]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/power/snapshot.c
s2ram: kill old debugging junk
[net-next-2.6.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e
RW
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
25761b6e
RW
28
29#include <asm/uaccess.h>
30#include <asm/mmu_context.h>
31#include <asm/pgtable.h>
32#include <asm/tlbflush.h>
33#include <asm/io.h>
34
25761b6e
RW
35#include "power.h"
36
74dfd666
RW
37static int swsusp_page_is_free(struct page *);
38static void swsusp_set_page_forbidden(struct page *);
39static void swsusp_unset_page_forbidden(struct page *);
40
8357376d
RW
41/* List of PBEs needed for restoring the pages that were allocated before
42 * the suspend and included in the suspend image, but have also been
43 * allocated by the "resume" kernel, so their contents cannot be written
44 * directly to their "original" page frames.
45 */
75534b50
RW
46struct pbe *restore_pblist;
47
8357376d 48/* Pointer to an auxiliary buffer (1 page) */
940864dd 49static void *buffer;
7088a5c0 50
f6143aa6
RW
51/**
52 * @safe_needed - on resume, for storing the PBE list and the image,
53 * we can only use memory pages that do not conflict with the pages
8357376d
RW
54 * used before suspend. The unsafe pages have PageNosaveFree set
55 * and we count them using unsafe_pages.
f6143aa6 56 *
8357376d
RW
57 * Each allocated image page is marked as PageNosave and PageNosaveFree
58 * so that swsusp_free() can release it.
f6143aa6
RW
59 */
60
0bcd888d
RW
61#define PG_ANY 0
62#define PG_SAFE 1
63#define PG_UNSAFE_CLEAR 1
64#define PG_UNSAFE_KEEP 0
65
940864dd 66static unsigned int allocated_unsafe_pages;
f6143aa6 67
8357376d 68static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
69{
70 void *res;
71
72 res = (void *)get_zeroed_page(gfp_mask);
73 if (safe_needed)
7be98234 74 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 75 /* The page is unsafe, mark it for swsusp_free() */
7be98234 76 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 77 allocated_unsafe_pages++;
f6143aa6
RW
78 res = (void *)get_zeroed_page(gfp_mask);
79 }
80 if (res) {
7be98234
RW
81 swsusp_set_page_forbidden(virt_to_page(res));
82 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
83 }
84 return res;
85}
86
87unsigned long get_safe_page(gfp_t gfp_mask)
88{
8357376d
RW
89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90}
91
5b6d15de
RW
92static struct page *alloc_image_page(gfp_t gfp_mask)
93{
8357376d
RW
94 struct page *page;
95
96 page = alloc_page(gfp_mask);
97 if (page) {
7be98234
RW
98 swsusp_set_page_forbidden(page);
99 swsusp_set_page_free(page);
8357376d
RW
100 }
101 return page;
f6143aa6
RW
102}
103
104/**
105 * free_image_page - free page represented by @addr, allocated with
8357376d 106 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
107 */
108
109static inline void free_image_page(void *addr, int clear_nosave_free)
110{
8357376d
RW
111 struct page *page;
112
113 BUG_ON(!virt_addr_valid(addr));
114
115 page = virt_to_page(addr);
116
7be98234 117 swsusp_unset_page_forbidden(page);
f6143aa6 118 if (clear_nosave_free)
7be98234 119 swsusp_unset_page_free(page);
8357376d
RW
120
121 __free_page(page);
f6143aa6
RW
122}
123
b788db79
RW
124/* struct linked_page is used to build chains of pages */
125
126#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
127
128struct linked_page {
129 struct linked_page *next;
130 char data[LINKED_PAGE_DATA_SIZE];
131} __attribute__((packed));
132
133static inline void
134free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135{
136 while (list) {
137 struct linked_page *lp = list->next;
138
139 free_image_page(list, clear_page_nosave);
140 list = lp;
141 }
142}
143
144/**
145 * struct chain_allocator is used for allocating small objects out of
146 * a linked list of pages called 'the chain'.
147 *
148 * The chain grows each time when there is no room for a new object in
149 * the current page. The allocated objects cannot be freed individually.
150 * It is only possible to free them all at once, by freeing the entire
151 * chain.
152 *
153 * NOTE: The chain allocator may be inefficient if the allocated objects
154 * are not much smaller than PAGE_SIZE.
155 */
156
157struct chain_allocator {
158 struct linked_page *chain; /* the chain */
159 unsigned int used_space; /* total size of objects allocated out
160 * of the current page
161 */
162 gfp_t gfp_mask; /* mask for allocating pages */
163 int safe_needed; /* if set, only "safe" pages are allocated */
164};
165
166static void
167chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168{
169 ca->chain = NULL;
170 ca->used_space = LINKED_PAGE_DATA_SIZE;
171 ca->gfp_mask = gfp_mask;
172 ca->safe_needed = safe_needed;
173}
174
175static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176{
177 void *ret;
178
179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 struct linked_page *lp;
181
8357376d 182 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
183 if (!lp)
184 return NULL;
185
186 lp->next = ca->chain;
187 ca->chain = lp;
188 ca->used_space = 0;
189 }
190 ret = ca->chain->data + ca->used_space;
191 ca->used_space += size;
192 return ret;
193}
194
195static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196{
197 free_list_of_pages(ca->chain, clear_page_nosave);
198 memset(ca, 0, sizeof(struct chain_allocator));
199}
200
201/**
202 * Data types related to memory bitmaps.
203 *
204 * Memory bitmap is a structure consiting of many linked lists of
205 * objects. The main list's elements are of type struct zone_bitmap
206 * and each of them corresonds to one zone. For each zone bitmap
207 * object there is a list of objects of type struct bm_block that
208 * represent each blocks of bit chunks in which information is
209 * stored.
210 *
211 * struct memory_bitmap contains a pointer to the main list of zone
212 * bitmap objects, a struct bm_position used for browsing the bitmap,
213 * and a pointer to the list of pages used for allocating all of the
214 * zone bitmap objects and bitmap block objects.
215 *
216 * NOTE: It has to be possible to lay out the bitmap in memory
217 * using only allocations of order 0. Additionally, the bitmap is
218 * designed to work with arbitrary number of zones (this is over the
219 * top for now, but let's avoid making unnecessary assumptions ;-).
220 *
221 * struct zone_bitmap contains a pointer to a list of bitmap block
222 * objects and a pointer to the bitmap block object that has been
223 * most recently used for setting bits. Additionally, it contains the
224 * pfns that correspond to the start and end of the represented zone.
225 *
226 * struct bm_block contains a pointer to the memory page in which
227 * information is stored (in the form of a block of bit chunks
228 * of type unsigned long each). It also contains the pfns that
229 * correspond to the start and end of the represented memory area and
230 * the number of bit chunks in the block.
b788db79
RW
231 */
232
233#define BM_END_OF_MAP (~0UL)
234
235#define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long))
236#define BM_BITS_PER_CHUNK (sizeof(long) << 3)
237#define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
238
239struct bm_block {
240 struct bm_block *next; /* next element of the list */
241 unsigned long start_pfn; /* pfn represented by the first bit */
242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
243 unsigned int size; /* number of bit chunks */
244 unsigned long *data; /* chunks of bits representing pages */
245};
246
247struct zone_bitmap {
248 struct zone_bitmap *next; /* next element of the list */
249 unsigned long start_pfn; /* minimal pfn in this zone */
250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */
251 struct bm_block *bm_blocks; /* list of bitmap blocks */
252 struct bm_block *cur_block; /* recently used bitmap block */
253};
254
255/* strcut bm_position is used for browsing memory bitmaps */
256
257struct bm_position {
258 struct zone_bitmap *zone_bm;
259 struct bm_block *block;
260 int chunk;
261 int bit;
262};
263
264struct memory_bitmap {
265 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */
266 struct linked_page *p_list; /* list of pages used to store zone
267 * bitmap objects and bitmap block
268 * objects
269 */
270 struct bm_position cur; /* most recently used bit position */
271};
272
273/* Functions that operate on memory bitmaps */
274
275static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
276{
277 bm->cur.chunk = 0;
278 bm->cur.bit = -1;
279}
280
281static void memory_bm_position_reset(struct memory_bitmap *bm)
282{
283 struct zone_bitmap *zone_bm;
284
285 zone_bm = bm->zone_bm_list;
286 bm->cur.zone_bm = zone_bm;
287 bm->cur.block = zone_bm->bm_blocks;
288 memory_bm_reset_chunk(bm);
289}
290
291static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
292
293/**
294 * create_bm_block_list - create a list of block bitmap objects
295 */
296
297static inline struct bm_block *
298create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
299{
300 struct bm_block *bblist = NULL;
301
302 while (nr_blocks-- > 0) {
303 struct bm_block *bb;
304
305 bb = chain_alloc(ca, sizeof(struct bm_block));
306 if (!bb)
307 return NULL;
308
309 bb->next = bblist;
310 bblist = bb;
311 }
312 return bblist;
313}
314
315/**
316 * create_zone_bm_list - create a list of zone bitmap objects
317 */
318
319static inline struct zone_bitmap *
320create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
321{
322 struct zone_bitmap *zbmlist = NULL;
323
324 while (nr_zones-- > 0) {
325 struct zone_bitmap *zbm;
326
327 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328 if (!zbm)
329 return NULL;
330
331 zbm->next = zbmlist;
332 zbmlist = zbm;
333 }
334 return zbmlist;
335}
336
337/**
338 * memory_bm_create - allocate memory for a memory bitmap
339 */
340
341static int
342memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
343{
344 struct chain_allocator ca;
345 struct zone *zone;
346 struct zone_bitmap *zone_bm;
347 struct bm_block *bb;
348 unsigned int nr;
349
350 chain_init(&ca, gfp_mask, safe_needed);
351
352 /* Compute the number of zones */
353 nr = 0;
8357376d
RW
354 for_each_zone(zone)
355 if (populated_zone(zone))
b788db79
RW
356 nr++;
357
358 /* Allocate the list of zones bitmap objects */
359 zone_bm = create_zone_bm_list(nr, &ca);
360 bm->zone_bm_list = zone_bm;
361 if (!zone_bm) {
362 chain_free(&ca, PG_UNSAFE_CLEAR);
363 return -ENOMEM;
364 }
365
366 /* Initialize the zone bitmap objects */
8357376d 367 for_each_zone(zone) {
b788db79
RW
368 unsigned long pfn;
369
8357376d 370 if (!populated_zone(zone))
b788db79
RW
371 continue;
372
373 zone_bm->start_pfn = zone->zone_start_pfn;
374 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375 /* Allocate the list of bitmap block objects */
376 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377 bb = create_bm_block_list(nr, &ca);
378 zone_bm->bm_blocks = bb;
379 zone_bm->cur_block = bb;
380 if (!bb)
381 goto Free;
382
383 nr = zone->spanned_pages;
384 pfn = zone->zone_start_pfn;
385 /* Initialize the bitmap block objects */
386 while (bb) {
387 unsigned long *ptr;
388
8357376d 389 ptr = get_image_page(gfp_mask, safe_needed);
b788db79
RW
390 bb->data = ptr;
391 if (!ptr)
392 goto Free;
393
394 bb->start_pfn = pfn;
395 if (nr >= BM_BITS_PER_BLOCK) {
396 pfn += BM_BITS_PER_BLOCK;
397 bb->size = BM_CHUNKS_PER_BLOCK;
398 nr -= BM_BITS_PER_BLOCK;
399 } else {
400 /* This is executed only once in the loop */
401 pfn += nr;
402 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
403 }
404 bb->end_pfn = pfn;
405 bb = bb->next;
406 }
407 zone_bm = zone_bm->next;
408 }
409 bm->p_list = ca.chain;
410 memory_bm_position_reset(bm);
411 return 0;
412
59a49335 413 Free:
b788db79
RW
414 bm->p_list = ca.chain;
415 memory_bm_free(bm, PG_UNSAFE_CLEAR);
416 return -ENOMEM;
417}
418
419/**
420 * memory_bm_free - free memory occupied by the memory bitmap @bm
421 */
422
423static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
424{
425 struct zone_bitmap *zone_bm;
426
427 /* Free the list of bit blocks for each zone_bitmap object */
428 zone_bm = bm->zone_bm_list;
429 while (zone_bm) {
430 struct bm_block *bb;
431
432 bb = zone_bm->bm_blocks;
433 while (bb) {
434 if (bb->data)
435 free_image_page(bb->data, clear_nosave_free);
436 bb = bb->next;
437 }
438 zone_bm = zone_bm->next;
439 }
440 free_list_of_pages(bm->p_list, clear_nosave_free);
441 bm->zone_bm_list = NULL;
442}
443
444/**
74dfd666 445 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
446 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
447 * of @bm->cur_zone_bm are updated.
b788db79
RW
448 */
449
74dfd666
RW
450static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
451 void **addr, unsigned int *bit_nr)
b788db79
RW
452{
453 struct zone_bitmap *zone_bm;
454 struct bm_block *bb;
455
456 /* Check if the pfn is from the current zone */
457 zone_bm = bm->cur.zone_bm;
458 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
459 zone_bm = bm->zone_bm_list;
460 /* We don't assume that the zones are sorted by pfns */
461 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462 zone_bm = zone_bm->next;
74dfd666
RW
463
464 BUG_ON(!zone_bm);
b788db79
RW
465 }
466 bm->cur.zone_bm = zone_bm;
467 }
468 /* Check if the pfn corresponds to the current bitmap block */
469 bb = zone_bm->cur_block;
470 if (pfn < bb->start_pfn)
471 bb = zone_bm->bm_blocks;
472
473 while (pfn >= bb->end_pfn) {
474 bb = bb->next;
74dfd666
RW
475
476 BUG_ON(!bb);
b788db79
RW
477 }
478 zone_bm->cur_block = bb;
479 pfn -= bb->start_pfn;
74dfd666
RW
480 *bit_nr = pfn % BM_BITS_PER_CHUNK;
481 *addr = bb->data + pfn / BM_BITS_PER_CHUNK;
482}
483
484static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
485{
486 void *addr;
487 unsigned int bit;
488
489 memory_bm_find_bit(bm, pfn, &addr, &bit);
490 set_bit(bit, addr);
491}
492
493static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
494{
495 void *addr;
496 unsigned int bit;
497
498 memory_bm_find_bit(bm, pfn, &addr, &bit);
499 clear_bit(bit, addr);
500}
501
502static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
503{
504 void *addr;
505 unsigned int bit;
506
507 memory_bm_find_bit(bm, pfn, &addr, &bit);
508 return test_bit(bit, addr);
b788db79
RW
509}
510
511/* Two auxiliary functions for memory_bm_next_pfn */
512
513/* Find the first set bit in the given chunk, if there is one */
514
515static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
516{
517 bit++;
518 while (bit < BM_BITS_PER_CHUNK) {
519 if (test_bit(bit, chunk_p))
520 return bit;
521
522 bit++;
523 }
524 return -1;
525}
526
527/* Find a chunk containing some bits set in given block of bits */
528
529static inline int next_chunk_in_block(int n, struct bm_block *bb)
530{
531 n++;
532 while (n < bb->size) {
533 if (bb->data[n])
534 return n;
535
536 n++;
537 }
538 return -1;
539}
540
541/**
542 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
543 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
544 * returned.
545 *
546 * It is required to run memory_bm_position_reset() before the first call to
547 * this function.
548 */
549
550static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
551{
552 struct zone_bitmap *zone_bm;
553 struct bm_block *bb;
554 int chunk;
555 int bit;
556
557 do {
558 bb = bm->cur.block;
559 do {
560 chunk = bm->cur.chunk;
561 bit = bm->cur.bit;
562 do {
563 bit = next_bit_in_chunk(bit, bb->data + chunk);
564 if (bit >= 0)
565 goto Return_pfn;
566
567 chunk = next_chunk_in_block(chunk, bb);
568 bit = -1;
569 } while (chunk >= 0);
570 bb = bb->next;
571 bm->cur.block = bb;
572 memory_bm_reset_chunk(bm);
573 } while (bb);
574 zone_bm = bm->cur.zone_bm->next;
575 if (zone_bm) {
576 bm->cur.zone_bm = zone_bm;
577 bm->cur.block = zone_bm->bm_blocks;
578 memory_bm_reset_chunk(bm);
579 }
580 } while (zone_bm);
581 memory_bm_position_reset(bm);
582 return BM_END_OF_MAP;
583
59a49335 584 Return_pfn:
b788db79
RW
585 bm->cur.chunk = chunk;
586 bm->cur.bit = bit;
587 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
588}
589
74dfd666
RW
590/**
591 * This structure represents a range of page frames the contents of which
592 * should not be saved during the suspend.
593 */
594
595struct nosave_region {
596 struct list_head list;
597 unsigned long start_pfn;
598 unsigned long end_pfn;
599};
600
601static LIST_HEAD(nosave_regions);
602
603/**
604 * register_nosave_region - register a range of page frames the contents
605 * of which should not be saved during the suspend (to be used in the early
606 * initialization code)
607 */
608
609void __init
940d67f6
JB
610__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
611 int use_kmalloc)
74dfd666
RW
612{
613 struct nosave_region *region;
614
615 if (start_pfn >= end_pfn)
616 return;
617
618 if (!list_empty(&nosave_regions)) {
619 /* Try to extend the previous region (they should be sorted) */
620 region = list_entry(nosave_regions.prev,
621 struct nosave_region, list);
622 if (region->end_pfn == start_pfn) {
623 region->end_pfn = end_pfn;
624 goto Report;
625 }
626 }
940d67f6
JB
627 if (use_kmalloc) {
628 /* during init, this shouldn't fail */
629 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
630 BUG_ON(!region);
631 } else
632 /* This allocation cannot fail */
633 region = alloc_bootmem_low(sizeof(struct nosave_region));
74dfd666
RW
634 region->start_pfn = start_pfn;
635 region->end_pfn = end_pfn;
636 list_add_tail(&region->list, &nosave_regions);
637 Report:
638 printk("swsusp: Registered nosave memory region: %016lx - %016lx\n",
639 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
640}
641
642/*
643 * Set bits in this map correspond to the page frames the contents of which
644 * should not be saved during the suspend.
645 */
646static struct memory_bitmap *forbidden_pages_map;
647
648/* Set bits in this map correspond to free page frames. */
649static struct memory_bitmap *free_pages_map;
650
651/*
652 * Each page frame allocated for creating the image is marked by setting the
653 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
654 */
655
656void swsusp_set_page_free(struct page *page)
657{
658 if (free_pages_map)
659 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
660}
661
662static int swsusp_page_is_free(struct page *page)
663{
664 return free_pages_map ?
665 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
666}
667
668void swsusp_unset_page_free(struct page *page)
669{
670 if (free_pages_map)
671 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
672}
673
674static void swsusp_set_page_forbidden(struct page *page)
675{
676 if (forbidden_pages_map)
677 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
678}
679
680int swsusp_page_is_forbidden(struct page *page)
681{
682 return forbidden_pages_map ?
683 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
684}
685
686static void swsusp_unset_page_forbidden(struct page *page)
687{
688 if (forbidden_pages_map)
689 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
690}
691
692/**
693 * mark_nosave_pages - set bits corresponding to the page frames the
694 * contents of which should not be saved in a given bitmap.
695 */
696
697static void mark_nosave_pages(struct memory_bitmap *bm)
698{
699 struct nosave_region *region;
700
701 if (list_empty(&nosave_regions))
702 return;
703
704 list_for_each_entry(region, &nosave_regions, list) {
705 unsigned long pfn;
706
707 printk("swsusp: Marking nosave pages: %016lx - %016lx\n",
708 region->start_pfn << PAGE_SHIFT,
709 region->end_pfn << PAGE_SHIFT);
710
711 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
c5a69adf
RW
712 if (pfn_valid(pfn))
713 memory_bm_set_bit(bm, pfn);
74dfd666
RW
714 }
715}
716
717/**
718 * create_basic_memory_bitmaps - create bitmaps needed for marking page
719 * frames that should not be saved and free page frames. The pointers
720 * forbidden_pages_map and free_pages_map are only modified if everything
721 * goes well, because we don't want the bits to be used before both bitmaps
722 * are set up.
723 */
724
725int create_basic_memory_bitmaps(void)
726{
727 struct memory_bitmap *bm1, *bm2;
728 int error = 0;
729
730 BUG_ON(forbidden_pages_map || free_pages_map);
731
0709db60 732 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
733 if (!bm1)
734 return -ENOMEM;
735
0709db60 736 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
737 if (error)
738 goto Free_first_object;
739
0709db60 740 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
741 if (!bm2)
742 goto Free_first_bitmap;
743
0709db60 744 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
745 if (error)
746 goto Free_second_object;
747
748 forbidden_pages_map = bm1;
749 free_pages_map = bm2;
750 mark_nosave_pages(forbidden_pages_map);
751
752 printk("swsusp: Basic memory bitmaps created\n");
753
754 return 0;
755
756 Free_second_object:
757 kfree(bm2);
758 Free_first_bitmap:
759 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
760 Free_first_object:
761 kfree(bm1);
762 return -ENOMEM;
763}
764
765/**
766 * free_basic_memory_bitmaps - free memory bitmaps allocated by
767 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
768 * so that the bitmaps themselves are not referred to while they are being
769 * freed.
770 */
771
772void free_basic_memory_bitmaps(void)
773{
774 struct memory_bitmap *bm1, *bm2;
775
776 BUG_ON(!(forbidden_pages_map && free_pages_map));
777
778 bm1 = forbidden_pages_map;
779 bm2 = free_pages_map;
780 forbidden_pages_map = NULL;
781 free_pages_map = NULL;
782 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
783 kfree(bm1);
784 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
785 kfree(bm2);
786
787 printk("swsusp: Basic memory bitmaps freed\n");
788}
789
b788db79
RW
790/**
791 * snapshot_additional_pages - estimate the number of additional pages
792 * be needed for setting up the suspend image data structures for given
793 * zone (usually the returned value is greater than the exact number)
794 */
795
796unsigned int snapshot_additional_pages(struct zone *zone)
797{
798 unsigned int res;
799
800 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
801 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
8357376d 802 return 2 * res;
b788db79
RW
803}
804
8357376d
RW
805#ifdef CONFIG_HIGHMEM
806/**
807 * count_free_highmem_pages - compute the total number of free highmem
808 * pages, system-wide.
809 */
810
811static unsigned int count_free_highmem_pages(void)
812{
813 struct zone *zone;
814 unsigned int cnt = 0;
815
816 for_each_zone(zone)
817 if (populated_zone(zone) && is_highmem(zone))
d23ad423 818 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
819
820 return cnt;
821}
822
823/**
824 * saveable_highmem_page - Determine whether a highmem page should be
825 * included in the suspend image.
826 *
827 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
828 * and it isn't a part of a free chunk of pages.
829 */
830
831static struct page *saveable_highmem_page(unsigned long pfn)
832{
833 struct page *page;
834
835 if (!pfn_valid(pfn))
836 return NULL;
837
838 page = pfn_to_page(pfn);
839
840 BUG_ON(!PageHighMem(page));
841
7be98234
RW
842 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
843 PageReserved(page))
8357376d
RW
844 return NULL;
845
846 return page;
847}
848
849/**
850 * count_highmem_pages - compute the total number of saveable highmem
851 * pages.
852 */
853
854unsigned int count_highmem_pages(void)
855{
856 struct zone *zone;
857 unsigned int n = 0;
858
859 for_each_zone(zone) {
860 unsigned long pfn, max_zone_pfn;
861
862 if (!is_highmem(zone))
863 continue;
864
865 mark_free_pages(zone);
866 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
867 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
868 if (saveable_highmem_page(pfn))
869 n++;
870 }
871 return n;
872}
873#else
874static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
875static inline unsigned int count_highmem_pages(void) { return 0; }
876#endif /* CONFIG_HIGHMEM */
877
25761b6e 878/**
8357376d
RW
879 * saveable - Determine whether a non-highmem page should be included in
880 * the suspend image.
25761b6e 881 *
8357376d
RW
882 * We should save the page if it isn't Nosave, and is not in the range
883 * of pages statically defined as 'unsaveable', and it isn't a part of
884 * a free chunk of pages.
25761b6e
RW
885 */
886
ae83c5ee 887static struct page *saveable_page(unsigned long pfn)
25761b6e 888{
de491861 889 struct page *page;
25761b6e
RW
890
891 if (!pfn_valid(pfn))
ae83c5ee 892 return NULL;
25761b6e
RW
893
894 page = pfn_to_page(pfn);
ae83c5ee 895
8357376d
RW
896 BUG_ON(PageHighMem(page));
897
7be98234 898 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 899 return NULL;
8357376d 900
72a97e08 901 if (PageReserved(page) && pfn_is_nosave(pfn))
ae83c5ee 902 return NULL;
25761b6e 903
ae83c5ee 904 return page;
25761b6e
RW
905}
906
8357376d
RW
907/**
908 * count_data_pages - compute the total number of saveable non-highmem
909 * pages.
910 */
911
72a97e08 912unsigned int count_data_pages(void)
25761b6e
RW
913{
914 struct zone *zone;
ae83c5ee 915 unsigned long pfn, max_zone_pfn;
dc19d507 916 unsigned int n = 0;
25761b6e 917
8357376d 918 for_each_zone(zone) {
25761b6e
RW
919 if (is_highmem(zone))
920 continue;
8357376d 921
25761b6e 922 mark_free_pages(zone);
ae83c5ee
RW
923 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
924 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d
RW
925 if(saveable_page(pfn))
926 n++;
25761b6e 927 }
a0f49651 928 return n;
25761b6e
RW
929}
930
8357376d
RW
931/* This is needed, because copy_page and memcpy are not usable for copying
932 * task structs.
933 */
934static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
935{
936 int n;
937
f623f0db
RW
938 for (n = PAGE_SIZE / sizeof(long); n; n--)
939 *dst++ = *src++;
940}
941
8357376d
RW
942#ifdef CONFIG_HIGHMEM
943static inline struct page *
944page_is_saveable(struct zone *zone, unsigned long pfn)
945{
946 return is_highmem(zone) ?
947 saveable_highmem_page(pfn) : saveable_page(pfn);
948}
949
950static inline void
951copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
952{
953 struct page *s_page, *d_page;
954 void *src, *dst;
955
956 s_page = pfn_to_page(src_pfn);
957 d_page = pfn_to_page(dst_pfn);
958 if (PageHighMem(s_page)) {
959 src = kmap_atomic(s_page, KM_USER0);
960 dst = kmap_atomic(d_page, KM_USER1);
961 do_copy_page(dst, src);
962 kunmap_atomic(src, KM_USER0);
963 kunmap_atomic(dst, KM_USER1);
964 } else {
965 src = page_address(s_page);
966 if (PageHighMem(d_page)) {
967 /* Page pointed to by src may contain some kernel
968 * data modified by kmap_atomic()
969 */
970 do_copy_page(buffer, src);
971 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
972 memcpy(dst, buffer, PAGE_SIZE);
973 kunmap_atomic(dst, KM_USER0);
974 } else {
975 dst = page_address(d_page);
976 do_copy_page(dst, src);
977 }
978 }
979}
980#else
981#define page_is_saveable(zone, pfn) saveable_page(pfn)
982
983static inline void
984copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
985{
986 do_copy_page(page_address(pfn_to_page(dst_pfn)),
987 page_address(pfn_to_page(src_pfn)));
988}
989#endif /* CONFIG_HIGHMEM */
990
b788db79
RW
991static void
992copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
993{
994 struct zone *zone;
b788db79 995 unsigned long pfn;
25761b6e 996
8357376d 997 for_each_zone(zone) {
b788db79
RW
998 unsigned long max_zone_pfn;
999
25761b6e 1000 mark_free_pages(zone);
ae83c5ee 1001 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
b788db79 1002 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1003 if (page_is_saveable(zone, pfn))
b788db79 1004 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1005 }
b788db79
RW
1006 memory_bm_position_reset(orig_bm);
1007 memory_bm_position_reset(copy_bm);
1008 do {
1009 pfn = memory_bm_next_pfn(orig_bm);
8357376d
RW
1010 if (likely(pfn != BM_END_OF_MAP))
1011 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
b788db79 1012 } while (pfn != BM_END_OF_MAP);
25761b6e
RW
1013}
1014
8357376d
RW
1015/* Total number of image pages */
1016static unsigned int nr_copy_pages;
1017/* Number of pages needed for saving the original pfns of the image pages */
1018static unsigned int nr_meta_pages;
1019
25761b6e 1020/**
940864dd 1021 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1022 *
940864dd
RW
1023 * Suspend pages are alocated before the atomic copy is made, so we
1024 * need to release them after the resume.
25761b6e
RW
1025 */
1026
1027void swsusp_free(void)
1028{
1029 struct zone *zone;
ae83c5ee 1030 unsigned long pfn, max_zone_pfn;
25761b6e
RW
1031
1032 for_each_zone(zone) {
ae83c5ee
RW
1033 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1034 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1035 if (pfn_valid(pfn)) {
1036 struct page *page = pfn_to_page(pfn);
1037
7be98234
RW
1038 if (swsusp_page_is_forbidden(page) &&
1039 swsusp_page_is_free(page)) {
1040 swsusp_unset_page_forbidden(page);
1041 swsusp_unset_page_free(page);
8357376d 1042 __free_page(page);
25761b6e
RW
1043 }
1044 }
1045 }
f577eb30
RW
1046 nr_copy_pages = 0;
1047 nr_meta_pages = 0;
75534b50 1048 restore_pblist = NULL;
6e1819d6 1049 buffer = NULL;
25761b6e
RW
1050}
1051
8357376d
RW
1052#ifdef CONFIG_HIGHMEM
1053/**
1054 * count_pages_for_highmem - compute the number of non-highmem pages
1055 * that will be necessary for creating copies of highmem pages.
1056 */
1057
1058static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1059{
1060 unsigned int free_highmem = count_free_highmem_pages();
1061
1062 if (free_highmem >= nr_highmem)
1063 nr_highmem = 0;
1064 else
1065 nr_highmem -= free_highmem;
1066
1067 return nr_highmem;
1068}
1069#else
1070static unsigned int
1071count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1072#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1073
1074/**
8357376d
RW
1075 * enough_free_mem - Make sure we have enough free memory for the
1076 * snapshot image.
25761b6e
RW
1077 */
1078
8357376d 1079static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1080{
e5e2fa78 1081 struct zone *zone;
940864dd 1082 unsigned int free = 0, meta = 0;
e5e2fa78 1083
8357376d
RW
1084 for_each_zone(zone) {
1085 meta += snapshot_additional_pages(zone);
1086 if (!is_highmem(zone))
d23ad423 1087 free += zone_page_state(zone, NR_FREE_PAGES);
8357376d 1088 }
940864dd 1089
8357376d
RW
1090 nr_pages += count_pages_for_highmem(nr_highmem);
1091 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
940864dd
RW
1092 nr_pages, PAGES_FOR_IO, meta, free);
1093
1094 return free > nr_pages + PAGES_FOR_IO + meta;
25761b6e
RW
1095}
1096
8357376d
RW
1097#ifdef CONFIG_HIGHMEM
1098/**
1099 * get_highmem_buffer - if there are some highmem pages in the suspend
1100 * image, we may need the buffer to copy them and/or load their data.
1101 */
1102
1103static inline int get_highmem_buffer(int safe_needed)
1104{
1105 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1106 return buffer ? 0 : -ENOMEM;
1107}
1108
1109/**
1110 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1111 * Try to allocate as many pages as needed, but if the number of free
1112 * highmem pages is lesser than that, allocate them all.
1113 */
1114
1115static inline unsigned int
1116alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1117{
1118 unsigned int to_alloc = count_free_highmem_pages();
1119
1120 if (to_alloc > nr_highmem)
1121 to_alloc = nr_highmem;
1122
1123 nr_highmem -= to_alloc;
1124 while (to_alloc-- > 0) {
1125 struct page *page;
1126
1127 page = alloc_image_page(__GFP_HIGHMEM);
1128 memory_bm_set_bit(bm, page_to_pfn(page));
1129 }
1130 return nr_highmem;
1131}
1132#else
1133static inline int get_highmem_buffer(int safe_needed) { return 0; }
1134
1135static inline unsigned int
1136alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1137#endif /* CONFIG_HIGHMEM */
1138
1139/**
1140 * swsusp_alloc - allocate memory for the suspend image
1141 *
1142 * We first try to allocate as many highmem pages as there are
1143 * saveable highmem pages in the system. If that fails, we allocate
1144 * non-highmem pages for the copies of the remaining highmem ones.
1145 *
1146 * In this approach it is likely that the copies of highmem pages will
1147 * also be located in the high memory, because of the way in which
1148 * copy_data_pages() works.
1149 */
1150
b788db79
RW
1151static int
1152swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1153 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1154{
b788db79 1155 int error;
054bd4c1 1156
b788db79
RW
1157 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1158 if (error)
1159 goto Free;
25761b6e 1160
b788db79
RW
1161 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1162 if (error)
1163 goto Free;
25761b6e 1164
8357376d
RW
1165 if (nr_highmem > 0) {
1166 error = get_highmem_buffer(PG_ANY);
1167 if (error)
1168 goto Free;
1169
1170 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1171 }
b788db79 1172 while (nr_pages-- > 0) {
8357376d
RW
1173 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1174
b788db79
RW
1175 if (!page)
1176 goto Free;
25761b6e 1177
b788db79 1178 memory_bm_set_bit(copy_bm, page_to_pfn(page));
25761b6e 1179 }
b788db79 1180 return 0;
25761b6e 1181
59a49335 1182 Free:
b788db79
RW
1183 swsusp_free();
1184 return -ENOMEM;
25761b6e
RW
1185}
1186
8357376d
RW
1187/* Memory bitmap used for marking saveable pages (during suspend) or the
1188 * suspend image pages (during resume)
1189 */
b788db79 1190static struct memory_bitmap orig_bm;
8357376d
RW
1191/* Memory bitmap used on suspend for marking allocated pages that will contain
1192 * the copies of saveable pages. During resume it is initially used for
1193 * marking the suspend image pages, but then its set bits are duplicated in
1194 * @orig_bm and it is released. Next, on systems with high memory, it may be
1195 * used for marking "safe" highmem pages, but it has to be reinitialized for
1196 * this purpose.
b788db79
RW
1197 */
1198static struct memory_bitmap copy_bm;
1199
2e32a43e 1200asmlinkage int swsusp_save(void)
25761b6e 1201{
8357376d 1202 unsigned int nr_pages, nr_highmem;
25761b6e 1203
8357376d 1204 printk("swsusp: critical section: \n");
25761b6e
RW
1205
1206 drain_local_pages();
a0f49651 1207 nr_pages = count_data_pages();
8357376d
RW
1208 nr_highmem = count_highmem_pages();
1209 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1210
8357376d 1211 if (!enough_free_mem(nr_pages, nr_highmem)) {
25761b6e
RW
1212 printk(KERN_ERR "swsusp: Not enough free memory\n");
1213 return -ENOMEM;
1214 }
1215
8357376d
RW
1216 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1217 printk(KERN_ERR "swsusp: Memory allocation failed\n");
a0f49651 1218 return -ENOMEM;
8357376d 1219 }
25761b6e
RW
1220
1221 /* During allocating of suspend pagedir, new cold pages may appear.
1222 * Kill them.
1223 */
1224 drain_local_pages();
b788db79 1225 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1226
1227 /*
1228 * End of critical section. From now on, we can write to memory,
1229 * but we should not touch disk. This specially means we must _not_
1230 * touch swap space! Except we must write out our image of course.
1231 */
1232
8357376d 1233 nr_pages += nr_highmem;
a0f49651 1234 nr_copy_pages = nr_pages;
8357376d 1235 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1236
d60846c4 1237 printk("swsusp: critical section: done (%d pages copied)\n", nr_pages);
8357376d 1238
25761b6e
RW
1239 return 0;
1240}
f577eb30
RW
1241
1242static void init_header(struct swsusp_info *info)
1243{
1244 memset(info, 0, sizeof(struct swsusp_info));
1245 info->version_code = LINUX_VERSION_CODE;
1246 info->num_physpages = num_physpages;
96b644bd 1247 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30
RW
1248 info->cpus = num_online_cpus();
1249 info->image_pages = nr_copy_pages;
1250 info->pages = nr_copy_pages + nr_meta_pages + 1;
6e1819d6
RW
1251 info->size = info->pages;
1252 info->size <<= PAGE_SHIFT;
f577eb30
RW
1253}
1254
1255/**
940864dd
RW
1256 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1257 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1258 */
1259
b788db79 1260static inline void
940864dd 1261pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1262{
1263 int j;
1264
b788db79 1265 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1266 buf[j] = memory_bm_next_pfn(bm);
1267 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1268 break;
f577eb30 1269 }
f577eb30
RW
1270}
1271
1272/**
1273 * snapshot_read_next - used for reading the system memory snapshot.
1274 *
1275 * On the first call to it @handle should point to a zeroed
1276 * snapshot_handle structure. The structure gets updated and a pointer
1277 * to it should be passed to this function every next time.
1278 *
1279 * The @count parameter should contain the number of bytes the caller
1280 * wants to read from the snapshot. It must not be zero.
1281 *
1282 * On success the function returns a positive number. Then, the caller
1283 * is allowed to read up to the returned number of bytes from the memory
1284 * location computed by the data_of() macro. The number returned
1285 * may be smaller than @count, but this only happens if the read would
1286 * cross a page boundary otherwise.
1287 *
1288 * The function returns 0 to indicate the end of data stream condition,
1289 * and a negative number is returned on error. In such cases the
1290 * structure pointed to by @handle is not updated and should not be used
1291 * any more.
1292 */
1293
1294int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1295{
fb13a28b 1296 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1297 return 0;
b788db79 1298
f577eb30
RW
1299 if (!buffer) {
1300 /* This makes the buffer be freed by swsusp_free() */
8357376d 1301 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1302 if (!buffer)
1303 return -ENOMEM;
1304 }
1305 if (!handle->offset) {
1306 init_header((struct swsusp_info *)buffer);
1307 handle->buffer = buffer;
b788db79
RW
1308 memory_bm_position_reset(&orig_bm);
1309 memory_bm_position_reset(&copy_bm);
f577eb30 1310 }
fb13a28b
RW
1311 if (handle->prev < handle->cur) {
1312 if (handle->cur <= nr_meta_pages) {
b788db79 1313 memset(buffer, 0, PAGE_SIZE);
940864dd 1314 pack_pfns(buffer, &orig_bm);
f577eb30 1315 } else {
8357376d 1316 struct page *page;
b788db79 1317
8357376d
RW
1318 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1319 if (PageHighMem(page)) {
1320 /* Highmem pages are copied to the buffer,
1321 * because we can't return with a kmapped
1322 * highmem page (we may not be called again).
1323 */
1324 void *kaddr;
1325
1326 kaddr = kmap_atomic(page, KM_USER0);
1327 memcpy(buffer, kaddr, PAGE_SIZE);
1328 kunmap_atomic(kaddr, KM_USER0);
1329 handle->buffer = buffer;
1330 } else {
1331 handle->buffer = page_address(page);
1332 }
f577eb30 1333 }
fb13a28b 1334 handle->prev = handle->cur;
f577eb30 1335 }
fb13a28b
RW
1336 handle->buf_offset = handle->cur_offset;
1337 if (handle->cur_offset + count >= PAGE_SIZE) {
1338 count = PAGE_SIZE - handle->cur_offset;
1339 handle->cur_offset = 0;
1340 handle->cur++;
f577eb30 1341 } else {
fb13a28b 1342 handle->cur_offset += count;
f577eb30
RW
1343 }
1344 handle->offset += count;
1345 return count;
1346}
1347
1348/**
1349 * mark_unsafe_pages - mark the pages that cannot be used for storing
1350 * the image during resume, because they conflict with the pages that
1351 * had been used before suspend
1352 */
1353
940864dd 1354static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
1355{
1356 struct zone *zone;
ae83c5ee 1357 unsigned long pfn, max_zone_pfn;
f577eb30
RW
1358
1359 /* Clear page flags */
8357376d 1360 for_each_zone(zone) {
ae83c5ee
RW
1361 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1362 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1363 if (pfn_valid(pfn))
7be98234 1364 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
1365 }
1366
940864dd
RW
1367 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1368 memory_bm_position_reset(bm);
1369 do {
1370 pfn = memory_bm_next_pfn(bm);
1371 if (likely(pfn != BM_END_OF_MAP)) {
1372 if (likely(pfn_valid(pfn)))
7be98234 1373 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
1374 else
1375 return -EFAULT;
1376 }
1377 } while (pfn != BM_END_OF_MAP);
f577eb30 1378
940864dd 1379 allocated_unsafe_pages = 0;
968808b8 1380
f577eb30
RW
1381 return 0;
1382}
1383
940864dd
RW
1384static void
1385duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 1386{
940864dd
RW
1387 unsigned long pfn;
1388
1389 memory_bm_position_reset(src);
1390 pfn = memory_bm_next_pfn(src);
1391 while (pfn != BM_END_OF_MAP) {
1392 memory_bm_set_bit(dst, pfn);
1393 pfn = memory_bm_next_pfn(src);
f577eb30
RW
1394 }
1395}
1396
940864dd 1397static inline int check_header(struct swsusp_info *info)
f577eb30
RW
1398{
1399 char *reason = NULL;
1400
1401 if (info->version_code != LINUX_VERSION_CODE)
1402 reason = "kernel version";
1403 if (info->num_physpages != num_physpages)
1404 reason = "memory size";
96b644bd 1405 if (strcmp(info->uts.sysname,init_utsname()->sysname))
f577eb30 1406 reason = "system type";
96b644bd 1407 if (strcmp(info->uts.release,init_utsname()->release))
f577eb30 1408 reason = "kernel release";
96b644bd 1409 if (strcmp(info->uts.version,init_utsname()->version))
f577eb30 1410 reason = "version";
96b644bd 1411 if (strcmp(info->uts.machine,init_utsname()->machine))
f577eb30
RW
1412 reason = "machine";
1413 if (reason) {
1414 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1415 return -EPERM;
1416 }
1417 return 0;
1418}
1419
1420/**
1421 * load header - check the image header and copy data from it
1422 */
1423
940864dd
RW
1424static int
1425load_header(struct swsusp_info *info)
f577eb30
RW
1426{
1427 int error;
f577eb30 1428
940864dd 1429 restore_pblist = NULL;
f577eb30
RW
1430 error = check_header(info);
1431 if (!error) {
f577eb30
RW
1432 nr_copy_pages = info->image_pages;
1433 nr_meta_pages = info->pages - info->image_pages - 1;
1434 }
1435 return error;
1436}
1437
1438/**
940864dd
RW
1439 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1440 * the corresponding bit in the memory bitmap @bm
f577eb30
RW
1441 */
1442
940864dd
RW
1443static inline void
1444unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1445{
1446 int j;
1447
940864dd
RW
1448 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1449 if (unlikely(buf[j] == BM_END_OF_MAP))
1450 break;
1451
1452 memory_bm_set_bit(bm, buf[j]);
f577eb30 1453 }
f577eb30
RW
1454}
1455
8357376d
RW
1456/* List of "safe" pages that may be used to store data loaded from the suspend
1457 * image
1458 */
1459static struct linked_page *safe_pages_list;
1460
1461#ifdef CONFIG_HIGHMEM
1462/* struct highmem_pbe is used for creating the list of highmem pages that
1463 * should be restored atomically during the resume from disk, because the page
1464 * frames they have occupied before the suspend are in use.
1465 */
1466struct highmem_pbe {
1467 struct page *copy_page; /* data is here now */
1468 struct page *orig_page; /* data was here before the suspend */
1469 struct highmem_pbe *next;
1470};
1471
1472/* List of highmem PBEs needed for restoring the highmem pages that were
1473 * allocated before the suspend and included in the suspend image, but have
1474 * also been allocated by the "resume" kernel, so their contents cannot be
1475 * written directly to their "original" page frames.
1476 */
1477static struct highmem_pbe *highmem_pblist;
1478
1479/**
1480 * count_highmem_image_pages - compute the number of highmem pages in the
1481 * suspend image. The bits in the memory bitmap @bm that correspond to the
1482 * image pages are assumed to be set.
1483 */
1484
1485static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1486{
1487 unsigned long pfn;
1488 unsigned int cnt = 0;
1489
1490 memory_bm_position_reset(bm);
1491 pfn = memory_bm_next_pfn(bm);
1492 while (pfn != BM_END_OF_MAP) {
1493 if (PageHighMem(pfn_to_page(pfn)))
1494 cnt++;
1495
1496 pfn = memory_bm_next_pfn(bm);
1497 }
1498 return cnt;
1499}
1500
1501/**
1502 * prepare_highmem_image - try to allocate as many highmem pages as
1503 * there are highmem image pages (@nr_highmem_p points to the variable
1504 * containing the number of highmem image pages). The pages that are
1505 * "safe" (ie. will not be overwritten when the suspend image is
1506 * restored) have the corresponding bits set in @bm (it must be
1507 * unitialized).
1508 *
1509 * NOTE: This function should not be called if there are no highmem
1510 * image pages.
1511 */
1512
1513static unsigned int safe_highmem_pages;
1514
1515static struct memory_bitmap *safe_highmem_bm;
1516
1517static int
1518prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1519{
1520 unsigned int to_alloc;
1521
1522 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1523 return -ENOMEM;
1524
1525 if (get_highmem_buffer(PG_SAFE))
1526 return -ENOMEM;
1527
1528 to_alloc = count_free_highmem_pages();
1529 if (to_alloc > *nr_highmem_p)
1530 to_alloc = *nr_highmem_p;
1531 else
1532 *nr_highmem_p = to_alloc;
1533
1534 safe_highmem_pages = 0;
1535 while (to_alloc-- > 0) {
1536 struct page *page;
1537
1538 page = alloc_page(__GFP_HIGHMEM);
7be98234 1539 if (!swsusp_page_is_free(page)) {
8357376d
RW
1540 /* The page is "safe", set its bit the bitmap */
1541 memory_bm_set_bit(bm, page_to_pfn(page));
1542 safe_highmem_pages++;
1543 }
1544 /* Mark the page as allocated */
7be98234
RW
1545 swsusp_set_page_forbidden(page);
1546 swsusp_set_page_free(page);
8357376d
RW
1547 }
1548 memory_bm_position_reset(bm);
1549 safe_highmem_bm = bm;
1550 return 0;
1551}
1552
1553/**
1554 * get_highmem_page_buffer - for given highmem image page find the buffer
1555 * that suspend_write_next() should set for its caller to write to.
1556 *
1557 * If the page is to be saved to its "original" page frame or a copy of
1558 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1559 * the copy of the page is to be made in normal memory, so the address of
1560 * the copy is returned.
1561 *
1562 * If @buffer is returned, the caller of suspend_write_next() will write
1563 * the page's contents to @buffer, so they will have to be copied to the
1564 * right location on the next call to suspend_write_next() and it is done
1565 * with the help of copy_last_highmem_page(). For this purpose, if
1566 * @buffer is returned, @last_highmem page is set to the page to which
1567 * the data will have to be copied from @buffer.
1568 */
1569
1570static struct page *last_highmem_page;
1571
1572static void *
1573get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1574{
1575 struct highmem_pbe *pbe;
1576 void *kaddr;
1577
7be98234 1578 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
1579 /* We have allocated the "original" page frame and we can
1580 * use it directly to store the loaded page.
1581 */
1582 last_highmem_page = page;
1583 return buffer;
1584 }
1585 /* The "original" page frame has not been allocated and we have to
1586 * use a "safe" page frame to store the loaded page.
1587 */
1588 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1589 if (!pbe) {
1590 swsusp_free();
1591 return NULL;
1592 }
1593 pbe->orig_page = page;
1594 if (safe_highmem_pages > 0) {
1595 struct page *tmp;
1596
1597 /* Copy of the page will be stored in high memory */
1598 kaddr = buffer;
1599 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1600 safe_highmem_pages--;
1601 last_highmem_page = tmp;
1602 pbe->copy_page = tmp;
1603 } else {
1604 /* Copy of the page will be stored in normal memory */
1605 kaddr = safe_pages_list;
1606 safe_pages_list = safe_pages_list->next;
1607 pbe->copy_page = virt_to_page(kaddr);
1608 }
1609 pbe->next = highmem_pblist;
1610 highmem_pblist = pbe;
1611 return kaddr;
1612}
1613
1614/**
1615 * copy_last_highmem_page - copy the contents of a highmem image from
1616 * @buffer, where the caller of snapshot_write_next() has place them,
1617 * to the right location represented by @last_highmem_page .
1618 */
1619
1620static void copy_last_highmem_page(void)
1621{
1622 if (last_highmem_page) {
1623 void *dst;
1624
1625 dst = kmap_atomic(last_highmem_page, KM_USER0);
1626 memcpy(dst, buffer, PAGE_SIZE);
1627 kunmap_atomic(dst, KM_USER0);
1628 last_highmem_page = NULL;
1629 }
1630}
1631
1632static inline int last_highmem_page_copied(void)
1633{
1634 return !last_highmem_page;
1635}
1636
1637static inline void free_highmem_data(void)
1638{
1639 if (safe_highmem_bm)
1640 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1641
1642 if (buffer)
1643 free_image_page(buffer, PG_UNSAFE_CLEAR);
1644}
1645#else
1646static inline int get_safe_write_buffer(void) { return 0; }
1647
1648static unsigned int
1649count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1650
1651static inline int
1652prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1653{
1654 return 0;
1655}
1656
1657static inline void *
1658get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1659{
1660 return NULL;
1661}
1662
1663static inline void copy_last_highmem_page(void) {}
1664static inline int last_highmem_page_copied(void) { return 1; }
1665static inline void free_highmem_data(void) {}
1666#endif /* CONFIG_HIGHMEM */
1667
f577eb30 1668/**
940864dd
RW
1669 * prepare_image - use the memory bitmap @bm to mark the pages that will
1670 * be overwritten in the process of restoring the system memory state
1671 * from the suspend image ("unsafe" pages) and allocate memory for the
1672 * image.
968808b8 1673 *
940864dd
RW
1674 * The idea is to allocate a new memory bitmap first and then allocate
1675 * as many pages as needed for the image data, but not to assign these
1676 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
1677 * allocated and create a lists of "safe" pages that will be used
1678 * later. On systems with high memory a list of "safe" highmem pages is
1679 * also created.
f577eb30
RW
1680 */
1681
940864dd
RW
1682#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1683
940864dd
RW
1684static int
1685prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 1686{
8357376d 1687 unsigned int nr_pages, nr_highmem;
940864dd
RW
1688 struct linked_page *sp_list, *lp;
1689 int error;
f577eb30 1690
8357376d
RW
1691 /* If there is no highmem, the buffer will not be necessary */
1692 free_image_page(buffer, PG_UNSAFE_CLEAR);
1693 buffer = NULL;
1694
1695 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
1696 error = mark_unsafe_pages(bm);
1697 if (error)
1698 goto Free;
1699
1700 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1701 if (error)
1702 goto Free;
1703
1704 duplicate_memory_bitmap(new_bm, bm);
1705 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
1706 if (nr_highmem > 0) {
1707 error = prepare_highmem_image(bm, &nr_highmem);
1708 if (error)
1709 goto Free;
1710 }
940864dd
RW
1711 /* Reserve some safe pages for potential later use.
1712 *
1713 * NOTE: This way we make sure there will be enough safe pages for the
1714 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1715 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1716 */
1717 sp_list = NULL;
1718 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 1719 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
1720 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1721 while (nr_pages > 0) {
8357376d 1722 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 1723 if (!lp) {
f577eb30 1724 error = -ENOMEM;
940864dd
RW
1725 goto Free;
1726 }
1727 lp->next = sp_list;
1728 sp_list = lp;
1729 nr_pages--;
f577eb30 1730 }
940864dd
RW
1731 /* Preallocate memory for the image */
1732 safe_pages_list = NULL;
8357376d 1733 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
1734 while (nr_pages > 0) {
1735 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1736 if (!lp) {
1737 error = -ENOMEM;
1738 goto Free;
1739 }
7be98234 1740 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
1741 /* The page is "safe", add it to the list */
1742 lp->next = safe_pages_list;
1743 safe_pages_list = lp;
968808b8 1744 }
940864dd 1745 /* Mark the page as allocated */
7be98234
RW
1746 swsusp_set_page_forbidden(virt_to_page(lp));
1747 swsusp_set_page_free(virt_to_page(lp));
940864dd 1748 nr_pages--;
968808b8 1749 }
940864dd
RW
1750 /* Free the reserved safe pages so that chain_alloc() can use them */
1751 while (sp_list) {
1752 lp = sp_list->next;
1753 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1754 sp_list = lp;
f577eb30 1755 }
940864dd
RW
1756 return 0;
1757
59a49335 1758 Free:
940864dd 1759 swsusp_free();
f577eb30
RW
1760 return error;
1761}
1762
940864dd
RW
1763/**
1764 * get_buffer - compute the address that snapshot_write_next() should
1765 * set for its caller to write to.
1766 */
1767
1768static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 1769{
940864dd
RW
1770 struct pbe *pbe;
1771 struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
968808b8 1772
8357376d
RW
1773 if (PageHighMem(page))
1774 return get_highmem_page_buffer(page, ca);
1775
7be98234 1776 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
1777 /* We have allocated the "original" page frame and we can
1778 * use it directly to store the loaded page.
968808b8 1779 */
940864dd
RW
1780 return page_address(page);
1781
1782 /* The "original" page frame has not been allocated and we have to
1783 * use a "safe" page frame to store the loaded page.
968808b8 1784 */
940864dd
RW
1785 pbe = chain_alloc(ca, sizeof(struct pbe));
1786 if (!pbe) {
1787 swsusp_free();
1788 return NULL;
1789 }
8357376d
RW
1790 pbe->orig_address = page_address(page);
1791 pbe->address = safe_pages_list;
940864dd
RW
1792 safe_pages_list = safe_pages_list->next;
1793 pbe->next = restore_pblist;
1794 restore_pblist = pbe;
8357376d 1795 return pbe->address;
968808b8
RW
1796}
1797
f577eb30
RW
1798/**
1799 * snapshot_write_next - used for writing the system memory snapshot.
1800 *
1801 * On the first call to it @handle should point to a zeroed
1802 * snapshot_handle structure. The structure gets updated and a pointer
1803 * to it should be passed to this function every next time.
1804 *
1805 * The @count parameter should contain the number of bytes the caller
1806 * wants to write to the image. It must not be zero.
1807 *
1808 * On success the function returns a positive number. Then, the caller
1809 * is allowed to write up to the returned number of bytes to the memory
1810 * location computed by the data_of() macro. The number returned
1811 * may be smaller than @count, but this only happens if the write would
1812 * cross a page boundary otherwise.
1813 *
1814 * The function returns 0 to indicate the "end of file" condition,
1815 * and a negative number is returned on error. In such cases the
1816 * structure pointed to by @handle is not updated and should not be used
1817 * any more.
1818 */
1819
1820int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1821{
940864dd 1822 static struct chain_allocator ca;
f577eb30
RW
1823 int error = 0;
1824
940864dd 1825 /* Check if we have already loaded the entire image */
fb13a28b 1826 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1827 return 0;
940864dd 1828
8357376d
RW
1829 if (handle->offset == 0) {
1830 if (!buffer)
1831 /* This makes the buffer be freed by swsusp_free() */
1832 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1833
f577eb30
RW
1834 if (!buffer)
1835 return -ENOMEM;
8357376d 1836
f577eb30 1837 handle->buffer = buffer;
8357376d 1838 }
546e0d27 1839 handle->sync_read = 1;
fb13a28b 1840 if (handle->prev < handle->cur) {
940864dd
RW
1841 if (handle->prev == 0) {
1842 error = load_header(buffer);
1843 if (error)
1844 return error;
1845
1846 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
f577eb30
RW
1847 if (error)
1848 return error;
940864dd 1849
f577eb30 1850 } else if (handle->prev <= nr_meta_pages) {
940864dd
RW
1851 unpack_orig_pfns(buffer, &copy_bm);
1852 if (handle->prev == nr_meta_pages) {
1853 error = prepare_image(&orig_bm, &copy_bm);
f577eb30
RW
1854 if (error)
1855 return error;
940864dd
RW
1856
1857 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1858 memory_bm_position_reset(&orig_bm);
1859 restore_pblist = NULL;
1860 handle->buffer = get_buffer(&orig_bm, &ca);
546e0d27 1861 handle->sync_read = 0;
940864dd
RW
1862 if (!handle->buffer)
1863 return -ENOMEM;
f577eb30
RW
1864 }
1865 } else {
8357376d 1866 copy_last_highmem_page();
940864dd 1867 handle->buffer = get_buffer(&orig_bm, &ca);
8357376d
RW
1868 if (handle->buffer != buffer)
1869 handle->sync_read = 0;
f577eb30 1870 }
fb13a28b 1871 handle->prev = handle->cur;
f577eb30 1872 }
fb13a28b
RW
1873 handle->buf_offset = handle->cur_offset;
1874 if (handle->cur_offset + count >= PAGE_SIZE) {
1875 count = PAGE_SIZE - handle->cur_offset;
1876 handle->cur_offset = 0;
1877 handle->cur++;
f577eb30 1878 } else {
fb13a28b 1879 handle->cur_offset += count;
f577eb30
RW
1880 }
1881 handle->offset += count;
1882 return count;
1883}
1884
8357376d
RW
1885/**
1886 * snapshot_write_finalize - must be called after the last call to
1887 * snapshot_write_next() in case the last page in the image happens
1888 * to be a highmem page and its contents should be stored in the
1889 * highmem. Additionally, it releases the memory that will not be
1890 * used any more.
1891 */
1892
1893void snapshot_write_finalize(struct snapshot_handle *handle)
1894{
1895 copy_last_highmem_page();
1896 /* Free only if we have loaded the image entirely */
1897 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1898 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1899 free_highmem_data();
1900 }
1901}
1902
f577eb30
RW
1903int snapshot_image_loaded(struct snapshot_handle *handle)
1904{
8357376d 1905 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
1906 handle->cur <= nr_meta_pages + nr_copy_pages);
1907}
1908
8357376d
RW
1909#ifdef CONFIG_HIGHMEM
1910/* Assumes that @buf is ready and points to a "safe" page */
1911static inline void
1912swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 1913{
8357376d
RW
1914 void *kaddr1, *kaddr2;
1915
1916 kaddr1 = kmap_atomic(p1, KM_USER0);
1917 kaddr2 = kmap_atomic(p2, KM_USER1);
1918 memcpy(buf, kaddr1, PAGE_SIZE);
1919 memcpy(kaddr1, kaddr2, PAGE_SIZE);
1920 memcpy(kaddr2, buf, PAGE_SIZE);
1921 kunmap_atomic(kaddr1, KM_USER0);
1922 kunmap_atomic(kaddr2, KM_USER1);
1923}
1924
1925/**
1926 * restore_highmem - for each highmem page that was allocated before
1927 * the suspend and included in the suspend image, and also has been
1928 * allocated by the "resume" kernel swap its current (ie. "before
1929 * resume") contents with the previous (ie. "before suspend") one.
1930 *
1931 * If the resume eventually fails, we can call this function once
1932 * again and restore the "before resume" highmem state.
1933 */
1934
1935int restore_highmem(void)
1936{
1937 struct highmem_pbe *pbe = highmem_pblist;
1938 void *buf;
1939
1940 if (!pbe)
1941 return 0;
1942
1943 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1944 if (!buf)
1945 return -ENOMEM;
1946
1947 while (pbe) {
1948 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1949 pbe = pbe->next;
1950 }
1951 free_image_page(buf, PG_UNSAFE_CLEAR);
1952 return 0;
f577eb30 1953}
8357376d 1954#endif /* CONFIG_HIGHMEM */