]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/posix-timers.c
[PATCH] hrtimers: pass current time to hrtimer_forward()
[net-next-2.6.git] / kernel / posix-timers.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/posix_timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
34#include <linux/smp_lock.h>
35#include <linux/interrupt.h>
36#include <linux/slab.h>
37#include <linux/time.h>
97d1f15b 38#include <linux/mutex.h>
1da177e4
LT
39
40#include <asm/uaccess.h>
41#include <asm/semaphore.h>
42#include <linux/list.h>
43#include <linux/init.h>
44#include <linux/compiler.h>
45#include <linux/idr.h>
46#include <linux/posix-timers.h>
47#include <linux/syscalls.h>
48#include <linux/wait.h>
49#include <linux/workqueue.h>
50#include <linux/module.h>
51
1da177e4
LT
52/*
53 * Management arrays for POSIX timers. Timers are kept in slab memory
54 * Timer ids are allocated by an external routine that keeps track of the
55 * id and the timer. The external interface is:
56 *
57 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
58 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
59 * related it to <ptr>
60 * void idr_remove(struct idr *idp, int id); to release <id>
61 * void idr_init(struct idr *idp); to initialize <idp>
62 * which we supply.
63 * The idr_get_new *may* call slab for more memory so it must not be
64 * called under a spin lock. Likewise idr_remore may release memory
65 * (but it may be ok to do this under a lock...).
66 * idr_find is just a memory look up and is quite fast. A -1 return
67 * indicates that the requested id does not exist.
68 */
69
70/*
71 * Lets keep our timers in a slab cache :-)
72 */
73static kmem_cache_t *posix_timers_cache;
74static struct idr posix_timers_id;
75static DEFINE_SPINLOCK(idr_lock);
76
1da177e4
LT
77/*
78 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
79 * SIGEV values. Here we put out an error if this assumption fails.
80 */
81#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
82 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
83#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
84#endif
85
86
87/*
88 * The timer ID is turned into a timer address by idr_find().
89 * Verifying a valid ID consists of:
90 *
91 * a) checking that idr_find() returns other than -1.
92 * b) checking that the timer id matches the one in the timer itself.
93 * c) that the timer owner is in the callers thread group.
94 */
95
96/*
97 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
98 * to implement others. This structure defines the various
99 * clocks and allows the possibility of adding others. We
100 * provide an interface to add clocks to the table and expect
101 * the "arch" code to add at least one clock that is high
102 * resolution. Here we define the standard CLOCK_REALTIME as a
103 * 1/HZ resolution clock.
104 *
105 * RESOLUTION: Clock resolution is used to round up timer and interval
106 * times, NOT to report clock times, which are reported with as
107 * much resolution as the system can muster. In some cases this
108 * resolution may depend on the underlying clock hardware and
109 * may not be quantifiable until run time, and only then is the
110 * necessary code is written. The standard says we should say
111 * something about this issue in the documentation...
112 *
113 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
114 * various clock functions. For clocks that use the standard
115 * system timer code these entries should be NULL. This will
116 * allow dispatch without the overhead of indirect function
117 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
118 * must supply functions here, even if the function just returns
119 * ENOSYS. The standard POSIX timer management code assumes the
120 * following: 1.) The k_itimer struct (sched.h) is used for the
121 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
122 * fields are not modified by timer code.
123 *
124 * At this time all functions EXCEPT clock_nanosleep can be
125 * redirected by the CLOCKS structure. Clock_nanosleep is in
126 * there, but the code ignores it.
127 *
128 * Permissions: It is assumed that the clock_settime() function defined
129 * for each clock will take care of permission checks. Some
130 * clocks may be set able by any user (i.e. local process
131 * clocks) others not. Currently the only set able clock we
132 * have is CLOCK_REALTIME and its high res counter part, both of
133 * which we beg off on and pass to do_sys_settimeofday().
134 */
135
136static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 137
1da177e4 138/*
becf8b5d 139 * These ones are defined below.
1da177e4 140 */
becf8b5d
TG
141static int common_nsleep(const clockid_t, int flags, struct timespec *t,
142 struct timespec __user *rmtp);
143static void common_timer_get(struct k_itimer *, struct itimerspec *);
144static int common_timer_set(struct k_itimer *, int,
145 struct itimerspec *, struct itimerspec *);
146static int common_timer_del(struct k_itimer *timer);
1da177e4 147
becf8b5d 148static int posix_timer_fn(void *data);
1da177e4
LT
149
150static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
151
152static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
153{
154 spin_unlock_irqrestore(&timr->it_lock, flags);
155}
156
157/*
158 * Call the k_clock hook function if non-null, or the default function.
159 */
160#define CLOCK_DISPATCH(clock, call, arglist) \
161 ((clock) < 0 ? posix_cpu_##call arglist : \
162 (posix_clocks[clock].call != NULL \
163 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
164
165/*
166 * Default clock hook functions when the struct k_clock passed
167 * to register_posix_clock leaves a function pointer null.
168 *
169 * The function common_CALL is the default implementation for
170 * the function pointer CALL in struct k_clock.
171 */
172
a924b04d 173static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
174 struct timespec *tp)
175{
176 tp->tv_sec = 0;
177 tp->tv_nsec = posix_clocks[which_clock].res;
178 return 0;
179}
180
becf8b5d
TG
181/*
182 * Get real time for posix timers
183 */
184static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 185{
becf8b5d 186 ktime_get_real_ts(tp);
1da177e4
LT
187 return 0;
188}
189
a924b04d
TG
190static inline int common_clock_set(const clockid_t which_clock,
191 struct timespec *tp)
1da177e4
LT
192{
193 return do_sys_settimeofday(tp, NULL);
194}
195
858119e1 196static int common_timer_create(struct k_itimer *new_timer)
1da177e4 197{
7978672c 198 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
199 return 0;
200}
201
202/*
becf8b5d 203 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 204 */
a924b04d 205static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
206{
207 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
208 return 0;
209 if ((unsigned) which_clock >= MAX_CLOCKS)
210 return 1;
211 if (posix_clocks[which_clock].clock_getres != NULL)
212 return 0;
1da177e4
LT
213 if (posix_clocks[which_clock].res != 0)
214 return 0;
1da177e4
LT
215 return 1;
216}
217
becf8b5d
TG
218/*
219 * Get monotonic time for posix timers
220 */
221static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
222{
223 ktime_get_ts(tp);
224 return 0;
225}
1da177e4
LT
226
227/*
228 * Initialize everything, well, just everything in Posix clocks/timers ;)
229 */
230static __init int init_posix_timers(void)
231{
becf8b5d
TG
232 struct k_clock clock_realtime = {
233 .clock_getres = hrtimer_get_res,
1da177e4 234 };
becf8b5d
TG
235 struct k_clock clock_monotonic = {
236 .clock_getres = hrtimer_get_res,
237 .clock_get = posix_ktime_get_ts,
238 .clock_set = do_posix_clock_nosettime,
1da177e4
LT
239 };
240
241 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
242 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
243
244 posix_timers_cache = kmem_cache_create("posix_timers_cache",
245 sizeof (struct k_itimer), 0, 0, NULL, NULL);
246 idr_init(&posix_timers_id);
247 return 0;
248}
249
250__initcall(init_posix_timers);
251
1da177e4
LT
252static void schedule_next_timer(struct k_itimer *timr)
253{
44f21475
RZ
254 struct hrtimer *timer = &timr->it.real.timer;
255
becf8b5d 256 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
257 return;
258
44f21475 259 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
becf8b5d 260 timr->it.real.interval);
44f21475 261
1da177e4
LT
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
44f21475 265 hrtimer_restart(timer);
1da177e4
LT
266}
267
268/*
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
275 *
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
278 */
279void do_schedule_next_timer(struct siginfo *info)
280{
281 struct k_itimer *timr;
282 unsigned long flags;
283
284 timr = lock_timer(info->si_tid, &flags);
285
becf8b5d
TG
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
1da177e4 291
becf8b5d
TG
292 info->si_overrun = timr->it_overrun_last;
293 }
294
b6557fbc
TG
295 if (timr)
296 unlock_timer(timr, flags);
1da177e4
LT
297}
298
299int posix_timer_event(struct k_itimer *timr,int si_private)
300{
301 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
302 timr->sigq->info.si_sys_private = si_private;
becf8b5d 303 /* Send signal to the process that owns this timer.*/
1da177e4
LT
304
305 timr->sigq->info.si_signo = timr->it_sigev_signo;
306 timr->sigq->info.si_errno = 0;
307 timr->sigq->info.si_code = SI_TIMER;
308 timr->sigq->info.si_tid = timr->it_id;
309 timr->sigq->info.si_value = timr->it_sigev_value;
e752dd6c 310
1da177e4 311 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
e752dd6c
ON
312 struct task_struct *leader;
313 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
314 timr->it_process);
315
316 if (likely(ret >= 0))
317 return ret;
318
319 timr->it_sigev_notify = SIGEV_SIGNAL;
320 leader = timr->it_process->group_leader;
321 put_task_struct(timr->it_process);
322 timr->it_process = leader;
1da177e4 323 }
e752dd6c
ON
324
325 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
326 timr->it_process);
1da177e4
LT
327}
328EXPORT_SYMBOL_GPL(posix_timer_event);
329
330/*
331 * This function gets called when a POSIX.1b interval timer expires. It
332 * is used as a callback from the kernel internal timer. The
333 * run_timer_list code ALWAYS calls with interrupts on.
334
335 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
336 */
becf8b5d 337static int posix_timer_fn(void *data)
1da177e4 338{
becf8b5d 339 struct k_itimer *timr = data;
44f21475 340 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 341 unsigned long flags;
becf8b5d
TG
342 int si_private = 0;
343 int ret = HRTIMER_NORESTART;
1da177e4
LT
344
345 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 346
becf8b5d
TG
347 if (timr->it.real.interval.tv64 != 0)
348 si_private = ++timr->it_requeue_pending;
1da177e4 349
becf8b5d
TG
350 if (posix_timer_event(timr, si_private)) {
351 /*
352 * signal was not sent because of sig_ignor
353 * we will not get a call back to restart it AND
354 * it should be restarted.
355 */
356 if (timr->it.real.interval.tv64 != 0) {
357 timr->it_overrun +=
44f21475
RZ
358 hrtimer_forward(timer,
359 timer->base->softirq_time,
becf8b5d
TG
360 timr->it.real.interval);
361 ret = HRTIMER_RESTART;
a0a0c28c 362 ++timr->it_requeue_pending;
1da177e4 363 }
1da177e4 364 }
1da177e4 365
becf8b5d
TG
366 unlock_timer(timr, flags);
367 return ret;
368}
1da177e4 369
858119e1 370static struct task_struct * good_sigevent(sigevent_t * event)
1da177e4
LT
371{
372 struct task_struct *rtn = current->group_leader;
373
374 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
375 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
376 rtn->tgid != current->tgid ||
377 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
378 return NULL;
379
380 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
381 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
382 return NULL;
383
384 return rtn;
385}
386
a924b04d 387void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
388{
389 if ((unsigned) clock_id >= MAX_CLOCKS) {
390 printk("POSIX clock register failed for clock_id %d\n",
391 clock_id);
392 return;
393 }
394
395 posix_clocks[clock_id] = *new_clock;
396}
397EXPORT_SYMBOL_GPL(register_posix_clock);
398
399static struct k_itimer * alloc_posix_timer(void)
400{
401 struct k_itimer *tmr;
402 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
403 if (!tmr)
404 return tmr;
405 memset(tmr, 0, sizeof (struct k_itimer));
406 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
407 kmem_cache_free(posix_timers_cache, tmr);
408 tmr = NULL;
409 }
410 return tmr;
411}
412
413#define IT_ID_SET 1
414#define IT_ID_NOT_SET 0
415static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
416{
417 if (it_id_set) {
418 unsigned long flags;
419 spin_lock_irqsave(&idr_lock, flags);
420 idr_remove(&posix_timers_id, tmr->it_id);
421 spin_unlock_irqrestore(&idr_lock, flags);
422 }
423 sigqueue_free(tmr->sigq);
424 if (unlikely(tmr->it_process) &&
425 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
426 put_task_struct(tmr->it_process);
427 kmem_cache_free(posix_timers_cache, tmr);
428}
429
430/* Create a POSIX.1b interval timer. */
431
432asmlinkage long
a924b04d 433sys_timer_create(const clockid_t which_clock,
1da177e4
LT
434 struct sigevent __user *timer_event_spec,
435 timer_t __user * created_timer_id)
436{
437 int error = 0;
438 struct k_itimer *new_timer = NULL;
439 int new_timer_id;
440 struct task_struct *process = NULL;
441 unsigned long flags;
442 sigevent_t event;
443 int it_id_set = IT_ID_NOT_SET;
444
445 if (invalid_clockid(which_clock))
446 return -EINVAL;
447
448 new_timer = alloc_posix_timer();
449 if (unlikely(!new_timer))
450 return -EAGAIN;
451
452 spin_lock_init(&new_timer->it_lock);
453 retry:
454 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
455 error = -EAGAIN;
456 goto out;
457 }
458 spin_lock_irq(&idr_lock);
becf8b5d 459 error = idr_get_new(&posix_timers_id, (void *) new_timer,
1da177e4
LT
460 &new_timer_id);
461 spin_unlock_irq(&idr_lock);
462 if (error == -EAGAIN)
463 goto retry;
464 else if (error) {
465 /*
466 * Wierd looking, but we return EAGAIN if the IDR is
467 * full (proper POSIX return value for this)
468 */
469 error = -EAGAIN;
470 goto out;
471 }
472
473 it_id_set = IT_ID_SET;
474 new_timer->it_id = (timer_t) new_timer_id;
475 new_timer->it_clock = which_clock;
476 new_timer->it_overrun = -1;
477 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
478 if (error)
479 goto out;
480
481 /*
482 * return the timer_id now. The next step is hard to
483 * back out if there is an error.
484 */
485 if (copy_to_user(created_timer_id,
486 &new_timer_id, sizeof (new_timer_id))) {
487 error = -EFAULT;
488 goto out;
489 }
490 if (timer_event_spec) {
491 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
492 error = -EFAULT;
493 goto out;
494 }
495 new_timer->it_sigev_notify = event.sigev_notify;
496 new_timer->it_sigev_signo = event.sigev_signo;
497 new_timer->it_sigev_value = event.sigev_value;
498
499 read_lock(&tasklist_lock);
500 if ((process = good_sigevent(&event))) {
501 /*
502 * We may be setting up this process for another
503 * thread. It may be exiting. To catch this
504 * case the we check the PF_EXITING flag. If
505 * the flag is not set, the siglock will catch
506 * him before it is too late (in exit_itimers).
507 *
508 * The exec case is a bit more invloved but easy
509 * to code. If the process is in our thread
510 * group (and it must be or we would not allow
511 * it here) and is doing an exec, it will cause
512 * us to be killed. In this case it will wait
513 * for us to die which means we can finish this
514 * linkage with our last gasp. I.e. no code :)
515 */
516 spin_lock_irqsave(&process->sighand->siglock, flags);
517 if (!(process->flags & PF_EXITING)) {
518 new_timer->it_process = process;
519 list_add(&new_timer->list,
520 &process->signal->posix_timers);
521 spin_unlock_irqrestore(&process->sighand->siglock, flags);
522 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
523 get_task_struct(process);
524 } else {
525 spin_unlock_irqrestore(&process->sighand->siglock, flags);
526 process = NULL;
527 }
528 }
529 read_unlock(&tasklist_lock);
530 if (!process) {
531 error = -EINVAL;
532 goto out;
533 }
534 } else {
535 new_timer->it_sigev_notify = SIGEV_SIGNAL;
536 new_timer->it_sigev_signo = SIGALRM;
537 new_timer->it_sigev_value.sival_int = new_timer->it_id;
538 process = current->group_leader;
539 spin_lock_irqsave(&process->sighand->siglock, flags);
540 new_timer->it_process = process;
541 list_add(&new_timer->list, &process->signal->posix_timers);
542 spin_unlock_irqrestore(&process->sighand->siglock, flags);
543 }
544
545 /*
546 * In the case of the timer belonging to another task, after
547 * the task is unlocked, the timer is owned by the other task
548 * and may cease to exist at any time. Don't use or modify
549 * new_timer after the unlock call.
550 */
551
552out:
553 if (error)
554 release_posix_timer(new_timer, it_id_set);
555
556 return error;
557}
558
1da177e4
LT
559/*
560 * Locking issues: We need to protect the result of the id look up until
561 * we get the timer locked down so it is not deleted under us. The
562 * removal is done under the idr spinlock so we use that here to bridge
563 * the find to the timer lock. To avoid a dead lock, the timer id MUST
564 * be release with out holding the timer lock.
565 */
566static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
567{
568 struct k_itimer *timr;
569 /*
570 * Watch out here. We do a irqsave on the idr_lock and pass the
571 * flags part over to the timer lock. Must not let interrupts in
572 * while we are moving the lock.
573 */
574
575 spin_lock_irqsave(&idr_lock, *flags);
576 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
577 if (timr) {
578 spin_lock(&timr->it_lock);
579 spin_unlock(&idr_lock);
580
581 if ((timr->it_id != timer_id) || !(timr->it_process) ||
582 timr->it_process->tgid != current->tgid) {
583 unlock_timer(timr, *flags);
584 timr = NULL;
585 }
586 } else
587 spin_unlock_irqrestore(&idr_lock, *flags);
588
589 return timr;
590}
591
592/*
593 * Get the time remaining on a POSIX.1b interval timer. This function
594 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
595 * mess with irq.
596 *
597 * We have a couple of messes to clean up here. First there is the case
598 * of a timer that has a requeue pending. These timers should appear to
599 * be in the timer list with an expiry as if we were to requeue them
600 * now.
601 *
602 * The second issue is the SIGEV_NONE timer which may be active but is
603 * not really ever put in the timer list (to save system resources).
604 * This timer may be expired, and if so, we will do it here. Otherwise
605 * it is the same as a requeue pending timer WRT to what we should
606 * report.
607 */
608static void
609common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
610{
becf8b5d
TG
611 ktime_t remaining;
612 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 613
becf8b5d
TG
614 memset(cur_setting, 0, sizeof(struct itimerspec));
615 remaining = hrtimer_get_remaining(timer);
616
617 /* Time left ? or timer pending */
618 if (remaining.tv64 > 0 || hrtimer_active(timer))
619 goto calci;
620 /* interval timer ? */
621 if (timr->it.real.interval.tv64 == 0)
622 return;
623 /*
624 * When a requeue is pending or this is a SIGEV_NONE timer
625 * move the expiry time forward by intervals, so expiry is >
626 * now.
627 */
628 if (timr->it_requeue_pending & REQUEUE_PENDING ||
629 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
630 timr->it_overrun +=
44f21475
RZ
631 hrtimer_forward(timer, timer->base->get_time(),
632 timr->it.real.interval);
becf8b5d 633 remaining = hrtimer_get_remaining(timer);
1da177e4 634 }
becf8b5d
TG
635 calci:
636 /* interval timer ? */
637 if (timr->it.real.interval.tv64 != 0)
638 cur_setting->it_interval =
639 ktime_to_timespec(timr->it.real.interval);
640 /* Return 0 only, when the timer is expired and not pending */
641 if (remaining.tv64 <= 0)
642 cur_setting->it_value.tv_nsec = 1;
643 else
644 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
645}
646
647/* Get the time remaining on a POSIX.1b interval timer. */
648asmlinkage long
649sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
650{
651 struct k_itimer *timr;
652 struct itimerspec cur_setting;
653 unsigned long flags;
654
655 timr = lock_timer(timer_id, &flags);
656 if (!timr)
657 return -EINVAL;
658
659 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
660
661 unlock_timer(timr, flags);
662
663 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
664 return -EFAULT;
665
666 return 0;
667}
becf8b5d 668
1da177e4
LT
669/*
670 * Get the number of overruns of a POSIX.1b interval timer. This is to
671 * be the overrun of the timer last delivered. At the same time we are
672 * accumulating overruns on the next timer. The overrun is frozen when
673 * the signal is delivered, either at the notify time (if the info block
674 * is not queued) or at the actual delivery time (as we are informed by
675 * the call back to do_schedule_next_timer(). So all we need to do is
676 * to pick up the frozen overrun.
677 */
1da177e4
LT
678asmlinkage long
679sys_timer_getoverrun(timer_t timer_id)
680{
681 struct k_itimer *timr;
682 int overrun;
683 long flags;
684
685 timr = lock_timer(timer_id, &flags);
686 if (!timr)
687 return -EINVAL;
688
689 overrun = timr->it_overrun_last;
690 unlock_timer(timr, flags);
691
692 return overrun;
693}
1da177e4
LT
694
695/* Set a POSIX.1b interval timer. */
696/* timr->it_lock is taken. */
858119e1 697static int
1da177e4
LT
698common_timer_set(struct k_itimer *timr, int flags,
699 struct itimerspec *new_setting, struct itimerspec *old_setting)
700{
becf8b5d 701 struct hrtimer *timer = &timr->it.real.timer;
7978672c 702 enum hrtimer_mode mode;
1da177e4
LT
703
704 if (old_setting)
705 common_timer_get(timr, old_setting);
706
707 /* disable the timer */
becf8b5d 708 timr->it.real.interval.tv64 = 0;
1da177e4
LT
709 /*
710 * careful here. If smp we could be in the "fire" routine which will
711 * be spinning as we hold the lock. But this is ONLY an SMP issue.
712 */
becf8b5d 713 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 714 return TIMER_RETRY;
1da177e4
LT
715
716 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
717 ~REQUEUE_PENDING;
718 timr->it_overrun_last = 0;
1da177e4 719
becf8b5d
TG
720 /* switch off the timer when it_value is zero */
721 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
722 return 0;
1da177e4 723
7978672c
GA
724 mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL;
725 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
726 timr->it.real.timer.data = timr;
727 timr->it.real.timer.function = posix_timer_fn;
becf8b5d
TG
728
729 timer->expires = timespec_to_ktime(new_setting->it_value);
730
731 /* Convert interval */
732 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
733
734 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
735 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
736 /* Setup correct expiry time for relative timers */
737 if (mode == HRTIMER_REL)
738 timer->expires = ktime_add(timer->expires,
739 timer->base->get_time());
becf8b5d 740 return 0;
952bbc87 741 }
becf8b5d 742
7978672c 743 hrtimer_start(timer, timer->expires, mode);
1da177e4
LT
744 return 0;
745}
746
747/* Set a POSIX.1b interval timer */
748asmlinkage long
749sys_timer_settime(timer_t timer_id, int flags,
750 const struct itimerspec __user *new_setting,
751 struct itimerspec __user *old_setting)
752{
753 struct k_itimer *timr;
754 struct itimerspec new_spec, old_spec;
755 int error = 0;
756 long flag;
757 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
758
759 if (!new_setting)
760 return -EINVAL;
761
762 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
763 return -EFAULT;
764
becf8b5d
TG
765 if (!timespec_valid(&new_spec.it_interval) ||
766 !timespec_valid(&new_spec.it_value))
1da177e4
LT
767 return -EINVAL;
768retry:
769 timr = lock_timer(timer_id, &flag);
770 if (!timr)
771 return -EINVAL;
772
773 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
774 (timr, flags, &new_spec, rtn));
775
776 unlock_timer(timr, flag);
777 if (error == TIMER_RETRY) {
778 rtn = NULL; // We already got the old time...
779 goto retry;
780 }
781
becf8b5d
TG
782 if (old_setting && !error &&
783 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
784 error = -EFAULT;
785
786 return error;
787}
788
789static inline int common_timer_del(struct k_itimer *timer)
790{
becf8b5d 791 timer->it.real.interval.tv64 = 0;
f972be33 792
becf8b5d 793 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 794 return TIMER_RETRY;
1da177e4
LT
795 return 0;
796}
797
798static inline int timer_delete_hook(struct k_itimer *timer)
799{
800 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
801}
802
803/* Delete a POSIX.1b interval timer. */
804asmlinkage long
805sys_timer_delete(timer_t timer_id)
806{
807 struct k_itimer *timer;
808 long flags;
809
1da177e4 810retry_delete:
1da177e4
LT
811 timer = lock_timer(timer_id, &flags);
812 if (!timer)
813 return -EINVAL;
814
becf8b5d 815 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
816 unlock_timer(timer, flags);
817 goto retry_delete;
818 }
becf8b5d 819
1da177e4
LT
820 spin_lock(&current->sighand->siglock);
821 list_del(&timer->list);
822 spin_unlock(&current->sighand->siglock);
823 /*
824 * This keeps any tasks waiting on the spin lock from thinking
825 * they got something (see the lock code above).
826 */
827 if (timer->it_process) {
828 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
829 put_task_struct(timer->it_process);
830 timer->it_process = NULL;
831 }
832 unlock_timer(timer, flags);
833 release_posix_timer(timer, IT_ID_SET);
834 return 0;
835}
becf8b5d 836
1da177e4
LT
837/*
838 * return timer owned by the process, used by exit_itimers
839 */
858119e1 840static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
841{
842 unsigned long flags;
843
1da177e4 844retry_delete:
1da177e4
LT
845 spin_lock_irqsave(&timer->it_lock, flags);
846
becf8b5d 847 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
848 unlock_timer(timer, flags);
849 goto retry_delete;
850 }
1da177e4
LT
851 list_del(&timer->list);
852 /*
853 * This keeps any tasks waiting on the spin lock from thinking
854 * they got something (see the lock code above).
855 */
856 if (timer->it_process) {
857 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
858 put_task_struct(timer->it_process);
859 timer->it_process = NULL;
860 }
861 unlock_timer(timer, flags);
862 release_posix_timer(timer, IT_ID_SET);
863}
864
865/*
25f407f0 866 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
867 * references to the shared signal_struct.
868 */
869void exit_itimers(struct signal_struct *sig)
870{
871 struct k_itimer *tmr;
872
873 while (!list_empty(&sig->posix_timers)) {
874 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
875 itimer_delete(tmr);
876 }
877}
878
becf8b5d 879/* Not available / possible... functions */
a924b04d 880int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
881{
882 return -EINVAL;
883}
884EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
885
a924b04d 886int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
97735f25 887 struct timespec *t, struct timespec __user *r)
1da177e4
LT
888{
889#ifndef ENOTSUP
890 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
891#else /* parisc does define it separately. */
892 return -ENOTSUP;
893#endif
894}
895EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
896
a924b04d
TG
897asmlinkage long sys_clock_settime(const clockid_t which_clock,
898 const struct timespec __user *tp)
1da177e4
LT
899{
900 struct timespec new_tp;
901
902 if (invalid_clockid(which_clock))
903 return -EINVAL;
904 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
905 return -EFAULT;
906
907 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
908}
909
910asmlinkage long
a924b04d 911sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
912{
913 struct timespec kernel_tp;
914 int error;
915
916 if (invalid_clockid(which_clock))
917 return -EINVAL;
918 error = CLOCK_DISPATCH(which_clock, clock_get,
919 (which_clock, &kernel_tp));
920 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
921 error = -EFAULT;
922
923 return error;
924
925}
926
927asmlinkage long
a924b04d 928sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
929{
930 struct timespec rtn_tp;
931 int error;
932
933 if (invalid_clockid(which_clock))
934 return -EINVAL;
935
936 error = CLOCK_DISPATCH(which_clock, clock_getres,
937 (which_clock, &rtn_tp));
938
939 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
940 error = -EFAULT;
941 }
942
943 return error;
944}
945
97735f25
TG
946/*
947 * nanosleep for monotonic and realtime clocks
948 */
949static int common_nsleep(const clockid_t which_clock, int flags,
950 struct timespec *tsave, struct timespec __user *rmtp)
951{
7978672c
GA
952 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
953 HRTIMER_ABS : HRTIMER_REL, which_clock);
97735f25 954}
1da177e4
LT
955
956asmlinkage long
a924b04d 957sys_clock_nanosleep(const clockid_t which_clock, int flags,
1da177e4
LT
958 const struct timespec __user *rqtp,
959 struct timespec __user *rmtp)
960{
961 struct timespec t;
1da177e4
LT
962
963 if (invalid_clockid(which_clock))
964 return -EINVAL;
965
966 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
967 return -EFAULT;
968
5f82b2b7 969 if (!timespec_valid(&t))
1da177e4
LT
970 return -EINVAL;
971
97735f25
TG
972 return CLOCK_DISPATCH(which_clock, nsleep,
973 (which_clock, flags, &t, rmtp));
1da177e4 974}