]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/posix-cpu-timers.c
cputime: Optimize jiffies_to_cputime(1)
[net-next-2.6.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
1da177e4 7#include <linux/errno.h>
f8bd2258
RZ
8#include <linux/math64.h>
9#include <asm/uaccess.h>
bb34d92f 10#include <linux/kernel_stat.h>
1da177e4 11
f06febc9
FM
12/*
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
14 */
15void update_rlimit_cpu(unsigned long rlim_new)
16{
42c4ab41
SG
17 cputime_t cputime = secs_to_cputime(rlim_new);
18 struct signal_struct *const sig = current->signal;
f06febc9 19
42c4ab41
SG
20 if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) ||
21 cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) {
f06febc9
FM
22 spin_lock_irq(&current->sighand->siglock);
23 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
24 spin_unlock_irq(&current->sighand->siglock);
25 }
26}
27
a924b04d 28static int check_clock(const clockid_t which_clock)
1da177e4
LT
29{
30 int error = 0;
31 struct task_struct *p;
32 const pid_t pid = CPUCLOCK_PID(which_clock);
33
34 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 return -EINVAL;
36
37 if (pid == 0)
38 return 0;
39
40 read_lock(&tasklist_lock);
8dc86af0 41 p = find_task_by_vpid(pid);
bac0abd6
PE
42 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 same_thread_group(p, current) : thread_group_leader(p))) {
1da177e4
LT
44 error = -EINVAL;
45 }
46 read_unlock(&tasklist_lock);
47
48 return error;
49}
50
51static inline union cpu_time_count
a924b04d 52timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
53{
54 union cpu_time_count ret;
55 ret.sched = 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
ee500f27 57 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
1da177e4
LT
58 } else {
59 ret.cpu = timespec_to_cputime(tp);
60 }
61 return ret;
62}
63
a924b04d 64static void sample_to_timespec(const clockid_t which_clock,
1da177e4
LT
65 union cpu_time_count cpu,
66 struct timespec *tp)
67{
f8bd2258
RZ
68 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 *tp = ns_to_timespec(cpu.sched);
70 else
1da177e4 71 cputime_to_timespec(cpu.cpu, tp);
1da177e4
LT
72}
73
a924b04d 74static inline int cpu_time_before(const clockid_t which_clock,
1da177e4
LT
75 union cpu_time_count now,
76 union cpu_time_count then)
77{
78 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 return now.sched < then.sched;
80 } else {
81 return cputime_lt(now.cpu, then.cpu);
82 }
83}
a924b04d 84static inline void cpu_time_add(const clockid_t which_clock,
1da177e4
LT
85 union cpu_time_count *acc,
86 union cpu_time_count val)
87{
88 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 acc->sched += val.sched;
90 } else {
91 acc->cpu = cputime_add(acc->cpu, val.cpu);
92 }
93}
a924b04d 94static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
1da177e4
LT
95 union cpu_time_count a,
96 union cpu_time_count b)
97{
98 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 a.sched -= b.sched;
100 } else {
101 a.cpu = cputime_sub(a.cpu, b.cpu);
102 }
103 return a;
104}
105
ac08c264
TG
106/*
107 * Divide and limit the result to res >= 1
108 *
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
111 */
112static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113{
114 cputime_t res = cputime_div(time, div);
115
116 return max_t(cputime_t, res, 1);
117}
118
1da177e4
LT
119/*
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
122 */
7a4ed937 123static void bump_cpu_timer(struct k_itimer *timer,
1da177e4
LT
124 union cpu_time_count now)
125{
126 int i;
127
128 if (timer->it.cpu.incr.sched == 0)
129 return;
130
131 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 unsigned long long delta, incr;
133
134 if (now.sched < timer->it.cpu.expires.sched)
135 return;
136 incr = timer->it.cpu.incr.sched;
137 delta = now.sched + incr - timer->it.cpu.expires.sched;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i = 0; incr < delta - incr; i++)
140 incr = incr << 1;
141 for (; i >= 0; incr >>= 1, i--) {
7a4ed937 142 if (delta < incr)
1da177e4
LT
143 continue;
144 timer->it.cpu.expires.sched += incr;
145 timer->it_overrun += 1 << i;
146 delta -= incr;
147 }
148 } else {
149 cputime_t delta, incr;
150
151 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 return;
153 incr = timer->it.cpu.incr.cpu;
154 delta = cputime_sub(cputime_add(now.cpu, incr),
155 timer->it.cpu.expires.cpu);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 incr = cputime_add(incr, incr);
159 for (; i >= 0; incr = cputime_halve(incr), i--) {
7a4ed937 160 if (cputime_lt(delta, incr))
1da177e4
LT
161 continue;
162 timer->it.cpu.expires.cpu =
163 cputime_add(timer->it.cpu.expires.cpu, incr);
164 timer->it_overrun += 1 << i;
165 delta = cputime_sub(delta, incr);
166 }
167 }
168}
169
170static inline cputime_t prof_ticks(struct task_struct *p)
171{
172 return cputime_add(p->utime, p->stime);
173}
174static inline cputime_t virt_ticks(struct task_struct *p)
175{
176 return p->utime;
177}
1da177e4 178
a924b04d 179int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
180{
181 int error = check_clock(which_clock);
182 if (!error) {
183 tp->tv_sec = 0;
184 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186 /*
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
190 */
191 tp->tv_nsec = 1;
192 }
193 }
194 return error;
195}
196
a924b04d 197int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
198{
199 /*
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
202 */
203 int error = check_clock(which_clock);
204 if (error == 0) {
205 error = -EPERM;
206 }
207 return error;
208}
209
210
211/*
212 * Sample a per-thread clock for the given task.
213 */
a924b04d 214static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
1da177e4
LT
215 union cpu_time_count *cpu)
216{
217 switch (CPUCLOCK_WHICH(which_clock)) {
218 default:
219 return -EINVAL;
220 case CPUCLOCK_PROF:
221 cpu->cpu = prof_ticks(p);
222 break;
223 case CPUCLOCK_VIRT:
224 cpu->cpu = virt_ticks(p);
225 break;
226 case CPUCLOCK_SCHED:
c5f8d995 227 cpu->sched = task_sched_runtime(p);
1da177e4
LT
228 break;
229 }
230 return 0;
231}
232
4cd4c1b4
PZ
233void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
234{
235 struct sighand_struct *sighand;
236 struct signal_struct *sig;
237 struct task_struct *t;
238
239 *times = INIT_CPUTIME;
240
241 rcu_read_lock();
242 sighand = rcu_dereference(tsk->sighand);
243 if (!sighand)
244 goto out;
245
246 sig = tsk->signal;
247
248 t = tsk;
249 do {
250 times->utime = cputime_add(times->utime, t->utime);
251 times->stime = cputime_add(times->stime, t->stime);
252 times->sum_exec_runtime += t->se.sum_exec_runtime;
253
254 t = next_thread(t);
255 } while (t != tsk);
256
257 times->utime = cputime_add(times->utime, sig->utime);
258 times->stime = cputime_add(times->stime, sig->stime);
259 times->sum_exec_runtime += sig->sum_sched_runtime;
260out:
261 rcu_read_unlock();
262}
263
4da94d49
PZ
264static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
265{
266 if (cputime_gt(b->utime, a->utime))
267 a->utime = b->utime;
268
269 if (cputime_gt(b->stime, a->stime))
270 a->stime = b->stime;
271
272 if (b->sum_exec_runtime > a->sum_exec_runtime)
273 a->sum_exec_runtime = b->sum_exec_runtime;
274}
275
276void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
277{
278 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
279 struct task_cputime sum;
280 unsigned long flags;
281
282 spin_lock_irqsave(&cputimer->lock, flags);
283 if (!cputimer->running) {
284 cputimer->running = 1;
285 /*
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
289 * it.
290 */
291 thread_group_cputime(tsk, &sum);
292 update_gt_cputime(&cputimer->cputime, &sum);
293 }
294 *times = cputimer->cputime;
295 spin_unlock_irqrestore(&cputimer->lock, flags);
296}
297
1da177e4
LT
298/*
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
1da177e4 301 */
bb34d92f
FM
302static int cpu_clock_sample_group(const clockid_t which_clock,
303 struct task_struct *p,
304 union cpu_time_count *cpu)
1da177e4 305{
f06febc9
FM
306 struct task_cputime cputime;
307
eccdaeaf 308 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
309 default:
310 return -EINVAL;
311 case CPUCLOCK_PROF:
c5f8d995 312 thread_group_cputime(p, &cputime);
f06febc9 313 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
1da177e4
LT
314 break;
315 case CPUCLOCK_VIRT:
c5f8d995 316 thread_group_cputime(p, &cputime);
f06febc9 317 cpu->cpu = cputime.utime;
1da177e4
LT
318 break;
319 case CPUCLOCK_SCHED:
c5f8d995 320 cpu->sched = thread_group_sched_runtime(p);
1da177e4
LT
321 break;
322 }
323 return 0;
324}
325
1da177e4 326
a924b04d 327int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
328{
329 const pid_t pid = CPUCLOCK_PID(which_clock);
330 int error = -EINVAL;
331 union cpu_time_count rtn;
332
333 if (pid == 0) {
334 /*
335 * Special case constant value for our own clocks.
336 * We don't have to do any lookup to find ourselves.
337 */
338 if (CPUCLOCK_PERTHREAD(which_clock)) {
339 /*
340 * Sampling just ourselves we can do with no locking.
341 */
342 error = cpu_clock_sample(which_clock,
343 current, &rtn);
344 } else {
345 read_lock(&tasklist_lock);
346 error = cpu_clock_sample_group(which_clock,
347 current, &rtn);
348 read_unlock(&tasklist_lock);
349 }
350 } else {
351 /*
352 * Find the given PID, and validate that the caller
353 * should be able to see it.
354 */
355 struct task_struct *p;
1f2ea083 356 rcu_read_lock();
8dc86af0 357 p = find_task_by_vpid(pid);
1da177e4
LT
358 if (p) {
359 if (CPUCLOCK_PERTHREAD(which_clock)) {
bac0abd6 360 if (same_thread_group(p, current)) {
1da177e4
LT
361 error = cpu_clock_sample(which_clock,
362 p, &rtn);
363 }
1f2ea083
PM
364 } else {
365 read_lock(&tasklist_lock);
bac0abd6 366 if (thread_group_leader(p) && p->signal) {
1f2ea083
PM
367 error =
368 cpu_clock_sample_group(which_clock,
369 p, &rtn);
370 }
371 read_unlock(&tasklist_lock);
1da177e4
LT
372 }
373 }
1f2ea083 374 rcu_read_unlock();
1da177e4
LT
375 }
376
377 if (error)
378 return error;
379 sample_to_timespec(which_clock, rtn, tp);
380 return 0;
381}
382
383
384/*
385 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
386 * This is called from sys_timer_create with the new timer already locked.
387 */
388int posix_cpu_timer_create(struct k_itimer *new_timer)
389{
390 int ret = 0;
391 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
392 struct task_struct *p;
393
394 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
395 return -EINVAL;
396
397 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
398 new_timer->it.cpu.incr.sched = 0;
399 new_timer->it.cpu.expires.sched = 0;
400
401 read_lock(&tasklist_lock);
402 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
403 if (pid == 0) {
404 p = current;
405 } else {
8dc86af0 406 p = find_task_by_vpid(pid);
bac0abd6 407 if (p && !same_thread_group(p, current))
1da177e4
LT
408 p = NULL;
409 }
410 } else {
411 if (pid == 0) {
412 p = current->group_leader;
413 } else {
8dc86af0 414 p = find_task_by_vpid(pid);
bac0abd6 415 if (p && !thread_group_leader(p))
1da177e4
LT
416 p = NULL;
417 }
418 }
419 new_timer->it.cpu.task = p;
420 if (p) {
421 get_task_struct(p);
422 } else {
423 ret = -EINVAL;
424 }
425 read_unlock(&tasklist_lock);
426
427 return ret;
428}
429
430/*
431 * Clean up a CPU-clock timer that is about to be destroyed.
432 * This is called from timer deletion with the timer already locked.
433 * If we return TIMER_RETRY, it's necessary to release the timer's lock
434 * and try again. (This happens when the timer is in the middle of firing.)
435 */
436int posix_cpu_timer_del(struct k_itimer *timer)
437{
438 struct task_struct *p = timer->it.cpu.task;
108150ea 439 int ret = 0;
1da177e4 440
108150ea 441 if (likely(p != NULL)) {
9465bee8
LT
442 read_lock(&tasklist_lock);
443 if (unlikely(p->signal == NULL)) {
444 /*
445 * We raced with the reaping of the task.
446 * The deletion should have cleared us off the list.
447 */
448 BUG_ON(!list_empty(&timer->it.cpu.entry));
449 } else {
9465bee8 450 spin_lock(&p->sighand->siglock);
108150ea
ON
451 if (timer->it.cpu.firing)
452 ret = TIMER_RETRY;
453 else
454 list_del(&timer->it.cpu.entry);
9465bee8
LT
455 spin_unlock(&p->sighand->siglock);
456 }
457 read_unlock(&tasklist_lock);
108150ea
ON
458
459 if (!ret)
460 put_task_struct(p);
1da177e4 461 }
1da177e4 462
108150ea 463 return ret;
1da177e4
LT
464}
465
466/*
467 * Clean out CPU timers still ticking when a thread exited. The task
468 * pointer is cleared, and the expiry time is replaced with the residual
469 * time for later timer_gettime calls to return.
470 * This must be called with the siglock held.
471 */
472static void cleanup_timers(struct list_head *head,
473 cputime_t utime, cputime_t stime,
41b86e9c 474 unsigned long long sum_exec_runtime)
1da177e4
LT
475{
476 struct cpu_timer_list *timer, *next;
477 cputime_t ptime = cputime_add(utime, stime);
478
479 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
480 list_del_init(&timer->entry);
481 if (cputime_lt(timer->expires.cpu, ptime)) {
482 timer->expires.cpu = cputime_zero;
483 } else {
484 timer->expires.cpu = cputime_sub(timer->expires.cpu,
485 ptime);
486 }
487 }
488
489 ++head;
490 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
491 list_del_init(&timer->entry);
492 if (cputime_lt(timer->expires.cpu, utime)) {
493 timer->expires.cpu = cputime_zero;
494 } else {
495 timer->expires.cpu = cputime_sub(timer->expires.cpu,
496 utime);
497 }
498 }
499
500 ++head;
501 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 502 list_del_init(&timer->entry);
41b86e9c 503 if (timer->expires.sched < sum_exec_runtime) {
1da177e4
LT
504 timer->expires.sched = 0;
505 } else {
41b86e9c 506 timer->expires.sched -= sum_exec_runtime;
1da177e4
LT
507 }
508 }
509}
510
511/*
512 * These are both called with the siglock held, when the current thread
513 * is being reaped. When the final (leader) thread in the group is reaped,
514 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
515 */
516void posix_cpu_timers_exit(struct task_struct *tsk)
517{
518 cleanup_timers(tsk->cpu_timers,
41b86e9c 519 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
1da177e4
LT
520
521}
522void posix_cpu_timers_exit_group(struct task_struct *tsk)
523{
f06febc9 524 struct task_cputime cputime;
ca531a0a 525
3fccfd67 526 thread_group_cputimer(tsk, &cputime);
f06febc9
FM
527 cleanup_timers(tsk->signal->cpu_timers,
528 cputime.utime, cputime.stime, cputime.sum_exec_runtime);
1da177e4
LT
529}
530
531static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
532{
533 /*
534 * That's all for this thread or process.
535 * We leave our residual in expires to be reported.
536 */
537 put_task_struct(timer->it.cpu.task);
538 timer->it.cpu.task = NULL;
539 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
540 timer->it.cpu.expires,
541 now);
542}
543
d1e3b6d1
SG
544static inline int expires_gt(cputime_t expires, cputime_t new_exp)
545{
546 return cputime_eq(expires, cputime_zero) ||
547 cputime_gt(expires, new_exp);
548}
549
550static inline int expires_le(cputime_t expires, cputime_t new_exp)
551{
552 return !cputime_eq(expires, cputime_zero) &&
553 cputime_le(expires, new_exp);
554}
1da177e4
LT
555/*
556 * Insert the timer on the appropriate list before any timers that
557 * expire later. This must be called with the tasklist_lock held
558 * for reading, and interrupts disabled.
559 */
560static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
561{
562 struct task_struct *p = timer->it.cpu.task;
563 struct list_head *head, *listpos;
564 struct cpu_timer_list *const nt = &timer->it.cpu;
565 struct cpu_timer_list *next;
566 unsigned long i;
567
568 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
569 p->cpu_timers : p->signal->cpu_timers);
570 head += CPUCLOCK_WHICH(timer->it_clock);
571
572 BUG_ON(!irqs_disabled());
573 spin_lock(&p->sighand->siglock);
574
575 listpos = head;
576 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
577 list_for_each_entry(next, head, entry) {
70ab81c2 578 if (next->expires.sched > nt->expires.sched)
1da177e4 579 break;
70ab81c2 580 listpos = &next->entry;
1da177e4
LT
581 }
582 } else {
583 list_for_each_entry(next, head, entry) {
70ab81c2 584 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
1da177e4 585 break;
70ab81c2 586 listpos = &next->entry;
1da177e4
LT
587 }
588 }
589 list_add(&nt->entry, listpos);
590
591 if (listpos == head) {
592 /*
593 * We are the new earliest-expiring timer.
594 * If we are a thread timer, there can always
595 * be a process timer telling us to stop earlier.
596 */
597
598 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
d1e3b6d1
SG
599 union cpu_time_count *exp = &nt->expires;
600
1da177e4
LT
601 switch (CPUCLOCK_WHICH(timer->it_clock)) {
602 default:
603 BUG();
604 case CPUCLOCK_PROF:
d1e3b6d1
SG
605 if (expires_gt(p->cputime_expires.prof_exp,
606 exp->cpu))
607 p->cputime_expires.prof_exp = exp->cpu;
1da177e4
LT
608 break;
609 case CPUCLOCK_VIRT:
d1e3b6d1
SG
610 if (expires_gt(p->cputime_expires.virt_exp,
611 exp->cpu))
612 p->cputime_expires.virt_exp = exp->cpu;
1da177e4
LT
613 break;
614 case CPUCLOCK_SCHED:
f06febc9 615 if (p->cputime_expires.sched_exp == 0 ||
d1e3b6d1 616 p->cputime_expires.sched_exp > exp->sched)
f06febc9 617 p->cputime_expires.sched_exp =
d1e3b6d1 618 exp->sched;
1da177e4
LT
619 break;
620 }
621 } else {
42c4ab41
SG
622 struct signal_struct *const sig = p->signal;
623 union cpu_time_count *exp = &timer->it.cpu.expires;
624
1da177e4 625 /*
f06febc9 626 * For a process timer, set the cached expiration time.
1da177e4
LT
627 */
628 switch (CPUCLOCK_WHICH(timer->it_clock)) {
629 default:
630 BUG();
631 case CPUCLOCK_VIRT:
d1e3b6d1 632 if (expires_le(sig->it[CPUCLOCK_VIRT].expires,
42c4ab41 633 exp->cpu))
1da177e4 634 break;
42c4ab41 635 sig->cputime_expires.virt_exp = exp->cpu;
f06febc9 636 break;
1da177e4 637 case CPUCLOCK_PROF:
d1e3b6d1 638 if (expires_le(sig->it[CPUCLOCK_PROF].expires,
42c4ab41 639 exp->cpu))
1da177e4 640 break;
42c4ab41 641 i = sig->rlim[RLIMIT_CPU].rlim_cur;
1da177e4 642 if (i != RLIM_INFINITY &&
42c4ab41 643 i <= cputime_to_secs(exp->cpu))
1da177e4 644 break;
42c4ab41 645 sig->cputime_expires.prof_exp = exp->cpu;
f06febc9 646 break;
1da177e4 647 case CPUCLOCK_SCHED:
42c4ab41 648 sig->cputime_expires.sched_exp = exp->sched;
1da177e4
LT
649 break;
650 }
651 }
652 }
653
654 spin_unlock(&p->sighand->siglock);
655}
656
657/*
658 * The timer is locked, fire it and arrange for its reload.
659 */
660static void cpu_timer_fire(struct k_itimer *timer)
661{
662 if (unlikely(timer->sigq == NULL)) {
663 /*
664 * This a special case for clock_nanosleep,
665 * not a normal timer from sys_timer_create.
666 */
667 wake_up_process(timer->it_process);
668 timer->it.cpu.expires.sched = 0;
669 } else if (timer->it.cpu.incr.sched == 0) {
670 /*
671 * One-shot timer. Clear it as soon as it's fired.
672 */
673 posix_timer_event(timer, 0);
674 timer->it.cpu.expires.sched = 0;
675 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
676 /*
677 * The signal did not get queued because the signal
678 * was ignored, so we won't get any callback to
679 * reload the timer. But we need to keep it
680 * ticking in case the signal is deliverable next time.
681 */
682 posix_cpu_timer_schedule(timer);
683 }
684}
685
3997ad31
PZ
686/*
687 * Sample a process (thread group) timer for the given group_leader task.
688 * Must be called with tasklist_lock held for reading.
689 */
690static int cpu_timer_sample_group(const clockid_t which_clock,
691 struct task_struct *p,
692 union cpu_time_count *cpu)
693{
694 struct task_cputime cputime;
695
696 thread_group_cputimer(p, &cputime);
697 switch (CPUCLOCK_WHICH(which_clock)) {
698 default:
699 return -EINVAL;
700 case CPUCLOCK_PROF:
701 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
702 break;
703 case CPUCLOCK_VIRT:
704 cpu->cpu = cputime.utime;
705 break;
706 case CPUCLOCK_SCHED:
707 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
708 break;
709 }
710 return 0;
711}
712
1da177e4
LT
713/*
714 * Guts of sys_timer_settime for CPU timers.
715 * This is called with the timer locked and interrupts disabled.
716 * If we return TIMER_RETRY, it's necessary to release the timer's lock
717 * and try again. (This happens when the timer is in the middle of firing.)
718 */
719int posix_cpu_timer_set(struct k_itimer *timer, int flags,
720 struct itimerspec *new, struct itimerspec *old)
721{
722 struct task_struct *p = timer->it.cpu.task;
723 union cpu_time_count old_expires, new_expires, val;
724 int ret;
725
726 if (unlikely(p == NULL)) {
727 /*
728 * Timer refers to a dead task's clock.
729 */
730 return -ESRCH;
731 }
732
733 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
734
735 read_lock(&tasklist_lock);
736 /*
737 * We need the tasklist_lock to protect against reaping that
738 * clears p->signal. If p has just been reaped, we can no
739 * longer get any information about it at all.
740 */
741 if (unlikely(p->signal == NULL)) {
742 read_unlock(&tasklist_lock);
743 put_task_struct(p);
744 timer->it.cpu.task = NULL;
745 return -ESRCH;
746 }
747
748 /*
749 * Disarm any old timer after extracting its expiry time.
750 */
751 BUG_ON(!irqs_disabled());
a69ac4a7
ON
752
753 ret = 0;
1da177e4
LT
754 spin_lock(&p->sighand->siglock);
755 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
756 if (unlikely(timer->it.cpu.firing)) {
757 timer->it.cpu.firing = -1;
758 ret = TIMER_RETRY;
759 } else
760 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
761 spin_unlock(&p->sighand->siglock);
762
763 /*
764 * We need to sample the current value to convert the new
765 * value from to relative and absolute, and to convert the
766 * old value from absolute to relative. To set a process
767 * timer, we need a sample to balance the thread expiry
768 * times (in arm_timer). With an absolute time, we must
769 * check if it's already passed. In short, we need a sample.
770 */
771 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
772 cpu_clock_sample(timer->it_clock, p, &val);
773 } else {
3997ad31 774 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
775 }
776
777 if (old) {
778 if (old_expires.sched == 0) {
779 old->it_value.tv_sec = 0;
780 old->it_value.tv_nsec = 0;
781 } else {
782 /*
783 * Update the timer in case it has
784 * overrun already. If it has,
785 * we'll report it as having overrun
786 * and with the next reloaded timer
787 * already ticking, though we are
788 * swallowing that pending
789 * notification here to install the
790 * new setting.
791 */
792 bump_cpu_timer(timer, val);
793 if (cpu_time_before(timer->it_clock, val,
794 timer->it.cpu.expires)) {
795 old_expires = cpu_time_sub(
796 timer->it_clock,
797 timer->it.cpu.expires, val);
798 sample_to_timespec(timer->it_clock,
799 old_expires,
800 &old->it_value);
801 } else {
802 old->it_value.tv_nsec = 1;
803 old->it_value.tv_sec = 0;
804 }
805 }
806 }
807
a69ac4a7 808 if (unlikely(ret)) {
1da177e4
LT
809 /*
810 * We are colliding with the timer actually firing.
811 * Punt after filling in the timer's old value, and
812 * disable this firing since we are already reporting
813 * it as an overrun (thanks to bump_cpu_timer above).
814 */
815 read_unlock(&tasklist_lock);
1da177e4
LT
816 goto out;
817 }
818
819 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
820 cpu_time_add(timer->it_clock, &new_expires, val);
821 }
822
823 /*
824 * Install the new expiry time (or zero).
825 * For a timer with no notification action, we don't actually
826 * arm the timer (we'll just fake it for timer_gettime).
827 */
828 timer->it.cpu.expires = new_expires;
829 if (new_expires.sched != 0 &&
830 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
831 cpu_time_before(timer->it_clock, val, new_expires)) {
832 arm_timer(timer, val);
833 }
834
835 read_unlock(&tasklist_lock);
836
837 /*
838 * Install the new reload setting, and
839 * set up the signal and overrun bookkeeping.
840 */
841 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
842 &new->it_interval);
843
844 /*
845 * This acts as a modification timestamp for the timer,
846 * so any automatic reload attempt will punt on seeing
847 * that we have reset the timer manually.
848 */
849 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
850 ~REQUEUE_PENDING;
851 timer->it_overrun_last = 0;
852 timer->it_overrun = -1;
853
854 if (new_expires.sched != 0 &&
855 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
856 !cpu_time_before(timer->it_clock, val, new_expires)) {
857 /*
858 * The designated time already passed, so we notify
859 * immediately, even if the thread never runs to
860 * accumulate more time on this clock.
861 */
862 cpu_timer_fire(timer);
863 }
864
865 ret = 0;
866 out:
867 if (old) {
868 sample_to_timespec(timer->it_clock,
869 timer->it.cpu.incr, &old->it_interval);
870 }
871 return ret;
872}
873
874void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
875{
876 union cpu_time_count now;
877 struct task_struct *p = timer->it.cpu.task;
878 int clear_dead;
879
880 /*
881 * Easy part: convert the reload time.
882 */
883 sample_to_timespec(timer->it_clock,
884 timer->it.cpu.incr, &itp->it_interval);
885
886 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
887 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
888 return;
889 }
890
891 if (unlikely(p == NULL)) {
892 /*
893 * This task already died and the timer will never fire.
894 * In this case, expires is actually the dead value.
895 */
896 dead:
897 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
898 &itp->it_value);
899 return;
900 }
901
902 /*
903 * Sample the clock to take the difference with the expiry time.
904 */
905 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
906 cpu_clock_sample(timer->it_clock, p, &now);
907 clear_dead = p->exit_state;
908 } else {
909 read_lock(&tasklist_lock);
910 if (unlikely(p->signal == NULL)) {
911 /*
912 * The process has been reaped.
913 * We can't even collect a sample any more.
914 * Call the timer disarmed, nothing else to do.
915 */
916 put_task_struct(p);
917 timer->it.cpu.task = NULL;
918 timer->it.cpu.expires.sched = 0;
919 read_unlock(&tasklist_lock);
920 goto dead;
921 } else {
3997ad31 922 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
923 clear_dead = (unlikely(p->exit_state) &&
924 thread_group_empty(p));
925 }
926 read_unlock(&tasklist_lock);
927 }
928
929 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
930 if (timer->it.cpu.incr.sched == 0 &&
931 cpu_time_before(timer->it_clock,
932 timer->it.cpu.expires, now)) {
933 /*
934 * Do-nothing timer expired and has no reload,
935 * so it's as if it was never set.
936 */
937 timer->it.cpu.expires.sched = 0;
938 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
939 return;
940 }
941 /*
942 * Account for any expirations and reloads that should
943 * have happened.
944 */
945 bump_cpu_timer(timer, now);
946 }
947
948 if (unlikely(clear_dead)) {
949 /*
950 * We've noticed that the thread is dead, but
951 * not yet reaped. Take this opportunity to
952 * drop our task ref.
953 */
954 clear_dead_task(timer, now);
955 goto dead;
956 }
957
958 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
959 sample_to_timespec(timer->it_clock,
960 cpu_time_sub(timer->it_clock,
961 timer->it.cpu.expires, now),
962 &itp->it_value);
963 } else {
964 /*
965 * The timer should have expired already, but the firing
966 * hasn't taken place yet. Say it's just about to expire.
967 */
968 itp->it_value.tv_nsec = 1;
969 itp->it_value.tv_sec = 0;
970 }
971}
972
973/*
974 * Check for any per-thread CPU timers that have fired and move them off
975 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
976 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
977 */
978static void check_thread_timers(struct task_struct *tsk,
979 struct list_head *firing)
980{
e80eda94 981 int maxfire;
1da177e4 982 struct list_head *timers = tsk->cpu_timers;
78f2c7db 983 struct signal_struct *const sig = tsk->signal;
1da177e4 984
e80eda94 985 maxfire = 20;
f06febc9 986 tsk->cputime_expires.prof_exp = cputime_zero;
1da177e4 987 while (!list_empty(timers)) {
b5e61818 988 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
989 struct cpu_timer_list,
990 entry);
e80eda94 991 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
f06febc9 992 tsk->cputime_expires.prof_exp = t->expires.cpu;
1da177e4
LT
993 break;
994 }
995 t->firing = 1;
996 list_move_tail(&t->entry, firing);
997 }
998
999 ++timers;
e80eda94 1000 maxfire = 20;
f06febc9 1001 tsk->cputime_expires.virt_exp = cputime_zero;
1da177e4 1002 while (!list_empty(timers)) {
b5e61818 1003 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1004 struct cpu_timer_list,
1005 entry);
e80eda94 1006 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
f06febc9 1007 tsk->cputime_expires.virt_exp = t->expires.cpu;
1da177e4
LT
1008 break;
1009 }
1010 t->firing = 1;
1011 list_move_tail(&t->entry, firing);
1012 }
1013
1014 ++timers;
e80eda94 1015 maxfire = 20;
f06febc9 1016 tsk->cputime_expires.sched_exp = 0;
1da177e4 1017 while (!list_empty(timers)) {
b5e61818 1018 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1019 struct cpu_timer_list,
1020 entry);
41b86e9c 1021 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
f06febc9 1022 tsk->cputime_expires.sched_exp = t->expires.sched;
1da177e4
LT
1023 break;
1024 }
1025 t->firing = 1;
1026 list_move_tail(&t->entry, firing);
1027 }
78f2c7db
PZ
1028
1029 /*
1030 * Check for the special case thread timers.
1031 */
1032 if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1033 unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1034 unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1035
5a52dd50
PZ
1036 if (hard != RLIM_INFINITY &&
1037 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
1038 /*
1039 * At the hard limit, we just die.
1040 * No need to calculate anything else now.
1041 */
1042 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1043 return;
1044 }
1045 if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1046 /*
1047 * At the soft limit, send a SIGXCPU every second.
1048 */
1049 if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1050 < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1051 sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1052 USEC_PER_SEC;
1053 }
81d50bb2
HS
1054 printk(KERN_INFO
1055 "RT Watchdog Timeout: %s[%d]\n",
1056 tsk->comm, task_pid_nr(tsk));
78f2c7db
PZ
1057 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1058 }
1059 }
1da177e4
LT
1060}
1061
3fccfd67
PZ
1062static void stop_process_timers(struct task_struct *tsk)
1063{
1064 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1065 unsigned long flags;
1066
1067 if (!cputimer->running)
1068 return;
1069
1070 spin_lock_irqsave(&cputimer->lock, flags);
1071 cputimer->running = 0;
1072 spin_unlock_irqrestore(&cputimer->lock, flags);
1073}
1074
8356b5f9
SG
1075static u32 onecputick;
1076
42c4ab41
SG
1077static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1078 cputime_t *expires, cputime_t cur_time, int signo)
1079{
1080 if (cputime_eq(it->expires, cputime_zero))
1081 return;
1082
1083 if (cputime_ge(cur_time, it->expires)) {
8356b5f9
SG
1084 if (!cputime_eq(it->incr, cputime_zero)) {
1085 it->expires = cputime_add(it->expires, it->incr);
1086 it->error += it->incr_error;
1087 if (it->error >= onecputick) {
1088 it->expires = cputime_sub(it->expires,
a42548a1 1089 cputime_one_jiffy);
8356b5f9
SG
1090 it->error -= onecputick;
1091 }
1092 } else
1093 it->expires = cputime_zero;
42c4ab41
SG
1094
1095 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1096 }
1097
1098 if (!cputime_eq(it->expires, cputime_zero) &&
1099 (cputime_eq(*expires, cputime_zero) ||
1100 cputime_lt(it->expires, *expires))) {
1101 *expires = it->expires;
1102 }
1103}
1104
1da177e4
LT
1105/*
1106 * Check for any per-thread CPU timers that have fired and move them
1107 * off the tsk->*_timers list onto the firing list. Per-thread timers
1108 * have already been taken off.
1109 */
1110static void check_process_timers(struct task_struct *tsk,
1111 struct list_head *firing)
1112{
e80eda94 1113 int maxfire;
1da177e4 1114 struct signal_struct *const sig = tsk->signal;
f06febc9 1115 cputime_t utime, ptime, virt_expires, prof_expires;
41b86e9c 1116 unsigned long long sum_sched_runtime, sched_expires;
1da177e4 1117 struct list_head *timers = sig->cpu_timers;
f06febc9 1118 struct task_cputime cputime;
1da177e4
LT
1119
1120 /*
1121 * Don't sample the current process CPU clocks if there are no timers.
1122 */
1123 if (list_empty(&timers[CPUCLOCK_PROF]) &&
42c4ab41 1124 cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1da177e4
LT
1125 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1126 list_empty(&timers[CPUCLOCK_VIRT]) &&
42c4ab41 1127 cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
4cd4c1b4
PZ
1128 list_empty(&timers[CPUCLOCK_SCHED])) {
1129 stop_process_timers(tsk);
1da177e4 1130 return;
4cd4c1b4 1131 }
1da177e4
LT
1132
1133 /*
1134 * Collect the current process totals.
1135 */
4cd4c1b4 1136 thread_group_cputimer(tsk, &cputime);
f06febc9
FM
1137 utime = cputime.utime;
1138 ptime = cputime_add(utime, cputime.stime);
1139 sum_sched_runtime = cputime.sum_exec_runtime;
e80eda94 1140 maxfire = 20;
1da177e4
LT
1141 prof_expires = cputime_zero;
1142 while (!list_empty(timers)) {
ee7dd205 1143 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1144 struct cpu_timer_list,
1145 entry);
ee7dd205
WC
1146 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1147 prof_expires = tl->expires.cpu;
1da177e4
LT
1148 break;
1149 }
ee7dd205
WC
1150 tl->firing = 1;
1151 list_move_tail(&tl->entry, firing);
1da177e4
LT
1152 }
1153
1154 ++timers;
e80eda94 1155 maxfire = 20;
1da177e4
LT
1156 virt_expires = cputime_zero;
1157 while (!list_empty(timers)) {
ee7dd205 1158 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1159 struct cpu_timer_list,
1160 entry);
ee7dd205
WC
1161 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1162 virt_expires = tl->expires.cpu;
1da177e4
LT
1163 break;
1164 }
ee7dd205
WC
1165 tl->firing = 1;
1166 list_move_tail(&tl->entry, firing);
1da177e4
LT
1167 }
1168
1169 ++timers;
e80eda94 1170 maxfire = 20;
1da177e4
LT
1171 sched_expires = 0;
1172 while (!list_empty(timers)) {
ee7dd205 1173 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1174 struct cpu_timer_list,
1175 entry);
ee7dd205
WC
1176 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1177 sched_expires = tl->expires.sched;
1da177e4
LT
1178 break;
1179 }
ee7dd205
WC
1180 tl->firing = 1;
1181 list_move_tail(&tl->entry, firing);
1da177e4
LT
1182 }
1183
1184 /*
1185 * Check for the special case process timers.
1186 */
42c4ab41
SG
1187 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1188 SIGPROF);
1189 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1190 SIGVTALRM);
1191
1da177e4
LT
1192 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1193 unsigned long psecs = cputime_to_secs(ptime);
1194 cputime_t x;
1195 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1196 /*
1197 * At the hard limit, we just die.
1198 * No need to calculate anything else now.
1199 */
1200 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1201 return;
1202 }
1203 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1204 /*
1205 * At the soft limit, send a SIGXCPU every second.
1206 */
1207 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1208 if (sig->rlim[RLIMIT_CPU].rlim_cur
1209 < sig->rlim[RLIMIT_CPU].rlim_max) {
1210 sig->rlim[RLIMIT_CPU].rlim_cur++;
1211 }
1212 }
1213 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1214 if (cputime_eq(prof_expires, cputime_zero) ||
1215 cputime_lt(x, prof_expires)) {
1216 prof_expires = x;
1217 }
1218 }
1219
f06febc9
FM
1220 if (!cputime_eq(prof_expires, cputime_zero) &&
1221 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1222 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1223 sig->cputime_expires.prof_exp = prof_expires;
1224 if (!cputime_eq(virt_expires, cputime_zero) &&
1225 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1226 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1227 sig->cputime_expires.virt_exp = virt_expires;
1228 if (sched_expires != 0 &&
1229 (sig->cputime_expires.sched_exp == 0 ||
1230 sig->cputime_expires.sched_exp > sched_expires))
1231 sig->cputime_expires.sched_exp = sched_expires;
1da177e4
LT
1232}
1233
1234/*
1235 * This is called from the signal code (via do_schedule_next_timer)
1236 * when the last timer signal was delivered and we have to reload the timer.
1237 */
1238void posix_cpu_timer_schedule(struct k_itimer *timer)
1239{
1240 struct task_struct *p = timer->it.cpu.task;
1241 union cpu_time_count now;
1242
1243 if (unlikely(p == NULL))
1244 /*
1245 * The task was cleaned up already, no future firings.
1246 */
708f430d 1247 goto out;
1da177e4
LT
1248
1249 /*
1250 * Fetch the current sample and update the timer's expiry time.
1251 */
1252 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1253 cpu_clock_sample(timer->it_clock, p, &now);
1254 bump_cpu_timer(timer, now);
1255 if (unlikely(p->exit_state)) {
1256 clear_dead_task(timer, now);
708f430d 1257 goto out;
1da177e4
LT
1258 }
1259 read_lock(&tasklist_lock); /* arm_timer needs it. */
1260 } else {
1261 read_lock(&tasklist_lock);
1262 if (unlikely(p->signal == NULL)) {
1263 /*
1264 * The process has been reaped.
1265 * We can't even collect a sample any more.
1266 */
1267 put_task_struct(p);
1268 timer->it.cpu.task = p = NULL;
1269 timer->it.cpu.expires.sched = 0;
708f430d 1270 goto out_unlock;
1da177e4
LT
1271 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1272 /*
1273 * We've noticed that the thread is dead, but
1274 * not yet reaped. Take this opportunity to
1275 * drop our task ref.
1276 */
1277 clear_dead_task(timer, now);
708f430d 1278 goto out_unlock;
1da177e4 1279 }
3997ad31 1280 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
1281 bump_cpu_timer(timer, now);
1282 /* Leave the tasklist_lock locked for the call below. */
1283 }
1284
1285 /*
1286 * Now re-arm for the new expiry time.
1287 */
1288 arm_timer(timer, now);
1289
708f430d 1290out_unlock:
1da177e4 1291 read_unlock(&tasklist_lock);
708f430d
RM
1292
1293out:
1294 timer->it_overrun_last = timer->it_overrun;
1295 timer->it_overrun = -1;
1296 ++timer->it_requeue_pending;
1da177e4
LT
1297}
1298
f06febc9
FM
1299/**
1300 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1301 *
1302 * @cputime: The struct to compare.
1303 *
1304 * Checks @cputime to see if all fields are zero. Returns true if all fields
1305 * are zero, false if any field is nonzero.
1306 */
1307static inline int task_cputime_zero(const struct task_cputime *cputime)
1308{
1309 if (cputime_eq(cputime->utime, cputime_zero) &&
1310 cputime_eq(cputime->stime, cputime_zero) &&
1311 cputime->sum_exec_runtime == 0)
1312 return 1;
1313 return 0;
1314}
1315
1316/**
1317 * task_cputime_expired - Compare two task_cputime entities.
1318 *
1319 * @sample: The task_cputime structure to be checked for expiration.
1320 * @expires: Expiration times, against which @sample will be checked.
1321 *
1322 * Checks @sample against @expires to see if any field of @sample has expired.
1323 * Returns true if any field of the former is greater than the corresponding
1324 * field of the latter if the latter field is set. Otherwise returns false.
1325 */
1326static inline int task_cputime_expired(const struct task_cputime *sample,
1327 const struct task_cputime *expires)
1328{
1329 if (!cputime_eq(expires->utime, cputime_zero) &&
1330 cputime_ge(sample->utime, expires->utime))
1331 return 1;
1332 if (!cputime_eq(expires->stime, cputime_zero) &&
1333 cputime_ge(cputime_add(sample->utime, sample->stime),
1334 expires->stime))
1335 return 1;
1336 if (expires->sum_exec_runtime != 0 &&
1337 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1338 return 1;
1339 return 0;
1340}
1341
1342/**
1343 * fastpath_timer_check - POSIX CPU timers fast path.
1344 *
1345 * @tsk: The task (thread) being checked.
f06febc9 1346 *
bb34d92f
FM
1347 * Check the task and thread group timers. If both are zero (there are no
1348 * timers set) return false. Otherwise snapshot the task and thread group
1349 * timers and compare them with the corresponding expiration times. Return
1350 * true if a timer has expired, else return false.
f06febc9 1351 */
bb34d92f 1352static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1353{
ad133ba3 1354 struct signal_struct *sig;
bb34d92f 1355
ad133ba3
ON
1356 /* tsk == current, ensure it is safe to use ->signal/sighand */
1357 if (unlikely(tsk->exit_state))
f06febc9 1358 return 0;
bb34d92f
FM
1359
1360 if (!task_cputime_zero(&tsk->cputime_expires)) {
1361 struct task_cputime task_sample = {
1362 .utime = tsk->utime,
1363 .stime = tsk->stime,
1364 .sum_exec_runtime = tsk->se.sum_exec_runtime
1365 };
1366
1367 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1368 return 1;
1369 }
ad133ba3
ON
1370
1371 sig = tsk->signal;
bb34d92f
FM
1372 if (!task_cputime_zero(&sig->cputime_expires)) {
1373 struct task_cputime group_sample;
1374
4cd4c1b4 1375 thread_group_cputimer(tsk, &group_sample);
bb34d92f
FM
1376 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1377 return 1;
1378 }
37bebc70
ON
1379
1380 return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
f06febc9
FM
1381}
1382
1da177e4
LT
1383/*
1384 * This is called from the timer interrupt handler. The irq handler has
1385 * already updated our counts. We need to check if any timers fire now.
1386 * Interrupts are disabled.
1387 */
1388void run_posix_cpu_timers(struct task_struct *tsk)
1389{
1390 LIST_HEAD(firing);
1391 struct k_itimer *timer, *next;
1392
1393 BUG_ON(!irqs_disabled());
1394
1da177e4 1395 /*
f06febc9 1396 * The fast path checks that there are no expired thread or thread
bb34d92f 1397 * group timers. If that's so, just return.
1da177e4 1398 */
bb34d92f 1399 if (!fastpath_timer_check(tsk))
f06febc9 1400 return;
5ce73a4a 1401
bb34d92f
FM
1402 spin_lock(&tsk->sighand->siglock);
1403 /*
1404 * Here we take off tsk->signal->cpu_timers[N] and
1405 * tsk->cpu_timers[N] all the timers that are firing, and
1406 * put them on the firing list.
1407 */
1408 check_thread_timers(tsk, &firing);
1409 check_process_timers(tsk, &firing);
1da177e4 1410
bb34d92f
FM
1411 /*
1412 * We must release these locks before taking any timer's lock.
1413 * There is a potential race with timer deletion here, as the
1414 * siglock now protects our private firing list. We have set
1415 * the firing flag in each timer, so that a deletion attempt
1416 * that gets the timer lock before we do will give it up and
1417 * spin until we've taken care of that timer below.
1418 */
1419 spin_unlock(&tsk->sighand->siglock);
1da177e4
LT
1420
1421 /*
1422 * Now that all the timers on our list have the firing flag,
1423 * noone will touch their list entries but us. We'll take
1424 * each timer's lock before clearing its firing flag, so no
1425 * timer call will interfere.
1426 */
1427 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1428 int cpu_firing;
1429
1da177e4
LT
1430 spin_lock(&timer->it_lock);
1431 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1432 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1433 timer->it.cpu.firing = 0;
1434 /*
1435 * The firing flag is -1 if we collided with a reset
1436 * of the timer, which already reported this
1437 * almost-firing as an overrun. So don't generate an event.
1438 */
6e85c5ba 1439 if (likely(cpu_firing >= 0))
1da177e4 1440 cpu_timer_fire(timer);
1da177e4
LT
1441 spin_unlock(&timer->it_lock);
1442 }
1443}
1444
1445/*
1446 * Set one of the process-wide special case CPU timers.
f06febc9
FM
1447 * The tsk->sighand->siglock must be held by the caller.
1448 * The *newval argument is relative and we update it to be absolute, *oldval
1449 * is absolute and we update it to be relative.
1da177e4
LT
1450 */
1451void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1452 cputime_t *newval, cputime_t *oldval)
1453{
1454 union cpu_time_count now;
1455 struct list_head *head;
1456
1457 BUG_ON(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1458 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1459
1460 if (oldval) {
1461 if (!cputime_eq(*oldval, cputime_zero)) {
1462 if (cputime_le(*oldval, now.cpu)) {
1463 /* Just about to fire. */
a42548a1 1464 *oldval = cputime_one_jiffy;
1da177e4
LT
1465 } else {
1466 *oldval = cputime_sub(*oldval, now.cpu);
1467 }
1468 }
1469
1470 if (cputime_eq(*newval, cputime_zero))
1471 return;
1472 *newval = cputime_add(*newval, now.cpu);
1473
1474 /*
1475 * If the RLIMIT_CPU timer will expire before the
1476 * ITIMER_PROF timer, we have nothing else to do.
1477 */
1478 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1479 < cputime_to_secs(*newval))
1480 return;
1481 }
1482
1483 /*
1484 * Check whether there are any process timers already set to fire
1485 * before this one. If so, we don't have anything more to do.
1486 */
1487 head = &tsk->signal->cpu_timers[clock_idx];
1488 if (list_empty(head) ||
b5e61818 1489 cputime_ge(list_first_entry(head,
1da177e4
LT
1490 struct cpu_timer_list, entry)->expires.cpu,
1491 *newval)) {
f06febc9
FM
1492 switch (clock_idx) {
1493 case CPUCLOCK_PROF:
1494 tsk->signal->cputime_expires.prof_exp = *newval;
1495 break;
1496 case CPUCLOCK_VIRT:
1497 tsk->signal->cputime_expires.virt_exp = *newval;
1498 break;
1499 }
1da177e4
LT
1500 }
1501}
1502
e4b76555
TA
1503static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1504 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1505{
1da177e4
LT
1506 struct k_itimer timer;
1507 int error;
1508
1da177e4
LT
1509 /*
1510 * Set up a temporary timer and then wait for it to go off.
1511 */
1512 memset(&timer, 0, sizeof timer);
1513 spin_lock_init(&timer.it_lock);
1514 timer.it_clock = which_clock;
1515 timer.it_overrun = -1;
1516 error = posix_cpu_timer_create(&timer);
1517 timer.it_process = current;
1518 if (!error) {
1da177e4 1519 static struct itimerspec zero_it;
e4b76555
TA
1520
1521 memset(it, 0, sizeof *it);
1522 it->it_value = *rqtp;
1da177e4
LT
1523
1524 spin_lock_irq(&timer.it_lock);
e4b76555 1525 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1526 if (error) {
1527 spin_unlock_irq(&timer.it_lock);
1528 return error;
1529 }
1530
1531 while (!signal_pending(current)) {
1532 if (timer.it.cpu.expires.sched == 0) {
1533 /*
1534 * Our timer fired and was reset.
1535 */
1536 spin_unlock_irq(&timer.it_lock);
1537 return 0;
1538 }
1539
1540 /*
1541 * Block until cpu_timer_fire (or a signal) wakes us.
1542 */
1543 __set_current_state(TASK_INTERRUPTIBLE);
1544 spin_unlock_irq(&timer.it_lock);
1545 schedule();
1546 spin_lock_irq(&timer.it_lock);
1547 }
1548
1549 /*
1550 * We were interrupted by a signal.
1551 */
1552 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
e4b76555 1553 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1da177e4
LT
1554 spin_unlock_irq(&timer.it_lock);
1555
e4b76555 1556 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1557 /*
1558 * It actually did fire already.
1559 */
1560 return 0;
1561 }
1562
e4b76555
TA
1563 error = -ERESTART_RESTARTBLOCK;
1564 }
1565
1566 return error;
1567}
1568
1569int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1570 struct timespec *rqtp, struct timespec __user *rmtp)
1571{
1572 struct restart_block *restart_block =
1573 &current_thread_info()->restart_block;
1574 struct itimerspec it;
1575 int error;
1576
1577 /*
1578 * Diagnose required errors first.
1579 */
1580 if (CPUCLOCK_PERTHREAD(which_clock) &&
1581 (CPUCLOCK_PID(which_clock) == 0 ||
1582 CPUCLOCK_PID(which_clock) == current->pid))
1583 return -EINVAL;
1584
1585 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1586
1587 if (error == -ERESTART_RESTARTBLOCK) {
1588
1589 if (flags & TIMER_ABSTIME)
1590 return -ERESTARTNOHAND;
1da177e4 1591 /*
e4b76555
TA
1592 * Report back to the user the time still remaining.
1593 */
1594 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1595 return -EFAULT;
1596
1711ef38 1597 restart_block->fn = posix_cpu_nsleep_restart;
1da177e4 1598 restart_block->arg0 = which_clock;
97735f25 1599 restart_block->arg1 = (unsigned long) rmtp;
1da177e4
LT
1600 restart_block->arg2 = rqtp->tv_sec;
1601 restart_block->arg3 = rqtp->tv_nsec;
1da177e4 1602 }
1da177e4
LT
1603 return error;
1604}
1605
1711ef38 1606long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4
LT
1607{
1608 clockid_t which_clock = restart_block->arg0;
97735f25
TG
1609 struct timespec __user *rmtp;
1610 struct timespec t;
e4b76555
TA
1611 struct itimerspec it;
1612 int error;
97735f25
TG
1613
1614 rmtp = (struct timespec __user *) restart_block->arg1;
1615 t.tv_sec = restart_block->arg2;
1616 t.tv_nsec = restart_block->arg3;
1617
1da177e4 1618 restart_block->fn = do_no_restart_syscall;
e4b76555
TA
1619 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1620
1621 if (error == -ERESTART_RESTARTBLOCK) {
1622 /*
1623 * Report back to the user the time still remaining.
1624 */
1625 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1626 return -EFAULT;
1627
1628 restart_block->fn = posix_cpu_nsleep_restart;
1629 restart_block->arg0 = which_clock;
1630 restart_block->arg1 = (unsigned long) rmtp;
1631 restart_block->arg2 = t.tv_sec;
1632 restart_block->arg3 = t.tv_nsec;
1633 }
1634 return error;
1635
1da177e4
LT
1636}
1637
1638
1639#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1640#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1641
a924b04d
TG
1642static int process_cpu_clock_getres(const clockid_t which_clock,
1643 struct timespec *tp)
1da177e4
LT
1644{
1645 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1646}
a924b04d
TG
1647static int process_cpu_clock_get(const clockid_t which_clock,
1648 struct timespec *tp)
1da177e4
LT
1649{
1650 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1651}
1652static int process_cpu_timer_create(struct k_itimer *timer)
1653{
1654 timer->it_clock = PROCESS_CLOCK;
1655 return posix_cpu_timer_create(timer);
1656}
a924b04d 1657static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1658 struct timespec *rqtp,
1659 struct timespec __user *rmtp)
1da177e4 1660{
97735f25 1661 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1662}
1711ef38
TA
1663static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1664{
1665 return -EINVAL;
1666}
a924b04d
TG
1667static int thread_cpu_clock_getres(const clockid_t which_clock,
1668 struct timespec *tp)
1da177e4
LT
1669{
1670 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1671}
a924b04d
TG
1672static int thread_cpu_clock_get(const clockid_t which_clock,
1673 struct timespec *tp)
1da177e4
LT
1674{
1675 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1676}
1677static int thread_cpu_timer_create(struct k_itimer *timer)
1678{
1679 timer->it_clock = THREAD_CLOCK;
1680 return posix_cpu_timer_create(timer);
1681}
a924b04d 1682static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25 1683 struct timespec *rqtp, struct timespec __user *rmtp)
1da177e4
LT
1684{
1685 return -EINVAL;
1686}
1711ef38
TA
1687static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1688{
1689 return -EINVAL;
1690}
1da177e4
LT
1691
1692static __init int init_posix_cpu_timers(void)
1693{
1694 struct k_clock process = {
1695 .clock_getres = process_cpu_clock_getres,
1696 .clock_get = process_cpu_clock_get,
1697 .clock_set = do_posix_clock_nosettime,
1698 .timer_create = process_cpu_timer_create,
1699 .nsleep = process_cpu_nsleep,
1711ef38 1700 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1701 };
1702 struct k_clock thread = {
1703 .clock_getres = thread_cpu_clock_getres,
1704 .clock_get = thread_cpu_clock_get,
1705 .clock_set = do_posix_clock_nosettime,
1706 .timer_create = thread_cpu_timer_create,
1707 .nsleep = thread_cpu_nsleep,
1711ef38 1708 .nsleep_restart = thread_cpu_nsleep_restart,
1da177e4 1709 };
8356b5f9 1710 struct timespec ts;
1da177e4
LT
1711
1712 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1713 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1714
a42548a1 1715 cputime_to_timespec(cputime_one_jiffy, &ts);
8356b5f9
SG
1716 onecputick = ts.tv_nsec;
1717 WARN_ON(ts.tv_sec != 0);
1718
1da177e4
LT
1719 return 0;
1720}
1721__initcall(init_posix_cpu_timers);