]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/rcutree.c
rcu: fix sparse errors in rcutorture.c
[net-next-2.6.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
64db4cff 50
9f77da9f
PM
51#include "rcutree.h"
52
64db4cff
PM
53/* Data structures. */
54
b668c9cf 55static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 56
4300aa64
PM
57#define RCU_STATE_INITIALIZER(structname) { \
58 .level = { &structname.node[0] }, \
64db4cff
PM
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
cf244dc0
PM
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 65 }, \
83f5b01f 66 .signaled = RCU_GP_IDLE, \
64db4cff
PM
67 .gpnum = -300, \
68 .completed = -300, \
4300aa64 69 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
e74f4c45 70 .orphan_cbs_list = NULL, \
4300aa64 71 .orphan_cbs_tail = &structname.orphan_cbs_list, \
e74f4c45 72 .orphan_qlen = 0, \
4300aa64 73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
64db4cff
PM
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
4300aa64 76 .name = #structname, \
64db4cff
PM
77}
78
d6714c22
PM
79struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 81
6258c4fb
IM
82struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 84
bbad9379
PM
85int rcu_scheduler_active __read_mostly;
86EXPORT_SYMBOL_GPL(rcu_scheduler_active);
87
fc2219d4
PM
88/*
89 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
90 * permit this function to be invoked without holding the root rcu_node
91 * structure's ->lock, but of course results can be subject to change.
92 */
93static int rcu_gp_in_progress(struct rcu_state *rsp)
94{
95 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
96}
97
b1f77b05 98/*
d6714c22 99 * Note a quiescent state. Because we do not need to know
b1f77b05 100 * how many quiescent states passed, just if there was at least
d6714c22 101 * one since the start of the grace period, this just sets a flag.
b1f77b05 102 */
d6714c22 103void rcu_sched_qs(int cpu)
b1f77b05 104{
25502a6c 105 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 106
c64ac3ce 107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
108 barrier();
109 rdp->passed_quiesc = 1;
b1f77b05
IM
110}
111
d6714c22 112void rcu_bh_qs(int cpu)
b1f77b05 113{
25502a6c 114 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 115
c64ac3ce 116 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
117 barrier();
118 rdp->passed_quiesc = 1;
b1f77b05 119}
64db4cff 120
25502a6c
PM
121/*
122 * Note a context switch. This is a quiescent state for RCU-sched,
123 * and requires special handling for preemptible RCU.
124 */
125void rcu_note_context_switch(int cpu)
126{
127 rcu_sched_qs(cpu);
128 rcu_preempt_note_context_switch(cpu);
129}
130
64db4cff 131#ifdef CONFIG_NO_HZ
90a4d2c0
PM
132DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
133 .dynticks_nesting = 1,
134 .dynticks = 1,
135};
64db4cff
PM
136#endif /* #ifdef CONFIG_NO_HZ */
137
138static int blimit = 10; /* Maximum callbacks per softirq. */
139static int qhimark = 10000; /* If this many pending, ignore blimit. */
140static int qlowmark = 100; /* Once only this many pending, use blimit. */
141
3d76c082
PM
142module_param(blimit, int, 0);
143module_param(qhimark, int, 0);
144module_param(qlowmark, int, 0);
145
742734ee 146#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
910b1b7e 147int rcu_cpu_stall_suppress __read_mostly = RCU_CPU_STALL_SUPPRESS_INIT;
f2e0dd70 148module_param(rcu_cpu_stall_suppress, int, 0644);
742734ee
PM
149#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
150
64db4cff 151static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 152static int rcu_pending(int cpu);
64db4cff
PM
153
154/*
d6714c22 155 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 156 */
d6714c22 157long rcu_batches_completed_sched(void)
64db4cff 158{
d6714c22 159 return rcu_sched_state.completed;
64db4cff 160}
d6714c22 161EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
162
163/*
164 * Return the number of RCU BH batches processed thus far for debug & stats.
165 */
166long rcu_batches_completed_bh(void)
167{
168 return rcu_bh_state.completed;
169}
170EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
171
bf66f18e
PM
172/*
173 * Force a quiescent state for RCU BH.
174 */
175void rcu_bh_force_quiescent_state(void)
176{
177 force_quiescent_state(&rcu_bh_state, 0);
178}
179EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
180
181/*
182 * Force a quiescent state for RCU-sched.
183 */
184void rcu_sched_force_quiescent_state(void)
185{
186 force_quiescent_state(&rcu_sched_state, 0);
187}
188EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
189
64db4cff
PM
190/*
191 * Does the CPU have callbacks ready to be invoked?
192 */
193static int
194cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
195{
196 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
197}
198
199/*
200 * Does the current CPU require a yet-as-unscheduled grace period?
201 */
202static int
203cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
204{
fc2219d4 205 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
206}
207
208/*
209 * Return the root node of the specified rcu_state structure.
210 */
211static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
212{
213 return &rsp->node[0];
214}
215
216#ifdef CONFIG_SMP
217
218/*
219 * If the specified CPU is offline, tell the caller that it is in
220 * a quiescent state. Otherwise, whack it with a reschedule IPI.
221 * Grace periods can end up waiting on an offline CPU when that
222 * CPU is in the process of coming online -- it will be added to the
223 * rcu_node bitmasks before it actually makes it online. The same thing
224 * can happen while a CPU is in the process of coming online. Because this
225 * race is quite rare, we check for it after detecting that the grace
226 * period has been delayed rather than checking each and every CPU
227 * each and every time we start a new grace period.
228 */
229static int rcu_implicit_offline_qs(struct rcu_data *rdp)
230{
231 /*
232 * If the CPU is offline, it is in a quiescent state. We can
233 * trust its state not to change because interrupts are disabled.
234 */
235 if (cpu_is_offline(rdp->cpu)) {
236 rdp->offline_fqs++;
237 return 1;
238 }
239
f41d911f
PM
240 /* If preemptable RCU, no point in sending reschedule IPI. */
241 if (rdp->preemptable)
242 return 0;
243
64db4cff
PM
244 /* The CPU is online, so send it a reschedule IPI. */
245 if (rdp->cpu != smp_processor_id())
246 smp_send_reschedule(rdp->cpu);
247 else
248 set_need_resched();
249 rdp->resched_ipi++;
250 return 0;
251}
252
253#endif /* #ifdef CONFIG_SMP */
254
255#ifdef CONFIG_NO_HZ
64db4cff
PM
256
257/**
258 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
259 *
260 * Enter nohz mode, in other words, -leave- the mode in which RCU
261 * read-side critical sections can occur. (Though RCU read-side
262 * critical sections can occur in irq handlers in nohz mode, a possibility
263 * handled by rcu_irq_enter() and rcu_irq_exit()).
264 */
265void rcu_enter_nohz(void)
266{
267 unsigned long flags;
268 struct rcu_dynticks *rdtp;
269
270 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
271 local_irq_save(flags);
272 rdtp = &__get_cpu_var(rcu_dynticks);
273 rdtp->dynticks++;
274 rdtp->dynticks_nesting--;
86848966 275 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
276 local_irq_restore(flags);
277}
278
279/*
280 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
281 *
282 * Exit nohz mode, in other words, -enter- the mode in which RCU
283 * read-side critical sections normally occur.
284 */
285void rcu_exit_nohz(void)
286{
287 unsigned long flags;
288 struct rcu_dynticks *rdtp;
289
290 local_irq_save(flags);
291 rdtp = &__get_cpu_var(rcu_dynticks);
292 rdtp->dynticks++;
293 rdtp->dynticks_nesting++;
86848966 294 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
295 local_irq_restore(flags);
296 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
297}
298
299/**
300 * rcu_nmi_enter - inform RCU of entry to NMI context
301 *
302 * If the CPU was idle with dynamic ticks active, and there is no
303 * irq handler running, this updates rdtp->dynticks_nmi to let the
304 * RCU grace-period handling know that the CPU is active.
305 */
306void rcu_nmi_enter(void)
307{
308 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
309
310 if (rdtp->dynticks & 0x1)
311 return;
312 rdtp->dynticks_nmi++;
86848966 313 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
314 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
315}
316
317/**
318 * rcu_nmi_exit - inform RCU of exit from NMI context
319 *
320 * If the CPU was idle with dynamic ticks active, and there is no
321 * irq handler running, this updates rdtp->dynticks_nmi to let the
322 * RCU grace-period handling know that the CPU is no longer active.
323 */
324void rcu_nmi_exit(void)
325{
326 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
327
328 if (rdtp->dynticks & 0x1)
329 return;
330 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
331 rdtp->dynticks_nmi++;
86848966 332 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
333}
334
335/**
336 * rcu_irq_enter - inform RCU of entry to hard irq context
337 *
338 * If the CPU was idle with dynamic ticks active, this updates the
339 * rdtp->dynticks to let the RCU handling know that the CPU is active.
340 */
341void rcu_irq_enter(void)
342{
343 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
344
345 if (rdtp->dynticks_nesting++)
346 return;
347 rdtp->dynticks++;
86848966 348 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
349 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
350}
351
352/**
353 * rcu_irq_exit - inform RCU of exit from hard irq context
354 *
355 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
356 * to put let the RCU handling be aware that the CPU is going back to idle
357 * with no ticks.
358 */
359void rcu_irq_exit(void)
360{
361 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
362
363 if (--rdtp->dynticks_nesting)
364 return;
365 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
366 rdtp->dynticks++;
86848966 367 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
368
369 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 370 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
371 __get_cpu_var(rcu_bh_data).nxtlist)
372 set_need_resched();
373}
374
64db4cff
PM
375#ifdef CONFIG_SMP
376
64db4cff
PM
377/*
378 * Snapshot the specified CPU's dynticks counter so that we can later
379 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 380 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
381 */
382static int dyntick_save_progress_counter(struct rcu_data *rdp)
383{
384 int ret;
385 int snap;
386 int snap_nmi;
387
388 snap = rdp->dynticks->dynticks;
389 snap_nmi = rdp->dynticks->dynticks_nmi;
390 smp_mb(); /* Order sampling of snap with end of grace period. */
391 rdp->dynticks_snap = snap;
392 rdp->dynticks_nmi_snap = snap_nmi;
393 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
394 if (ret)
395 rdp->dynticks_fqs++;
396 return ret;
397}
398
399/*
400 * Return true if the specified CPU has passed through a quiescent
401 * state by virtue of being in or having passed through an dynticks
402 * idle state since the last call to dyntick_save_progress_counter()
403 * for this same CPU.
404 */
405static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
406{
407 long curr;
408 long curr_nmi;
409 long snap;
410 long snap_nmi;
411
412 curr = rdp->dynticks->dynticks;
413 snap = rdp->dynticks_snap;
414 curr_nmi = rdp->dynticks->dynticks_nmi;
415 snap_nmi = rdp->dynticks_nmi_snap;
416 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
417
418 /*
419 * If the CPU passed through or entered a dynticks idle phase with
420 * no active irq/NMI handlers, then we can safely pretend that the CPU
421 * already acknowledged the request to pass through a quiescent
422 * state. Either way, that CPU cannot possibly be in an RCU
423 * read-side critical section that started before the beginning
424 * of the current RCU grace period.
425 */
426 if ((curr != snap || (curr & 0x1) == 0) &&
427 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
428 rdp->dynticks_fqs++;
429 return 1;
430 }
431
432 /* Go check for the CPU being offline. */
433 return rcu_implicit_offline_qs(rdp);
434}
435
436#endif /* #ifdef CONFIG_SMP */
437
438#else /* #ifdef CONFIG_NO_HZ */
439
64db4cff
PM
440#ifdef CONFIG_SMP
441
64db4cff
PM
442static int dyntick_save_progress_counter(struct rcu_data *rdp)
443{
444 return 0;
445}
446
447static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
448{
449 return rcu_implicit_offline_qs(rdp);
450}
451
452#endif /* #ifdef CONFIG_SMP */
453
454#endif /* #else #ifdef CONFIG_NO_HZ */
455
456#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
457
742734ee 458int rcu_cpu_stall_suppress __read_mostly;
c68de209 459
64db4cff
PM
460static void record_gp_stall_check_time(struct rcu_state *rsp)
461{
462 rsp->gp_start = jiffies;
463 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
464}
465
466static void print_other_cpu_stall(struct rcu_state *rsp)
467{
468 int cpu;
469 long delta;
470 unsigned long flags;
471 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
472
473 /* Only let one CPU complain about others per time interval. */
474
1304afb2 475 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 476 delta = jiffies - rsp->jiffies_stall;
fc2219d4 477 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 478 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
479 return;
480 }
481 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
482
483 /*
484 * Now rat on any tasks that got kicked up to the root rcu_node
485 * due to CPU offlining.
486 */
487 rcu_print_task_stall(rnp);
1304afb2 488 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 489
8cdd32a9
PM
490 /*
491 * OK, time to rat on our buddy...
492 * See Documentation/RCU/stallwarn.txt for info on how to debug
493 * RCU CPU stall warnings.
494 */
4300aa64
PM
495 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
496 rsp->name);
a0b6c9a7 497 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 498 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 499 rcu_print_task_stall(rnp);
3acd9eb3 500 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 501 if (rnp->qsmask == 0)
64db4cff 502 continue;
a0b6c9a7
PM
503 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
504 if (rnp->qsmask & (1UL << cpu))
505 printk(" %d", rnp->grplo + cpu);
64db4cff 506 }
4300aa64 507 printk("} (detected by %d, t=%ld jiffies)\n",
64db4cff 508 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
509 trigger_all_cpu_backtrace();
510
1ed509a2
PM
511 /* If so configured, complain about tasks blocking the grace period. */
512
513 rcu_print_detail_task_stall(rsp);
514
64db4cff
PM
515 force_quiescent_state(rsp, 0); /* Kick them all. */
516}
517
518static void print_cpu_stall(struct rcu_state *rsp)
519{
520 unsigned long flags;
521 struct rcu_node *rnp = rcu_get_root(rsp);
522
8cdd32a9
PM
523 /*
524 * OK, time to rat on ourselves...
525 * See Documentation/RCU/stallwarn.txt for info on how to debug
526 * RCU CPU stall warnings.
527 */
4300aa64
PM
528 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
529 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
530 trigger_all_cpu_backtrace();
531
1304afb2 532 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 533 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
64db4cff
PM
534 rsp->jiffies_stall =
535 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
1304afb2 536 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 537
64db4cff
PM
538 set_need_resched(); /* kick ourselves to get things going. */
539}
540
541static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
542{
543 long delta;
544 struct rcu_node *rnp;
545
742734ee 546 if (rcu_cpu_stall_suppress)
c68de209 547 return;
64db4cff
PM
548 delta = jiffies - rsp->jiffies_stall;
549 rnp = rdp->mynode;
550 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
551
552 /* We haven't checked in, so go dump stack. */
553 print_cpu_stall(rsp);
554
fc2219d4 555 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
556
557 /* They had two time units to dump stack, so complain. */
558 print_other_cpu_stall(rsp);
559 }
560}
561
c68de209
PM
562static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
563{
742734ee 564 rcu_cpu_stall_suppress = 1;
c68de209
PM
565 return NOTIFY_DONE;
566}
567
53d84e00
PM
568/**
569 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
570 *
571 * Set the stall-warning timeout way off into the future, thus preventing
572 * any RCU CPU stall-warning messages from appearing in the current set of
573 * RCU grace periods.
574 *
575 * The caller must disable hard irqs.
576 */
577void rcu_cpu_stall_reset(void)
578{
579 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
580 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
581 rcu_preempt_stall_reset();
582}
583
c68de209
PM
584static struct notifier_block rcu_panic_block = {
585 .notifier_call = rcu_panic,
586};
587
588static void __init check_cpu_stall_init(void)
589{
590 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
591}
592
64db4cff
PM
593#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
594
595static void record_gp_stall_check_time(struct rcu_state *rsp)
596{
597}
598
599static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
600{
601}
602
53d84e00
PM
603void rcu_cpu_stall_reset(void)
604{
605}
606
c68de209
PM
607static void __init check_cpu_stall_init(void)
608{
609}
610
64db4cff
PM
611#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
612
613/*
614 * Update CPU-local rcu_data state to record the newly noticed grace period.
615 * This is used both when we started the grace period and when we notice
9160306e
PM
616 * that someone else started the grace period. The caller must hold the
617 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
618 * and must have irqs disabled.
64db4cff 619 */
9160306e
PM
620static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
621{
622 if (rdp->gpnum != rnp->gpnum) {
623 rdp->qs_pending = 1;
624 rdp->passed_quiesc = 0;
625 rdp->gpnum = rnp->gpnum;
626 }
627}
628
64db4cff
PM
629static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
630{
9160306e
PM
631 unsigned long flags;
632 struct rcu_node *rnp;
633
634 local_irq_save(flags);
635 rnp = rdp->mynode;
636 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 637 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
638 local_irq_restore(flags);
639 return;
640 }
641 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 642 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
643}
644
645/*
646 * Did someone else start a new RCU grace period start since we last
647 * checked? Update local state appropriately if so. Must be called
648 * on the CPU corresponding to rdp.
649 */
650static int
651check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
652{
653 unsigned long flags;
654 int ret = 0;
655
656 local_irq_save(flags);
657 if (rdp->gpnum != rsp->gpnum) {
658 note_new_gpnum(rsp, rdp);
659 ret = 1;
660 }
661 local_irq_restore(flags);
662 return ret;
663}
664
d09b62df
PM
665/*
666 * Advance this CPU's callbacks, but only if the current grace period
667 * has ended. This may be called only from the CPU to whom the rdp
668 * belongs. In addition, the corresponding leaf rcu_node structure's
669 * ->lock must be held by the caller, with irqs disabled.
670 */
671static void
672__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
673{
674 /* Did another grace period end? */
675 if (rdp->completed != rnp->completed) {
676
677 /* Advance callbacks. No harm if list empty. */
678 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
679 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
680 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
681
682 /* Remember that we saw this grace-period completion. */
683 rdp->completed = rnp->completed;
684 }
685}
686
687/*
688 * Advance this CPU's callbacks, but only if the current grace period
689 * has ended. This may be called only from the CPU to whom the rdp
690 * belongs.
691 */
692static void
693rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
694{
695 unsigned long flags;
696 struct rcu_node *rnp;
697
698 local_irq_save(flags);
699 rnp = rdp->mynode;
700 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 701 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
702 local_irq_restore(flags);
703 return;
704 }
705 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 706 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
707}
708
709/*
710 * Do per-CPU grace-period initialization for running CPU. The caller
711 * must hold the lock of the leaf rcu_node structure corresponding to
712 * this CPU.
713 */
714static void
715rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
716{
717 /* Prior grace period ended, so advance callbacks for current CPU. */
718 __rcu_process_gp_end(rsp, rnp, rdp);
719
720 /*
721 * Because this CPU just now started the new grace period, we know
722 * that all of its callbacks will be covered by this upcoming grace
723 * period, even the ones that were registered arbitrarily recently.
724 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
725 *
726 * Other CPUs cannot be sure exactly when the grace period started.
727 * Therefore, their recently registered callbacks must pass through
728 * an additional RCU_NEXT_READY stage, so that they will be handled
729 * by the next RCU grace period.
730 */
731 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
732 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
733
734 /* Set state so that this CPU will detect the next quiescent state. */
735 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
736}
737
64db4cff
PM
738/*
739 * Start a new RCU grace period if warranted, re-initializing the hierarchy
740 * in preparation for detecting the next grace period. The caller must hold
741 * the root node's ->lock, which is released before return. Hard irqs must
742 * be disabled.
743 */
744static void
745rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
746 __releases(rcu_get_root(rsp)->lock)
747{
394f99a9 748 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 749 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 750
07079d53 751 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
46a1e34e
PM
752 if (cpu_needs_another_gp(rsp, rdp))
753 rsp->fqs_need_gp = 1;
b32e9eb6 754 if (rnp->completed == rsp->completed) {
1304afb2 755 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b32e9eb6
PM
756 return;
757 }
1304afb2 758 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
759
760 /*
761 * Propagate new ->completed value to rcu_node structures
762 * so that other CPUs don't have to wait until the start
763 * of the next grace period to process their callbacks.
764 */
765 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 766 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b32e9eb6 767 rnp->completed = rsp->completed;
1304afb2 768 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
769 }
770 local_irq_restore(flags);
64db4cff
PM
771 return;
772 }
773
774 /* Advance to a new grace period and initialize state. */
775 rsp->gpnum++;
c3422bea 776 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
777 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
778 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 779 record_gp_stall_check_time(rsp);
64db4cff 780
64db4cff
PM
781 /* Special-case the common single-level case. */
782 if (NUM_RCU_NODES == 1) {
b0e165c0 783 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 784 rnp->qsmask = rnp->qsmaskinit;
de078d87 785 rnp->gpnum = rsp->gpnum;
d09b62df 786 rnp->completed = rsp->completed;
c12172c0 787 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
d09b62df 788 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 789 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
790 return;
791 }
792
1304afb2 793 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff
PM
794
795
796 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 797 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
798
799 /*
b835db1f
PM
800 * Set the quiescent-state-needed bits in all the rcu_node
801 * structures for all currently online CPUs in breadth-first
802 * order, starting from the root rcu_node structure. This
803 * operation relies on the layout of the hierarchy within the
804 * rsp->node[] array. Note that other CPUs will access only
805 * the leaves of the hierarchy, which still indicate that no
806 * grace period is in progress, at least until the corresponding
807 * leaf node has been initialized. In addition, we have excluded
808 * CPU-hotplug operations.
64db4cff
PM
809 *
810 * Note that the grace period cannot complete until we finish
811 * the initialization process, as there will be at least one
812 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
813 * one corresponding to this CPU, due to the fact that we have
814 * irqs disabled.
64db4cff 815 */
a0b6c9a7 816 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 817 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 818 rcu_preempt_check_blocked_tasks(rnp);
49e29126 819 rnp->qsmask = rnp->qsmaskinit;
de078d87 820 rnp->gpnum = rsp->gpnum;
d09b62df
PM
821 rnp->completed = rsp->completed;
822 if (rnp == rdp->mynode)
823 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 824 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
825 }
826
83f5b01f 827 rnp = rcu_get_root(rsp);
1304afb2 828 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff 829 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
830 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
831 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
832}
833
f41d911f 834/*
d3f6bad3
PM
835 * Report a full set of quiescent states to the specified rcu_state
836 * data structure. This involves cleaning up after the prior grace
837 * period and letting rcu_start_gp() start up the next grace period
838 * if one is needed. Note that the caller must hold rnp->lock, as
839 * required by rcu_start_gp(), which will release it.
f41d911f 840 */
d3f6bad3 841static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 842 __releases(rcu_get_root(rsp)->lock)
f41d911f 843{
fc2219d4 844 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f 845 rsp->completed = rsp->gpnum;
83f5b01f 846 rsp->signaled = RCU_GP_IDLE;
f41d911f
PM
847 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
848}
849
64db4cff 850/*
d3f6bad3
PM
851 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
852 * Allows quiescent states for a group of CPUs to be reported at one go
853 * to the specified rcu_node structure, though all the CPUs in the group
854 * must be represented by the same rcu_node structure (which need not be
855 * a leaf rcu_node structure, though it often will be). That structure's
856 * lock must be held upon entry, and it is released before return.
64db4cff
PM
857 */
858static void
d3f6bad3
PM
859rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
860 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
861 __releases(rnp->lock)
862{
28ecd580
PM
863 struct rcu_node *rnp_c;
864
64db4cff
PM
865 /* Walk up the rcu_node hierarchy. */
866 for (;;) {
867 if (!(rnp->qsmask & mask)) {
868
869 /* Our bit has already been cleared, so done. */
1304afb2 870 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
871 return;
872 }
873 rnp->qsmask &= ~mask;
f41d911f 874 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
875
876 /* Other bits still set at this level, so done. */
1304afb2 877 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
878 return;
879 }
880 mask = rnp->grpmask;
881 if (rnp->parent == NULL) {
882
883 /* No more levels. Exit loop holding root lock. */
884
885 break;
886 }
1304afb2 887 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 888 rnp_c = rnp;
64db4cff 889 rnp = rnp->parent;
1304afb2 890 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 891 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
892 }
893
894 /*
895 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 896 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 897 * to clean up and start the next grace period if one is needed.
64db4cff 898 */
d3f6bad3 899 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
900}
901
902/*
d3f6bad3
PM
903 * Record a quiescent state for the specified CPU to that CPU's rcu_data
904 * structure. This must be either called from the specified CPU, or
905 * called when the specified CPU is known to be offline (and when it is
906 * also known that no other CPU is concurrently trying to help the offline
907 * CPU). The lastcomp argument is used to make sure we are still in the
908 * grace period of interest. We don't want to end the current grace period
909 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
910 */
911static void
d3f6bad3 912rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
64db4cff
PM
913{
914 unsigned long flags;
915 unsigned long mask;
916 struct rcu_node *rnp;
917
918 rnp = rdp->mynode;
1304afb2 919 raw_spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 920 if (lastcomp != rnp->completed) {
64db4cff
PM
921
922 /*
923 * Someone beat us to it for this grace period, so leave.
924 * The race with GP start is resolved by the fact that we
925 * hold the leaf rcu_node lock, so that the per-CPU bits
926 * cannot yet be initialized -- so we would simply find our
d3f6bad3
PM
927 * CPU's bit already cleared in rcu_report_qs_rnp() if this
928 * race occurred.
64db4cff
PM
929 */
930 rdp->passed_quiesc = 0; /* try again later! */
1304afb2 931 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
932 return;
933 }
934 mask = rdp->grpmask;
935 if ((rnp->qsmask & mask) == 0) {
1304afb2 936 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
937 } else {
938 rdp->qs_pending = 0;
939
940 /*
941 * This GP can't end until cpu checks in, so all of our
942 * callbacks can be processed during the next GP.
943 */
64db4cff
PM
944 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
945
d3f6bad3 946 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
947 }
948}
949
950/*
951 * Check to see if there is a new grace period of which this CPU
952 * is not yet aware, and if so, set up local rcu_data state for it.
953 * Otherwise, see if this CPU has just passed through its first
954 * quiescent state for this grace period, and record that fact if so.
955 */
956static void
957rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
958{
959 /* If there is now a new grace period, record and return. */
960 if (check_for_new_grace_period(rsp, rdp))
961 return;
962
963 /*
964 * Does this CPU still need to do its part for current grace period?
965 * If no, return and let the other CPUs do their part as well.
966 */
967 if (!rdp->qs_pending)
968 return;
969
970 /*
971 * Was there a quiescent state since the beginning of the grace
972 * period? If no, then exit and wait for the next call.
973 */
974 if (!rdp->passed_quiesc)
975 return;
976
d3f6bad3
PM
977 /*
978 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
979 * judge of that).
980 */
981 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
64db4cff
PM
982}
983
984#ifdef CONFIG_HOTPLUG_CPU
985
e74f4c45
PM
986/*
987 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
988 * specified flavor of RCU. The callbacks will be adopted by the next
989 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
990 * comes first. Because this is invoked from the CPU_DYING notifier,
991 * irqs are already disabled.
992 */
993static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
994{
995 int i;
394f99a9 996 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
e74f4c45
PM
997
998 if (rdp->nxtlist == NULL)
999 return; /* irqs disabled, so comparison is stable. */
1304afb2 1000 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
e74f4c45
PM
1001 *rsp->orphan_cbs_tail = rdp->nxtlist;
1002 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
1003 rdp->nxtlist = NULL;
1004 for (i = 0; i < RCU_NEXT_SIZE; i++)
1005 rdp->nxttail[i] = &rdp->nxtlist;
1006 rsp->orphan_qlen += rdp->qlen;
1007 rdp->qlen = 0;
1304afb2 1008 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
e74f4c45
PM
1009}
1010
1011/*
1012 * Adopt previously orphaned RCU callbacks.
1013 */
1014static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1015{
1016 unsigned long flags;
1017 struct rcu_data *rdp;
1018
1304afb2 1019 raw_spin_lock_irqsave(&rsp->onofflock, flags);
394f99a9 1020 rdp = this_cpu_ptr(rsp->rda);
e74f4c45 1021 if (rsp->orphan_cbs_list == NULL) {
1304afb2 1022 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
e74f4c45
PM
1023 return;
1024 }
1025 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
1026 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
1027 rdp->qlen += rsp->orphan_qlen;
1028 rsp->orphan_cbs_list = NULL;
1029 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
1030 rsp->orphan_qlen = 0;
1304afb2 1031 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
e74f4c45
PM
1032}
1033
64db4cff
PM
1034/*
1035 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1036 * and move all callbacks from the outgoing CPU to the current one.
1037 */
1038static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1039{
64db4cff 1040 unsigned long flags;
64db4cff 1041 unsigned long mask;
d9a3da06 1042 int need_report = 0;
394f99a9 1043 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
1044 struct rcu_node *rnp;
1045
1046 /* Exclude any attempts to start a new grace period. */
1304afb2 1047 raw_spin_lock_irqsave(&rsp->onofflock, flags);
64db4cff
PM
1048
1049 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 1050 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
1051 mask = rdp->grpmask; /* rnp->grplo is constant. */
1052 do {
1304afb2 1053 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1054 rnp->qsmaskinit &= ~mask;
1055 if (rnp->qsmaskinit != 0) {
b668c9cf 1056 if (rnp != rdp->mynode)
1304afb2 1057 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1058 break;
1059 }
b668c9cf 1060 if (rnp == rdp->mynode)
d9a3da06 1061 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
b668c9cf 1062 else
1304afb2 1063 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 1064 mask = rnp->grpmask;
64db4cff
PM
1065 rnp = rnp->parent;
1066 } while (rnp != NULL);
64db4cff 1067
b668c9cf
PM
1068 /*
1069 * We still hold the leaf rcu_node structure lock here, and
1070 * irqs are still disabled. The reason for this subterfuge is
d3f6bad3
PM
1071 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1072 * held leads to deadlock.
b668c9cf 1073 */
1304afb2 1074 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
b668c9cf 1075 rnp = rdp->mynode;
d9a3da06 1076 if (need_report & RCU_OFL_TASKS_NORM_GP)
d3f6bad3 1077 rcu_report_unblock_qs_rnp(rnp, flags);
b668c9cf 1078 else
1304afb2 1079 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
1080 if (need_report & RCU_OFL_TASKS_EXP_GP)
1081 rcu_report_exp_rnp(rsp, rnp);
64db4cff 1082
e74f4c45 1083 rcu_adopt_orphan_cbs(rsp);
64db4cff
PM
1084}
1085
1086/*
1087 * Remove the specified CPU from the RCU hierarchy and move any pending
1088 * callbacks that it might have to the current CPU. This code assumes
1089 * that at least one CPU in the system will remain running at all times.
1090 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1091 */
1092static void rcu_offline_cpu(int cpu)
1093{
d6714c22 1094 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 1095 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 1096 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
1097}
1098
1099#else /* #ifdef CONFIG_HOTPLUG_CPU */
1100
e74f4c45
PM
1101static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1102{
1103}
1104
1105static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1106{
1107}
1108
64db4cff
PM
1109static void rcu_offline_cpu(int cpu)
1110{
1111}
1112
1113#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1114
1115/*
1116 * Invoke any RCU callbacks that have made it to the end of their grace
1117 * period. Thottle as specified by rdp->blimit.
1118 */
37c72e56 1119static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1120{
1121 unsigned long flags;
1122 struct rcu_head *next, *list, **tail;
1123 int count;
1124
1125 /* If no callbacks are ready, just return.*/
1126 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1127 return;
1128
1129 /*
1130 * Extract the list of ready callbacks, disabling to prevent
1131 * races with call_rcu() from interrupt handlers.
1132 */
1133 local_irq_save(flags);
1134 list = rdp->nxtlist;
1135 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1136 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1137 tail = rdp->nxttail[RCU_DONE_TAIL];
1138 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1139 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1140 rdp->nxttail[count] = &rdp->nxtlist;
1141 local_irq_restore(flags);
1142
1143 /* Invoke callbacks. */
1144 count = 0;
1145 while (list) {
1146 next = list->next;
1147 prefetch(next);
551d55a9 1148 debug_rcu_head_unqueue(list);
64db4cff
PM
1149 list->func(list);
1150 list = next;
1151 if (++count >= rdp->blimit)
1152 break;
1153 }
1154
1155 local_irq_save(flags);
1156
1157 /* Update count, and requeue any remaining callbacks. */
1158 rdp->qlen -= count;
1159 if (list != NULL) {
1160 *tail = rdp->nxtlist;
1161 rdp->nxtlist = list;
1162 for (count = 0; count < RCU_NEXT_SIZE; count++)
1163 if (&rdp->nxtlist == rdp->nxttail[count])
1164 rdp->nxttail[count] = tail;
1165 else
1166 break;
1167 }
1168
1169 /* Reinstate batch limit if we have worked down the excess. */
1170 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1171 rdp->blimit = blimit;
1172
37c72e56
PM
1173 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1174 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1175 rdp->qlen_last_fqs_check = 0;
1176 rdp->n_force_qs_snap = rsp->n_force_qs;
1177 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1178 rdp->qlen_last_fqs_check = rdp->qlen;
1179
64db4cff
PM
1180 local_irq_restore(flags);
1181
1182 /* Re-raise the RCU softirq if there are callbacks remaining. */
1183 if (cpu_has_callbacks_ready_to_invoke(rdp))
1184 raise_softirq(RCU_SOFTIRQ);
1185}
1186
1187/*
1188 * Check to see if this CPU is in a non-context-switch quiescent state
1189 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1190 * Also schedule the RCU softirq handler.
1191 *
1192 * This function must be called with hardirqs disabled. It is normally
1193 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1194 * false, there is no point in invoking rcu_check_callbacks().
1195 */
1196void rcu_check_callbacks(int cpu, int user)
1197{
1198 if (user ||
a6826048
PM
1199 (idle_cpu(cpu) && rcu_scheduler_active &&
1200 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1201
1202 /*
1203 * Get here if this CPU took its interrupt from user
1204 * mode or from the idle loop, and if this is not a
1205 * nested interrupt. In this case, the CPU is in
d6714c22 1206 * a quiescent state, so note it.
64db4cff
PM
1207 *
1208 * No memory barrier is required here because both
d6714c22
PM
1209 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1210 * variables that other CPUs neither access nor modify,
1211 * at least not while the corresponding CPU is online.
64db4cff
PM
1212 */
1213
d6714c22
PM
1214 rcu_sched_qs(cpu);
1215 rcu_bh_qs(cpu);
64db4cff
PM
1216
1217 } else if (!in_softirq()) {
1218
1219 /*
1220 * Get here if this CPU did not take its interrupt from
1221 * softirq, in other words, if it is not interrupting
1222 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1223 * critical section, so note it.
64db4cff
PM
1224 */
1225
d6714c22 1226 rcu_bh_qs(cpu);
64db4cff 1227 }
f41d911f 1228 rcu_preempt_check_callbacks(cpu);
d21670ac
PM
1229 if (rcu_pending(cpu))
1230 raise_softirq(RCU_SOFTIRQ);
64db4cff
PM
1231}
1232
1233#ifdef CONFIG_SMP
1234
1235/*
1236 * Scan the leaf rcu_node structures, processing dyntick state for any that
1237 * have not yet encountered a quiescent state, using the function specified.
ee47eb9f 1238 * The caller must have suppressed start of new grace periods.
64db4cff 1239 */
45f014c5 1240static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1241{
1242 unsigned long bit;
1243 int cpu;
1244 unsigned long flags;
1245 unsigned long mask;
a0b6c9a7 1246 struct rcu_node *rnp;
64db4cff 1247
a0b6c9a7 1248 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1249 mask = 0;
1304afb2 1250 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1251 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1252 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1253 return;
64db4cff 1254 }
a0b6c9a7 1255 if (rnp->qsmask == 0) {
1304afb2 1256 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1257 continue;
1258 }
a0b6c9a7 1259 cpu = rnp->grplo;
64db4cff 1260 bit = 1;
a0b6c9a7 1261 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1262 if ((rnp->qsmask & bit) != 0 &&
1263 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1264 mask |= bit;
1265 }
45f014c5 1266 if (mask != 0) {
64db4cff 1267
d3f6bad3
PM
1268 /* rcu_report_qs_rnp() releases rnp->lock. */
1269 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1270 continue;
1271 }
1304afb2 1272 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1273 }
64db4cff
PM
1274}
1275
1276/*
1277 * Force quiescent states on reluctant CPUs, and also detect which
1278 * CPUs are in dyntick-idle mode.
1279 */
1280static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1281{
1282 unsigned long flags;
64db4cff 1283 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1284
fc2219d4 1285 if (!rcu_gp_in_progress(rsp))
64db4cff 1286 return; /* No grace period in progress, nothing to force. */
1304afb2 1287 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff
PM
1288 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1289 return; /* Someone else is already on the job. */
1290 }
20133cfc 1291 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1292 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1293 rsp->n_force_qs++;
1304afb2 1294 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1295 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1296 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1297 rsp->n_force_qs_ngp++;
1304afb2 1298 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1299 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1300 }
07079d53 1301 rsp->fqs_active = 1;
f3a8b5c6 1302 switch (rsp->signaled) {
83f5b01f 1303 case RCU_GP_IDLE:
64db4cff
PM
1304 case RCU_GP_INIT:
1305
83f5b01f 1306 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1307
1308 case RCU_SAVE_DYNTICK:
64db4cff
PM
1309 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1310 break; /* So gcc recognizes the dead code. */
1311
f261414f
LJ
1312 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1313
64db4cff 1314 /* Record dyntick-idle state. */
45f014c5 1315 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1316 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1317 if (rcu_gp_in_progress(rsp))
64db4cff 1318 rsp->signaled = RCU_FORCE_QS;
ee47eb9f 1319 break;
64db4cff
PM
1320
1321 case RCU_FORCE_QS:
1322
1323 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1324 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1325 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1326
1327 /* Leave state in case more forcing is required. */
1328
1304afb2 1329 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1330 break;
64db4cff 1331 }
07079d53 1332 rsp->fqs_active = 0;
46a1e34e 1333 if (rsp->fqs_need_gp) {
1304afb2 1334 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1335 rsp->fqs_need_gp = 0;
1336 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1337 return;
1338 }
1304afb2 1339 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1340unlock_fqs_ret:
1304afb2 1341 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
64db4cff
PM
1342}
1343
1344#else /* #ifdef CONFIG_SMP */
1345
1346static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1347{
1348 set_need_resched();
1349}
1350
1351#endif /* #else #ifdef CONFIG_SMP */
1352
1353/*
1354 * This does the RCU processing work from softirq context for the
1355 * specified rcu_state and rcu_data structures. This may be called
1356 * only from the CPU to whom the rdp belongs.
1357 */
1358static void
1359__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1360{
1361 unsigned long flags;
1362
2e597558
PM
1363 WARN_ON_ONCE(rdp->beenonline == 0);
1364
64db4cff
PM
1365 /*
1366 * If an RCU GP has gone long enough, go check for dyntick
1367 * idle CPUs and, if needed, send resched IPIs.
1368 */
20133cfc 1369 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1370 force_quiescent_state(rsp, 1);
1371
1372 /*
1373 * Advance callbacks in response to end of earlier grace
1374 * period that some other CPU ended.
1375 */
1376 rcu_process_gp_end(rsp, rdp);
1377
1378 /* Update RCU state based on any recent quiescent states. */
1379 rcu_check_quiescent_state(rsp, rdp);
1380
1381 /* Does this CPU require a not-yet-started grace period? */
1382 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1383 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1384 rcu_start_gp(rsp, flags); /* releases above lock */
1385 }
1386
1387 /* If there are callbacks ready, invoke them. */
37c72e56 1388 rcu_do_batch(rsp, rdp);
64db4cff
PM
1389}
1390
1391/*
1392 * Do softirq processing for the current CPU.
1393 */
1394static void rcu_process_callbacks(struct softirq_action *unused)
1395{
1396 /*
1397 * Memory references from any prior RCU read-side critical sections
1398 * executed by the interrupted code must be seen before any RCU
1399 * grace-period manipulations below.
1400 */
1401 smp_mb(); /* See above block comment. */
1402
d6714c22
PM
1403 __rcu_process_callbacks(&rcu_sched_state,
1404 &__get_cpu_var(rcu_sched_data));
64db4cff 1405 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1406 rcu_preempt_process_callbacks();
64db4cff
PM
1407
1408 /*
1409 * Memory references from any later RCU read-side critical sections
1410 * executed by the interrupted code must be seen after any RCU
1411 * grace-period manipulations above.
1412 */
1413 smp_mb(); /* See above block comment. */
a47cd880
PM
1414
1415 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1416 rcu_needs_cpu_flush();
64db4cff
PM
1417}
1418
1419static void
1420__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1421 struct rcu_state *rsp)
1422{
1423 unsigned long flags;
1424 struct rcu_data *rdp;
1425
551d55a9 1426 debug_rcu_head_queue(head);
64db4cff
PM
1427 head->func = func;
1428 head->next = NULL;
1429
1430 smp_mb(); /* Ensure RCU update seen before callback registry. */
1431
1432 /*
1433 * Opportunistically note grace-period endings and beginnings.
1434 * Note that we might see a beginning right after we see an
1435 * end, but never vice versa, since this CPU has to pass through
1436 * a quiescent state betweentimes.
1437 */
1438 local_irq_save(flags);
394f99a9 1439 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1440 rcu_process_gp_end(rsp, rdp);
1441 check_for_new_grace_period(rsp, rdp);
1442
1443 /* Add the callback to our list. */
1444 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1445 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1446
1447 /* Start a new grace period if one not already started. */
fc2219d4 1448 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1449 unsigned long nestflag;
1450 struct rcu_node *rnp_root = rcu_get_root(rsp);
1451
1304afb2 1452 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
64db4cff
PM
1453 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1454 }
1455
37c72e56
PM
1456 /*
1457 * Force the grace period if too many callbacks or too long waiting.
1458 * Enforce hysteresis, and don't invoke force_quiescent_state()
1459 * if some other CPU has recently done so. Also, don't bother
1460 * invoking force_quiescent_state() if the newly enqueued callback
1461 * is the only one waiting for a grace period to complete.
1462 */
1463 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
64db4cff 1464 rdp->blimit = LONG_MAX;
37c72e56
PM
1465 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1466 *rdp->nxttail[RCU_DONE_TAIL] != head)
1467 force_quiescent_state(rsp, 0);
1468 rdp->n_force_qs_snap = rsp->n_force_qs;
1469 rdp->qlen_last_fqs_check = rdp->qlen;
20133cfc 1470 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1471 force_quiescent_state(rsp, 1);
1472 local_irq_restore(flags);
1473}
1474
1475/*
d6714c22 1476 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1477 */
d6714c22 1478void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1479{
d6714c22 1480 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1481}
d6714c22 1482EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1483
1484/*
1485 * Queue an RCU for invocation after a quicker grace period.
1486 */
1487void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1488{
1489 __call_rcu(head, func, &rcu_bh_state);
1490}
1491EXPORT_SYMBOL_GPL(call_rcu_bh);
1492
6ebb237b
PM
1493/**
1494 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1495 *
1496 * Control will return to the caller some time after a full rcu-sched
1497 * grace period has elapsed, in other words after all currently executing
1498 * rcu-sched read-side critical sections have completed. These read-side
1499 * critical sections are delimited by rcu_read_lock_sched() and
1500 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1501 * local_irq_disable(), and so on may be used in place of
1502 * rcu_read_lock_sched().
1503 *
1504 * This means that all preempt_disable code sequences, including NMI and
1505 * hardware-interrupt handlers, in progress on entry will have completed
1506 * before this primitive returns. However, this does not guarantee that
1507 * softirq handlers will have completed, since in some kernels, these
1508 * handlers can run in process context, and can block.
1509 *
1510 * This primitive provides the guarantees made by the (now removed)
1511 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1512 * guarantees that rcu_read_lock() sections will have completed.
1513 * In "classic RCU", these two guarantees happen to be one and
1514 * the same, but can differ in realtime RCU implementations.
1515 */
1516void synchronize_sched(void)
1517{
1518 struct rcu_synchronize rcu;
1519
1520 if (rcu_blocking_is_gp())
1521 return;
1522
72d5a9f7 1523 init_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1524 init_completion(&rcu.completion);
1525 /* Will wake me after RCU finished. */
1526 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1527 /* Wait for it. */
1528 wait_for_completion(&rcu.completion);
72d5a9f7 1529 destroy_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1530}
1531EXPORT_SYMBOL_GPL(synchronize_sched);
1532
1533/**
1534 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1535 *
1536 * Control will return to the caller some time after a full rcu_bh grace
1537 * period has elapsed, in other words after all currently executing rcu_bh
1538 * read-side critical sections have completed. RCU read-side critical
1539 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1540 * and may be nested.
1541 */
1542void synchronize_rcu_bh(void)
1543{
1544 struct rcu_synchronize rcu;
1545
1546 if (rcu_blocking_is_gp())
1547 return;
1548
72d5a9f7 1549 init_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1550 init_completion(&rcu.completion);
1551 /* Will wake me after RCU finished. */
1552 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1553 /* Wait for it. */
1554 wait_for_completion(&rcu.completion);
72d5a9f7 1555 destroy_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1556}
1557EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1558
64db4cff
PM
1559/*
1560 * Check to see if there is any immediate RCU-related work to be done
1561 * by the current CPU, for the specified type of RCU, returning 1 if so.
1562 * The checks are in order of increasing expense: checks that can be
1563 * carried out against CPU-local state are performed first. However,
1564 * we must check for CPU stalls first, else we might not get a chance.
1565 */
1566static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1567{
2f51f988
PM
1568 struct rcu_node *rnp = rdp->mynode;
1569
64db4cff
PM
1570 rdp->n_rcu_pending++;
1571
1572 /* Check for CPU stalls, if enabled. */
1573 check_cpu_stall(rsp, rdp);
1574
1575 /* Is the RCU core waiting for a quiescent state from this CPU? */
d21670ac 1576 if (rdp->qs_pending && !rdp->passed_quiesc) {
d25eb944
PM
1577
1578 /*
1579 * If force_quiescent_state() coming soon and this CPU
1580 * needs a quiescent state, and this is either RCU-sched
1581 * or RCU-bh, force a local reschedule.
1582 */
d21670ac 1583 rdp->n_rp_qs_pending++;
d25eb944
PM
1584 if (!rdp->preemptable &&
1585 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1586 jiffies))
1587 set_need_resched();
d21670ac
PM
1588 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1589 rdp->n_rp_report_qs++;
64db4cff 1590 return 1;
7ba5c840 1591 }
64db4cff
PM
1592
1593 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1594 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1595 rdp->n_rp_cb_ready++;
64db4cff 1596 return 1;
7ba5c840 1597 }
64db4cff
PM
1598
1599 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1600 if (cpu_needs_another_gp(rsp, rdp)) {
1601 rdp->n_rp_cpu_needs_gp++;
64db4cff 1602 return 1;
7ba5c840 1603 }
64db4cff
PM
1604
1605 /* Has another RCU grace period completed? */
2f51f988 1606 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1607 rdp->n_rp_gp_completed++;
64db4cff 1608 return 1;
7ba5c840 1609 }
64db4cff
PM
1610
1611 /* Has a new RCU grace period started? */
2f51f988 1612 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1613 rdp->n_rp_gp_started++;
64db4cff 1614 return 1;
7ba5c840 1615 }
64db4cff
PM
1616
1617 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1618 if (rcu_gp_in_progress(rsp) &&
20133cfc 1619 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 1620 rdp->n_rp_need_fqs++;
64db4cff 1621 return 1;
7ba5c840 1622 }
64db4cff
PM
1623
1624 /* nothing to do */
7ba5c840 1625 rdp->n_rp_need_nothing++;
64db4cff
PM
1626 return 0;
1627}
1628
1629/*
1630 * Check to see if there is any immediate RCU-related work to be done
1631 * by the current CPU, returning 1 if so. This function is part of the
1632 * RCU implementation; it is -not- an exported member of the RCU API.
1633 */
a157229c 1634static int rcu_pending(int cpu)
64db4cff 1635{
d6714c22 1636 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1637 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1638 rcu_preempt_pending(cpu);
64db4cff
PM
1639}
1640
1641/*
1642 * Check to see if any future RCU-related work will need to be done
1643 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 1644 * 1 if so.
64db4cff 1645 */
8bd93a2c 1646static int rcu_needs_cpu_quick_check(int cpu)
64db4cff
PM
1647{
1648 /* RCU callbacks either ready or pending? */
d6714c22 1649 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1650 per_cpu(rcu_bh_data, cpu).nxtlist ||
1651 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1652}
1653
d0ec774c
PM
1654static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1655static atomic_t rcu_barrier_cpu_count;
1656static DEFINE_MUTEX(rcu_barrier_mutex);
1657static struct completion rcu_barrier_completion;
d0ec774c
PM
1658
1659static void rcu_barrier_callback(struct rcu_head *notused)
1660{
1661 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1662 complete(&rcu_barrier_completion);
1663}
1664
1665/*
1666 * Called with preemption disabled, and from cross-cpu IRQ context.
1667 */
1668static void rcu_barrier_func(void *type)
1669{
1670 int cpu = smp_processor_id();
1671 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1672 void (*call_rcu_func)(struct rcu_head *head,
1673 void (*func)(struct rcu_head *head));
1674
1675 atomic_inc(&rcu_barrier_cpu_count);
1676 call_rcu_func = type;
1677 call_rcu_func(head, rcu_barrier_callback);
1678}
1679
d0ec774c
PM
1680/*
1681 * Orchestrate the specified type of RCU barrier, waiting for all
1682 * RCU callbacks of the specified type to complete.
1683 */
e74f4c45
PM
1684static void _rcu_barrier(struct rcu_state *rsp,
1685 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1686 void (*func)(struct rcu_head *head)))
1687{
1688 BUG_ON(in_interrupt());
e74f4c45 1689 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1690 mutex_lock(&rcu_barrier_mutex);
1691 init_completion(&rcu_barrier_completion);
1692 /*
1693 * Initialize rcu_barrier_cpu_count to 1, then invoke
1694 * rcu_barrier_func() on each CPU, so that each CPU also has
1695 * incremented rcu_barrier_cpu_count. Only then is it safe to
1696 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1697 * might complete its grace period before all of the other CPUs
1698 * did their increment, causing this function to return too
1699 * early.
1700 */
1701 atomic_set(&rcu_barrier_cpu_count, 1);
e74f4c45
PM
1702 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1703 rcu_adopt_orphan_cbs(rsp);
d0ec774c 1704 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
e74f4c45 1705 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
d0ec774c
PM
1706 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1707 complete(&rcu_barrier_completion);
1708 wait_for_completion(&rcu_barrier_completion);
1709 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 1710}
d0ec774c
PM
1711
1712/**
1713 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1714 */
1715void rcu_barrier_bh(void)
1716{
e74f4c45 1717 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
1718}
1719EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1720
1721/**
1722 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1723 */
1724void rcu_barrier_sched(void)
1725{
e74f4c45 1726 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
1727}
1728EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1729
64db4cff 1730/*
27569620 1731 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1732 */
27569620
PM
1733static void __init
1734rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1735{
1736 unsigned long flags;
1737 int i;
394f99a9 1738 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
1739 struct rcu_node *rnp = rcu_get_root(rsp);
1740
1741 /* Set up local state, ensuring consistent view of global state. */
1304afb2 1742 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
1743 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1744 rdp->nxtlist = NULL;
1745 for (i = 0; i < RCU_NEXT_SIZE; i++)
1746 rdp->nxttail[i] = &rdp->nxtlist;
1747 rdp->qlen = 0;
1748#ifdef CONFIG_NO_HZ
1749 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1750#endif /* #ifdef CONFIG_NO_HZ */
1751 rdp->cpu = cpu;
1304afb2 1752 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
1753}
1754
1755/*
1756 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1757 * offline event can be happening at a given time. Note also that we
1758 * can accept some slop in the rsp->completed access due to the fact
1759 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1760 */
e4fa4c97 1761static void __cpuinit
f41d911f 1762rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1763{
1764 unsigned long flags;
64db4cff 1765 unsigned long mask;
394f99a9 1766 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
1767 struct rcu_node *rnp = rcu_get_root(rsp);
1768
1769 /* Set up local state, ensuring consistent view of global state. */
1304afb2 1770 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1771 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1772 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1773 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1774 rdp->preemptable = preemptable;
37c72e56
PM
1775 rdp->qlen_last_fqs_check = 0;
1776 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 1777 rdp->blimit = blimit;
1304afb2 1778 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1779
1780 /*
1781 * A new grace period might start here. If so, we won't be part
1782 * of it, but that is OK, as we are currently in a quiescent state.
1783 */
1784
1785 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 1786 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1787
1788 /* Add CPU to rcu_node bitmasks. */
1789 rnp = rdp->mynode;
1790 mask = rdp->grpmask;
1791 do {
1792 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 1793 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1794 rnp->qsmaskinit |= mask;
1795 mask = rnp->grpmask;
d09b62df
PM
1796 if (rnp == rdp->mynode) {
1797 rdp->gpnum = rnp->completed; /* if GP in progress... */
1798 rdp->completed = rnp->completed;
1799 rdp->passed_quiesc_completed = rnp->completed - 1;
1800 }
1304afb2 1801 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1802 rnp = rnp->parent;
1803 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1804
1304afb2 1805 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1806}
1807
1808static void __cpuinit rcu_online_cpu(int cpu)
1809{
f41d911f
PM
1810 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1811 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1812 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1813}
1814
1815/*
f41d911f 1816 * Handle CPU online/offline notification events.
64db4cff 1817 */
9f680ab4
PM
1818static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1819 unsigned long action, void *hcpu)
64db4cff
PM
1820{
1821 long cpu = (long)hcpu;
1822
1823 switch (action) {
1824 case CPU_UP_PREPARE:
1825 case CPU_UP_PREPARE_FROZEN:
1826 rcu_online_cpu(cpu);
1827 break;
d0ec774c
PM
1828 case CPU_DYING:
1829 case CPU_DYING_FROZEN:
1830 /*
e74f4c45 1831 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
d0ec774c 1832 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
e74f4c45
PM
1833 * returns, all online cpus have queued rcu_barrier_func().
1834 * The dying CPU clears its cpu_online_mask bit and
1835 * moves all of its RCU callbacks to ->orphan_cbs_list
1836 * in the context of stop_machine(), so subsequent calls
1837 * to _rcu_barrier() will adopt these callbacks and only
1838 * then queue rcu_barrier_func() on all remaining CPUs.
d0ec774c 1839 */
e74f4c45
PM
1840 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1841 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1842 rcu_preempt_send_cbs_to_orphanage();
d0ec774c 1843 break;
64db4cff
PM
1844 case CPU_DEAD:
1845 case CPU_DEAD_FROZEN:
1846 case CPU_UP_CANCELED:
1847 case CPU_UP_CANCELED_FROZEN:
1848 rcu_offline_cpu(cpu);
1849 break;
1850 default:
1851 break;
1852 }
1853 return NOTIFY_OK;
1854}
1855
bbad9379
PM
1856/*
1857 * This function is invoked towards the end of the scheduler's initialization
1858 * process. Before this is called, the idle task might contain
1859 * RCU read-side critical sections (during which time, this idle
1860 * task is booting the system). After this function is called, the
1861 * idle tasks are prohibited from containing RCU read-side critical
1862 * sections. This function also enables RCU lockdep checking.
1863 */
1864void rcu_scheduler_starting(void)
1865{
1866 WARN_ON(num_online_cpus() != 1);
1867 WARN_ON(nr_context_switches() > 0);
1868 rcu_scheduler_active = 1;
1869}
1870
64db4cff
PM
1871/*
1872 * Compute the per-level fanout, either using the exact fanout specified
1873 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1874 */
1875#ifdef CONFIG_RCU_FANOUT_EXACT
1876static void __init rcu_init_levelspread(struct rcu_state *rsp)
1877{
1878 int i;
1879
1880 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1881 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1882}
1883#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1884static void __init rcu_init_levelspread(struct rcu_state *rsp)
1885{
1886 int ccur;
1887 int cprv;
1888 int i;
1889
1890 cprv = NR_CPUS;
1891 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1892 ccur = rsp->levelcnt[i];
1893 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1894 cprv = ccur;
1895 }
1896}
1897#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1898
1899/*
1900 * Helper function for rcu_init() that initializes one rcu_state structure.
1901 */
394f99a9
LJ
1902static void __init rcu_init_one(struct rcu_state *rsp,
1903 struct rcu_data __percpu *rda)
64db4cff 1904{
b6407e86
PM
1905 static char *buf[] = { "rcu_node_level_0",
1906 "rcu_node_level_1",
1907 "rcu_node_level_2",
1908 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
1909 int cpustride = 1;
1910 int i;
1911 int j;
1912 struct rcu_node *rnp;
1913
b6407e86
PM
1914 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1915
64db4cff
PM
1916 /* Initialize the level-tracking arrays. */
1917
1918 for (i = 1; i < NUM_RCU_LVLS; i++)
1919 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1920 rcu_init_levelspread(rsp);
1921
1922 /* Initialize the elements themselves, starting from the leaves. */
1923
1924 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1925 cpustride *= rsp->levelspread[i];
1926 rnp = rsp->level[i];
1927 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 1928 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
1929 lockdep_set_class_and_name(&rnp->lock,
1930 &rcu_node_class[i], buf[i]);
f41d911f 1931 rnp->gpnum = 0;
64db4cff
PM
1932 rnp->qsmask = 0;
1933 rnp->qsmaskinit = 0;
1934 rnp->grplo = j * cpustride;
1935 rnp->grphi = (j + 1) * cpustride - 1;
1936 if (rnp->grphi >= NR_CPUS)
1937 rnp->grphi = NR_CPUS - 1;
1938 if (i == 0) {
1939 rnp->grpnum = 0;
1940 rnp->grpmask = 0;
1941 rnp->parent = NULL;
1942 } else {
1943 rnp->grpnum = j % rsp->levelspread[i - 1];
1944 rnp->grpmask = 1UL << rnp->grpnum;
1945 rnp->parent = rsp->level[i - 1] +
1946 j / rsp->levelspread[i - 1];
1947 }
1948 rnp->level = i;
f41d911f
PM
1949 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1950 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
d9a3da06
PM
1951 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1952 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
64db4cff
PM
1953 }
1954 }
0c34029a 1955
394f99a9 1956 rsp->rda = rda;
0c34029a
LJ
1957 rnp = rsp->level[NUM_RCU_LVLS - 1];
1958 for_each_possible_cpu(i) {
4a90a068 1959 while (i > rnp->grphi)
0c34029a 1960 rnp++;
394f99a9 1961 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
1962 rcu_boot_init_percpu_data(i, rsp);
1963 }
64db4cff
PM
1964}
1965
9f680ab4 1966void __init rcu_init(void)
64db4cff 1967{
017c4261 1968 int cpu;
9f680ab4 1969
f41d911f 1970 rcu_bootup_announce();
394f99a9
LJ
1971 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
1972 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 1973 __rcu_init_preempt();
2e597558 1974 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
1975
1976 /*
1977 * We don't need protection against CPU-hotplug here because
1978 * this is called early in boot, before either interrupts
1979 * or the scheduler are operational.
1980 */
1981 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
1982 for_each_online_cpu(cpu)
1983 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 1984 check_cpu_stall_init();
64db4cff
PM
1985}
1986
1eba8f84 1987#include "rcutree_plugin.h"