if (retval)
8728 return retval;
8729 if (threadgroup) {
8730 struct task_struct *c;
8731 rcu_read_lock();
8732 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8733 retval = cpu_cgroup_can_attach_task(cgrp, c);
8734 if (retval) {
8735 rcu_read_unlock();
8736 return retval;
8737 }
8738 }
8739 rcu_read_unlock();
8740 }
68318b8e
SV
8741 return 0;
8742}
8743
8744static void
2b01dfe3 8745cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8746 struct cgroup *old_cont, struct task_struct *tsk,
8747 bool threadgroup)
68318b8e
SV
8748{
8749 sched_move_task(tsk);
be367d09
BB
8750 if (threadgroup) {
8751 struct task_struct *c;
8752 rcu_read_lock();
8753 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8754 sched_move_task(c);
8755 }
8756 rcu_read_unlock();
8757 }
68318b8e
SV
8758}
8759
052f1dc7 8760#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8761static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8762 u64 shareval)
68318b8e 8763{
2b01dfe3 8764 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8765}
8766
f4c753b7 8767static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8768{
2b01dfe3 8769 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8770
8771 return (u64) tg->shares;
8772}
6d6bc0ad 8773#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8774
052f1dc7 8775#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8776static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8777 s64 val)
6f505b16 8778{
06ecb27c 8779 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8780}
8781
06ecb27c 8782static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8783{
06ecb27c 8784 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8785}
d0b27fa7
PZ
8786
8787static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8788 u64 rt_period_us)
8789{
8790 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8791}
8792
8793static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8794{
8795 return sched_group_rt_period(cgroup_tg(cgrp));
8796}
6d6bc0ad 8797#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8798
fe5c7cc2 8799static struct cftype cpu_files[] = {
052f1dc7 8800#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8801 {
8802 .name = "shares",
f4c753b7
PM
8803 .read_u64 = cpu_shares_read_u64,
8804 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8805 },
052f1dc7
PZ
8806#endif
8807#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8808 {
9f0c1e56 8809 .name = "rt_runtime_us",
06ecb27c
PM
8810 .read_s64 = cpu_rt_runtime_read,
8811 .write_s64 = cpu_rt_runtime_write,
6f505b16 8812 },
d0b27fa7
PZ
8813 {
8814 .name = "rt_period_us",
f4c753b7
PM
8815 .read_u64 = cpu_rt_period_read_uint,
8816 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8817 },
052f1dc7 8818#endif
68318b8e
SV
8819};
8820
8821static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8822{
fe5c7cc2 8823 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8824}
8825
8826struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8827 .name = "cpu",
8828 .create = cpu_cgroup_create,
8829 .destroy = cpu_cgroup_destroy,
8830 .can_attach = cpu_cgroup_can_attach,
8831 .attach = cpu_cgroup_attach,
8832 .populate = cpu_cgroup_populate,
8833 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8834 .early_init = 1,
8835};
8836
052f1dc7 8837#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8838
8839#ifdef CONFIG_CGROUP_CPUACCT
8840
8841/*
8842 * CPU accounting code for task groups.
8843 *
8844 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8845 * (balbir@in.ibm.com).
8846 */
8847
934352f2 8848/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8849struct cpuacct {
8850 struct cgroup_subsys_state css;
8851 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8852 u64 __percpu *cpuusage;
ef12fefa 8853 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8854 struct cpuacct *parent;
d842de87
SV
8855};
8856
8857struct cgroup_subsys cpuacct_subsys;
8858
8859/* return cpu accounting group corresponding to this container */
32cd756a 8860static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8861{
32cd756a 8862 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8863 struct cpuacct, css);
8864}
8865
8866/* return cpu accounting group to which this task belongs */
8867static inline struct cpuacct *task_ca(struct task_struct *tsk)
8868{
8869 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8870 struct cpuacct, css);
8871}
8872
8873/* create a new cpu accounting group */
8874static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8875 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8876{
8877 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8878 int i;
d842de87
SV
8879
8880 if (!ca)
ef12fefa 8881 goto out;
d842de87
SV
8882
8883 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8884 if (!ca->cpuusage)
8885 goto out_free_ca;
8886
8887 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8888 if (percpu_counter_init(&ca->cpustat[i], 0))
8889 goto out_free_counters;
d842de87 8890
934352f2
BR
8891 if (cgrp->parent)
8892 ca->parent = cgroup_ca(cgrp->parent);
8893
d842de87 8894 return &ca->css;
ef12fefa
BR
8895
8896out_free_counters:
8897 while (--i >= 0)
8898 percpu_counter_destroy(&ca->cpustat[i]);
8899 free_percpu(ca->cpuusage);
8900out_free_ca:
8901 kfree(ca);
8902out:
8903 return ERR_PTR(-ENOMEM);
d842de87
SV
8904}
8905
8906/* destroy an existing cpu accounting group */
41a2d6cf 8907static void
32cd756a 8908cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8909{
32cd756a 8910 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8911 int i;
d842de87 8912
ef12fefa
BR
8913 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8914 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8915 free_percpu(ca->cpuusage);
8916 kfree(ca);
8917}
8918
720f5498
KC
8919static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8920{
b36128c8 8921 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8922 u64 data;
8923
8924#ifndef CONFIG_64BIT
8925 /*
8926 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8927 */
05fa785c 8928 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8929 data = *cpuusage;
05fa785c 8930 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8931#else
8932 data = *cpuusage;
8933#endif
8934
8935 return data;
8936}
8937
8938static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8939{
b36128c8 8940 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8941
8942#ifndef CONFIG_64BIT
8943 /*
8944 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8945 */
05fa785c 8946 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8947 *cpuusage = val;
05fa785c 8948 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8949#else
8950 *cpuusage = val;
8951#endif
8952}
8953
d842de87 8954/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8955static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8956{
32cd756a 8957 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8958 u64 totalcpuusage = 0;
8959 int i;
8960
720f5498
KC
8961 for_each_present_cpu(i)
8962 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8963
8964 return totalcpuusage;
8965}
8966
0297b803
DG
8967static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8968 u64 reset)
8969{
8970 struct cpuacct *ca = cgroup_ca(cgrp);
8971 int err = 0;
8972 int i;
8973
8974 if (reset) {
8975 err = -EINVAL;
8976 goto out;
8977 }
8978
720f5498
KC
8979 for_each_present_cpu(i)
8980 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8981
0297b803
DG
8982out:
8983 return err;
8984}
8985
e9515c3c
KC
8986static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8987 struct seq_file *m)
8988{
8989 struct cpuacct *ca = cgroup_ca(cgroup);
8990 u64 percpu;
8991 int i;
8992
8993 for_each_present_cpu(i) {
8994 percpu = cpuacct_cpuusage_read(ca, i);
8995 seq_printf(m, "%llu ", (unsigned long long) percpu);
8996 }
8997 seq_printf(m, "\n");
8998 return 0;
8999}
9000
ef12fefa
BR
9001static const char *cpuacct_stat_desc[] = {
9002 [CPUACCT_STAT_USER] = "user",
9003 [CPUACCT_STAT_SYSTEM] = "system",
9004};
9005
9006static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9007 struct cgroup_map_cb *cb)
9008{
9009 struct cpuacct *ca = cgroup_ca(cgrp);
9010 int i;
9011
9012 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9013 s64 val = percpu_counter_read(&ca->cpustat[i]);
9014 val = cputime64_to_clock_t(val);
9015 cb->fill(cb, cpuacct_stat_desc[i], val);
9016 }
9017 return 0;
9018}
9019
d842de87
SV
9020static struct cftype files[] = {
9021 {
9022 .name = "usage",
f4c753b7
PM
9023 .read_u64 = cpuusage_read,
9024 .write_u64 = cpuusage_write,
d842de87 9025 },
e9515c3c
KC
9026 {
9027 .name = "usage_percpu",
9028 .read_seq_string = cpuacct_percpu_seq_read,
9029 },
ef12fefa
BR
9030 {
9031 .name = "stat",
9032 .read_map = cpuacct_stats_show,
9033 },
d842de87
SV
9034};
9035
32cd756a 9036static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9037{
32cd756a 9038 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9039}
9040
9041/*
9042 * charge this task's execution time to its accounting group.
9043 *
9044 * called with rq->lock held.
9045 */
9046static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9047{
9048 struct cpuacct *ca;
934352f2 9049 int cpu;
d842de87 9050
c40c6f85 9051 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9052 return;
9053
934352f2 9054 cpu = task_cpu(tsk);
a18b83b7
BR
9055
9056 rcu_read_lock();
9057
d842de87 9058 ca = task_ca(tsk);
d842de87 9059
934352f2 9060 for (; ca; ca = ca->parent) {
b36128c8 9061 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9062 *cpuusage += cputime;
9063 }
a18b83b7
BR
9064
9065 rcu_read_unlock();
d842de87
SV
9066}
9067
fa535a77
AB
9068/*
9069 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9070 * in cputime_t units. As a result, cpuacct_update_stats calls
9071 * percpu_counter_add with values large enough to always overflow the
9072 * per cpu batch limit causing bad SMP scalability.
9073 *
9074 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9075 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9076 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9077 */
9078#ifdef CONFIG_SMP
9079#define CPUACCT_BATCH \
9080 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9081#else
9082#define CPUACCT_BATCH 0
9083#endif
9084
ef12fefa
BR
9085/*
9086 * Charge the system/user time to the task's accounting group.
9087 */
9088static void cpuacct_update_stats(struct task_struct *tsk,
9089 enum cpuacct_stat_index idx, cputime_t val)
9090{
9091 struct cpuacct *ca;
fa535a77 9092 int batch = CPUACCT_BATCH;
ef12fefa
BR
9093
9094 if (unlikely(!cpuacct_subsys.active))
9095 return;
9096
9097 rcu_read_lock();
9098 ca = task_ca(tsk);
9099
9100 do {
fa535a77 9101 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9102 ca = ca->parent;
9103 } while (ca);
9104 rcu_read_unlock();
9105}
9106
d842de87
SV
9107struct cgroup_subsys cpuacct_subsys = {
9108 .name = "cpuacct",
9109 .create = cpuacct_create,
9110 .destroy = cpuacct_destroy,
9111 .populate = cpuacct_populate,
9112 .subsys_id = cpuacct_subsys_id,
9113};
9114#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9115
9116#ifndef CONFIG_SMP
9117
9118int rcu_expedited_torture_stats(char *page)
9119{
9120 return 0;
9121}
9122EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9123
9124void synchronize_sched_expedited(void)
9125{
9126}
9127EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9128
9129#else /* #ifndef CONFIG_SMP */
9130
9131static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9132static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9133
9134#define RCU_EXPEDITED_STATE_POST -2
9135#define RCU_EXPEDITED_STATE_IDLE -1
9136
9137static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9138
9139int rcu_expedited_torture_stats(char *page)
9140{
9141 int cnt = 0;
9142 int cpu;
9143
9144 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9145 for_each_online_cpu(cpu) {
9146 cnt += sprintf(&page[cnt], " %d:%d",
9147 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9148 }
9149 cnt += sprintf(&page[cnt], "\n");
9150 return cnt;
9151}
9152EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9153
9154static long synchronize_sched_expedited_count;
9155
9156/*
9157 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9158 * approach to force grace period to end quickly. This consumes
9159 * significant time on all CPUs, and is thus not recommended for
9160 * any sort of common-case code.
9161 *
9162 * Note that it is illegal to call this function while holding any
9163 * lock that is acquired by a CPU-hotplug notifier. Failing to
9164 * observe this restriction will result in deadlock.
9165 */
9166void synchronize_sched_expedited(void)
9167{
9168 int cpu;
9169 unsigned long flags;
9170 bool need_full_sync = 0;
9171 struct rq *rq;
9172 struct migration_req *req;
9173 long snap;
9174 int trycount = 0;
9175
9176 smp_mb(); /* ensure prior mod happens before capturing snap. */
9177 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9178 get_online_cpus();
9179 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9180 put_online_cpus();
9181 if (trycount++ < 10)
9182 udelay(trycount * num_online_cpus());
9183 else {
9184 synchronize_sched();
9185 return;
9186 }
9187 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9188 smp_mb(); /* ensure test happens before caller kfree */
9189 return;
9190 }
9191 get_online_cpus();
9192 }
9193 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9194 for_each_online_cpu(cpu) {
9195 rq = cpu_rq(cpu);
9196 req = &per_cpu(rcu_migration_req, cpu);
9197 init_completion(&req->done);
9198 req->task = NULL;
9199 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9200 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9201 list_add(&req->list, &rq->migration_queue);
05fa785c 9202 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9203 wake_up_process(rq->migration_thread);
9204 }
9205 for_each_online_cpu(cpu) {
9206 rcu_expedited_state = cpu;
9207 req = &per_cpu(rcu_migration_req, cpu);
9208 rq = cpu_rq(cpu);
9209 wait_for_completion(&req->done);
05fa785c 9210 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9211 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9212 need_full_sync = 1;
9213 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9214 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9215 }
9216 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9217 synchronize_sched_expedited_count++;
03b042bf
PM
9218 mutex_unlock(&rcu_sched_expedited_mutex);
9219 put_online_cpus();
9220 if (need_full_sync)
9221 synchronize_sched();
9222}
9223EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9224
9225#endif /* #else #ifndef CONFIG_SMP */