]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/power/snapshot.c
PM / Hibernate: Fix preallocating of memory
[net-next-2.6.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e
RW
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
25761b6e
RW
29
30#include <asm/uaccess.h>
31#include <asm/mmu_context.h>
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <asm/io.h>
35
25761b6e
RW
36#include "power.h"
37
74dfd666
RW
38static int swsusp_page_is_free(struct page *);
39static void swsusp_set_page_forbidden(struct page *);
40static void swsusp_unset_page_forbidden(struct page *);
41
fe419535
RW
42/*
43 * Preferred image size in bytes (tunable via /sys/power/image_size).
44 * When it is set to N, swsusp will do its best to ensure the image
45 * size will not exceed N bytes, but if that is impossible, it will
46 * try to create the smallest image possible.
47 */
48unsigned long image_size = 500 * 1024 * 1024;
49
8357376d
RW
50/* List of PBEs needed for restoring the pages that were allocated before
51 * the suspend and included in the suspend image, but have also been
52 * allocated by the "resume" kernel, so their contents cannot be written
53 * directly to their "original" page frames.
54 */
75534b50
RW
55struct pbe *restore_pblist;
56
8357376d 57/* Pointer to an auxiliary buffer (1 page) */
940864dd 58static void *buffer;
7088a5c0 59
f6143aa6
RW
60/**
61 * @safe_needed - on resume, for storing the PBE list and the image,
62 * we can only use memory pages that do not conflict with the pages
8357376d
RW
63 * used before suspend. The unsafe pages have PageNosaveFree set
64 * and we count them using unsafe_pages.
f6143aa6 65 *
8357376d
RW
66 * Each allocated image page is marked as PageNosave and PageNosaveFree
67 * so that swsusp_free() can release it.
f6143aa6
RW
68 */
69
0bcd888d
RW
70#define PG_ANY 0
71#define PG_SAFE 1
72#define PG_UNSAFE_CLEAR 1
73#define PG_UNSAFE_KEEP 0
74
940864dd 75static unsigned int allocated_unsafe_pages;
f6143aa6 76
8357376d 77static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
78{
79 void *res;
80
81 res = (void *)get_zeroed_page(gfp_mask);
82 if (safe_needed)
7be98234 83 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 84 /* The page is unsafe, mark it for swsusp_free() */
7be98234 85 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 86 allocated_unsafe_pages++;
f6143aa6
RW
87 res = (void *)get_zeroed_page(gfp_mask);
88 }
89 if (res) {
7be98234
RW
90 swsusp_set_page_forbidden(virt_to_page(res));
91 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
92 }
93 return res;
94}
95
96unsigned long get_safe_page(gfp_t gfp_mask)
97{
8357376d
RW
98 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
99}
100
5b6d15de
RW
101static struct page *alloc_image_page(gfp_t gfp_mask)
102{
8357376d
RW
103 struct page *page;
104
105 page = alloc_page(gfp_mask);
106 if (page) {
7be98234
RW
107 swsusp_set_page_forbidden(page);
108 swsusp_set_page_free(page);
8357376d
RW
109 }
110 return page;
f6143aa6
RW
111}
112
113/**
114 * free_image_page - free page represented by @addr, allocated with
8357376d 115 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
116 */
117
118static inline void free_image_page(void *addr, int clear_nosave_free)
119{
8357376d
RW
120 struct page *page;
121
122 BUG_ON(!virt_addr_valid(addr));
123
124 page = virt_to_page(addr);
125
7be98234 126 swsusp_unset_page_forbidden(page);
f6143aa6 127 if (clear_nosave_free)
7be98234 128 swsusp_unset_page_free(page);
8357376d
RW
129
130 __free_page(page);
f6143aa6
RW
131}
132
b788db79
RW
133/* struct linked_page is used to build chains of pages */
134
135#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
136
137struct linked_page {
138 struct linked_page *next;
139 char data[LINKED_PAGE_DATA_SIZE];
140} __attribute__((packed));
141
142static inline void
143free_list_of_pages(struct linked_page *list, int clear_page_nosave)
144{
145 while (list) {
146 struct linked_page *lp = list->next;
147
148 free_image_page(list, clear_page_nosave);
149 list = lp;
150 }
151}
152
153/**
154 * struct chain_allocator is used for allocating small objects out of
155 * a linked list of pages called 'the chain'.
156 *
157 * The chain grows each time when there is no room for a new object in
158 * the current page. The allocated objects cannot be freed individually.
159 * It is only possible to free them all at once, by freeing the entire
160 * chain.
161 *
162 * NOTE: The chain allocator may be inefficient if the allocated objects
163 * are not much smaller than PAGE_SIZE.
164 */
165
166struct chain_allocator {
167 struct linked_page *chain; /* the chain */
168 unsigned int used_space; /* total size of objects allocated out
169 * of the current page
170 */
171 gfp_t gfp_mask; /* mask for allocating pages */
172 int safe_needed; /* if set, only "safe" pages are allocated */
173};
174
175static void
176chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
177{
178 ca->chain = NULL;
179 ca->used_space = LINKED_PAGE_DATA_SIZE;
180 ca->gfp_mask = gfp_mask;
181 ca->safe_needed = safe_needed;
182}
183
184static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
185{
186 void *ret;
187
188 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
189 struct linked_page *lp;
190
8357376d 191 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
192 if (!lp)
193 return NULL;
194
195 lp->next = ca->chain;
196 ca->chain = lp;
197 ca->used_space = 0;
198 }
199 ret = ca->chain->data + ca->used_space;
200 ca->used_space += size;
201 return ret;
202}
203
b788db79
RW
204/**
205 * Data types related to memory bitmaps.
206 *
207 * Memory bitmap is a structure consiting of many linked lists of
208 * objects. The main list's elements are of type struct zone_bitmap
209 * and each of them corresonds to one zone. For each zone bitmap
210 * object there is a list of objects of type struct bm_block that
0d83304c 211 * represent each blocks of bitmap in which information is stored.
b788db79
RW
212 *
213 * struct memory_bitmap contains a pointer to the main list of zone
214 * bitmap objects, a struct bm_position used for browsing the bitmap,
215 * and a pointer to the list of pages used for allocating all of the
216 * zone bitmap objects and bitmap block objects.
217 *
218 * NOTE: It has to be possible to lay out the bitmap in memory
219 * using only allocations of order 0. Additionally, the bitmap is
220 * designed to work with arbitrary number of zones (this is over the
221 * top for now, but let's avoid making unnecessary assumptions ;-).
222 *
223 * struct zone_bitmap contains a pointer to a list of bitmap block
224 * objects and a pointer to the bitmap block object that has been
225 * most recently used for setting bits. Additionally, it contains the
226 * pfns that correspond to the start and end of the represented zone.
227 *
228 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
229 * information is stored (in the form of a block of bitmap)
230 * It also contains the pfns that correspond to the start and end of
231 * the represented memory area.
b788db79
RW
232 */
233
234#define BM_END_OF_MAP (~0UL)
235
8de03073 236#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
b788db79
RW
237
238struct bm_block {
846705de 239 struct list_head hook; /* hook into a list of bitmap blocks */
b788db79
RW
240 unsigned long start_pfn; /* pfn represented by the first bit */
241 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
0d83304c 242 unsigned long *data; /* bitmap representing pages */
b788db79
RW
243};
244
0d83304c
AM
245static inline unsigned long bm_block_bits(struct bm_block *bb)
246{
247 return bb->end_pfn - bb->start_pfn;
248}
249
b788db79
RW
250/* strcut bm_position is used for browsing memory bitmaps */
251
252struct bm_position {
b788db79 253 struct bm_block *block;
b788db79
RW
254 int bit;
255};
256
257struct memory_bitmap {
846705de 258 struct list_head blocks; /* list of bitmap blocks */
b788db79
RW
259 struct linked_page *p_list; /* list of pages used to store zone
260 * bitmap objects and bitmap block
261 * objects
262 */
263 struct bm_position cur; /* most recently used bit position */
264};
265
266/* Functions that operate on memory bitmaps */
267
b788db79
RW
268static void memory_bm_position_reset(struct memory_bitmap *bm)
269{
846705de 270 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
0d83304c 271 bm->cur.bit = 0;
b788db79
RW
272}
273
274static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
275
276/**
277 * create_bm_block_list - create a list of block bitmap objects
8de03073 278 * @pages - number of pages to track
846705de
RW
279 * @list - list to put the allocated blocks into
280 * @ca - chain allocator to be used for allocating memory
b788db79 281 */
846705de
RW
282static int create_bm_block_list(unsigned long pages,
283 struct list_head *list,
284 struct chain_allocator *ca)
b788db79 285{
846705de 286 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
b788db79
RW
287
288 while (nr_blocks-- > 0) {
289 struct bm_block *bb;
290
291 bb = chain_alloc(ca, sizeof(struct bm_block));
292 if (!bb)
846705de
RW
293 return -ENOMEM;
294 list_add(&bb->hook, list);
b788db79 295 }
846705de
RW
296
297 return 0;
b788db79
RW
298}
299
846705de
RW
300struct mem_extent {
301 struct list_head hook;
302 unsigned long start;
303 unsigned long end;
304};
305
b788db79 306/**
846705de
RW
307 * free_mem_extents - free a list of memory extents
308 * @list - list of extents to empty
b788db79 309 */
846705de
RW
310static void free_mem_extents(struct list_head *list)
311{
312 struct mem_extent *ext, *aux;
b788db79 313
846705de
RW
314 list_for_each_entry_safe(ext, aux, list, hook) {
315 list_del(&ext->hook);
316 kfree(ext);
317 }
318}
319
320/**
321 * create_mem_extents - create a list of memory extents representing
322 * contiguous ranges of PFNs
323 * @list - list to put the extents into
324 * @gfp_mask - mask to use for memory allocations
325 */
326static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 327{
846705de 328 struct zone *zone;
b788db79 329
846705de 330 INIT_LIST_HEAD(list);
b788db79 331
ee99c71c 332 for_each_populated_zone(zone) {
846705de
RW
333 unsigned long zone_start, zone_end;
334 struct mem_extent *ext, *cur, *aux;
335
846705de
RW
336 zone_start = zone->zone_start_pfn;
337 zone_end = zone->zone_start_pfn + zone->spanned_pages;
338
339 list_for_each_entry(ext, list, hook)
340 if (zone_start <= ext->end)
341 break;
b788db79 342
846705de
RW
343 if (&ext->hook == list || zone_end < ext->start) {
344 /* New extent is necessary */
345 struct mem_extent *new_ext;
346
347 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
348 if (!new_ext) {
349 free_mem_extents(list);
350 return -ENOMEM;
351 }
352 new_ext->start = zone_start;
353 new_ext->end = zone_end;
354 list_add_tail(&new_ext->hook, &ext->hook);
355 continue;
356 }
357
358 /* Merge this zone's range of PFNs with the existing one */
359 if (zone_start < ext->start)
360 ext->start = zone_start;
361 if (zone_end > ext->end)
362 ext->end = zone_end;
363
364 /* More merging may be possible */
365 cur = ext;
366 list_for_each_entry_safe_continue(cur, aux, list, hook) {
367 if (zone_end < cur->start)
368 break;
369 if (zone_end < cur->end)
370 ext->end = cur->end;
371 list_del(&cur->hook);
372 kfree(cur);
373 }
b788db79 374 }
846705de
RW
375
376 return 0;
b788db79
RW
377}
378
379/**
380 * memory_bm_create - allocate memory for a memory bitmap
381 */
b788db79
RW
382static int
383memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
384{
385 struct chain_allocator ca;
846705de
RW
386 struct list_head mem_extents;
387 struct mem_extent *ext;
388 int error;
b788db79
RW
389
390 chain_init(&ca, gfp_mask, safe_needed);
846705de 391 INIT_LIST_HEAD(&bm->blocks);
b788db79 392
846705de
RW
393 error = create_mem_extents(&mem_extents, gfp_mask);
394 if (error)
395 return error;
b788db79 396
846705de
RW
397 list_for_each_entry(ext, &mem_extents, hook) {
398 struct bm_block *bb;
399 unsigned long pfn = ext->start;
400 unsigned long pages = ext->end - ext->start;
b788db79 401
846705de 402 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
b788db79 403
846705de
RW
404 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
405 if (error)
406 goto Error;
b788db79 407
846705de
RW
408 list_for_each_entry_continue(bb, &bm->blocks, hook) {
409 bb->data = get_image_page(gfp_mask, safe_needed);
410 if (!bb->data) {
411 error = -ENOMEM;
412 goto Error;
413 }
b788db79
RW
414
415 bb->start_pfn = pfn;
846705de 416 if (pages >= BM_BITS_PER_BLOCK) {
b788db79 417 pfn += BM_BITS_PER_BLOCK;
846705de 418 pages -= BM_BITS_PER_BLOCK;
b788db79
RW
419 } else {
420 /* This is executed only once in the loop */
846705de 421 pfn += pages;
b788db79
RW
422 }
423 bb->end_pfn = pfn;
b788db79 424 }
b788db79 425 }
846705de 426
b788db79
RW
427 bm->p_list = ca.chain;
428 memory_bm_position_reset(bm);
846705de
RW
429 Exit:
430 free_mem_extents(&mem_extents);
431 return error;
b788db79 432
846705de 433 Error:
b788db79
RW
434 bm->p_list = ca.chain;
435 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 436 goto Exit;
b788db79
RW
437}
438
439/**
440 * memory_bm_free - free memory occupied by the memory bitmap @bm
441 */
b788db79
RW
442static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
443{
846705de 444 struct bm_block *bb;
b788db79 445
846705de
RW
446 list_for_each_entry(bb, &bm->blocks, hook)
447 if (bb->data)
448 free_image_page(bb->data, clear_nosave_free);
b788db79 449
b788db79 450 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de
RW
451
452 INIT_LIST_HEAD(&bm->blocks);
b788db79
RW
453}
454
455/**
74dfd666 456 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
457 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
458 * of @bm->cur_zone_bm are updated.
b788db79 459 */
a82f7119 460static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
74dfd666 461 void **addr, unsigned int *bit_nr)
b788db79 462{
b788db79
RW
463 struct bm_block *bb;
464
846705de
RW
465 /*
466 * Check if the pfn corresponds to the current bitmap block and find
467 * the block where it fits if this is not the case.
468 */
469 bb = bm->cur.block;
b788db79 470 if (pfn < bb->start_pfn)
846705de
RW
471 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
472 if (pfn >= bb->start_pfn)
473 break;
b788db79 474
846705de
RW
475 if (pfn >= bb->end_pfn)
476 list_for_each_entry_continue(bb, &bm->blocks, hook)
477 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
478 break;
74dfd666 479
846705de
RW
480 if (&bb->hook == &bm->blocks)
481 return -EFAULT;
482
483 /* The block has been found */
484 bm->cur.block = bb;
b788db79 485 pfn -= bb->start_pfn;
846705de 486 bm->cur.bit = pfn + 1;
0d83304c
AM
487 *bit_nr = pfn;
488 *addr = bb->data;
a82f7119 489 return 0;
74dfd666
RW
490}
491
492static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
493{
494 void *addr;
495 unsigned int bit;
a82f7119 496 int error;
74dfd666 497
a82f7119
RW
498 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
499 BUG_ON(error);
74dfd666
RW
500 set_bit(bit, addr);
501}
502
a82f7119
RW
503static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
504{
505 void *addr;
506 unsigned int bit;
507 int error;
508
509 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
510 if (!error)
511 set_bit(bit, addr);
512 return error;
513}
514
74dfd666
RW
515static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
516{
517 void *addr;
518 unsigned int bit;
a82f7119 519 int error;
74dfd666 520
a82f7119
RW
521 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
522 BUG_ON(error);
74dfd666
RW
523 clear_bit(bit, addr);
524}
525
526static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
527{
528 void *addr;
529 unsigned int bit;
a82f7119 530 int error;
74dfd666 531
a82f7119
RW
532 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
533 BUG_ON(error);
74dfd666 534 return test_bit(bit, addr);
b788db79
RW
535}
536
69643279
RW
537static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
538{
539 void *addr;
540 unsigned int bit;
541
542 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
543}
544
b788db79
RW
545/**
546 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
547 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
548 * returned.
549 *
550 * It is required to run memory_bm_position_reset() before the first call to
551 * this function.
552 */
553
554static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
555{
b788db79 556 struct bm_block *bb;
b788db79
RW
557 int bit;
558
846705de 559 bb = bm->cur.block;
b788db79 560 do {
846705de
RW
561 bit = bm->cur.bit;
562 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
563 if (bit < bm_block_bits(bb))
564 goto Return_pfn;
565
566 bb = list_entry(bb->hook.next, struct bm_block, hook);
567 bm->cur.block = bb;
568 bm->cur.bit = 0;
569 } while (&bb->hook != &bm->blocks);
570
b788db79
RW
571 memory_bm_position_reset(bm);
572 return BM_END_OF_MAP;
573
59a49335 574 Return_pfn:
0d83304c
AM
575 bm->cur.bit = bit + 1;
576 return bb->start_pfn + bit;
b788db79
RW
577}
578
74dfd666
RW
579/**
580 * This structure represents a range of page frames the contents of which
581 * should not be saved during the suspend.
582 */
583
584struct nosave_region {
585 struct list_head list;
586 unsigned long start_pfn;
587 unsigned long end_pfn;
588};
589
590static LIST_HEAD(nosave_regions);
591
592/**
593 * register_nosave_region - register a range of page frames the contents
594 * of which should not be saved during the suspend (to be used in the early
595 * initialization code)
596 */
597
598void __init
940d67f6
JB
599__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
600 int use_kmalloc)
74dfd666
RW
601{
602 struct nosave_region *region;
603
604 if (start_pfn >= end_pfn)
605 return;
606
607 if (!list_empty(&nosave_regions)) {
608 /* Try to extend the previous region (they should be sorted) */
609 region = list_entry(nosave_regions.prev,
610 struct nosave_region, list);
611 if (region->end_pfn == start_pfn) {
612 region->end_pfn = end_pfn;
613 goto Report;
614 }
615 }
940d67f6
JB
616 if (use_kmalloc) {
617 /* during init, this shouldn't fail */
618 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
619 BUG_ON(!region);
620 } else
621 /* This allocation cannot fail */
3c1596ef 622 region = alloc_bootmem(sizeof(struct nosave_region));
74dfd666
RW
623 region->start_pfn = start_pfn;
624 region->end_pfn = end_pfn;
625 list_add_tail(&region->list, &nosave_regions);
626 Report:
23976728 627 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
74dfd666
RW
628 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
629}
630
631/*
632 * Set bits in this map correspond to the page frames the contents of which
633 * should not be saved during the suspend.
634 */
635static struct memory_bitmap *forbidden_pages_map;
636
637/* Set bits in this map correspond to free page frames. */
638static struct memory_bitmap *free_pages_map;
639
640/*
641 * Each page frame allocated for creating the image is marked by setting the
642 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
643 */
644
645void swsusp_set_page_free(struct page *page)
646{
647 if (free_pages_map)
648 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
649}
650
651static int swsusp_page_is_free(struct page *page)
652{
653 return free_pages_map ?
654 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
655}
656
657void swsusp_unset_page_free(struct page *page)
658{
659 if (free_pages_map)
660 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
661}
662
663static void swsusp_set_page_forbidden(struct page *page)
664{
665 if (forbidden_pages_map)
666 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
667}
668
669int swsusp_page_is_forbidden(struct page *page)
670{
671 return forbidden_pages_map ?
672 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
673}
674
675static void swsusp_unset_page_forbidden(struct page *page)
676{
677 if (forbidden_pages_map)
678 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
679}
680
681/**
682 * mark_nosave_pages - set bits corresponding to the page frames the
683 * contents of which should not be saved in a given bitmap.
684 */
685
686static void mark_nosave_pages(struct memory_bitmap *bm)
687{
688 struct nosave_region *region;
689
690 if (list_empty(&nosave_regions))
691 return;
692
693 list_for_each_entry(region, &nosave_regions, list) {
694 unsigned long pfn;
695
23976728 696 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
74dfd666
RW
697 region->start_pfn << PAGE_SHIFT,
698 region->end_pfn << PAGE_SHIFT);
699
700 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
701 if (pfn_valid(pfn)) {
702 /*
703 * It is safe to ignore the result of
704 * mem_bm_set_bit_check() here, since we won't
705 * touch the PFNs for which the error is
706 * returned anyway.
707 */
708 mem_bm_set_bit_check(bm, pfn);
709 }
74dfd666
RW
710 }
711}
712
713/**
714 * create_basic_memory_bitmaps - create bitmaps needed for marking page
715 * frames that should not be saved and free page frames. The pointers
716 * forbidden_pages_map and free_pages_map are only modified if everything
717 * goes well, because we don't want the bits to be used before both bitmaps
718 * are set up.
719 */
720
721int create_basic_memory_bitmaps(void)
722{
723 struct memory_bitmap *bm1, *bm2;
724 int error = 0;
725
726 BUG_ON(forbidden_pages_map || free_pages_map);
727
0709db60 728 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
729 if (!bm1)
730 return -ENOMEM;
731
0709db60 732 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
733 if (error)
734 goto Free_first_object;
735
0709db60 736 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
737 if (!bm2)
738 goto Free_first_bitmap;
739
0709db60 740 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
741 if (error)
742 goto Free_second_object;
743
744 forbidden_pages_map = bm1;
745 free_pages_map = bm2;
746 mark_nosave_pages(forbidden_pages_map);
747
23976728 748 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
749
750 return 0;
751
752 Free_second_object:
753 kfree(bm2);
754 Free_first_bitmap:
755 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
756 Free_first_object:
757 kfree(bm1);
758 return -ENOMEM;
759}
760
761/**
762 * free_basic_memory_bitmaps - free memory bitmaps allocated by
763 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
764 * so that the bitmaps themselves are not referred to while they are being
765 * freed.
766 */
767
768void free_basic_memory_bitmaps(void)
769{
770 struct memory_bitmap *bm1, *bm2;
771
772 BUG_ON(!(forbidden_pages_map && free_pages_map));
773
774 bm1 = forbidden_pages_map;
775 bm2 = free_pages_map;
776 forbidden_pages_map = NULL;
777 free_pages_map = NULL;
778 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779 kfree(bm1);
780 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
781 kfree(bm2);
782
23976728 783 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
784}
785
b788db79
RW
786/**
787 * snapshot_additional_pages - estimate the number of additional pages
788 * be needed for setting up the suspend image data structures for given
789 * zone (usually the returned value is greater than the exact number)
790 */
791
792unsigned int snapshot_additional_pages(struct zone *zone)
793{
794 unsigned int res;
795
796 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
797 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
8357376d 798 return 2 * res;
b788db79
RW
799}
800
8357376d
RW
801#ifdef CONFIG_HIGHMEM
802/**
803 * count_free_highmem_pages - compute the total number of free highmem
804 * pages, system-wide.
805 */
806
807static unsigned int count_free_highmem_pages(void)
808{
809 struct zone *zone;
810 unsigned int cnt = 0;
811
ee99c71c
KM
812 for_each_populated_zone(zone)
813 if (is_highmem(zone))
d23ad423 814 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
815
816 return cnt;
817}
818
819/**
820 * saveable_highmem_page - Determine whether a highmem page should be
821 * included in the suspend image.
822 *
823 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
824 * and it isn't a part of a free chunk of pages.
825 */
846705de 826static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
827{
828 struct page *page;
829
830 if (!pfn_valid(pfn))
831 return NULL;
832
833 page = pfn_to_page(pfn);
846705de
RW
834 if (page_zone(page) != zone)
835 return NULL;
8357376d
RW
836
837 BUG_ON(!PageHighMem(page));
838
7be98234
RW
839 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
840 PageReserved(page))
8357376d
RW
841 return NULL;
842
843 return page;
844}
845
846/**
847 * count_highmem_pages - compute the total number of saveable highmem
848 * pages.
849 */
850
fe419535 851static unsigned int count_highmem_pages(void)
8357376d
RW
852{
853 struct zone *zone;
854 unsigned int n = 0;
855
98e73dc5 856 for_each_populated_zone(zone) {
8357376d
RW
857 unsigned long pfn, max_zone_pfn;
858
859 if (!is_highmem(zone))
860 continue;
861
862 mark_free_pages(zone);
863 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
864 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 865 if (saveable_highmem_page(zone, pfn))
8357376d
RW
866 n++;
867 }
868 return n;
869}
870#else
846705de
RW
871static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
872{
873 return NULL;
874}
8357376d
RW
875#endif /* CONFIG_HIGHMEM */
876
25761b6e 877/**
8a235efa
RW
878 * saveable_page - Determine whether a non-highmem page should be included
879 * in the suspend image.
25761b6e 880 *
8357376d
RW
881 * We should save the page if it isn't Nosave, and is not in the range
882 * of pages statically defined as 'unsaveable', and it isn't a part of
883 * a free chunk of pages.
25761b6e 884 */
846705de 885static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 886{
de491861 887 struct page *page;
25761b6e
RW
888
889 if (!pfn_valid(pfn))
ae83c5ee 890 return NULL;
25761b6e
RW
891
892 page = pfn_to_page(pfn);
846705de
RW
893 if (page_zone(page) != zone)
894 return NULL;
ae83c5ee 895
8357376d
RW
896 BUG_ON(PageHighMem(page));
897
7be98234 898 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 899 return NULL;
8357376d 900
8a235efa
RW
901 if (PageReserved(page)
902 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 903 return NULL;
25761b6e 904
ae83c5ee 905 return page;
25761b6e
RW
906}
907
8357376d
RW
908/**
909 * count_data_pages - compute the total number of saveable non-highmem
910 * pages.
911 */
912
fe419535 913static unsigned int count_data_pages(void)
25761b6e
RW
914{
915 struct zone *zone;
ae83c5ee 916 unsigned long pfn, max_zone_pfn;
dc19d507 917 unsigned int n = 0;
25761b6e 918
98e73dc5 919 for_each_populated_zone(zone) {
25761b6e
RW
920 if (is_highmem(zone))
921 continue;
8357376d 922
25761b6e 923 mark_free_pages(zone);
ae83c5ee
RW
924 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
925 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 926 if (saveable_page(zone, pfn))
8357376d 927 n++;
25761b6e 928 }
a0f49651 929 return n;
25761b6e
RW
930}
931
8357376d
RW
932/* This is needed, because copy_page and memcpy are not usable for copying
933 * task structs.
934 */
935static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
936{
937 int n;
938
f623f0db
RW
939 for (n = PAGE_SIZE / sizeof(long); n; n--)
940 *dst++ = *src++;
941}
942
8a235efa
RW
943
944/**
945 * safe_copy_page - check if the page we are going to copy is marked as
946 * present in the kernel page tables (this always is the case if
947 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
948 * kernel_page_present() always returns 'true').
949 */
950static void safe_copy_page(void *dst, struct page *s_page)
951{
952 if (kernel_page_present(s_page)) {
953 do_copy_page(dst, page_address(s_page));
954 } else {
955 kernel_map_pages(s_page, 1, 1);
956 do_copy_page(dst, page_address(s_page));
957 kernel_map_pages(s_page, 1, 0);
958 }
959}
960
961
8357376d
RW
962#ifdef CONFIG_HIGHMEM
963static inline struct page *
964page_is_saveable(struct zone *zone, unsigned long pfn)
965{
966 return is_highmem(zone) ?
846705de 967 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
968}
969
8a235efa 970static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
971{
972 struct page *s_page, *d_page;
973 void *src, *dst;
974
975 s_page = pfn_to_page(src_pfn);
976 d_page = pfn_to_page(dst_pfn);
977 if (PageHighMem(s_page)) {
978 src = kmap_atomic(s_page, KM_USER0);
979 dst = kmap_atomic(d_page, KM_USER1);
980 do_copy_page(dst, src);
981 kunmap_atomic(src, KM_USER0);
982 kunmap_atomic(dst, KM_USER1);
983 } else {
8357376d
RW
984 if (PageHighMem(d_page)) {
985 /* Page pointed to by src may contain some kernel
986 * data modified by kmap_atomic()
987 */
8a235efa 988 safe_copy_page(buffer, s_page);
baa5835d 989 dst = kmap_atomic(d_page, KM_USER0);
8357376d
RW
990 memcpy(dst, buffer, PAGE_SIZE);
991 kunmap_atomic(dst, KM_USER0);
992 } else {
8a235efa 993 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
994 }
995 }
996}
997#else
846705de 998#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 999
8a235efa 1000static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1001{
8a235efa
RW
1002 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1003 pfn_to_page(src_pfn));
8357376d
RW
1004}
1005#endif /* CONFIG_HIGHMEM */
1006
b788db79
RW
1007static void
1008copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1009{
1010 struct zone *zone;
b788db79 1011 unsigned long pfn;
25761b6e 1012
98e73dc5 1013 for_each_populated_zone(zone) {
b788db79
RW
1014 unsigned long max_zone_pfn;
1015
25761b6e 1016 mark_free_pages(zone);
ae83c5ee 1017 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
b788db79 1018 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1019 if (page_is_saveable(zone, pfn))
b788db79 1020 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1021 }
b788db79
RW
1022 memory_bm_position_reset(orig_bm);
1023 memory_bm_position_reset(copy_bm);
df7c4872 1024 for(;;) {
b788db79 1025 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1026 if (unlikely(pfn == BM_END_OF_MAP))
1027 break;
1028 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1029 }
25761b6e
RW
1030}
1031
8357376d
RW
1032/* Total number of image pages */
1033static unsigned int nr_copy_pages;
1034/* Number of pages needed for saving the original pfns of the image pages */
1035static unsigned int nr_meta_pages;
64a473cb
RW
1036/*
1037 * Numbers of normal and highmem page frames allocated for hibernation image
1038 * before suspending devices.
1039 */
1040unsigned int alloc_normal, alloc_highmem;
1041/*
1042 * Memory bitmap used for marking saveable pages (during hibernation) or
1043 * hibernation image pages (during restore)
1044 */
1045static struct memory_bitmap orig_bm;
1046/*
1047 * Memory bitmap used during hibernation for marking allocated page frames that
1048 * will contain copies of saveable pages. During restore it is initially used
1049 * for marking hibernation image pages, but then the set bits from it are
1050 * duplicated in @orig_bm and it is released. On highmem systems it is next
1051 * used for marking "safe" highmem pages, but it has to be reinitialized for
1052 * this purpose.
1053 */
1054static struct memory_bitmap copy_bm;
8357376d 1055
25761b6e 1056/**
940864dd 1057 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1058 *
940864dd
RW
1059 * Suspend pages are alocated before the atomic copy is made, so we
1060 * need to release them after the resume.
25761b6e
RW
1061 */
1062
1063void swsusp_free(void)
1064{
1065 struct zone *zone;
ae83c5ee 1066 unsigned long pfn, max_zone_pfn;
25761b6e 1067
98e73dc5 1068 for_each_populated_zone(zone) {
ae83c5ee
RW
1069 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1070 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1071 if (pfn_valid(pfn)) {
1072 struct page *page = pfn_to_page(pfn);
1073
7be98234
RW
1074 if (swsusp_page_is_forbidden(page) &&
1075 swsusp_page_is_free(page)) {
1076 swsusp_unset_page_forbidden(page);
1077 swsusp_unset_page_free(page);
8357376d 1078 __free_page(page);
25761b6e
RW
1079 }
1080 }
1081 }
f577eb30
RW
1082 nr_copy_pages = 0;
1083 nr_meta_pages = 0;
75534b50 1084 restore_pblist = NULL;
6e1819d6 1085 buffer = NULL;
64a473cb
RW
1086 alloc_normal = 0;
1087 alloc_highmem = 0;
25761b6e
RW
1088}
1089
4bb33435
RW
1090/* Helper functions used for the shrinking of memory. */
1091
1092#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1093
fe419535 1094/**
4bb33435
RW
1095 * preallocate_image_pages - Allocate a number of pages for hibernation image
1096 * @nr_pages: Number of page frames to allocate.
1097 * @mask: GFP flags to use for the allocation.
fe419535 1098 *
4bb33435
RW
1099 * Return value: Number of page frames actually allocated
1100 */
1101static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1102{
1103 unsigned long nr_alloc = 0;
1104
1105 while (nr_pages > 0) {
64a473cb
RW
1106 struct page *page;
1107
1108 page = alloc_image_page(mask);
1109 if (!page)
4bb33435 1110 break;
64a473cb
RW
1111 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1112 if (PageHighMem(page))
1113 alloc_highmem++;
1114 else
1115 alloc_normal++;
4bb33435
RW
1116 nr_pages--;
1117 nr_alloc++;
1118 }
1119
1120 return nr_alloc;
1121}
1122
1123static unsigned long preallocate_image_memory(unsigned long nr_pages)
1124{
1125 return preallocate_image_pages(nr_pages, GFP_IMAGE);
1126}
1127
1128#ifdef CONFIG_HIGHMEM
1129static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1130{
1131 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1132}
1133
1134/**
1135 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1136 */
4bb33435
RW
1137static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1138{
1139 x *= multiplier;
1140 do_div(x, base);
1141 return (unsigned long)x;
1142}
fe419535 1143
4bb33435
RW
1144static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1145 unsigned long highmem,
1146 unsigned long total)
fe419535 1147{
4bb33435
RW
1148 unsigned long alloc = __fraction(nr_pages, highmem, total);
1149
1150 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1151}
4bb33435
RW
1152#else /* CONFIG_HIGHMEM */
1153static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1154{
1155 return 0;
1156}
1157
1158static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1159 unsigned long highmem,
1160 unsigned long total)
1161{
1162 return 0;
1163}
1164#endif /* CONFIG_HIGHMEM */
fe419535 1165
4bb33435 1166/**
64a473cb
RW
1167 * free_unnecessary_pages - Release preallocated pages not needed for the image
1168 */
1169static void free_unnecessary_pages(void)
1170{
1171 unsigned long save_highmem, to_free_normal, to_free_highmem;
1172
1173 to_free_normal = alloc_normal - count_data_pages();
1174 save_highmem = count_highmem_pages();
1175 if (alloc_highmem > save_highmem) {
1176 to_free_highmem = alloc_highmem - save_highmem;
1177 } else {
1178 to_free_highmem = 0;
1179 to_free_normal -= save_highmem - alloc_highmem;
1180 }
1181
1182 memory_bm_position_reset(&copy_bm);
1183
a9c9b442 1184 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1185 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1186 struct page *page = pfn_to_page(pfn);
1187
1188 if (PageHighMem(page)) {
1189 if (!to_free_highmem)
1190 continue;
1191 to_free_highmem--;
1192 alloc_highmem--;
1193 } else {
1194 if (!to_free_normal)
1195 continue;
1196 to_free_normal--;
1197 alloc_normal--;
1198 }
1199 memory_bm_clear_bit(&copy_bm, pfn);
1200 swsusp_unset_page_forbidden(page);
1201 swsusp_unset_page_free(page);
1202 __free_page(page);
1203 }
1204}
1205
ef4aede3
RW
1206/**
1207 * minimum_image_size - Estimate the minimum acceptable size of an image
1208 * @saveable: Number of saveable pages in the system.
1209 *
1210 * We want to avoid attempting to free too much memory too hard, so estimate the
1211 * minimum acceptable size of a hibernation image to use as the lower limit for
1212 * preallocating memory.
1213 *
1214 * We assume that the minimum image size should be proportional to
1215 *
1216 * [number of saveable pages] - [number of pages that can be freed in theory]
1217 *
1218 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1219 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1220 * minus mapped file pages.
1221 */
1222static unsigned long minimum_image_size(unsigned long saveable)
1223{
1224 unsigned long size;
1225
1226 size = global_page_state(NR_SLAB_RECLAIMABLE)
1227 + global_page_state(NR_ACTIVE_ANON)
1228 + global_page_state(NR_INACTIVE_ANON)
1229 + global_page_state(NR_ACTIVE_FILE)
1230 + global_page_state(NR_INACTIVE_FILE)
1231 - global_page_state(NR_FILE_MAPPED);
1232
1233 return saveable <= size ? 0 : saveable - size;
1234}
1235
64a473cb
RW
1236/**
1237 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1238 *
1239 * To create a hibernation image it is necessary to make a copy of every page
1240 * frame in use. We also need a number of page frames to be free during
1241 * hibernation for allocations made while saving the image and for device
1242 * drivers, in case they need to allocate memory from their hibernation
1243 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1244 * respectively, both of which are rough estimates). To make this happen, we
1245 * compute the total number of available page frames and allocate at least
1246 *
1247 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1248 *
1249 * of them, which corresponds to the maximum size of a hibernation image.
1250 *
1251 * If image_size is set below the number following from the above formula,
1252 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1253 * pages in the system is below the requested image size or the minimum
1254 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1255 */
64a473cb 1256int hibernate_preallocate_memory(void)
fe419535 1257{
fe419535 1258 struct zone *zone;
4bb33435 1259 unsigned long saveable, size, max_size, count, highmem, pages = 0;
64a473cb 1260 unsigned long alloc, save_highmem, pages_highmem;
fe419535 1261 struct timeval start, stop;
64a473cb 1262 int error;
fe419535 1263
64a473cb 1264 printk(KERN_INFO "PM: Preallocating image memory... ");
fe419535 1265 do_gettimeofday(&start);
fe419535 1266
64a473cb
RW
1267 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1268 if (error)
1269 goto err_out;
1270
1271 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1272 if (error)
1273 goto err_out;
1274
1275 alloc_normal = 0;
1276 alloc_highmem = 0;
1277
4bb33435 1278 /* Count the number of saveable data pages. */
64a473cb 1279 save_highmem = count_highmem_pages();
4bb33435 1280 saveable = count_data_pages();
fe419535 1281
4bb33435
RW
1282 /*
1283 * Compute the total number of page frames we can use (count) and the
1284 * number of pages needed for image metadata (size).
1285 */
1286 count = saveable;
64a473cb
RW
1287 saveable += save_highmem;
1288 highmem = save_highmem;
4bb33435
RW
1289 size = 0;
1290 for_each_populated_zone(zone) {
1291 size += snapshot_additional_pages(zone);
1292 if (is_highmem(zone))
1293 highmem += zone_page_state(zone, NR_FREE_PAGES);
1294 else
1295 count += zone_page_state(zone, NR_FREE_PAGES);
1296 }
1297 count += highmem;
1298 count -= totalreserve_pages;
1299
1300 /* Compute the maximum number of saveable pages to leave in memory. */
1301 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
1302 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1303 if (size > max_size)
1304 size = max_size;
1305 /*
1306 * If the maximum is not less than the current number of saveable pages
64a473cb 1307 * in memory, allocate page frames for the image and we're done.
4bb33435 1308 */
64a473cb
RW
1309 if (size >= saveable) {
1310 pages = preallocate_image_highmem(save_highmem);
1311 pages += preallocate_image_memory(saveable - pages);
4bb33435 1312 goto out;
64a473cb 1313 }
4bb33435 1314
ef4aede3
RW
1315 /* Estimate the minimum size of the image. */
1316 pages = minimum_image_size(saveable);
1317 if (size < pages)
1318 size = min_t(unsigned long, pages, max_size);
1319
4bb33435
RW
1320 /*
1321 * Let the memory management subsystem know that we're going to need a
1322 * large number of page frames to allocate and make it free some memory.
1323 * NOTE: If this is not done, performance will be hurt badly in some
1324 * test cases.
1325 */
1326 shrink_all_memory(saveable - size);
1327
1328 /*
1329 * The number of saveable pages in memory was too high, so apply some
1330 * pressure to decrease it. First, make room for the largest possible
1331 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1332 * of the image as much as indicated by 'size' using allocations from
1333 * highmem and non-highmem zones separately.
4bb33435
RW
1334 */
1335 pages_highmem = preallocate_image_highmem(highmem / 2);
1336 alloc = (count - max_size) - pages_highmem;
1337 pages = preallocate_image_memory(alloc);
64a473cb
RW
1338 if (pages < alloc)
1339 goto err_out;
4bb33435
RW
1340 size = max_size - size;
1341 alloc = size;
1342 size = preallocate_highmem_fraction(size, highmem, count);
1343 pages_highmem += size;
1344 alloc -= size;
1345 pages += preallocate_image_memory(alloc);
1346 pages += pages_highmem;
1347
64a473cb
RW
1348 /*
1349 * We only need as many page frames for the image as there are saveable
1350 * pages in memory, but we have allocated more. Release the excessive
1351 * ones now.
1352 */
1353 free_unnecessary_pages();
4bb33435
RW
1354
1355 out:
fe419535 1356 do_gettimeofday(&stop);
64a473cb
RW
1357 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1358 swsusp_show_speed(&start, &stop, pages, "Allocated");
fe419535
RW
1359
1360 return 0;
64a473cb
RW
1361
1362 err_out:
1363 printk(KERN_CONT "\n");
1364 swsusp_free();
1365 return -ENOMEM;
fe419535
RW
1366}
1367
8357376d
RW
1368#ifdef CONFIG_HIGHMEM
1369/**
1370 * count_pages_for_highmem - compute the number of non-highmem pages
1371 * that will be necessary for creating copies of highmem pages.
1372 */
1373
1374static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1375{
64a473cb 1376 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1377
1378 if (free_highmem >= nr_highmem)
1379 nr_highmem = 0;
1380 else
1381 nr_highmem -= free_highmem;
1382
1383 return nr_highmem;
1384}
1385#else
1386static unsigned int
1387count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1388#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1389
1390/**
8357376d
RW
1391 * enough_free_mem - Make sure we have enough free memory for the
1392 * snapshot image.
25761b6e
RW
1393 */
1394
8357376d 1395static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1396{
e5e2fa78 1397 struct zone *zone;
64a473cb 1398 unsigned int free = alloc_normal;
e5e2fa78 1399
98e73dc5 1400 for_each_populated_zone(zone)
8357376d 1401 if (!is_highmem(zone))
d23ad423 1402 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1403
8357376d 1404 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1405 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1406 nr_pages, PAGES_FOR_IO, free);
940864dd 1407
64a473cb 1408 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1409}
1410
8357376d
RW
1411#ifdef CONFIG_HIGHMEM
1412/**
1413 * get_highmem_buffer - if there are some highmem pages in the suspend
1414 * image, we may need the buffer to copy them and/or load their data.
1415 */
1416
1417static inline int get_highmem_buffer(int safe_needed)
1418{
1419 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1420 return buffer ? 0 : -ENOMEM;
1421}
1422
1423/**
1424 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1425 * Try to allocate as many pages as needed, but if the number of free
1426 * highmem pages is lesser than that, allocate them all.
1427 */
1428
1429static inline unsigned int
64a473cb 1430alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
8357376d
RW
1431{
1432 unsigned int to_alloc = count_free_highmem_pages();
1433
1434 if (to_alloc > nr_highmem)
1435 to_alloc = nr_highmem;
1436
1437 nr_highmem -= to_alloc;
1438 while (to_alloc-- > 0) {
1439 struct page *page;
1440
1441 page = alloc_image_page(__GFP_HIGHMEM);
1442 memory_bm_set_bit(bm, page_to_pfn(page));
1443 }
1444 return nr_highmem;
1445}
1446#else
1447static inline int get_highmem_buffer(int safe_needed) { return 0; }
1448
1449static inline unsigned int
64a473cb 1450alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
8357376d
RW
1451#endif /* CONFIG_HIGHMEM */
1452
1453/**
1454 * swsusp_alloc - allocate memory for the suspend image
1455 *
1456 * We first try to allocate as many highmem pages as there are
1457 * saveable highmem pages in the system. If that fails, we allocate
1458 * non-highmem pages for the copies of the remaining highmem ones.
1459 *
1460 * In this approach it is likely that the copies of highmem pages will
1461 * also be located in the high memory, because of the way in which
1462 * copy_data_pages() works.
1463 */
1464
b788db79
RW
1465static int
1466swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1467 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1468{
64a473cb 1469 int error = 0;
25761b6e 1470
8357376d
RW
1471 if (nr_highmem > 0) {
1472 error = get_highmem_buffer(PG_ANY);
1473 if (error)
64a473cb
RW
1474 goto err_out;
1475 if (nr_highmem > alloc_highmem) {
1476 nr_highmem -= alloc_highmem;
1477 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1478 }
8357376d 1479 }
64a473cb
RW
1480 if (nr_pages > alloc_normal) {
1481 nr_pages -= alloc_normal;
1482 while (nr_pages-- > 0) {
1483 struct page *page;
1484
1485 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1486 if (!page)
1487 goto err_out;
1488 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1489 }
25761b6e 1490 }
64a473cb 1491
b788db79 1492 return 0;
25761b6e 1493
64a473cb 1494 err_out:
b788db79 1495 swsusp_free();
64a473cb 1496 return error;
25761b6e
RW
1497}
1498
2e32a43e 1499asmlinkage int swsusp_save(void)
25761b6e 1500{
8357376d 1501 unsigned int nr_pages, nr_highmem;
25761b6e 1502
07c3bb57 1503 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1504
9f8f2172 1505 drain_local_pages(NULL);
a0f49651 1506 nr_pages = count_data_pages();
8357376d 1507 nr_highmem = count_highmem_pages();
23976728 1508 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1509
8357376d 1510 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1511 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1512 return -ENOMEM;
1513 }
1514
8357376d 1515 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1516 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1517 return -ENOMEM;
8357376d 1518 }
25761b6e
RW
1519
1520 /* During allocating of suspend pagedir, new cold pages may appear.
1521 * Kill them.
1522 */
9f8f2172 1523 drain_local_pages(NULL);
b788db79 1524 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1525
1526 /*
1527 * End of critical section. From now on, we can write to memory,
1528 * but we should not touch disk. This specially means we must _not_
1529 * touch swap space! Except we must write out our image of course.
1530 */
1531
8357376d 1532 nr_pages += nr_highmem;
a0f49651 1533 nr_copy_pages = nr_pages;
8357376d 1534 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1535
23976728
RW
1536 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1537 nr_pages);
8357376d 1538
25761b6e
RW
1539 return 0;
1540}
f577eb30 1541
d307c4a8
RW
1542#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1543static int init_header_complete(struct swsusp_info *info)
f577eb30 1544{
d307c4a8 1545 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1546 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1547 return 0;
1548}
1549
1550static char *check_image_kernel(struct swsusp_info *info)
1551{
1552 if (info->version_code != LINUX_VERSION_CODE)
1553 return "kernel version";
1554 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1555 return "system type";
1556 if (strcmp(info->uts.release,init_utsname()->release))
1557 return "kernel release";
1558 if (strcmp(info->uts.version,init_utsname()->version))
1559 return "version";
1560 if (strcmp(info->uts.machine,init_utsname()->machine))
1561 return "machine";
1562 return NULL;
1563}
1564#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1565
af508b34
RW
1566unsigned long snapshot_get_image_size(void)
1567{
1568 return nr_copy_pages + nr_meta_pages + 1;
1569}
1570
d307c4a8
RW
1571static int init_header(struct swsusp_info *info)
1572{
1573 memset(info, 0, sizeof(struct swsusp_info));
f577eb30 1574 info->num_physpages = num_physpages;
f577eb30 1575 info->image_pages = nr_copy_pages;
af508b34 1576 info->pages = snapshot_get_image_size();
6e1819d6
RW
1577 info->size = info->pages;
1578 info->size <<= PAGE_SHIFT;
d307c4a8 1579 return init_header_complete(info);
f577eb30
RW
1580}
1581
1582/**
940864dd
RW
1583 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1584 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1585 */
1586
b788db79 1587static inline void
940864dd 1588pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1589{
1590 int j;
1591
b788db79 1592 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1593 buf[j] = memory_bm_next_pfn(bm);
1594 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1595 break;
f577eb30 1596 }
f577eb30
RW
1597}
1598
1599/**
1600 * snapshot_read_next - used for reading the system memory snapshot.
1601 *
1602 * On the first call to it @handle should point to a zeroed
1603 * snapshot_handle structure. The structure gets updated and a pointer
1604 * to it should be passed to this function every next time.
1605 *
1606 * The @count parameter should contain the number of bytes the caller
1607 * wants to read from the snapshot. It must not be zero.
1608 *
1609 * On success the function returns a positive number. Then, the caller
1610 * is allowed to read up to the returned number of bytes from the memory
1611 * location computed by the data_of() macro. The number returned
1612 * may be smaller than @count, but this only happens if the read would
1613 * cross a page boundary otherwise.
1614 *
1615 * The function returns 0 to indicate the end of data stream condition,
1616 * and a negative number is returned on error. In such cases the
1617 * structure pointed to by @handle is not updated and should not be used
1618 * any more.
1619 */
1620
1621int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1622{
fb13a28b 1623 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1624 return 0;
b788db79 1625
f577eb30
RW
1626 if (!buffer) {
1627 /* This makes the buffer be freed by swsusp_free() */
8357376d 1628 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1629 if (!buffer)
1630 return -ENOMEM;
1631 }
1632 if (!handle->offset) {
d307c4a8
RW
1633 int error;
1634
1635 error = init_header((struct swsusp_info *)buffer);
1636 if (error)
1637 return error;
f577eb30 1638 handle->buffer = buffer;
b788db79
RW
1639 memory_bm_position_reset(&orig_bm);
1640 memory_bm_position_reset(&copy_bm);
f577eb30 1641 }
fb13a28b
RW
1642 if (handle->prev < handle->cur) {
1643 if (handle->cur <= nr_meta_pages) {
b788db79 1644 memset(buffer, 0, PAGE_SIZE);
940864dd 1645 pack_pfns(buffer, &orig_bm);
f577eb30 1646 } else {
8357376d 1647 struct page *page;
b788db79 1648
8357376d
RW
1649 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1650 if (PageHighMem(page)) {
1651 /* Highmem pages are copied to the buffer,
1652 * because we can't return with a kmapped
1653 * highmem page (we may not be called again).
1654 */
1655 void *kaddr;
1656
1657 kaddr = kmap_atomic(page, KM_USER0);
1658 memcpy(buffer, kaddr, PAGE_SIZE);
1659 kunmap_atomic(kaddr, KM_USER0);
1660 handle->buffer = buffer;
1661 } else {
1662 handle->buffer = page_address(page);
1663 }
f577eb30 1664 }
fb13a28b 1665 handle->prev = handle->cur;
f577eb30 1666 }
fb13a28b
RW
1667 handle->buf_offset = handle->cur_offset;
1668 if (handle->cur_offset + count >= PAGE_SIZE) {
1669 count = PAGE_SIZE - handle->cur_offset;
1670 handle->cur_offset = 0;
1671 handle->cur++;
f577eb30 1672 } else {
fb13a28b 1673 handle->cur_offset += count;
f577eb30
RW
1674 }
1675 handle->offset += count;
1676 return count;
1677}
1678
1679/**
1680 * mark_unsafe_pages - mark the pages that cannot be used for storing
1681 * the image during resume, because they conflict with the pages that
1682 * had been used before suspend
1683 */
1684
940864dd 1685static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
1686{
1687 struct zone *zone;
ae83c5ee 1688 unsigned long pfn, max_zone_pfn;
f577eb30
RW
1689
1690 /* Clear page flags */
98e73dc5 1691 for_each_populated_zone(zone) {
ae83c5ee
RW
1692 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1693 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1694 if (pfn_valid(pfn))
7be98234 1695 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
1696 }
1697
940864dd
RW
1698 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1699 memory_bm_position_reset(bm);
1700 do {
1701 pfn = memory_bm_next_pfn(bm);
1702 if (likely(pfn != BM_END_OF_MAP)) {
1703 if (likely(pfn_valid(pfn)))
7be98234 1704 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
1705 else
1706 return -EFAULT;
1707 }
1708 } while (pfn != BM_END_OF_MAP);
f577eb30 1709
940864dd 1710 allocated_unsafe_pages = 0;
968808b8 1711
f577eb30
RW
1712 return 0;
1713}
1714
940864dd
RW
1715static void
1716duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 1717{
940864dd
RW
1718 unsigned long pfn;
1719
1720 memory_bm_position_reset(src);
1721 pfn = memory_bm_next_pfn(src);
1722 while (pfn != BM_END_OF_MAP) {
1723 memory_bm_set_bit(dst, pfn);
1724 pfn = memory_bm_next_pfn(src);
f577eb30
RW
1725 }
1726}
1727
d307c4a8 1728static int check_header(struct swsusp_info *info)
f577eb30 1729{
d307c4a8 1730 char *reason;
f577eb30 1731
d307c4a8
RW
1732 reason = check_image_kernel(info);
1733 if (!reason && info->num_physpages != num_physpages)
f577eb30 1734 reason = "memory size";
f577eb30 1735 if (reason) {
23976728 1736 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
1737 return -EPERM;
1738 }
1739 return 0;
1740}
1741
1742/**
1743 * load header - check the image header and copy data from it
1744 */
1745
940864dd
RW
1746static int
1747load_header(struct swsusp_info *info)
f577eb30
RW
1748{
1749 int error;
f577eb30 1750
940864dd 1751 restore_pblist = NULL;
f577eb30
RW
1752 error = check_header(info);
1753 if (!error) {
f577eb30
RW
1754 nr_copy_pages = info->image_pages;
1755 nr_meta_pages = info->pages - info->image_pages - 1;
1756 }
1757 return error;
1758}
1759
1760/**
940864dd
RW
1761 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1762 * the corresponding bit in the memory bitmap @bm
f577eb30 1763 */
69643279 1764static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1765{
1766 int j;
1767
940864dd
RW
1768 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1769 if (unlikely(buf[j] == BM_END_OF_MAP))
1770 break;
1771
69643279
RW
1772 if (memory_bm_pfn_present(bm, buf[j]))
1773 memory_bm_set_bit(bm, buf[j]);
1774 else
1775 return -EFAULT;
f577eb30 1776 }
69643279
RW
1777
1778 return 0;
f577eb30
RW
1779}
1780
8357376d
RW
1781/* List of "safe" pages that may be used to store data loaded from the suspend
1782 * image
1783 */
1784static struct linked_page *safe_pages_list;
1785
1786#ifdef CONFIG_HIGHMEM
1787/* struct highmem_pbe is used for creating the list of highmem pages that
1788 * should be restored atomically during the resume from disk, because the page
1789 * frames they have occupied before the suspend are in use.
1790 */
1791struct highmem_pbe {
1792 struct page *copy_page; /* data is here now */
1793 struct page *orig_page; /* data was here before the suspend */
1794 struct highmem_pbe *next;
1795};
1796
1797/* List of highmem PBEs needed for restoring the highmem pages that were
1798 * allocated before the suspend and included in the suspend image, but have
1799 * also been allocated by the "resume" kernel, so their contents cannot be
1800 * written directly to their "original" page frames.
1801 */
1802static struct highmem_pbe *highmem_pblist;
1803
1804/**
1805 * count_highmem_image_pages - compute the number of highmem pages in the
1806 * suspend image. The bits in the memory bitmap @bm that correspond to the
1807 * image pages are assumed to be set.
1808 */
1809
1810static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1811{
1812 unsigned long pfn;
1813 unsigned int cnt = 0;
1814
1815 memory_bm_position_reset(bm);
1816 pfn = memory_bm_next_pfn(bm);
1817 while (pfn != BM_END_OF_MAP) {
1818 if (PageHighMem(pfn_to_page(pfn)))
1819 cnt++;
1820
1821 pfn = memory_bm_next_pfn(bm);
1822 }
1823 return cnt;
1824}
1825
1826/**
1827 * prepare_highmem_image - try to allocate as many highmem pages as
1828 * there are highmem image pages (@nr_highmem_p points to the variable
1829 * containing the number of highmem image pages). The pages that are
1830 * "safe" (ie. will not be overwritten when the suspend image is
1831 * restored) have the corresponding bits set in @bm (it must be
1832 * unitialized).
1833 *
1834 * NOTE: This function should not be called if there are no highmem
1835 * image pages.
1836 */
1837
1838static unsigned int safe_highmem_pages;
1839
1840static struct memory_bitmap *safe_highmem_bm;
1841
1842static int
1843prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1844{
1845 unsigned int to_alloc;
1846
1847 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1848 return -ENOMEM;
1849
1850 if (get_highmem_buffer(PG_SAFE))
1851 return -ENOMEM;
1852
1853 to_alloc = count_free_highmem_pages();
1854 if (to_alloc > *nr_highmem_p)
1855 to_alloc = *nr_highmem_p;
1856 else
1857 *nr_highmem_p = to_alloc;
1858
1859 safe_highmem_pages = 0;
1860 while (to_alloc-- > 0) {
1861 struct page *page;
1862
1863 page = alloc_page(__GFP_HIGHMEM);
7be98234 1864 if (!swsusp_page_is_free(page)) {
8357376d
RW
1865 /* The page is "safe", set its bit the bitmap */
1866 memory_bm_set_bit(bm, page_to_pfn(page));
1867 safe_highmem_pages++;
1868 }
1869 /* Mark the page as allocated */
7be98234
RW
1870 swsusp_set_page_forbidden(page);
1871 swsusp_set_page_free(page);
8357376d
RW
1872 }
1873 memory_bm_position_reset(bm);
1874 safe_highmem_bm = bm;
1875 return 0;
1876}
1877
1878/**
1879 * get_highmem_page_buffer - for given highmem image page find the buffer
1880 * that suspend_write_next() should set for its caller to write to.
1881 *
1882 * If the page is to be saved to its "original" page frame or a copy of
1883 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1884 * the copy of the page is to be made in normal memory, so the address of
1885 * the copy is returned.
1886 *
1887 * If @buffer is returned, the caller of suspend_write_next() will write
1888 * the page's contents to @buffer, so they will have to be copied to the
1889 * right location on the next call to suspend_write_next() and it is done
1890 * with the help of copy_last_highmem_page(). For this purpose, if
1891 * @buffer is returned, @last_highmem page is set to the page to which
1892 * the data will have to be copied from @buffer.
1893 */
1894
1895static struct page *last_highmem_page;
1896
1897static void *
1898get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1899{
1900 struct highmem_pbe *pbe;
1901 void *kaddr;
1902
7be98234 1903 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
1904 /* We have allocated the "original" page frame and we can
1905 * use it directly to store the loaded page.
1906 */
1907 last_highmem_page = page;
1908 return buffer;
1909 }
1910 /* The "original" page frame has not been allocated and we have to
1911 * use a "safe" page frame to store the loaded page.
1912 */
1913 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1914 if (!pbe) {
1915 swsusp_free();
69643279 1916 return ERR_PTR(-ENOMEM);
8357376d
RW
1917 }
1918 pbe->orig_page = page;
1919 if (safe_highmem_pages > 0) {
1920 struct page *tmp;
1921
1922 /* Copy of the page will be stored in high memory */
1923 kaddr = buffer;
1924 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1925 safe_highmem_pages--;
1926 last_highmem_page = tmp;
1927 pbe->copy_page = tmp;
1928 } else {
1929 /* Copy of the page will be stored in normal memory */
1930 kaddr = safe_pages_list;
1931 safe_pages_list = safe_pages_list->next;
1932 pbe->copy_page = virt_to_page(kaddr);
1933 }
1934 pbe->next = highmem_pblist;
1935 highmem_pblist = pbe;
1936 return kaddr;
1937}
1938
1939/**
1940 * copy_last_highmem_page - copy the contents of a highmem image from
1941 * @buffer, where the caller of snapshot_write_next() has place them,
1942 * to the right location represented by @last_highmem_page .
1943 */
1944
1945static void copy_last_highmem_page(void)
1946{
1947 if (last_highmem_page) {
1948 void *dst;
1949
1950 dst = kmap_atomic(last_highmem_page, KM_USER0);
1951 memcpy(dst, buffer, PAGE_SIZE);
1952 kunmap_atomic(dst, KM_USER0);
1953 last_highmem_page = NULL;
1954 }
1955}
1956
1957static inline int last_highmem_page_copied(void)
1958{
1959 return !last_highmem_page;
1960}
1961
1962static inline void free_highmem_data(void)
1963{
1964 if (safe_highmem_bm)
1965 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1966
1967 if (buffer)
1968 free_image_page(buffer, PG_UNSAFE_CLEAR);
1969}
1970#else
1971static inline int get_safe_write_buffer(void) { return 0; }
1972
1973static unsigned int
1974count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1975
1976static inline int
1977prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1978{
1979 return 0;
1980}
1981
1982static inline void *
1983get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1984{
69643279 1985 return ERR_PTR(-EINVAL);
8357376d
RW
1986}
1987
1988static inline void copy_last_highmem_page(void) {}
1989static inline int last_highmem_page_copied(void) { return 1; }
1990static inline void free_highmem_data(void) {}
1991#endif /* CONFIG_HIGHMEM */
1992
f577eb30 1993/**
940864dd
RW
1994 * prepare_image - use the memory bitmap @bm to mark the pages that will
1995 * be overwritten in the process of restoring the system memory state
1996 * from the suspend image ("unsafe" pages) and allocate memory for the
1997 * image.
968808b8 1998 *
940864dd
RW
1999 * The idea is to allocate a new memory bitmap first and then allocate
2000 * as many pages as needed for the image data, but not to assign these
2001 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2002 * allocated and create a lists of "safe" pages that will be used
2003 * later. On systems with high memory a list of "safe" highmem pages is
2004 * also created.
f577eb30
RW
2005 */
2006
940864dd
RW
2007#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2008
940864dd
RW
2009static int
2010prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2011{
8357376d 2012 unsigned int nr_pages, nr_highmem;
940864dd
RW
2013 struct linked_page *sp_list, *lp;
2014 int error;
f577eb30 2015
8357376d
RW
2016 /* If there is no highmem, the buffer will not be necessary */
2017 free_image_page(buffer, PG_UNSAFE_CLEAR);
2018 buffer = NULL;
2019
2020 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
2021 error = mark_unsafe_pages(bm);
2022 if (error)
2023 goto Free;
2024
2025 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2026 if (error)
2027 goto Free;
2028
2029 duplicate_memory_bitmap(new_bm, bm);
2030 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2031 if (nr_highmem > 0) {
2032 error = prepare_highmem_image(bm, &nr_highmem);
2033 if (error)
2034 goto Free;
2035 }
940864dd
RW
2036 /* Reserve some safe pages for potential later use.
2037 *
2038 * NOTE: This way we make sure there will be enough safe pages for the
2039 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2040 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2041 */
2042 sp_list = NULL;
2043 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 2044 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2045 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2046 while (nr_pages > 0) {
8357376d 2047 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2048 if (!lp) {
f577eb30 2049 error = -ENOMEM;
940864dd
RW
2050 goto Free;
2051 }
2052 lp->next = sp_list;
2053 sp_list = lp;
2054 nr_pages--;
f577eb30 2055 }
940864dd
RW
2056 /* Preallocate memory for the image */
2057 safe_pages_list = NULL;
8357376d 2058 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2059 while (nr_pages > 0) {
2060 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2061 if (!lp) {
2062 error = -ENOMEM;
2063 goto Free;
2064 }
7be98234 2065 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2066 /* The page is "safe", add it to the list */
2067 lp->next = safe_pages_list;
2068 safe_pages_list = lp;
968808b8 2069 }
940864dd 2070 /* Mark the page as allocated */
7be98234
RW
2071 swsusp_set_page_forbidden(virt_to_page(lp));
2072 swsusp_set_page_free(virt_to_page(lp));
940864dd 2073 nr_pages--;
968808b8 2074 }
940864dd
RW
2075 /* Free the reserved safe pages so that chain_alloc() can use them */
2076 while (sp_list) {
2077 lp = sp_list->next;
2078 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2079 sp_list = lp;
f577eb30 2080 }
940864dd
RW
2081 return 0;
2082
59a49335 2083 Free:
940864dd 2084 swsusp_free();
f577eb30
RW
2085 return error;
2086}
2087
940864dd
RW
2088/**
2089 * get_buffer - compute the address that snapshot_write_next() should
2090 * set for its caller to write to.
2091 */
2092
2093static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2094{
940864dd 2095 struct pbe *pbe;
69643279
RW
2096 struct page *page;
2097 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2098
69643279
RW
2099 if (pfn == BM_END_OF_MAP)
2100 return ERR_PTR(-EFAULT);
2101
2102 page = pfn_to_page(pfn);
8357376d
RW
2103 if (PageHighMem(page))
2104 return get_highmem_page_buffer(page, ca);
2105
7be98234 2106 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2107 /* We have allocated the "original" page frame and we can
2108 * use it directly to store the loaded page.
968808b8 2109 */
940864dd
RW
2110 return page_address(page);
2111
2112 /* The "original" page frame has not been allocated and we have to
2113 * use a "safe" page frame to store the loaded page.
968808b8 2114 */
940864dd
RW
2115 pbe = chain_alloc(ca, sizeof(struct pbe));
2116 if (!pbe) {
2117 swsusp_free();
69643279 2118 return ERR_PTR(-ENOMEM);
940864dd 2119 }
8357376d
RW
2120 pbe->orig_address = page_address(page);
2121 pbe->address = safe_pages_list;
940864dd
RW
2122 safe_pages_list = safe_pages_list->next;
2123 pbe->next = restore_pblist;
2124 restore_pblist = pbe;
8357376d 2125 return pbe->address;
968808b8
RW
2126}
2127
f577eb30
RW
2128/**
2129 * snapshot_write_next - used for writing the system memory snapshot.
2130 *
2131 * On the first call to it @handle should point to a zeroed
2132 * snapshot_handle structure. The structure gets updated and a pointer
2133 * to it should be passed to this function every next time.
2134 *
2135 * The @count parameter should contain the number of bytes the caller
2136 * wants to write to the image. It must not be zero.
2137 *
2138 * On success the function returns a positive number. Then, the caller
2139 * is allowed to write up to the returned number of bytes to the memory
2140 * location computed by the data_of() macro. The number returned
2141 * may be smaller than @count, but this only happens if the write would
2142 * cross a page boundary otherwise.
2143 *
2144 * The function returns 0 to indicate the "end of file" condition,
2145 * and a negative number is returned on error. In such cases the
2146 * structure pointed to by @handle is not updated and should not be used
2147 * any more.
2148 */
2149
2150int snapshot_write_next(struct snapshot_handle *handle, size_t count)
2151{
940864dd 2152 static struct chain_allocator ca;
f577eb30
RW
2153 int error = 0;
2154
940864dd 2155 /* Check if we have already loaded the entire image */
fb13a28b 2156 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2157 return 0;
940864dd 2158
8357376d
RW
2159 if (handle->offset == 0) {
2160 if (!buffer)
2161 /* This makes the buffer be freed by swsusp_free() */
2162 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2163
f577eb30
RW
2164 if (!buffer)
2165 return -ENOMEM;
8357376d 2166
f577eb30 2167 handle->buffer = buffer;
8357376d 2168 }
546e0d27 2169 handle->sync_read = 1;
fb13a28b 2170 if (handle->prev < handle->cur) {
940864dd
RW
2171 if (handle->prev == 0) {
2172 error = load_header(buffer);
2173 if (error)
2174 return error;
2175
2176 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
f577eb30
RW
2177 if (error)
2178 return error;
940864dd 2179
f577eb30 2180 } else if (handle->prev <= nr_meta_pages) {
69643279
RW
2181 error = unpack_orig_pfns(buffer, &copy_bm);
2182 if (error)
2183 return error;
2184
940864dd
RW
2185 if (handle->prev == nr_meta_pages) {
2186 error = prepare_image(&orig_bm, &copy_bm);
f577eb30
RW
2187 if (error)
2188 return error;
940864dd
RW
2189
2190 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2191 memory_bm_position_reset(&orig_bm);
2192 restore_pblist = NULL;
2193 handle->buffer = get_buffer(&orig_bm, &ca);
546e0d27 2194 handle->sync_read = 0;
69643279
RW
2195 if (IS_ERR(handle->buffer))
2196 return PTR_ERR(handle->buffer);
f577eb30
RW
2197 }
2198 } else {
8357376d 2199 copy_last_highmem_page();
940864dd 2200 handle->buffer = get_buffer(&orig_bm, &ca);
69643279
RW
2201 if (IS_ERR(handle->buffer))
2202 return PTR_ERR(handle->buffer);
8357376d
RW
2203 if (handle->buffer != buffer)
2204 handle->sync_read = 0;
f577eb30 2205 }
fb13a28b 2206 handle->prev = handle->cur;
f577eb30 2207 }
fb13a28b
RW
2208 handle->buf_offset = handle->cur_offset;
2209 if (handle->cur_offset + count >= PAGE_SIZE) {
2210 count = PAGE_SIZE - handle->cur_offset;
2211 handle->cur_offset = 0;
2212 handle->cur++;
f577eb30 2213 } else {
fb13a28b 2214 handle->cur_offset += count;
f577eb30
RW
2215 }
2216 handle->offset += count;
2217 return count;
2218}
2219
8357376d
RW
2220/**
2221 * snapshot_write_finalize - must be called after the last call to
2222 * snapshot_write_next() in case the last page in the image happens
2223 * to be a highmem page and its contents should be stored in the
2224 * highmem. Additionally, it releases the memory that will not be
2225 * used any more.
2226 */
2227
2228void snapshot_write_finalize(struct snapshot_handle *handle)
2229{
2230 copy_last_highmem_page();
2231 /* Free only if we have loaded the image entirely */
2232 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
2233 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2234 free_highmem_data();
2235 }
2236}
2237
f577eb30
RW
2238int snapshot_image_loaded(struct snapshot_handle *handle)
2239{
8357376d 2240 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2241 handle->cur <= nr_meta_pages + nr_copy_pages);
2242}
2243
8357376d
RW
2244#ifdef CONFIG_HIGHMEM
2245/* Assumes that @buf is ready and points to a "safe" page */
2246static inline void
2247swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2248{
8357376d
RW
2249 void *kaddr1, *kaddr2;
2250
2251 kaddr1 = kmap_atomic(p1, KM_USER0);
2252 kaddr2 = kmap_atomic(p2, KM_USER1);
2253 memcpy(buf, kaddr1, PAGE_SIZE);
2254 memcpy(kaddr1, kaddr2, PAGE_SIZE);
2255 memcpy(kaddr2, buf, PAGE_SIZE);
2256 kunmap_atomic(kaddr1, KM_USER0);
2257 kunmap_atomic(kaddr2, KM_USER1);
2258}
2259
2260/**
2261 * restore_highmem - for each highmem page that was allocated before
2262 * the suspend and included in the suspend image, and also has been
2263 * allocated by the "resume" kernel swap its current (ie. "before
2264 * resume") contents with the previous (ie. "before suspend") one.
2265 *
2266 * If the resume eventually fails, we can call this function once
2267 * again and restore the "before resume" highmem state.
2268 */
2269
2270int restore_highmem(void)
2271{
2272 struct highmem_pbe *pbe = highmem_pblist;
2273 void *buf;
2274
2275 if (!pbe)
2276 return 0;
2277
2278 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2279 if (!buf)
2280 return -ENOMEM;
2281
2282 while (pbe) {
2283 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2284 pbe = pbe->next;
2285 }
2286 free_image_page(buf, PG_UNSAFE_CLEAR);
2287 return 0;
f577eb30 2288}
8357376d 2289#endif /* CONFIG_HIGHMEM */