]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/posix-cpu-timers.c
cpu-timers: Simplify RLIMIT_CPU handling
[net-next-2.6.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
1da177e4 7#include <linux/errno.h>
f8bd2258
RZ
8#include <linux/math64.h>
9#include <asm/uaccess.h>
bb34d92f 10#include <linux/kernel_stat.h>
3f0a525e 11#include <trace/events/timer.h>
1da177e4 12
f06febc9 13/*
f55db609
SG
14 * Called after updating RLIMIT_CPU to run cpu timer and update
15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
16 * siglock protection since other code may update expiration cache as
17 * well.
f06febc9
FM
18 */
19void update_rlimit_cpu(unsigned long rlim_new)
20{
42c4ab41 21 cputime_t cputime = secs_to_cputime(rlim_new);
f06febc9 22
f55db609
SG
23 spin_lock_irq(&current->sighand->siglock);
24 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
25 spin_unlock_irq(&current->sighand->siglock);
f06febc9
FM
26}
27
a924b04d 28static int check_clock(const clockid_t which_clock)
1da177e4
LT
29{
30 int error = 0;
31 struct task_struct *p;
32 const pid_t pid = CPUCLOCK_PID(which_clock);
33
34 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 return -EINVAL;
36
37 if (pid == 0)
38 return 0;
39
40 read_lock(&tasklist_lock);
8dc86af0 41 p = find_task_by_vpid(pid);
bac0abd6
PE
42 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 same_thread_group(p, current) : thread_group_leader(p))) {
1da177e4
LT
44 error = -EINVAL;
45 }
46 read_unlock(&tasklist_lock);
47
48 return error;
49}
50
51static inline union cpu_time_count
a924b04d 52timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
53{
54 union cpu_time_count ret;
55 ret.sched = 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
ee500f27 57 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
1da177e4
LT
58 } else {
59 ret.cpu = timespec_to_cputime(tp);
60 }
61 return ret;
62}
63
a924b04d 64static void sample_to_timespec(const clockid_t which_clock,
1da177e4
LT
65 union cpu_time_count cpu,
66 struct timespec *tp)
67{
f8bd2258
RZ
68 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 *tp = ns_to_timespec(cpu.sched);
70 else
1da177e4 71 cputime_to_timespec(cpu.cpu, tp);
1da177e4
LT
72}
73
a924b04d 74static inline int cpu_time_before(const clockid_t which_clock,
1da177e4
LT
75 union cpu_time_count now,
76 union cpu_time_count then)
77{
78 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 return now.sched < then.sched;
80 } else {
81 return cputime_lt(now.cpu, then.cpu);
82 }
83}
a924b04d 84static inline void cpu_time_add(const clockid_t which_clock,
1da177e4
LT
85 union cpu_time_count *acc,
86 union cpu_time_count val)
87{
88 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 acc->sched += val.sched;
90 } else {
91 acc->cpu = cputime_add(acc->cpu, val.cpu);
92 }
93}
a924b04d 94static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
1da177e4
LT
95 union cpu_time_count a,
96 union cpu_time_count b)
97{
98 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 a.sched -= b.sched;
100 } else {
101 a.cpu = cputime_sub(a.cpu, b.cpu);
102 }
103 return a;
104}
105
ac08c264
TG
106/*
107 * Divide and limit the result to res >= 1
108 *
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
111 */
112static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113{
114 cputime_t res = cputime_div(time, div);
115
116 return max_t(cputime_t, res, 1);
117}
118
1da177e4
LT
119/*
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
122 */
7a4ed937 123static void bump_cpu_timer(struct k_itimer *timer,
1da177e4
LT
124 union cpu_time_count now)
125{
126 int i;
127
128 if (timer->it.cpu.incr.sched == 0)
129 return;
130
131 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 unsigned long long delta, incr;
133
134 if (now.sched < timer->it.cpu.expires.sched)
135 return;
136 incr = timer->it.cpu.incr.sched;
137 delta = now.sched + incr - timer->it.cpu.expires.sched;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i = 0; incr < delta - incr; i++)
140 incr = incr << 1;
141 for (; i >= 0; incr >>= 1, i--) {
7a4ed937 142 if (delta < incr)
1da177e4
LT
143 continue;
144 timer->it.cpu.expires.sched += incr;
145 timer->it_overrun += 1 << i;
146 delta -= incr;
147 }
148 } else {
149 cputime_t delta, incr;
150
151 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 return;
153 incr = timer->it.cpu.incr.cpu;
154 delta = cputime_sub(cputime_add(now.cpu, incr),
155 timer->it.cpu.expires.cpu);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 incr = cputime_add(incr, incr);
159 for (; i >= 0; incr = cputime_halve(incr), i--) {
7a4ed937 160 if (cputime_lt(delta, incr))
1da177e4
LT
161 continue;
162 timer->it.cpu.expires.cpu =
163 cputime_add(timer->it.cpu.expires.cpu, incr);
164 timer->it_overrun += 1 << i;
165 delta = cputime_sub(delta, incr);
166 }
167 }
168}
169
170static inline cputime_t prof_ticks(struct task_struct *p)
171{
172 return cputime_add(p->utime, p->stime);
173}
174static inline cputime_t virt_ticks(struct task_struct *p)
175{
176 return p->utime;
177}
1da177e4 178
a924b04d 179int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
180{
181 int error = check_clock(which_clock);
182 if (!error) {
183 tp->tv_sec = 0;
184 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186 /*
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
190 */
191 tp->tv_nsec = 1;
192 }
193 }
194 return error;
195}
196
a924b04d 197int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
198{
199 /*
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
202 */
203 int error = check_clock(which_clock);
204 if (error == 0) {
205 error = -EPERM;
206 }
207 return error;
208}
209
210
211/*
212 * Sample a per-thread clock for the given task.
213 */
a924b04d 214static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
1da177e4
LT
215 union cpu_time_count *cpu)
216{
217 switch (CPUCLOCK_WHICH(which_clock)) {
218 default:
219 return -EINVAL;
220 case CPUCLOCK_PROF:
221 cpu->cpu = prof_ticks(p);
222 break;
223 case CPUCLOCK_VIRT:
224 cpu->cpu = virt_ticks(p);
225 break;
226 case CPUCLOCK_SCHED:
c5f8d995 227 cpu->sched = task_sched_runtime(p);
1da177e4
LT
228 break;
229 }
230 return 0;
231}
232
4cd4c1b4
PZ
233void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
234{
235 struct sighand_struct *sighand;
236 struct signal_struct *sig;
237 struct task_struct *t;
238
239 *times = INIT_CPUTIME;
240
241 rcu_read_lock();
242 sighand = rcu_dereference(tsk->sighand);
243 if (!sighand)
244 goto out;
245
246 sig = tsk->signal;
247
248 t = tsk;
249 do {
250 times->utime = cputime_add(times->utime, t->utime);
251 times->stime = cputime_add(times->stime, t->stime);
252 times->sum_exec_runtime += t->se.sum_exec_runtime;
253
254 t = next_thread(t);
255 } while (t != tsk);
256
257 times->utime = cputime_add(times->utime, sig->utime);
258 times->stime = cputime_add(times->stime, sig->stime);
259 times->sum_exec_runtime += sig->sum_sched_runtime;
260out:
261 rcu_read_unlock();
262}
263
4da94d49
PZ
264static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
265{
266 if (cputime_gt(b->utime, a->utime))
267 a->utime = b->utime;
268
269 if (cputime_gt(b->stime, a->stime))
270 a->stime = b->stime;
271
272 if (b->sum_exec_runtime > a->sum_exec_runtime)
273 a->sum_exec_runtime = b->sum_exec_runtime;
274}
275
276void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
277{
278 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
279 struct task_cputime sum;
280 unsigned long flags;
281
282 spin_lock_irqsave(&cputimer->lock, flags);
283 if (!cputimer->running) {
284 cputimer->running = 1;
285 /*
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
289 * it.
290 */
291 thread_group_cputime(tsk, &sum);
292 update_gt_cputime(&cputimer->cputime, &sum);
293 }
294 *times = cputimer->cputime;
295 spin_unlock_irqrestore(&cputimer->lock, flags);
296}
297
1da177e4
LT
298/*
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
1da177e4 301 */
bb34d92f
FM
302static int cpu_clock_sample_group(const clockid_t which_clock,
303 struct task_struct *p,
304 union cpu_time_count *cpu)
1da177e4 305{
f06febc9
FM
306 struct task_cputime cputime;
307
eccdaeaf 308 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
309 default:
310 return -EINVAL;
311 case CPUCLOCK_PROF:
c5f8d995 312 thread_group_cputime(p, &cputime);
f06febc9 313 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
1da177e4
LT
314 break;
315 case CPUCLOCK_VIRT:
c5f8d995 316 thread_group_cputime(p, &cputime);
f06febc9 317 cpu->cpu = cputime.utime;
1da177e4
LT
318 break;
319 case CPUCLOCK_SCHED:
c5f8d995 320 cpu->sched = thread_group_sched_runtime(p);
1da177e4
LT
321 break;
322 }
323 return 0;
324}
325
1da177e4 326
a924b04d 327int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
328{
329 const pid_t pid = CPUCLOCK_PID(which_clock);
330 int error = -EINVAL;
331 union cpu_time_count rtn;
332
333 if (pid == 0) {
334 /*
335 * Special case constant value for our own clocks.
336 * We don't have to do any lookup to find ourselves.
337 */
338 if (CPUCLOCK_PERTHREAD(which_clock)) {
339 /*
340 * Sampling just ourselves we can do with no locking.
341 */
342 error = cpu_clock_sample(which_clock,
343 current, &rtn);
344 } else {
345 read_lock(&tasklist_lock);
346 error = cpu_clock_sample_group(which_clock,
347 current, &rtn);
348 read_unlock(&tasklist_lock);
349 }
350 } else {
351 /*
352 * Find the given PID, and validate that the caller
353 * should be able to see it.
354 */
355 struct task_struct *p;
1f2ea083 356 rcu_read_lock();
8dc86af0 357 p = find_task_by_vpid(pid);
1da177e4
LT
358 if (p) {
359 if (CPUCLOCK_PERTHREAD(which_clock)) {
bac0abd6 360 if (same_thread_group(p, current)) {
1da177e4
LT
361 error = cpu_clock_sample(which_clock,
362 p, &rtn);
363 }
1f2ea083
PM
364 } else {
365 read_lock(&tasklist_lock);
bac0abd6 366 if (thread_group_leader(p) && p->signal) {
1f2ea083
PM
367 error =
368 cpu_clock_sample_group(which_clock,
369 p, &rtn);
370 }
371 read_unlock(&tasklist_lock);
1da177e4
LT
372 }
373 }
1f2ea083 374 rcu_read_unlock();
1da177e4
LT
375 }
376
377 if (error)
378 return error;
379 sample_to_timespec(which_clock, rtn, tp);
380 return 0;
381}
382
383
384/*
385 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
386 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
387 * new timer already all-zeros initialized.
1da177e4
LT
388 */
389int posix_cpu_timer_create(struct k_itimer *new_timer)
390{
391 int ret = 0;
392 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
393 struct task_struct *p;
394
395 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
396 return -EINVAL;
397
398 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4
LT
399
400 read_lock(&tasklist_lock);
401 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
402 if (pid == 0) {
403 p = current;
404 } else {
8dc86af0 405 p = find_task_by_vpid(pid);
bac0abd6 406 if (p && !same_thread_group(p, current))
1da177e4
LT
407 p = NULL;
408 }
409 } else {
410 if (pid == 0) {
411 p = current->group_leader;
412 } else {
8dc86af0 413 p = find_task_by_vpid(pid);
bac0abd6 414 if (p && !thread_group_leader(p))
1da177e4
LT
415 p = NULL;
416 }
417 }
418 new_timer->it.cpu.task = p;
419 if (p) {
420 get_task_struct(p);
421 } else {
422 ret = -EINVAL;
423 }
424 read_unlock(&tasklist_lock);
425
426 return ret;
427}
428
429/*
430 * Clean up a CPU-clock timer that is about to be destroyed.
431 * This is called from timer deletion with the timer already locked.
432 * If we return TIMER_RETRY, it's necessary to release the timer's lock
433 * and try again. (This happens when the timer is in the middle of firing.)
434 */
435int posix_cpu_timer_del(struct k_itimer *timer)
436{
437 struct task_struct *p = timer->it.cpu.task;
108150ea 438 int ret = 0;
1da177e4 439
108150ea 440 if (likely(p != NULL)) {
9465bee8
LT
441 read_lock(&tasklist_lock);
442 if (unlikely(p->signal == NULL)) {
443 /*
444 * We raced with the reaping of the task.
445 * The deletion should have cleared us off the list.
446 */
447 BUG_ON(!list_empty(&timer->it.cpu.entry));
448 } else {
9465bee8 449 spin_lock(&p->sighand->siglock);
108150ea
ON
450 if (timer->it.cpu.firing)
451 ret = TIMER_RETRY;
452 else
453 list_del(&timer->it.cpu.entry);
9465bee8
LT
454 spin_unlock(&p->sighand->siglock);
455 }
456 read_unlock(&tasklist_lock);
108150ea
ON
457
458 if (!ret)
459 put_task_struct(p);
1da177e4 460 }
1da177e4 461
108150ea 462 return ret;
1da177e4
LT
463}
464
465/*
466 * Clean out CPU timers still ticking when a thread exited. The task
467 * pointer is cleared, and the expiry time is replaced with the residual
468 * time for later timer_gettime calls to return.
469 * This must be called with the siglock held.
470 */
471static void cleanup_timers(struct list_head *head,
472 cputime_t utime, cputime_t stime,
41b86e9c 473 unsigned long long sum_exec_runtime)
1da177e4
LT
474{
475 struct cpu_timer_list *timer, *next;
476 cputime_t ptime = cputime_add(utime, stime);
477
478 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
479 list_del_init(&timer->entry);
480 if (cputime_lt(timer->expires.cpu, ptime)) {
481 timer->expires.cpu = cputime_zero;
482 } else {
483 timer->expires.cpu = cputime_sub(timer->expires.cpu,
484 ptime);
485 }
486 }
487
488 ++head;
489 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
490 list_del_init(&timer->entry);
491 if (cputime_lt(timer->expires.cpu, utime)) {
492 timer->expires.cpu = cputime_zero;
493 } else {
494 timer->expires.cpu = cputime_sub(timer->expires.cpu,
495 utime);
496 }
497 }
498
499 ++head;
500 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 501 list_del_init(&timer->entry);
41b86e9c 502 if (timer->expires.sched < sum_exec_runtime) {
1da177e4
LT
503 timer->expires.sched = 0;
504 } else {
41b86e9c 505 timer->expires.sched -= sum_exec_runtime;
1da177e4
LT
506 }
507 }
508}
509
510/*
511 * These are both called with the siglock held, when the current thread
512 * is being reaped. When the final (leader) thread in the group is reaped,
513 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
514 */
515void posix_cpu_timers_exit(struct task_struct *tsk)
516{
517 cleanup_timers(tsk->cpu_timers,
41b86e9c 518 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
1da177e4
LT
519
520}
521void posix_cpu_timers_exit_group(struct task_struct *tsk)
522{
17d42c1c 523 struct signal_struct *const sig = tsk->signal;
ca531a0a 524
f06febc9 525 cleanup_timers(tsk->signal->cpu_timers,
17d42c1c
SG
526 cputime_add(tsk->utime, sig->utime),
527 cputime_add(tsk->stime, sig->stime),
528 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
1da177e4
LT
529}
530
531static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
532{
533 /*
534 * That's all for this thread or process.
535 * We leave our residual in expires to be reported.
536 */
537 put_task_struct(timer->it.cpu.task);
538 timer->it.cpu.task = NULL;
539 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
540 timer->it.cpu.expires,
541 now);
542}
543
d1e3b6d1
SG
544static inline int expires_gt(cputime_t expires, cputime_t new_exp)
545{
546 return cputime_eq(expires, cputime_zero) ||
547 cputime_gt(expires, new_exp);
548}
549
550static inline int expires_le(cputime_t expires, cputime_t new_exp)
551{
552 return !cputime_eq(expires, cputime_zero) &&
553 cputime_le(expires, new_exp);
554}
1da177e4
LT
555/*
556 * Insert the timer on the appropriate list before any timers that
557 * expire later. This must be called with the tasklist_lock held
558 * for reading, and interrupts disabled.
559 */
560static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
561{
562 struct task_struct *p = timer->it.cpu.task;
563 struct list_head *head, *listpos;
564 struct cpu_timer_list *const nt = &timer->it.cpu;
565 struct cpu_timer_list *next;
1da177e4
LT
566
567 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
568 p->cpu_timers : p->signal->cpu_timers);
569 head += CPUCLOCK_WHICH(timer->it_clock);
570
571 BUG_ON(!irqs_disabled());
572 spin_lock(&p->sighand->siglock);
573
574 listpos = head;
575 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
576 list_for_each_entry(next, head, entry) {
70ab81c2 577 if (next->expires.sched > nt->expires.sched)
1da177e4 578 break;
70ab81c2 579 listpos = &next->entry;
1da177e4
LT
580 }
581 } else {
582 list_for_each_entry(next, head, entry) {
70ab81c2 583 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
1da177e4 584 break;
70ab81c2 585 listpos = &next->entry;
1da177e4
LT
586 }
587 }
588 list_add(&nt->entry, listpos);
589
590 if (listpos == head) {
591 /*
592 * We are the new earliest-expiring timer.
593 * If we are a thread timer, there can always
594 * be a process timer telling us to stop earlier.
595 */
596
597 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
d1e3b6d1
SG
598 union cpu_time_count *exp = &nt->expires;
599
1da177e4
LT
600 switch (CPUCLOCK_WHICH(timer->it_clock)) {
601 default:
602 BUG();
603 case CPUCLOCK_PROF:
d1e3b6d1
SG
604 if (expires_gt(p->cputime_expires.prof_exp,
605 exp->cpu))
606 p->cputime_expires.prof_exp = exp->cpu;
1da177e4
LT
607 break;
608 case CPUCLOCK_VIRT:
d1e3b6d1
SG
609 if (expires_gt(p->cputime_expires.virt_exp,
610 exp->cpu))
611 p->cputime_expires.virt_exp = exp->cpu;
1da177e4
LT
612 break;
613 case CPUCLOCK_SCHED:
f06febc9 614 if (p->cputime_expires.sched_exp == 0 ||
d1e3b6d1 615 p->cputime_expires.sched_exp > exp->sched)
f06febc9 616 p->cputime_expires.sched_exp =
d1e3b6d1 617 exp->sched;
1da177e4
LT
618 break;
619 }
620 } else {
42c4ab41
SG
621 struct signal_struct *const sig = p->signal;
622 union cpu_time_count *exp = &timer->it.cpu.expires;
623
1da177e4 624 /*
f06febc9 625 * For a process timer, set the cached expiration time.
1da177e4
LT
626 */
627 switch (CPUCLOCK_WHICH(timer->it_clock)) {
628 default:
629 BUG();
630 case CPUCLOCK_VIRT:
f55db609
SG
631 if (expires_gt(sig->cputime_expires.virt_exp, exp->cpu))
632 sig->cputime_expires.virt_exp = exp->cpu;
1da177e4 633 case CPUCLOCK_PROF:
f55db609
SG
634 if (expires_gt(sig->cputime_expires.prof_exp, exp->cpu))
635 sig->cputime_expires.prof_exp = exp->cpu;
f06febc9 636 break;
1da177e4 637 case CPUCLOCK_SCHED:
42c4ab41 638 sig->cputime_expires.sched_exp = exp->sched;
1da177e4
LT
639 break;
640 }
641 }
642 }
643
644 spin_unlock(&p->sighand->siglock);
645}
646
647/*
648 * The timer is locked, fire it and arrange for its reload.
649 */
650static void cpu_timer_fire(struct k_itimer *timer)
651{
652 if (unlikely(timer->sigq == NULL)) {
653 /*
654 * This a special case for clock_nanosleep,
655 * not a normal timer from sys_timer_create.
656 */
657 wake_up_process(timer->it_process);
658 timer->it.cpu.expires.sched = 0;
659 } else if (timer->it.cpu.incr.sched == 0) {
660 /*
661 * One-shot timer. Clear it as soon as it's fired.
662 */
663 posix_timer_event(timer, 0);
664 timer->it.cpu.expires.sched = 0;
665 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
666 /*
667 * The signal did not get queued because the signal
668 * was ignored, so we won't get any callback to
669 * reload the timer. But we need to keep it
670 * ticking in case the signal is deliverable next time.
671 */
672 posix_cpu_timer_schedule(timer);
673 }
674}
675
3997ad31
PZ
676/*
677 * Sample a process (thread group) timer for the given group_leader task.
678 * Must be called with tasklist_lock held for reading.
679 */
680static int cpu_timer_sample_group(const clockid_t which_clock,
681 struct task_struct *p,
682 union cpu_time_count *cpu)
683{
684 struct task_cputime cputime;
685
686 thread_group_cputimer(p, &cputime);
687 switch (CPUCLOCK_WHICH(which_clock)) {
688 default:
689 return -EINVAL;
690 case CPUCLOCK_PROF:
691 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
692 break;
693 case CPUCLOCK_VIRT:
694 cpu->cpu = cputime.utime;
695 break;
696 case CPUCLOCK_SCHED:
697 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
698 break;
699 }
700 return 0;
701}
702
1da177e4
LT
703/*
704 * Guts of sys_timer_settime for CPU timers.
705 * This is called with the timer locked and interrupts disabled.
706 * If we return TIMER_RETRY, it's necessary to release the timer's lock
707 * and try again. (This happens when the timer is in the middle of firing.)
708 */
709int posix_cpu_timer_set(struct k_itimer *timer, int flags,
710 struct itimerspec *new, struct itimerspec *old)
711{
712 struct task_struct *p = timer->it.cpu.task;
713 union cpu_time_count old_expires, new_expires, val;
714 int ret;
715
716 if (unlikely(p == NULL)) {
717 /*
718 * Timer refers to a dead task's clock.
719 */
720 return -ESRCH;
721 }
722
723 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
724
725 read_lock(&tasklist_lock);
726 /*
727 * We need the tasklist_lock to protect against reaping that
728 * clears p->signal. If p has just been reaped, we can no
729 * longer get any information about it at all.
730 */
731 if (unlikely(p->signal == NULL)) {
732 read_unlock(&tasklist_lock);
733 put_task_struct(p);
734 timer->it.cpu.task = NULL;
735 return -ESRCH;
736 }
737
738 /*
739 * Disarm any old timer after extracting its expiry time.
740 */
741 BUG_ON(!irqs_disabled());
a69ac4a7
ON
742
743 ret = 0;
1da177e4
LT
744 spin_lock(&p->sighand->siglock);
745 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
746 if (unlikely(timer->it.cpu.firing)) {
747 timer->it.cpu.firing = -1;
748 ret = TIMER_RETRY;
749 } else
750 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
751 spin_unlock(&p->sighand->siglock);
752
753 /*
754 * We need to sample the current value to convert the new
755 * value from to relative and absolute, and to convert the
756 * old value from absolute to relative. To set a process
757 * timer, we need a sample to balance the thread expiry
758 * times (in arm_timer). With an absolute time, we must
759 * check if it's already passed. In short, we need a sample.
760 */
761 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
762 cpu_clock_sample(timer->it_clock, p, &val);
763 } else {
3997ad31 764 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
765 }
766
767 if (old) {
768 if (old_expires.sched == 0) {
769 old->it_value.tv_sec = 0;
770 old->it_value.tv_nsec = 0;
771 } else {
772 /*
773 * Update the timer in case it has
774 * overrun already. If it has,
775 * we'll report it as having overrun
776 * and with the next reloaded timer
777 * already ticking, though we are
778 * swallowing that pending
779 * notification here to install the
780 * new setting.
781 */
782 bump_cpu_timer(timer, val);
783 if (cpu_time_before(timer->it_clock, val,
784 timer->it.cpu.expires)) {
785 old_expires = cpu_time_sub(
786 timer->it_clock,
787 timer->it.cpu.expires, val);
788 sample_to_timespec(timer->it_clock,
789 old_expires,
790 &old->it_value);
791 } else {
792 old->it_value.tv_nsec = 1;
793 old->it_value.tv_sec = 0;
794 }
795 }
796 }
797
a69ac4a7 798 if (unlikely(ret)) {
1da177e4
LT
799 /*
800 * We are colliding with the timer actually firing.
801 * Punt after filling in the timer's old value, and
802 * disable this firing since we are already reporting
803 * it as an overrun (thanks to bump_cpu_timer above).
804 */
805 read_unlock(&tasklist_lock);
1da177e4
LT
806 goto out;
807 }
808
809 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
810 cpu_time_add(timer->it_clock, &new_expires, val);
811 }
812
813 /*
814 * Install the new expiry time (or zero).
815 * For a timer with no notification action, we don't actually
816 * arm the timer (we'll just fake it for timer_gettime).
817 */
818 timer->it.cpu.expires = new_expires;
819 if (new_expires.sched != 0 &&
820 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
821 cpu_time_before(timer->it_clock, val, new_expires)) {
822 arm_timer(timer, val);
823 }
824
825 read_unlock(&tasklist_lock);
826
827 /*
828 * Install the new reload setting, and
829 * set up the signal and overrun bookkeeping.
830 */
831 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
832 &new->it_interval);
833
834 /*
835 * This acts as a modification timestamp for the timer,
836 * so any automatic reload attempt will punt on seeing
837 * that we have reset the timer manually.
838 */
839 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
840 ~REQUEUE_PENDING;
841 timer->it_overrun_last = 0;
842 timer->it_overrun = -1;
843
844 if (new_expires.sched != 0 &&
845 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
846 !cpu_time_before(timer->it_clock, val, new_expires)) {
847 /*
848 * The designated time already passed, so we notify
849 * immediately, even if the thread never runs to
850 * accumulate more time on this clock.
851 */
852 cpu_timer_fire(timer);
853 }
854
855 ret = 0;
856 out:
857 if (old) {
858 sample_to_timespec(timer->it_clock,
859 timer->it.cpu.incr, &old->it_interval);
860 }
861 return ret;
862}
863
864void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
865{
866 union cpu_time_count now;
867 struct task_struct *p = timer->it.cpu.task;
868 int clear_dead;
869
870 /*
871 * Easy part: convert the reload time.
872 */
873 sample_to_timespec(timer->it_clock,
874 timer->it.cpu.incr, &itp->it_interval);
875
876 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
877 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
878 return;
879 }
880
881 if (unlikely(p == NULL)) {
882 /*
883 * This task already died and the timer will never fire.
884 * In this case, expires is actually the dead value.
885 */
886 dead:
887 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
888 &itp->it_value);
889 return;
890 }
891
892 /*
893 * Sample the clock to take the difference with the expiry time.
894 */
895 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
896 cpu_clock_sample(timer->it_clock, p, &now);
897 clear_dead = p->exit_state;
898 } else {
899 read_lock(&tasklist_lock);
900 if (unlikely(p->signal == NULL)) {
901 /*
902 * The process has been reaped.
903 * We can't even collect a sample any more.
904 * Call the timer disarmed, nothing else to do.
905 */
906 put_task_struct(p);
907 timer->it.cpu.task = NULL;
908 timer->it.cpu.expires.sched = 0;
909 read_unlock(&tasklist_lock);
910 goto dead;
911 } else {
3997ad31 912 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
913 clear_dead = (unlikely(p->exit_state) &&
914 thread_group_empty(p));
915 }
916 read_unlock(&tasklist_lock);
917 }
918
919 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
920 if (timer->it.cpu.incr.sched == 0 &&
921 cpu_time_before(timer->it_clock,
922 timer->it.cpu.expires, now)) {
923 /*
924 * Do-nothing timer expired and has no reload,
925 * so it's as if it was never set.
926 */
927 timer->it.cpu.expires.sched = 0;
928 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
929 return;
930 }
931 /*
932 * Account for any expirations and reloads that should
933 * have happened.
934 */
935 bump_cpu_timer(timer, now);
936 }
937
938 if (unlikely(clear_dead)) {
939 /*
940 * We've noticed that the thread is dead, but
941 * not yet reaped. Take this opportunity to
942 * drop our task ref.
943 */
944 clear_dead_task(timer, now);
945 goto dead;
946 }
947
948 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
949 sample_to_timespec(timer->it_clock,
950 cpu_time_sub(timer->it_clock,
951 timer->it.cpu.expires, now),
952 &itp->it_value);
953 } else {
954 /*
955 * The timer should have expired already, but the firing
956 * hasn't taken place yet. Say it's just about to expire.
957 */
958 itp->it_value.tv_nsec = 1;
959 itp->it_value.tv_sec = 0;
960 }
961}
962
963/*
964 * Check for any per-thread CPU timers that have fired and move them off
965 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
966 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
967 */
968static void check_thread_timers(struct task_struct *tsk,
969 struct list_head *firing)
970{
e80eda94 971 int maxfire;
1da177e4 972 struct list_head *timers = tsk->cpu_timers;
78f2c7db 973 struct signal_struct *const sig = tsk->signal;
d4bb5274 974 unsigned long soft;
1da177e4 975
e80eda94 976 maxfire = 20;
f06febc9 977 tsk->cputime_expires.prof_exp = cputime_zero;
1da177e4 978 while (!list_empty(timers)) {
b5e61818 979 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
980 struct cpu_timer_list,
981 entry);
e80eda94 982 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
f06febc9 983 tsk->cputime_expires.prof_exp = t->expires.cpu;
1da177e4
LT
984 break;
985 }
986 t->firing = 1;
987 list_move_tail(&t->entry, firing);
988 }
989
990 ++timers;
e80eda94 991 maxfire = 20;
f06febc9 992 tsk->cputime_expires.virt_exp = cputime_zero;
1da177e4 993 while (!list_empty(timers)) {
b5e61818 994 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
995 struct cpu_timer_list,
996 entry);
e80eda94 997 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
f06febc9 998 tsk->cputime_expires.virt_exp = t->expires.cpu;
1da177e4
LT
999 break;
1000 }
1001 t->firing = 1;
1002 list_move_tail(&t->entry, firing);
1003 }
1004
1005 ++timers;
e80eda94 1006 maxfire = 20;
f06febc9 1007 tsk->cputime_expires.sched_exp = 0;
1da177e4 1008 while (!list_empty(timers)) {
b5e61818 1009 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1010 struct cpu_timer_list,
1011 entry);
41b86e9c 1012 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
f06febc9 1013 tsk->cputime_expires.sched_exp = t->expires.sched;
1da177e4
LT
1014 break;
1015 }
1016 t->firing = 1;
1017 list_move_tail(&t->entry, firing);
1018 }
78f2c7db
PZ
1019
1020 /*
1021 * Check for the special case thread timers.
1022 */
78d7d407 1023 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
d4bb5274 1024 if (soft != RLIM_INFINITY) {
78d7d407
JS
1025 unsigned long hard =
1026 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
78f2c7db 1027
5a52dd50
PZ
1028 if (hard != RLIM_INFINITY &&
1029 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
1030 /*
1031 * At the hard limit, we just die.
1032 * No need to calculate anything else now.
1033 */
1034 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1035 return;
1036 }
d4bb5274 1037 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
1038 /*
1039 * At the soft limit, send a SIGXCPU every second.
1040 */
d4bb5274
JS
1041 if (soft < hard) {
1042 soft += USEC_PER_SEC;
1043 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db 1044 }
81d50bb2
HS
1045 printk(KERN_INFO
1046 "RT Watchdog Timeout: %s[%d]\n",
1047 tsk->comm, task_pid_nr(tsk));
78f2c7db
PZ
1048 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1049 }
1050 }
1da177e4
LT
1051}
1052
3fccfd67
PZ
1053static void stop_process_timers(struct task_struct *tsk)
1054{
1055 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1056 unsigned long flags;
1057
1058 if (!cputimer->running)
1059 return;
1060
1061 spin_lock_irqsave(&cputimer->lock, flags);
1062 cputimer->running = 0;
1063 spin_unlock_irqrestore(&cputimer->lock, flags);
1064}
1065
8356b5f9
SG
1066static u32 onecputick;
1067
42c4ab41
SG
1068static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1069 cputime_t *expires, cputime_t cur_time, int signo)
1070{
1071 if (cputime_eq(it->expires, cputime_zero))
1072 return;
1073
1074 if (cputime_ge(cur_time, it->expires)) {
8356b5f9
SG
1075 if (!cputime_eq(it->incr, cputime_zero)) {
1076 it->expires = cputime_add(it->expires, it->incr);
1077 it->error += it->incr_error;
1078 if (it->error >= onecputick) {
1079 it->expires = cputime_sub(it->expires,
a42548a1 1080 cputime_one_jiffy);
8356b5f9
SG
1081 it->error -= onecputick;
1082 }
3f0a525e 1083 } else {
8356b5f9 1084 it->expires = cputime_zero;
3f0a525e 1085 }
42c4ab41 1086
3f0a525e
XG
1087 trace_itimer_expire(signo == SIGPROF ?
1088 ITIMER_PROF : ITIMER_VIRTUAL,
1089 tsk->signal->leader_pid, cur_time);
42c4ab41
SG
1090 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1091 }
1092
1093 if (!cputime_eq(it->expires, cputime_zero) &&
1094 (cputime_eq(*expires, cputime_zero) ||
1095 cputime_lt(it->expires, *expires))) {
1096 *expires = it->expires;
1097 }
1098}
1099
1da177e4
LT
1100/*
1101 * Check for any per-thread CPU timers that have fired and move them
1102 * off the tsk->*_timers list onto the firing list. Per-thread timers
1103 * have already been taken off.
1104 */
1105static void check_process_timers(struct task_struct *tsk,
1106 struct list_head *firing)
1107{
e80eda94 1108 int maxfire;
1da177e4 1109 struct signal_struct *const sig = tsk->signal;
f06febc9 1110 cputime_t utime, ptime, virt_expires, prof_expires;
41b86e9c 1111 unsigned long long sum_sched_runtime, sched_expires;
1da177e4 1112 struct list_head *timers = sig->cpu_timers;
f06febc9 1113 struct task_cputime cputime;
d4bb5274 1114 unsigned long soft;
1da177e4
LT
1115
1116 /*
1117 * Don't sample the current process CPU clocks if there are no timers.
1118 */
1119 if (list_empty(&timers[CPUCLOCK_PROF]) &&
42c4ab41 1120 cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1da177e4
LT
1121 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1122 list_empty(&timers[CPUCLOCK_VIRT]) &&
42c4ab41 1123 cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
4cd4c1b4
PZ
1124 list_empty(&timers[CPUCLOCK_SCHED])) {
1125 stop_process_timers(tsk);
1da177e4 1126 return;
4cd4c1b4 1127 }
1da177e4
LT
1128
1129 /*
1130 * Collect the current process totals.
1131 */
4cd4c1b4 1132 thread_group_cputimer(tsk, &cputime);
f06febc9
FM
1133 utime = cputime.utime;
1134 ptime = cputime_add(utime, cputime.stime);
1135 sum_sched_runtime = cputime.sum_exec_runtime;
e80eda94 1136 maxfire = 20;
1da177e4
LT
1137 prof_expires = cputime_zero;
1138 while (!list_empty(timers)) {
ee7dd205 1139 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1140 struct cpu_timer_list,
1141 entry);
ee7dd205
WC
1142 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1143 prof_expires = tl->expires.cpu;
1da177e4
LT
1144 break;
1145 }
ee7dd205
WC
1146 tl->firing = 1;
1147 list_move_tail(&tl->entry, firing);
1da177e4
LT
1148 }
1149
1150 ++timers;
e80eda94 1151 maxfire = 20;
1da177e4
LT
1152 virt_expires = cputime_zero;
1153 while (!list_empty(timers)) {
ee7dd205 1154 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1155 struct cpu_timer_list,
1156 entry);
ee7dd205
WC
1157 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1158 virt_expires = tl->expires.cpu;
1da177e4
LT
1159 break;
1160 }
ee7dd205
WC
1161 tl->firing = 1;
1162 list_move_tail(&tl->entry, firing);
1da177e4
LT
1163 }
1164
1165 ++timers;
e80eda94 1166 maxfire = 20;
1da177e4
LT
1167 sched_expires = 0;
1168 while (!list_empty(timers)) {
ee7dd205 1169 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1170 struct cpu_timer_list,
1171 entry);
ee7dd205
WC
1172 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1173 sched_expires = tl->expires.sched;
1da177e4
LT
1174 break;
1175 }
ee7dd205
WC
1176 tl->firing = 1;
1177 list_move_tail(&tl->entry, firing);
1da177e4
LT
1178 }
1179
1180 /*
1181 * Check for the special case process timers.
1182 */
42c4ab41
SG
1183 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1184 SIGPROF);
1185 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1186 SIGVTALRM);
78d7d407 1187 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
d4bb5274 1188 if (soft != RLIM_INFINITY) {
1da177e4 1189 unsigned long psecs = cputime_to_secs(ptime);
78d7d407
JS
1190 unsigned long hard =
1191 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1da177e4 1192 cputime_t x;
d4bb5274 1193 if (psecs >= hard) {
1da177e4
LT
1194 /*
1195 * At the hard limit, we just die.
1196 * No need to calculate anything else now.
1197 */
1198 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1199 return;
1200 }
d4bb5274 1201 if (psecs >= soft) {
1da177e4
LT
1202 /*
1203 * At the soft limit, send a SIGXCPU every second.
1204 */
1205 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
1206 if (soft < hard) {
1207 soft++;
1208 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
1209 }
1210 }
d4bb5274 1211 x = secs_to_cputime(soft);
1da177e4
LT
1212 if (cputime_eq(prof_expires, cputime_zero) ||
1213 cputime_lt(x, prof_expires)) {
1214 prof_expires = x;
1215 }
1216 }
1217
f06febc9
FM
1218 if (!cputime_eq(prof_expires, cputime_zero) &&
1219 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1220 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1221 sig->cputime_expires.prof_exp = prof_expires;
1222 if (!cputime_eq(virt_expires, cputime_zero) &&
1223 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1224 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1225 sig->cputime_expires.virt_exp = virt_expires;
1226 if (sched_expires != 0 &&
1227 (sig->cputime_expires.sched_exp == 0 ||
1228 sig->cputime_expires.sched_exp > sched_expires))
1229 sig->cputime_expires.sched_exp = sched_expires;
1da177e4
LT
1230}
1231
1232/*
1233 * This is called from the signal code (via do_schedule_next_timer)
1234 * when the last timer signal was delivered and we have to reload the timer.
1235 */
1236void posix_cpu_timer_schedule(struct k_itimer *timer)
1237{
1238 struct task_struct *p = timer->it.cpu.task;
1239 union cpu_time_count now;
1240
1241 if (unlikely(p == NULL))
1242 /*
1243 * The task was cleaned up already, no future firings.
1244 */
708f430d 1245 goto out;
1da177e4
LT
1246
1247 /*
1248 * Fetch the current sample and update the timer's expiry time.
1249 */
1250 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1251 cpu_clock_sample(timer->it_clock, p, &now);
1252 bump_cpu_timer(timer, now);
1253 if (unlikely(p->exit_state)) {
1254 clear_dead_task(timer, now);
708f430d 1255 goto out;
1da177e4
LT
1256 }
1257 read_lock(&tasklist_lock); /* arm_timer needs it. */
1258 } else {
1259 read_lock(&tasklist_lock);
1260 if (unlikely(p->signal == NULL)) {
1261 /*
1262 * The process has been reaped.
1263 * We can't even collect a sample any more.
1264 */
1265 put_task_struct(p);
1266 timer->it.cpu.task = p = NULL;
1267 timer->it.cpu.expires.sched = 0;
708f430d 1268 goto out_unlock;
1da177e4
LT
1269 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1270 /*
1271 * We've noticed that the thread is dead, but
1272 * not yet reaped. Take this opportunity to
1273 * drop our task ref.
1274 */
1275 clear_dead_task(timer, now);
708f430d 1276 goto out_unlock;
1da177e4 1277 }
3997ad31 1278 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
1279 bump_cpu_timer(timer, now);
1280 /* Leave the tasklist_lock locked for the call below. */
1281 }
1282
1283 /*
1284 * Now re-arm for the new expiry time.
1285 */
1286 arm_timer(timer, now);
1287
708f430d 1288out_unlock:
1da177e4 1289 read_unlock(&tasklist_lock);
708f430d
RM
1290
1291out:
1292 timer->it_overrun_last = timer->it_overrun;
1293 timer->it_overrun = -1;
1294 ++timer->it_requeue_pending;
1da177e4
LT
1295}
1296
f06febc9
FM
1297/**
1298 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1299 *
1300 * @cputime: The struct to compare.
1301 *
1302 * Checks @cputime to see if all fields are zero. Returns true if all fields
1303 * are zero, false if any field is nonzero.
1304 */
1305static inline int task_cputime_zero(const struct task_cputime *cputime)
1306{
1307 if (cputime_eq(cputime->utime, cputime_zero) &&
1308 cputime_eq(cputime->stime, cputime_zero) &&
1309 cputime->sum_exec_runtime == 0)
1310 return 1;
1311 return 0;
1312}
1313
1314/**
1315 * task_cputime_expired - Compare two task_cputime entities.
1316 *
1317 * @sample: The task_cputime structure to be checked for expiration.
1318 * @expires: Expiration times, against which @sample will be checked.
1319 *
1320 * Checks @sample against @expires to see if any field of @sample has expired.
1321 * Returns true if any field of the former is greater than the corresponding
1322 * field of the latter if the latter field is set. Otherwise returns false.
1323 */
1324static inline int task_cputime_expired(const struct task_cputime *sample,
1325 const struct task_cputime *expires)
1326{
1327 if (!cputime_eq(expires->utime, cputime_zero) &&
1328 cputime_ge(sample->utime, expires->utime))
1329 return 1;
1330 if (!cputime_eq(expires->stime, cputime_zero) &&
1331 cputime_ge(cputime_add(sample->utime, sample->stime),
1332 expires->stime))
1333 return 1;
1334 if (expires->sum_exec_runtime != 0 &&
1335 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1336 return 1;
1337 return 0;
1338}
1339
1340/**
1341 * fastpath_timer_check - POSIX CPU timers fast path.
1342 *
1343 * @tsk: The task (thread) being checked.
f06febc9 1344 *
bb34d92f
FM
1345 * Check the task and thread group timers. If both are zero (there are no
1346 * timers set) return false. Otherwise snapshot the task and thread group
1347 * timers and compare them with the corresponding expiration times. Return
1348 * true if a timer has expired, else return false.
f06febc9 1349 */
bb34d92f 1350static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1351{
ad133ba3 1352 struct signal_struct *sig;
bb34d92f 1353
ad133ba3
ON
1354 /* tsk == current, ensure it is safe to use ->signal/sighand */
1355 if (unlikely(tsk->exit_state))
f06febc9 1356 return 0;
bb34d92f
FM
1357
1358 if (!task_cputime_zero(&tsk->cputime_expires)) {
1359 struct task_cputime task_sample = {
1360 .utime = tsk->utime,
1361 .stime = tsk->stime,
1362 .sum_exec_runtime = tsk->se.sum_exec_runtime
1363 };
1364
1365 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1366 return 1;
1367 }
ad133ba3
ON
1368
1369 sig = tsk->signal;
bb34d92f
FM
1370 if (!task_cputime_zero(&sig->cputime_expires)) {
1371 struct task_cputime group_sample;
1372
4cd4c1b4 1373 thread_group_cputimer(tsk, &group_sample);
bb34d92f
FM
1374 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1375 return 1;
1376 }
37bebc70 1377
f55db609 1378 return 0;
f06febc9
FM
1379}
1380
1da177e4
LT
1381/*
1382 * This is called from the timer interrupt handler. The irq handler has
1383 * already updated our counts. We need to check if any timers fire now.
1384 * Interrupts are disabled.
1385 */
1386void run_posix_cpu_timers(struct task_struct *tsk)
1387{
1388 LIST_HEAD(firing);
1389 struct k_itimer *timer, *next;
1390
1391 BUG_ON(!irqs_disabled());
1392
1da177e4 1393 /*
f06febc9 1394 * The fast path checks that there are no expired thread or thread
bb34d92f 1395 * group timers. If that's so, just return.
1da177e4 1396 */
bb34d92f 1397 if (!fastpath_timer_check(tsk))
f06febc9 1398 return;
5ce73a4a 1399
bb34d92f
FM
1400 spin_lock(&tsk->sighand->siglock);
1401 /*
1402 * Here we take off tsk->signal->cpu_timers[N] and
1403 * tsk->cpu_timers[N] all the timers that are firing, and
1404 * put them on the firing list.
1405 */
1406 check_thread_timers(tsk, &firing);
1407 check_process_timers(tsk, &firing);
1da177e4 1408
bb34d92f
FM
1409 /*
1410 * We must release these locks before taking any timer's lock.
1411 * There is a potential race with timer deletion here, as the
1412 * siglock now protects our private firing list. We have set
1413 * the firing flag in each timer, so that a deletion attempt
1414 * that gets the timer lock before we do will give it up and
1415 * spin until we've taken care of that timer below.
1416 */
1417 spin_unlock(&tsk->sighand->siglock);
1da177e4
LT
1418
1419 /*
1420 * Now that all the timers on our list have the firing flag,
1421 * noone will touch their list entries but us. We'll take
1422 * each timer's lock before clearing its firing flag, so no
1423 * timer call will interfere.
1424 */
1425 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1426 int cpu_firing;
1427
1da177e4
LT
1428 spin_lock(&timer->it_lock);
1429 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1430 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1431 timer->it.cpu.firing = 0;
1432 /*
1433 * The firing flag is -1 if we collided with a reset
1434 * of the timer, which already reported this
1435 * almost-firing as an overrun. So don't generate an event.
1436 */
6e85c5ba 1437 if (likely(cpu_firing >= 0))
1da177e4 1438 cpu_timer_fire(timer);
1da177e4
LT
1439 spin_unlock(&timer->it_lock);
1440 }
1441}
1442
1443/*
f55db609 1444 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1445 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1446 */
1447void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1448 cputime_t *newval, cputime_t *oldval)
1449{
1450 union cpu_time_count now;
1da177e4
LT
1451
1452 BUG_ON(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1453 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1454
1455 if (oldval) {
f55db609
SG
1456 /*
1457 * We are setting itimer. The *oldval is absolute and we update
1458 * it to be relative, *newval argument is relative and we update
1459 * it to be absolute.
1460 */
1da177e4
LT
1461 if (!cputime_eq(*oldval, cputime_zero)) {
1462 if (cputime_le(*oldval, now.cpu)) {
1463 /* Just about to fire. */
a42548a1 1464 *oldval = cputime_one_jiffy;
1da177e4
LT
1465 } else {
1466 *oldval = cputime_sub(*oldval, now.cpu);
1467 }
1468 }
1469
1470 if (cputime_eq(*newval, cputime_zero))
1471 return;
1472 *newval = cputime_add(*newval, now.cpu);
1da177e4
LT
1473 }
1474
1475 /*
f55db609
SG
1476 * Update expiration cache if we are the earliest timer, or eventually
1477 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1478 */
f55db609
SG
1479 switch (clock_idx) {
1480 case CPUCLOCK_PROF:
1481 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
f06febc9 1482 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1483 break;
1484 case CPUCLOCK_VIRT:
1485 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
f06febc9 1486 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1487 break;
1da177e4
LT
1488 }
1489}
1490
e4b76555
TA
1491static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1492 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1493{
1da177e4
LT
1494 struct k_itimer timer;
1495 int error;
1496
1da177e4
LT
1497 /*
1498 * Set up a temporary timer and then wait for it to go off.
1499 */
1500 memset(&timer, 0, sizeof timer);
1501 spin_lock_init(&timer.it_lock);
1502 timer.it_clock = which_clock;
1503 timer.it_overrun = -1;
1504 error = posix_cpu_timer_create(&timer);
1505 timer.it_process = current;
1506 if (!error) {
1da177e4 1507 static struct itimerspec zero_it;
e4b76555
TA
1508
1509 memset(it, 0, sizeof *it);
1510 it->it_value = *rqtp;
1da177e4
LT
1511
1512 spin_lock_irq(&timer.it_lock);
e4b76555 1513 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1514 if (error) {
1515 spin_unlock_irq(&timer.it_lock);
1516 return error;
1517 }
1518
1519 while (!signal_pending(current)) {
1520 if (timer.it.cpu.expires.sched == 0) {
1521 /*
1522 * Our timer fired and was reset.
1523 */
1524 spin_unlock_irq(&timer.it_lock);
1525 return 0;
1526 }
1527
1528 /*
1529 * Block until cpu_timer_fire (or a signal) wakes us.
1530 */
1531 __set_current_state(TASK_INTERRUPTIBLE);
1532 spin_unlock_irq(&timer.it_lock);
1533 schedule();
1534 spin_lock_irq(&timer.it_lock);
1535 }
1536
1537 /*
1538 * We were interrupted by a signal.
1539 */
1540 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
e4b76555 1541 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1da177e4
LT
1542 spin_unlock_irq(&timer.it_lock);
1543
e4b76555 1544 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1545 /*
1546 * It actually did fire already.
1547 */
1548 return 0;
1549 }
1550
e4b76555
TA
1551 error = -ERESTART_RESTARTBLOCK;
1552 }
1553
1554 return error;
1555}
1556
1557int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1558 struct timespec *rqtp, struct timespec __user *rmtp)
1559{
1560 struct restart_block *restart_block =
1561 &current_thread_info()->restart_block;
1562 struct itimerspec it;
1563 int error;
1564
1565 /*
1566 * Diagnose required errors first.
1567 */
1568 if (CPUCLOCK_PERTHREAD(which_clock) &&
1569 (CPUCLOCK_PID(which_clock) == 0 ||
1570 CPUCLOCK_PID(which_clock) == current->pid))
1571 return -EINVAL;
1572
1573 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1574
1575 if (error == -ERESTART_RESTARTBLOCK) {
1576
1577 if (flags & TIMER_ABSTIME)
1578 return -ERESTARTNOHAND;
1da177e4 1579 /*
e4b76555
TA
1580 * Report back to the user the time still remaining.
1581 */
1582 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1583 return -EFAULT;
1584
1711ef38 1585 restart_block->fn = posix_cpu_nsleep_restart;
1da177e4 1586 restart_block->arg0 = which_clock;
97735f25 1587 restart_block->arg1 = (unsigned long) rmtp;
1da177e4
LT
1588 restart_block->arg2 = rqtp->tv_sec;
1589 restart_block->arg3 = rqtp->tv_nsec;
1da177e4 1590 }
1da177e4
LT
1591 return error;
1592}
1593
1711ef38 1594long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4
LT
1595{
1596 clockid_t which_clock = restart_block->arg0;
97735f25
TG
1597 struct timespec __user *rmtp;
1598 struct timespec t;
e4b76555
TA
1599 struct itimerspec it;
1600 int error;
97735f25
TG
1601
1602 rmtp = (struct timespec __user *) restart_block->arg1;
1603 t.tv_sec = restart_block->arg2;
1604 t.tv_nsec = restart_block->arg3;
1605
1da177e4 1606 restart_block->fn = do_no_restart_syscall;
e4b76555
TA
1607 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1608
1609 if (error == -ERESTART_RESTARTBLOCK) {
1610 /*
1611 * Report back to the user the time still remaining.
1612 */
1613 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1614 return -EFAULT;
1615
1616 restart_block->fn = posix_cpu_nsleep_restart;
1617 restart_block->arg0 = which_clock;
1618 restart_block->arg1 = (unsigned long) rmtp;
1619 restart_block->arg2 = t.tv_sec;
1620 restart_block->arg3 = t.tv_nsec;
1621 }
1622 return error;
1623
1da177e4
LT
1624}
1625
1626
1627#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1628#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1629
a924b04d
TG
1630static int process_cpu_clock_getres(const clockid_t which_clock,
1631 struct timespec *tp)
1da177e4
LT
1632{
1633 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1634}
a924b04d
TG
1635static int process_cpu_clock_get(const clockid_t which_clock,
1636 struct timespec *tp)
1da177e4
LT
1637{
1638 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1639}
1640static int process_cpu_timer_create(struct k_itimer *timer)
1641{
1642 timer->it_clock = PROCESS_CLOCK;
1643 return posix_cpu_timer_create(timer);
1644}
a924b04d 1645static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1646 struct timespec *rqtp,
1647 struct timespec __user *rmtp)
1da177e4 1648{
97735f25 1649 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1650}
1711ef38
TA
1651static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1652{
1653 return -EINVAL;
1654}
a924b04d
TG
1655static int thread_cpu_clock_getres(const clockid_t which_clock,
1656 struct timespec *tp)
1da177e4
LT
1657{
1658 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1659}
a924b04d
TG
1660static int thread_cpu_clock_get(const clockid_t which_clock,
1661 struct timespec *tp)
1da177e4
LT
1662{
1663 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1664}
1665static int thread_cpu_timer_create(struct k_itimer *timer)
1666{
1667 timer->it_clock = THREAD_CLOCK;
1668 return posix_cpu_timer_create(timer);
1669}
a924b04d 1670static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25 1671 struct timespec *rqtp, struct timespec __user *rmtp)
1da177e4
LT
1672{
1673 return -EINVAL;
1674}
1711ef38
TA
1675static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1676{
1677 return -EINVAL;
1678}
1da177e4
LT
1679
1680static __init int init_posix_cpu_timers(void)
1681{
1682 struct k_clock process = {
1683 .clock_getres = process_cpu_clock_getres,
1684 .clock_get = process_cpu_clock_get,
1685 .clock_set = do_posix_clock_nosettime,
1686 .timer_create = process_cpu_timer_create,
1687 .nsleep = process_cpu_nsleep,
1711ef38 1688 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1689 };
1690 struct k_clock thread = {
1691 .clock_getres = thread_cpu_clock_getres,
1692 .clock_get = thread_cpu_clock_get,
1693 .clock_set = do_posix_clock_nosettime,
1694 .timer_create = thread_cpu_timer_create,
1695 .nsleep = thread_cpu_nsleep,
1711ef38 1696 .nsleep_restart = thread_cpu_nsleep_restart,
1da177e4 1697 };
8356b5f9 1698 struct timespec ts;
1da177e4
LT
1699
1700 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1701 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1702
a42548a1 1703 cputime_to_timespec(cputime_one_jiffy, &ts);
8356b5f9
SG
1704 onecputick = ts.tv_nsec;
1705 WARN_ON(ts.tv_sec != 0);
1706
1da177e4
LT
1707 return 0;
1708}
1709__initcall(init_posix_cpu_timers);