]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/posix-timers.c
USB: wusb: annotate association types withe proper endianness
[net-next-2.6.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
84
85/*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94/*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
27af4245 119 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
1da177e4
LT
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 135
1da177e4 136/*
becf8b5d 137 * These ones are defined below.
1da177e4 138 */
becf8b5d
TG
139static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141static void common_timer_get(struct k_itimer *, struct itimerspec *);
142static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144static int common_timer_del(struct k_itimer *timer);
1da177e4 145
c9cb2e3d 146static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4
LT
147
148static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151{
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153}
154
155/*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158#define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163/*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
a924b04d 171static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
172 struct timespec *tp)
173{
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177}
178
becf8b5d
TG
179/*
180 * Get real time for posix timers
181 */
182static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 183{
becf8b5d 184 ktime_get_real_ts(tp);
1da177e4
LT
185 return 0;
186}
187
a924b04d
TG
188static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
1da177e4
LT
190{
191 return do_sys_settimeofday(tp, NULL);
192}
193
858119e1 194static int common_timer_create(struct k_itimer *new_timer)
1da177e4 195{
7978672c 196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
197 return 0;
198}
199
3d44cc3e
TG
200static int no_timer_create(struct k_itimer *new_timer)
201{
202 return -EOPNOTSUPP;
203}
204
1da177e4 205/*
becf8b5d 206 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 207 */
a924b04d 208static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
209{
210 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
211 return 0;
212 if ((unsigned) which_clock >= MAX_CLOCKS)
213 return 1;
214 if (posix_clocks[which_clock].clock_getres != NULL)
215 return 0;
1da177e4
LT
216 if (posix_clocks[which_clock].res != 0)
217 return 0;
1da177e4
LT
218 return 1;
219}
220
becf8b5d
TG
221/*
222 * Get monotonic time for posix timers
223 */
224static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
225{
226 ktime_get_ts(tp);
227 return 0;
228}
1da177e4 229
2d42244a
JS
230/*
231 * Get monotonic time for posix timers
232 */
233static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
234{
235 getrawmonotonic(tp);
236 return 0;
237}
238
1da177e4
LT
239/*
240 * Initialize everything, well, just everything in Posix clocks/timers ;)
241 */
242static __init int init_posix_timers(void)
243{
becf8b5d
TG
244 struct k_clock clock_realtime = {
245 .clock_getres = hrtimer_get_res,
1da177e4 246 };
becf8b5d
TG
247 struct k_clock clock_monotonic = {
248 .clock_getres = hrtimer_get_res,
249 .clock_get = posix_ktime_get_ts,
250 .clock_set = do_posix_clock_nosettime,
1da177e4 251 };
2d42244a
JS
252 struct k_clock clock_monotonic_raw = {
253 .clock_getres = hrtimer_get_res,
254 .clock_get = posix_get_monotonic_raw,
255 .clock_set = do_posix_clock_nosettime,
3d44cc3e 256 .timer_create = no_timer_create,
2d42244a 257 };
1da177e4
LT
258
259 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
260 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
2d42244a 261 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
1da177e4
LT
262
263 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
264 sizeof (struct k_itimer), 0, SLAB_PANIC,
265 NULL);
1da177e4
LT
266 idr_init(&posix_timers_id);
267 return 0;
268}
269
270__initcall(init_posix_timers);
271
1da177e4
LT
272static void schedule_next_timer(struct k_itimer *timr)
273{
44f21475
RZ
274 struct hrtimer *timer = &timr->it.real.timer;
275
becf8b5d 276 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
277 return;
278
4d672e7a
DL
279 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
280 timer->base->get_time(),
281 timr->it.real.interval);
44f21475 282
1da177e4
LT
283 timr->it_overrun_last = timr->it_overrun;
284 timr->it_overrun = -1;
285 ++timr->it_requeue_pending;
44f21475 286 hrtimer_restart(timer);
1da177e4
LT
287}
288
289/*
290 * This function is exported for use by the signal deliver code. It is
291 * called just prior to the info block being released and passes that
292 * block to us. It's function is to update the overrun entry AND to
293 * restart the timer. It should only be called if the timer is to be
294 * restarted (i.e. we have flagged this in the sys_private entry of the
295 * info block).
296 *
297 * To protect aginst the timer going away while the interrupt is queued,
298 * we require that the it_requeue_pending flag be set.
299 */
300void do_schedule_next_timer(struct siginfo *info)
301{
302 struct k_itimer *timr;
303 unsigned long flags;
304
305 timr = lock_timer(info->si_tid, &flags);
306
becf8b5d
TG
307 if (timr && timr->it_requeue_pending == info->si_sys_private) {
308 if (timr->it_clock < 0)
309 posix_cpu_timer_schedule(timr);
310 else
311 schedule_next_timer(timr);
1da177e4 312
54da1174 313 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
314 }
315
b6557fbc
TG
316 if (timr)
317 unlock_timer(timr, flags);
1da177e4
LT
318}
319
ba661292 320int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 321{
27af4245
ON
322 struct task_struct *task;
323 int shared, ret = -1;
ba661292
ON
324 /*
325 * FIXME: if ->sigq is queued we can race with
326 * dequeue_signal()->do_schedule_next_timer().
327 *
328 * If dequeue_signal() sees the "right" value of
329 * si_sys_private it calls do_schedule_next_timer().
330 * We re-queue ->sigq and drop ->it_lock().
331 * do_schedule_next_timer() locks the timer
332 * and re-schedules it while ->sigq is pending.
333 * Not really bad, but not that we want.
334 */
1da177e4 335 timr->sigq->info.si_sys_private = si_private;
1da177e4 336
27af4245
ON
337 rcu_read_lock();
338 task = pid_task(timr->it_pid, PIDTYPE_PID);
339 if (task) {
340 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
341 ret = send_sigqueue(timr->sigq, task, shared);
342 }
343 rcu_read_unlock();
4aa73611
ON
344 /* If we failed to send the signal the timer stops. */
345 return ret > 0;
1da177e4
LT
346}
347EXPORT_SYMBOL_GPL(posix_timer_event);
348
349/*
350 * This function gets called when a POSIX.1b interval timer expires. It
351 * is used as a callback from the kernel internal timer. The
352 * run_timer_list code ALWAYS calls with interrupts on.
353
354 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
355 */
c9cb2e3d 356static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 357{
05cfb614 358 struct k_itimer *timr;
1da177e4 359 unsigned long flags;
becf8b5d 360 int si_private = 0;
c9cb2e3d 361 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 362
05cfb614 363 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 364 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 365
becf8b5d
TG
366 if (timr->it.real.interval.tv64 != 0)
367 si_private = ++timr->it_requeue_pending;
1da177e4 368
becf8b5d
TG
369 if (posix_timer_event(timr, si_private)) {
370 /*
371 * signal was not sent because of sig_ignor
372 * we will not get a call back to restart it AND
373 * it should be restarted.
374 */
375 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
376 ktime_t now = hrtimer_cb_get_time(timer);
377
378 /*
379 * FIXME: What we really want, is to stop this
380 * timer completely and restart it in case the
381 * SIG_IGN is removed. This is a non trivial
382 * change which involves sighand locking
383 * (sigh !), which we don't want to do late in
384 * the release cycle.
385 *
386 * For now we just let timers with an interval
387 * less than a jiffie expire every jiffie to
388 * avoid softirq starvation in case of SIG_IGN
389 * and a very small interval, which would put
390 * the timer right back on the softirq pending
391 * list. By moving now ahead of time we trick
392 * hrtimer_forward() to expire the timer
393 * later, while we still maintain the overrun
394 * accuracy, but have some inconsistency in
395 * the timer_gettime() case. This is at least
396 * better than a starved softirq. A more
397 * complex fix which solves also another related
398 * inconsistency is already in the pipeline.
399 */
400#ifdef CONFIG_HIGH_RES_TIMERS
401 {
402 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
403
404 if (timr->it.real.interval.tv64 < kj.tv64)
405 now = ktime_add(now, kj);
406 }
407#endif
4d672e7a 408 timr->it_overrun += (unsigned int)
58229a18 409 hrtimer_forward(timer, now,
becf8b5d
TG
410 timr->it.real.interval);
411 ret = HRTIMER_RESTART;
a0a0c28c 412 ++timr->it_requeue_pending;
1da177e4 413 }
1da177e4 414 }
1da177e4 415
becf8b5d
TG
416 unlock_timer(timr, flags);
417 return ret;
418}
1da177e4 419
27af4245 420static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
421{
422 struct task_struct *rtn = current->group_leader;
423
424 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 425 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 426 !same_thread_group(rtn, current) ||
1da177e4
LT
427 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
428 return NULL;
429
430 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
431 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
432 return NULL;
433
27af4245 434 return task_pid(rtn);
1da177e4
LT
435}
436
a924b04d 437void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
438{
439 if ((unsigned) clock_id >= MAX_CLOCKS) {
440 printk("POSIX clock register failed for clock_id %d\n",
441 clock_id);
442 return;
443 }
444
445 posix_clocks[clock_id] = *new_clock;
446}
447EXPORT_SYMBOL_GPL(register_posix_clock);
448
449static struct k_itimer * alloc_posix_timer(void)
450{
451 struct k_itimer *tmr;
c3762229 452 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
453 if (!tmr)
454 return tmr;
1da177e4
LT
455 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
456 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 457 return NULL;
1da177e4 458 }
ba661292 459 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
460 return tmr;
461}
462
463#define IT_ID_SET 1
464#define IT_ID_NOT_SET 0
465static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
466{
467 if (it_id_set) {
468 unsigned long flags;
469 spin_lock_irqsave(&idr_lock, flags);
470 idr_remove(&posix_timers_id, tmr->it_id);
471 spin_unlock_irqrestore(&idr_lock, flags);
472 }
89992102 473 put_pid(tmr->it_pid);
1da177e4 474 sigqueue_free(tmr->sigq);
1da177e4
LT
475 kmem_cache_free(posix_timers_cache, tmr);
476}
477
478/* Create a POSIX.1b interval timer. */
479
480asmlinkage long
a924b04d 481sys_timer_create(const clockid_t which_clock,
1da177e4
LT
482 struct sigevent __user *timer_event_spec,
483 timer_t __user * created_timer_id)
484{
2cd499e3 485 struct k_itimer *new_timer;
ef864c95 486 int error, new_timer_id;
1da177e4
LT
487 sigevent_t event;
488 int it_id_set = IT_ID_NOT_SET;
489
490 if (invalid_clockid(which_clock))
491 return -EINVAL;
492
493 new_timer = alloc_posix_timer();
494 if (unlikely(!new_timer))
495 return -EAGAIN;
496
497 spin_lock_init(&new_timer->it_lock);
498 retry:
499 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
500 error = -EAGAIN;
501 goto out;
502 }
503 spin_lock_irq(&idr_lock);
5a51b713 504 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 505 spin_unlock_irq(&idr_lock);
ef864c95
ON
506 if (error) {
507 if (error == -EAGAIN)
508 goto retry;
1da177e4 509 /*
0b0a3e7b 510 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
511 * full (proper POSIX return value for this)
512 */
513 error = -EAGAIN;
514 goto out;
515 }
516
517 it_id_set = IT_ID_SET;
518 new_timer->it_id = (timer_t) new_timer_id;
519 new_timer->it_clock = which_clock;
520 new_timer->it_overrun = -1;
521 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
522 if (error)
523 goto out;
524
525 /*
526 * return the timer_id now. The next step is hard to
527 * back out if there is an error.
528 */
529 if (copy_to_user(created_timer_id,
530 &new_timer_id, sizeof (new_timer_id))) {
531 error = -EFAULT;
532 goto out;
533 }
534 if (timer_event_spec) {
535 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
536 error = -EFAULT;
537 goto out;
538 }
36b2f046 539 rcu_read_lock();
89992102 540 new_timer->it_pid = get_pid(good_sigevent(&event));
36b2f046 541 rcu_read_unlock();
89992102 542 if (!new_timer->it_pid) {
1da177e4
LT
543 error = -EINVAL;
544 goto out;
545 }
546 } else {
5a9fa730
ON
547 event.sigev_notify = SIGEV_SIGNAL;
548 event.sigev_signo = SIGALRM;
549 event.sigev_value.sival_int = new_timer->it_id;
89992102 550 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
551 }
552
5a9fa730
ON
553 new_timer->it_sigev_notify = event.sigev_notify;
554 new_timer->sigq->info.si_signo = event.sigev_signo;
555 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 556 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 557 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 558
36b2f046 559 spin_lock_irq(&current->sighand->siglock);
27af4245 560 new_timer->it_signal = current->signal;
36b2f046
ON
561 list_add(&new_timer->list, &current->signal->posix_timers);
562 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
563
564 return 0;
1da177e4
LT
565 /*
566 * In the case of the timer belonging to another task, after
567 * the task is unlocked, the timer is owned by the other task
568 * and may cease to exist at any time. Don't use or modify
569 * new_timer after the unlock call.
570 */
1da177e4 571out:
ef864c95 572 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
573 return error;
574}
575
1da177e4
LT
576/*
577 * Locking issues: We need to protect the result of the id look up until
578 * we get the timer locked down so it is not deleted under us. The
579 * removal is done under the idr spinlock so we use that here to bridge
580 * the find to the timer lock. To avoid a dead lock, the timer id MUST
581 * be release with out holding the timer lock.
582 */
31d92845 583static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
584{
585 struct k_itimer *timr;
586 /*
587 * Watch out here. We do a irqsave on the idr_lock and pass the
588 * flags part over to the timer lock. Must not let interrupts in
589 * while we are moving the lock.
590 */
1da177e4 591 spin_lock_irqsave(&idr_lock, *flags);
31d92845 592 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
593 if (timr) {
594 spin_lock(&timr->it_lock);
89992102 595 if (timr->it_signal == current->signal) {
179394af 596 spin_unlock(&idr_lock);
31d92845
ON
597 return timr;
598 }
599 spin_unlock(&timr->it_lock);
600 }
601 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 602
31d92845 603 return NULL;
1da177e4
LT
604}
605
606/*
607 * Get the time remaining on a POSIX.1b interval timer. This function
608 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
609 * mess with irq.
610 *
611 * We have a couple of messes to clean up here. First there is the case
612 * of a timer that has a requeue pending. These timers should appear to
613 * be in the timer list with an expiry as if we were to requeue them
614 * now.
615 *
616 * The second issue is the SIGEV_NONE timer which may be active but is
617 * not really ever put in the timer list (to save system resources).
618 * This timer may be expired, and if so, we will do it here. Otherwise
619 * it is the same as a requeue pending timer WRT to what we should
620 * report.
621 */
622static void
623common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
624{
3b98a532 625 ktime_t now, remaining, iv;
becf8b5d 626 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 627
becf8b5d 628 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 629
3b98a532
RZ
630 iv = timr->it.real.interval;
631
becf8b5d 632 /* interval timer ? */
3b98a532
RZ
633 if (iv.tv64)
634 cur_setting->it_interval = ktime_to_timespec(iv);
635 else if (!hrtimer_active(timer) &&
636 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 637 return;
3b98a532
RZ
638
639 now = timer->base->get_time();
640
becf8b5d 641 /*
3b98a532
RZ
642 * When a requeue is pending or this is a SIGEV_NONE
643 * timer move the expiry time forward by intervals, so
644 * expiry is > now.
becf8b5d 645 */
3b98a532
RZ
646 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
647 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 648 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 649
cc584b21 650 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 651 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
652 if (remaining.tv64 <= 0) {
653 /*
654 * A single shot SIGEV_NONE timer must return 0, when
655 * it is expired !
656 */
657 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
658 cur_setting->it_value.tv_nsec = 1;
659 } else
becf8b5d 660 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
661}
662
663/* Get the time remaining on a POSIX.1b interval timer. */
664asmlinkage long
665sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
666{
667 struct k_itimer *timr;
668 struct itimerspec cur_setting;
669 unsigned long flags;
670
671 timr = lock_timer(timer_id, &flags);
672 if (!timr)
673 return -EINVAL;
674
675 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
676
677 unlock_timer(timr, flags);
678
679 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
680 return -EFAULT;
681
682 return 0;
683}
becf8b5d 684
1da177e4
LT
685/*
686 * Get the number of overruns of a POSIX.1b interval timer. This is to
687 * be the overrun of the timer last delivered. At the same time we are
688 * accumulating overruns on the next timer. The overrun is frozen when
689 * the signal is delivered, either at the notify time (if the info block
690 * is not queued) or at the actual delivery time (as we are informed by
691 * the call back to do_schedule_next_timer(). So all we need to do is
692 * to pick up the frozen overrun.
693 */
1da177e4
LT
694asmlinkage long
695sys_timer_getoverrun(timer_t timer_id)
696{
697 struct k_itimer *timr;
698 int overrun;
5ba25331 699 unsigned long flags;
1da177e4
LT
700
701 timr = lock_timer(timer_id, &flags);
702 if (!timr)
703 return -EINVAL;
704
705 overrun = timr->it_overrun_last;
706 unlock_timer(timr, flags);
707
708 return overrun;
709}
1da177e4
LT
710
711/* Set a POSIX.1b interval timer. */
712/* timr->it_lock is taken. */
858119e1 713static int
1da177e4
LT
714common_timer_set(struct k_itimer *timr, int flags,
715 struct itimerspec *new_setting, struct itimerspec *old_setting)
716{
becf8b5d 717 struct hrtimer *timer = &timr->it.real.timer;
7978672c 718 enum hrtimer_mode mode;
1da177e4
LT
719
720 if (old_setting)
721 common_timer_get(timr, old_setting);
722
723 /* disable the timer */
becf8b5d 724 timr->it.real.interval.tv64 = 0;
1da177e4
LT
725 /*
726 * careful here. If smp we could be in the "fire" routine which will
727 * be spinning as we hold the lock. But this is ONLY an SMP issue.
728 */
becf8b5d 729 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 730 return TIMER_RETRY;
1da177e4
LT
731
732 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
733 ~REQUEUE_PENDING;
734 timr->it_overrun_last = 0;
1da177e4 735
becf8b5d
TG
736 /* switch off the timer when it_value is zero */
737 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
738 return 0;
1da177e4 739
c9cb2e3d 740 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 741 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 742 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 743
cc584b21 744 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
745
746 /* Convert interval */
747 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
748
749 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
750 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
751 /* Setup correct expiry time for relative timers */
5a7780e7 752 if (mode == HRTIMER_MODE_REL) {
cc584b21 753 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 754 }
becf8b5d 755 return 0;
952bbc87 756 }
becf8b5d 757
cc584b21 758 hrtimer_start_expires(timer, mode);
1da177e4
LT
759 return 0;
760}
761
762/* Set a POSIX.1b interval timer */
763asmlinkage long
764sys_timer_settime(timer_t timer_id, int flags,
765 const struct itimerspec __user *new_setting,
766 struct itimerspec __user *old_setting)
767{
768 struct k_itimer *timr;
769 struct itimerspec new_spec, old_spec;
770 int error = 0;
5ba25331 771 unsigned long flag;
1da177e4
LT
772 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
773
774 if (!new_setting)
775 return -EINVAL;
776
777 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
778 return -EFAULT;
779
becf8b5d
TG
780 if (!timespec_valid(&new_spec.it_interval) ||
781 !timespec_valid(&new_spec.it_value))
1da177e4
LT
782 return -EINVAL;
783retry:
784 timr = lock_timer(timer_id, &flag);
785 if (!timr)
786 return -EINVAL;
787
788 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
789 (timr, flags, &new_spec, rtn));
790
791 unlock_timer(timr, flag);
792 if (error == TIMER_RETRY) {
793 rtn = NULL; // We already got the old time...
794 goto retry;
795 }
796
becf8b5d
TG
797 if (old_setting && !error &&
798 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
799 error = -EFAULT;
800
801 return error;
802}
803
804static inline int common_timer_del(struct k_itimer *timer)
805{
becf8b5d 806 timer->it.real.interval.tv64 = 0;
f972be33 807
becf8b5d 808 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 809 return TIMER_RETRY;
1da177e4
LT
810 return 0;
811}
812
813static inline int timer_delete_hook(struct k_itimer *timer)
814{
815 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
816}
817
818/* Delete a POSIX.1b interval timer. */
819asmlinkage long
820sys_timer_delete(timer_t timer_id)
821{
822 struct k_itimer *timer;
5ba25331 823 unsigned long flags;
1da177e4 824
1da177e4 825retry_delete:
1da177e4
LT
826 timer = lock_timer(timer_id, &flags);
827 if (!timer)
828 return -EINVAL;
829
becf8b5d 830 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
831 unlock_timer(timer, flags);
832 goto retry_delete;
833 }
becf8b5d 834
1da177e4
LT
835 spin_lock(&current->sighand->siglock);
836 list_del(&timer->list);
837 spin_unlock(&current->sighand->siglock);
838 /*
839 * This keeps any tasks waiting on the spin lock from thinking
840 * they got something (see the lock code above).
841 */
89992102 842 timer->it_signal = NULL;
4b7a1304 843
1da177e4
LT
844 unlock_timer(timer, flags);
845 release_posix_timer(timer, IT_ID_SET);
846 return 0;
847}
becf8b5d 848
1da177e4
LT
849/*
850 * return timer owned by the process, used by exit_itimers
851 */
858119e1 852static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
853{
854 unsigned long flags;
855
1da177e4 856retry_delete:
1da177e4
LT
857 spin_lock_irqsave(&timer->it_lock, flags);
858
becf8b5d 859 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
860 unlock_timer(timer, flags);
861 goto retry_delete;
862 }
1da177e4
LT
863 list_del(&timer->list);
864 /*
865 * This keeps any tasks waiting on the spin lock from thinking
866 * they got something (see the lock code above).
867 */
89992102 868 timer->it_signal = NULL;
4b7a1304 869
1da177e4
LT
870 unlock_timer(timer, flags);
871 release_posix_timer(timer, IT_ID_SET);
872}
873
874/*
25f407f0 875 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
876 * references to the shared signal_struct.
877 */
878void exit_itimers(struct signal_struct *sig)
879{
880 struct k_itimer *tmr;
881
882 while (!list_empty(&sig->posix_timers)) {
883 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
884 itimer_delete(tmr);
885 }
886}
887
becf8b5d 888/* Not available / possible... functions */
a924b04d 889int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
890{
891 return -EINVAL;
892}
893EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
894
a924b04d 895int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
97735f25 896 struct timespec *t, struct timespec __user *r)
1da177e4
LT
897{
898#ifndef ENOTSUP
899 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
900#else /* parisc does define it separately. */
901 return -ENOTSUP;
902#endif
903}
904EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
905
a924b04d
TG
906asmlinkage long sys_clock_settime(const clockid_t which_clock,
907 const struct timespec __user *tp)
1da177e4
LT
908{
909 struct timespec new_tp;
910
911 if (invalid_clockid(which_clock))
912 return -EINVAL;
913 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
914 return -EFAULT;
915
916 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
917}
918
919asmlinkage long
a924b04d 920sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
921{
922 struct timespec kernel_tp;
923 int error;
924
925 if (invalid_clockid(which_clock))
926 return -EINVAL;
927 error = CLOCK_DISPATCH(which_clock, clock_get,
928 (which_clock, &kernel_tp));
929 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
930 error = -EFAULT;
931
932 return error;
933
934}
935
936asmlinkage long
a924b04d 937sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
938{
939 struct timespec rtn_tp;
940 int error;
941
942 if (invalid_clockid(which_clock))
943 return -EINVAL;
944
945 error = CLOCK_DISPATCH(which_clock, clock_getres,
946 (which_clock, &rtn_tp));
947
948 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
949 error = -EFAULT;
950 }
951
952 return error;
953}
954
97735f25
TG
955/*
956 * nanosleep for monotonic and realtime clocks
957 */
958static int common_nsleep(const clockid_t which_clock, int flags,
959 struct timespec *tsave, struct timespec __user *rmtp)
960{
080344b9
ON
961 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
962 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
963 which_clock);
97735f25 964}
1da177e4
LT
965
966asmlinkage long
a924b04d 967sys_clock_nanosleep(const clockid_t which_clock, int flags,
1da177e4
LT
968 const struct timespec __user *rqtp,
969 struct timespec __user *rmtp)
970{
971 struct timespec t;
1da177e4
LT
972
973 if (invalid_clockid(which_clock))
974 return -EINVAL;
975
976 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
977 return -EFAULT;
978
5f82b2b7 979 if (!timespec_valid(&t))
1da177e4
LT
980 return -EINVAL;
981
97735f25
TG
982 return CLOCK_DISPATCH(which_clock, nsleep,
983 (which_clock, flags, &t, rmtp));
1da177e4 984}
1711ef38
TA
985
986/*
987 * nanosleep_restart for monotonic and realtime clocks
988 */
989static int common_nsleep_restart(struct restart_block *restart_block)
990{
991 return hrtimer_nanosleep_restart(restart_block);
992}
993
994/*
995 * This will restart clock_nanosleep. This is required only by
996 * compat_clock_nanosleep_restart for now.
997 */
998long
999clock_nanosleep_restart(struct restart_block *restart_block)
1000{
1001 clockid_t which_clock = restart_block->arg0;
1002
1003 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1004 (restart_block));
1005}