]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/posix-cpu-timers.c
sched_rt: don't allocate cpumask in fastpath
[net-next-2.6.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
1da177e4 7#include <linux/errno.h>
f8bd2258
RZ
8#include <linux/math64.h>
9#include <asm/uaccess.h>
bb34d92f 10#include <linux/kernel_stat.h>
1da177e4 11
f06febc9
FM
12/*
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
14 */
15void update_rlimit_cpu(unsigned long rlim_new)
16{
17 cputime_t cputime;
18
19 cputime = secs_to_cputime(rlim_new);
20 if (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
5ce73a4a 21 cputime_lt(current->signal->it_prof_expires, cputime)) {
f06febc9
FM
22 spin_lock_irq(&current->sighand->siglock);
23 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
24 spin_unlock_irq(&current->sighand->siglock);
25 }
26}
27
a924b04d 28static int check_clock(const clockid_t which_clock)
1da177e4
LT
29{
30 int error = 0;
31 struct task_struct *p;
32 const pid_t pid = CPUCLOCK_PID(which_clock);
33
34 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 return -EINVAL;
36
37 if (pid == 0)
38 return 0;
39
40 read_lock(&tasklist_lock);
8dc86af0 41 p = find_task_by_vpid(pid);
bac0abd6
PE
42 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 same_thread_group(p, current) : thread_group_leader(p))) {
1da177e4
LT
44 error = -EINVAL;
45 }
46 read_unlock(&tasklist_lock);
47
48 return error;
49}
50
51static inline union cpu_time_count
a924b04d 52timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
53{
54 union cpu_time_count ret;
55 ret.sched = 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
ee500f27 57 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
1da177e4
LT
58 } else {
59 ret.cpu = timespec_to_cputime(tp);
60 }
61 return ret;
62}
63
a924b04d 64static void sample_to_timespec(const clockid_t which_clock,
1da177e4
LT
65 union cpu_time_count cpu,
66 struct timespec *tp)
67{
f8bd2258
RZ
68 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 *tp = ns_to_timespec(cpu.sched);
70 else
1da177e4 71 cputime_to_timespec(cpu.cpu, tp);
1da177e4
LT
72}
73
a924b04d 74static inline int cpu_time_before(const clockid_t which_clock,
1da177e4
LT
75 union cpu_time_count now,
76 union cpu_time_count then)
77{
78 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 return now.sched < then.sched;
80 } else {
81 return cputime_lt(now.cpu, then.cpu);
82 }
83}
a924b04d 84static inline void cpu_time_add(const clockid_t which_clock,
1da177e4
LT
85 union cpu_time_count *acc,
86 union cpu_time_count val)
87{
88 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 acc->sched += val.sched;
90 } else {
91 acc->cpu = cputime_add(acc->cpu, val.cpu);
92 }
93}
a924b04d 94static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
1da177e4
LT
95 union cpu_time_count a,
96 union cpu_time_count b)
97{
98 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 a.sched -= b.sched;
100 } else {
101 a.cpu = cputime_sub(a.cpu, b.cpu);
102 }
103 return a;
104}
105
ac08c264
TG
106/*
107 * Divide and limit the result to res >= 1
108 *
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
111 */
112static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113{
114 cputime_t res = cputime_div(time, div);
115
116 return max_t(cputime_t, res, 1);
117}
118
1da177e4
LT
119/*
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
122 */
7a4ed937 123static void bump_cpu_timer(struct k_itimer *timer,
1da177e4
LT
124 union cpu_time_count now)
125{
126 int i;
127
128 if (timer->it.cpu.incr.sched == 0)
129 return;
130
131 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 unsigned long long delta, incr;
133
134 if (now.sched < timer->it.cpu.expires.sched)
135 return;
136 incr = timer->it.cpu.incr.sched;
137 delta = now.sched + incr - timer->it.cpu.expires.sched;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i = 0; incr < delta - incr; i++)
140 incr = incr << 1;
141 for (; i >= 0; incr >>= 1, i--) {
7a4ed937 142 if (delta < incr)
1da177e4
LT
143 continue;
144 timer->it.cpu.expires.sched += incr;
145 timer->it_overrun += 1 << i;
146 delta -= incr;
147 }
148 } else {
149 cputime_t delta, incr;
150
151 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 return;
153 incr = timer->it.cpu.incr.cpu;
154 delta = cputime_sub(cputime_add(now.cpu, incr),
155 timer->it.cpu.expires.cpu);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 incr = cputime_add(incr, incr);
159 for (; i >= 0; incr = cputime_halve(incr), i--) {
7a4ed937 160 if (cputime_lt(delta, incr))
1da177e4
LT
161 continue;
162 timer->it.cpu.expires.cpu =
163 cputime_add(timer->it.cpu.expires.cpu, incr);
164 timer->it_overrun += 1 << i;
165 delta = cputime_sub(delta, incr);
166 }
167 }
168}
169
170static inline cputime_t prof_ticks(struct task_struct *p)
171{
172 return cputime_add(p->utime, p->stime);
173}
174static inline cputime_t virt_ticks(struct task_struct *p)
175{
176 return p->utime;
177}
1da177e4 178
a924b04d 179int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
180{
181 int error = check_clock(which_clock);
182 if (!error) {
183 tp->tv_sec = 0;
184 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186 /*
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
190 */
191 tp->tv_nsec = 1;
192 }
193 }
194 return error;
195}
196
a924b04d 197int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
198{
199 /*
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
202 */
203 int error = check_clock(which_clock);
204 if (error == 0) {
205 error = -EPERM;
206 }
207 return error;
208}
209
210
211/*
212 * Sample a per-thread clock for the given task.
213 */
a924b04d 214static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
1da177e4
LT
215 union cpu_time_count *cpu)
216{
217 switch (CPUCLOCK_WHICH(which_clock)) {
218 default:
219 return -EINVAL;
220 case CPUCLOCK_PROF:
221 cpu->cpu = prof_ticks(p);
222 break;
223 case CPUCLOCK_VIRT:
224 cpu->cpu = virt_ticks(p);
225 break;
226 case CPUCLOCK_SCHED:
bb34d92f 227 cpu->sched = p->se.sum_exec_runtime + task_delta_exec(p);
1da177e4
LT
228 break;
229 }
230 return 0;
231}
232
233/*
234 * Sample a process (thread group) clock for the given group_leader task.
235 * Must be called with tasklist_lock held for reading.
1da177e4 236 */
bb34d92f
FM
237static int cpu_clock_sample_group(const clockid_t which_clock,
238 struct task_struct *p,
239 union cpu_time_count *cpu)
1da177e4 240{
f06febc9
FM
241 struct task_cputime cputime;
242
243 thread_group_cputime(p, &cputime);
eccdaeaf 244 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
245 default:
246 return -EINVAL;
247 case CPUCLOCK_PROF:
f06febc9 248 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
1da177e4
LT
249 break;
250 case CPUCLOCK_VIRT:
f06febc9 251 cpu->cpu = cputime.utime;
1da177e4
LT
252 break;
253 case CPUCLOCK_SCHED:
bb34d92f 254 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
1da177e4
LT
255 break;
256 }
257 return 0;
258}
259
1da177e4 260
a924b04d 261int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
262{
263 const pid_t pid = CPUCLOCK_PID(which_clock);
264 int error = -EINVAL;
265 union cpu_time_count rtn;
266
267 if (pid == 0) {
268 /*
269 * Special case constant value for our own clocks.
270 * We don't have to do any lookup to find ourselves.
271 */
272 if (CPUCLOCK_PERTHREAD(which_clock)) {
273 /*
274 * Sampling just ourselves we can do with no locking.
275 */
276 error = cpu_clock_sample(which_clock,
277 current, &rtn);
278 } else {
279 read_lock(&tasklist_lock);
280 error = cpu_clock_sample_group(which_clock,
281 current, &rtn);
282 read_unlock(&tasklist_lock);
283 }
284 } else {
285 /*
286 * Find the given PID, and validate that the caller
287 * should be able to see it.
288 */
289 struct task_struct *p;
1f2ea083 290 rcu_read_lock();
8dc86af0 291 p = find_task_by_vpid(pid);
1da177e4
LT
292 if (p) {
293 if (CPUCLOCK_PERTHREAD(which_clock)) {
bac0abd6 294 if (same_thread_group(p, current)) {
1da177e4
LT
295 error = cpu_clock_sample(which_clock,
296 p, &rtn);
297 }
1f2ea083
PM
298 } else {
299 read_lock(&tasklist_lock);
bac0abd6 300 if (thread_group_leader(p) && p->signal) {
1f2ea083
PM
301 error =
302 cpu_clock_sample_group(which_clock,
303 p, &rtn);
304 }
305 read_unlock(&tasklist_lock);
1da177e4
LT
306 }
307 }
1f2ea083 308 rcu_read_unlock();
1da177e4
LT
309 }
310
311 if (error)
312 return error;
313 sample_to_timespec(which_clock, rtn, tp);
314 return 0;
315}
316
317
318/*
319 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
320 * This is called from sys_timer_create with the new timer already locked.
321 */
322int posix_cpu_timer_create(struct k_itimer *new_timer)
323{
324 int ret = 0;
325 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
326 struct task_struct *p;
327
328 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
329 return -EINVAL;
330
331 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
332 new_timer->it.cpu.incr.sched = 0;
333 new_timer->it.cpu.expires.sched = 0;
334
335 read_lock(&tasklist_lock);
336 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
337 if (pid == 0) {
338 p = current;
339 } else {
8dc86af0 340 p = find_task_by_vpid(pid);
bac0abd6 341 if (p && !same_thread_group(p, current))
1da177e4
LT
342 p = NULL;
343 }
344 } else {
345 if (pid == 0) {
346 p = current->group_leader;
347 } else {
8dc86af0 348 p = find_task_by_vpid(pid);
bac0abd6 349 if (p && !thread_group_leader(p))
1da177e4
LT
350 p = NULL;
351 }
352 }
353 new_timer->it.cpu.task = p;
354 if (p) {
355 get_task_struct(p);
356 } else {
357 ret = -EINVAL;
358 }
359 read_unlock(&tasklist_lock);
360
361 return ret;
362}
363
364/*
365 * Clean up a CPU-clock timer that is about to be destroyed.
366 * This is called from timer deletion with the timer already locked.
367 * If we return TIMER_RETRY, it's necessary to release the timer's lock
368 * and try again. (This happens when the timer is in the middle of firing.)
369 */
370int posix_cpu_timer_del(struct k_itimer *timer)
371{
372 struct task_struct *p = timer->it.cpu.task;
108150ea 373 int ret = 0;
1da177e4 374
108150ea 375 if (likely(p != NULL)) {
9465bee8
LT
376 read_lock(&tasklist_lock);
377 if (unlikely(p->signal == NULL)) {
378 /*
379 * We raced with the reaping of the task.
380 * The deletion should have cleared us off the list.
381 */
382 BUG_ON(!list_empty(&timer->it.cpu.entry));
383 } else {
9465bee8 384 spin_lock(&p->sighand->siglock);
108150ea
ON
385 if (timer->it.cpu.firing)
386 ret = TIMER_RETRY;
387 else
388 list_del(&timer->it.cpu.entry);
9465bee8
LT
389 spin_unlock(&p->sighand->siglock);
390 }
391 read_unlock(&tasklist_lock);
108150ea
ON
392
393 if (!ret)
394 put_task_struct(p);
1da177e4 395 }
1da177e4 396
108150ea 397 return ret;
1da177e4
LT
398}
399
400/*
401 * Clean out CPU timers still ticking when a thread exited. The task
402 * pointer is cleared, and the expiry time is replaced with the residual
403 * time for later timer_gettime calls to return.
404 * This must be called with the siglock held.
405 */
406static void cleanup_timers(struct list_head *head,
407 cputime_t utime, cputime_t stime,
41b86e9c 408 unsigned long long sum_exec_runtime)
1da177e4
LT
409{
410 struct cpu_timer_list *timer, *next;
411 cputime_t ptime = cputime_add(utime, stime);
412
413 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
414 list_del_init(&timer->entry);
415 if (cputime_lt(timer->expires.cpu, ptime)) {
416 timer->expires.cpu = cputime_zero;
417 } else {
418 timer->expires.cpu = cputime_sub(timer->expires.cpu,
419 ptime);
420 }
421 }
422
423 ++head;
424 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
425 list_del_init(&timer->entry);
426 if (cputime_lt(timer->expires.cpu, utime)) {
427 timer->expires.cpu = cputime_zero;
428 } else {
429 timer->expires.cpu = cputime_sub(timer->expires.cpu,
430 utime);
431 }
432 }
433
434 ++head;
435 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 436 list_del_init(&timer->entry);
41b86e9c 437 if (timer->expires.sched < sum_exec_runtime) {
1da177e4
LT
438 timer->expires.sched = 0;
439 } else {
41b86e9c 440 timer->expires.sched -= sum_exec_runtime;
1da177e4
LT
441 }
442 }
443}
444
445/*
446 * These are both called with the siglock held, when the current thread
447 * is being reaped. When the final (leader) thread in the group is reaped,
448 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
449 */
450void posix_cpu_timers_exit(struct task_struct *tsk)
451{
452 cleanup_timers(tsk->cpu_timers,
41b86e9c 453 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
1da177e4
LT
454
455}
456void posix_cpu_timers_exit_group(struct task_struct *tsk)
457{
f06febc9 458 struct task_cputime cputime;
ca531a0a 459
f06febc9
FM
460 thread_group_cputime(tsk, &cputime);
461 cleanup_timers(tsk->signal->cpu_timers,
462 cputime.utime, cputime.stime, cputime.sum_exec_runtime);
1da177e4
LT
463}
464
465static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
466{
467 /*
468 * That's all for this thread or process.
469 * We leave our residual in expires to be reported.
470 */
471 put_task_struct(timer->it.cpu.task);
472 timer->it.cpu.task = NULL;
473 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
474 timer->it.cpu.expires,
475 now);
476}
477
478/*
479 * Insert the timer on the appropriate list before any timers that
480 * expire later. This must be called with the tasklist_lock held
481 * for reading, and interrupts disabled.
482 */
483static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
484{
485 struct task_struct *p = timer->it.cpu.task;
486 struct list_head *head, *listpos;
487 struct cpu_timer_list *const nt = &timer->it.cpu;
488 struct cpu_timer_list *next;
489 unsigned long i;
490
491 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
492 p->cpu_timers : p->signal->cpu_timers);
493 head += CPUCLOCK_WHICH(timer->it_clock);
494
495 BUG_ON(!irqs_disabled());
496 spin_lock(&p->sighand->siglock);
497
498 listpos = head;
499 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
500 list_for_each_entry(next, head, entry) {
70ab81c2 501 if (next->expires.sched > nt->expires.sched)
1da177e4 502 break;
70ab81c2 503 listpos = &next->entry;
1da177e4
LT
504 }
505 } else {
506 list_for_each_entry(next, head, entry) {
70ab81c2 507 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
1da177e4 508 break;
70ab81c2 509 listpos = &next->entry;
1da177e4
LT
510 }
511 }
512 list_add(&nt->entry, listpos);
513
514 if (listpos == head) {
515 /*
516 * We are the new earliest-expiring timer.
517 * If we are a thread timer, there can always
518 * be a process timer telling us to stop earlier.
519 */
520
521 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
522 switch (CPUCLOCK_WHICH(timer->it_clock)) {
523 default:
524 BUG();
525 case CPUCLOCK_PROF:
f06febc9 526 if (cputime_eq(p->cputime_expires.prof_exp,
1da177e4 527 cputime_zero) ||
f06febc9 528 cputime_gt(p->cputime_expires.prof_exp,
1da177e4 529 nt->expires.cpu))
f06febc9
FM
530 p->cputime_expires.prof_exp =
531 nt->expires.cpu;
1da177e4
LT
532 break;
533 case CPUCLOCK_VIRT:
f06febc9 534 if (cputime_eq(p->cputime_expires.virt_exp,
1da177e4 535 cputime_zero) ||
f06febc9 536 cputime_gt(p->cputime_expires.virt_exp,
1da177e4 537 nt->expires.cpu))
f06febc9
FM
538 p->cputime_expires.virt_exp =
539 nt->expires.cpu;
1da177e4
LT
540 break;
541 case CPUCLOCK_SCHED:
f06febc9
FM
542 if (p->cputime_expires.sched_exp == 0 ||
543 p->cputime_expires.sched_exp >
544 nt->expires.sched)
545 p->cputime_expires.sched_exp =
546 nt->expires.sched;
1da177e4
LT
547 break;
548 }
549 } else {
550 /*
f06febc9 551 * For a process timer, set the cached expiration time.
1da177e4
LT
552 */
553 switch (CPUCLOCK_WHICH(timer->it_clock)) {
554 default:
555 BUG();
556 case CPUCLOCK_VIRT:
557 if (!cputime_eq(p->signal->it_virt_expires,
558 cputime_zero) &&
559 cputime_lt(p->signal->it_virt_expires,
560 timer->it.cpu.expires.cpu))
561 break;
f06febc9
FM
562 p->signal->cputime_expires.virt_exp =
563 timer->it.cpu.expires.cpu;
564 break;
1da177e4
LT
565 case CPUCLOCK_PROF:
566 if (!cputime_eq(p->signal->it_prof_expires,
567 cputime_zero) &&
568 cputime_lt(p->signal->it_prof_expires,
569 timer->it.cpu.expires.cpu))
570 break;
571 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
572 if (i != RLIM_INFINITY &&
573 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
574 break;
f06febc9
FM
575 p->signal->cputime_expires.prof_exp =
576 timer->it.cpu.expires.cpu;
577 break;
1da177e4 578 case CPUCLOCK_SCHED:
f06febc9
FM
579 p->signal->cputime_expires.sched_exp =
580 timer->it.cpu.expires.sched;
1da177e4
LT
581 break;
582 }
583 }
584 }
585
586 spin_unlock(&p->sighand->siglock);
587}
588
589/*
590 * The timer is locked, fire it and arrange for its reload.
591 */
592static void cpu_timer_fire(struct k_itimer *timer)
593{
594 if (unlikely(timer->sigq == NULL)) {
595 /*
596 * This a special case for clock_nanosleep,
597 * not a normal timer from sys_timer_create.
598 */
599 wake_up_process(timer->it_process);
600 timer->it.cpu.expires.sched = 0;
601 } else if (timer->it.cpu.incr.sched == 0) {
602 /*
603 * One-shot timer. Clear it as soon as it's fired.
604 */
605 posix_timer_event(timer, 0);
606 timer->it.cpu.expires.sched = 0;
607 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
608 /*
609 * The signal did not get queued because the signal
610 * was ignored, so we won't get any callback to
611 * reload the timer. But we need to keep it
612 * ticking in case the signal is deliverable next time.
613 */
614 posix_cpu_timer_schedule(timer);
615 }
616}
617
618/*
619 * Guts of sys_timer_settime for CPU timers.
620 * This is called with the timer locked and interrupts disabled.
621 * If we return TIMER_RETRY, it's necessary to release the timer's lock
622 * and try again. (This happens when the timer is in the middle of firing.)
623 */
624int posix_cpu_timer_set(struct k_itimer *timer, int flags,
625 struct itimerspec *new, struct itimerspec *old)
626{
627 struct task_struct *p = timer->it.cpu.task;
628 union cpu_time_count old_expires, new_expires, val;
629 int ret;
630
631 if (unlikely(p == NULL)) {
632 /*
633 * Timer refers to a dead task's clock.
634 */
635 return -ESRCH;
636 }
637
638 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
639
640 read_lock(&tasklist_lock);
641 /*
642 * We need the tasklist_lock to protect against reaping that
643 * clears p->signal. If p has just been reaped, we can no
644 * longer get any information about it at all.
645 */
646 if (unlikely(p->signal == NULL)) {
647 read_unlock(&tasklist_lock);
648 put_task_struct(p);
649 timer->it.cpu.task = NULL;
650 return -ESRCH;
651 }
652
653 /*
654 * Disarm any old timer after extracting its expiry time.
655 */
656 BUG_ON(!irqs_disabled());
a69ac4a7
ON
657
658 ret = 0;
1da177e4
LT
659 spin_lock(&p->sighand->siglock);
660 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
661 if (unlikely(timer->it.cpu.firing)) {
662 timer->it.cpu.firing = -1;
663 ret = TIMER_RETRY;
664 } else
665 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
666 spin_unlock(&p->sighand->siglock);
667
668 /*
669 * We need to sample the current value to convert the new
670 * value from to relative and absolute, and to convert the
671 * old value from absolute to relative. To set a process
672 * timer, we need a sample to balance the thread expiry
673 * times (in arm_timer). With an absolute time, we must
674 * check if it's already passed. In short, we need a sample.
675 */
676 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
677 cpu_clock_sample(timer->it_clock, p, &val);
678 } else {
679 cpu_clock_sample_group(timer->it_clock, p, &val);
680 }
681
682 if (old) {
683 if (old_expires.sched == 0) {
684 old->it_value.tv_sec = 0;
685 old->it_value.tv_nsec = 0;
686 } else {
687 /*
688 * Update the timer in case it has
689 * overrun already. If it has,
690 * we'll report it as having overrun
691 * and with the next reloaded timer
692 * already ticking, though we are
693 * swallowing that pending
694 * notification here to install the
695 * new setting.
696 */
697 bump_cpu_timer(timer, val);
698 if (cpu_time_before(timer->it_clock, val,
699 timer->it.cpu.expires)) {
700 old_expires = cpu_time_sub(
701 timer->it_clock,
702 timer->it.cpu.expires, val);
703 sample_to_timespec(timer->it_clock,
704 old_expires,
705 &old->it_value);
706 } else {
707 old->it_value.tv_nsec = 1;
708 old->it_value.tv_sec = 0;
709 }
710 }
711 }
712
a69ac4a7 713 if (unlikely(ret)) {
1da177e4
LT
714 /*
715 * We are colliding with the timer actually firing.
716 * Punt after filling in the timer's old value, and
717 * disable this firing since we are already reporting
718 * it as an overrun (thanks to bump_cpu_timer above).
719 */
720 read_unlock(&tasklist_lock);
1da177e4
LT
721 goto out;
722 }
723
724 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
725 cpu_time_add(timer->it_clock, &new_expires, val);
726 }
727
728 /*
729 * Install the new expiry time (or zero).
730 * For a timer with no notification action, we don't actually
731 * arm the timer (we'll just fake it for timer_gettime).
732 */
733 timer->it.cpu.expires = new_expires;
734 if (new_expires.sched != 0 &&
735 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
736 cpu_time_before(timer->it_clock, val, new_expires)) {
737 arm_timer(timer, val);
738 }
739
740 read_unlock(&tasklist_lock);
741
742 /*
743 * Install the new reload setting, and
744 * set up the signal and overrun bookkeeping.
745 */
746 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
747 &new->it_interval);
748
749 /*
750 * This acts as a modification timestamp for the timer,
751 * so any automatic reload attempt will punt on seeing
752 * that we have reset the timer manually.
753 */
754 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
755 ~REQUEUE_PENDING;
756 timer->it_overrun_last = 0;
757 timer->it_overrun = -1;
758
759 if (new_expires.sched != 0 &&
760 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
761 !cpu_time_before(timer->it_clock, val, new_expires)) {
762 /*
763 * The designated time already passed, so we notify
764 * immediately, even if the thread never runs to
765 * accumulate more time on this clock.
766 */
767 cpu_timer_fire(timer);
768 }
769
770 ret = 0;
771 out:
772 if (old) {
773 sample_to_timespec(timer->it_clock,
774 timer->it.cpu.incr, &old->it_interval);
775 }
776 return ret;
777}
778
779void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
780{
781 union cpu_time_count now;
782 struct task_struct *p = timer->it.cpu.task;
783 int clear_dead;
784
785 /*
786 * Easy part: convert the reload time.
787 */
788 sample_to_timespec(timer->it_clock,
789 timer->it.cpu.incr, &itp->it_interval);
790
791 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
792 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
793 return;
794 }
795
796 if (unlikely(p == NULL)) {
797 /*
798 * This task already died and the timer will never fire.
799 * In this case, expires is actually the dead value.
800 */
801 dead:
802 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
803 &itp->it_value);
804 return;
805 }
806
807 /*
808 * Sample the clock to take the difference with the expiry time.
809 */
810 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
811 cpu_clock_sample(timer->it_clock, p, &now);
812 clear_dead = p->exit_state;
813 } else {
814 read_lock(&tasklist_lock);
815 if (unlikely(p->signal == NULL)) {
816 /*
817 * The process has been reaped.
818 * We can't even collect a sample any more.
819 * Call the timer disarmed, nothing else to do.
820 */
821 put_task_struct(p);
822 timer->it.cpu.task = NULL;
823 timer->it.cpu.expires.sched = 0;
824 read_unlock(&tasklist_lock);
825 goto dead;
826 } else {
827 cpu_clock_sample_group(timer->it_clock, p, &now);
828 clear_dead = (unlikely(p->exit_state) &&
829 thread_group_empty(p));
830 }
831 read_unlock(&tasklist_lock);
832 }
833
834 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
835 if (timer->it.cpu.incr.sched == 0 &&
836 cpu_time_before(timer->it_clock,
837 timer->it.cpu.expires, now)) {
838 /*
839 * Do-nothing timer expired and has no reload,
840 * so it's as if it was never set.
841 */
842 timer->it.cpu.expires.sched = 0;
843 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
844 return;
845 }
846 /*
847 * Account for any expirations and reloads that should
848 * have happened.
849 */
850 bump_cpu_timer(timer, now);
851 }
852
853 if (unlikely(clear_dead)) {
854 /*
855 * We've noticed that the thread is dead, but
856 * not yet reaped. Take this opportunity to
857 * drop our task ref.
858 */
859 clear_dead_task(timer, now);
860 goto dead;
861 }
862
863 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
864 sample_to_timespec(timer->it_clock,
865 cpu_time_sub(timer->it_clock,
866 timer->it.cpu.expires, now),
867 &itp->it_value);
868 } else {
869 /*
870 * The timer should have expired already, but the firing
871 * hasn't taken place yet. Say it's just about to expire.
872 */
873 itp->it_value.tv_nsec = 1;
874 itp->it_value.tv_sec = 0;
875 }
876}
877
878/*
879 * Check for any per-thread CPU timers that have fired and move them off
880 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
881 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
882 */
883static void check_thread_timers(struct task_struct *tsk,
884 struct list_head *firing)
885{
e80eda94 886 int maxfire;
1da177e4 887 struct list_head *timers = tsk->cpu_timers;
78f2c7db 888 struct signal_struct *const sig = tsk->signal;
1da177e4 889
e80eda94 890 maxfire = 20;
f06febc9 891 tsk->cputime_expires.prof_exp = cputime_zero;
1da177e4 892 while (!list_empty(timers)) {
b5e61818 893 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
894 struct cpu_timer_list,
895 entry);
e80eda94 896 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
f06febc9 897 tsk->cputime_expires.prof_exp = t->expires.cpu;
1da177e4
LT
898 break;
899 }
900 t->firing = 1;
901 list_move_tail(&t->entry, firing);
902 }
903
904 ++timers;
e80eda94 905 maxfire = 20;
f06febc9 906 tsk->cputime_expires.virt_exp = cputime_zero;
1da177e4 907 while (!list_empty(timers)) {
b5e61818 908 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
909 struct cpu_timer_list,
910 entry);
e80eda94 911 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
f06febc9 912 tsk->cputime_expires.virt_exp = t->expires.cpu;
1da177e4
LT
913 break;
914 }
915 t->firing = 1;
916 list_move_tail(&t->entry, firing);
917 }
918
919 ++timers;
e80eda94 920 maxfire = 20;
f06febc9 921 tsk->cputime_expires.sched_exp = 0;
1da177e4 922 while (!list_empty(timers)) {
b5e61818 923 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
924 struct cpu_timer_list,
925 entry);
41b86e9c 926 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
f06febc9 927 tsk->cputime_expires.sched_exp = t->expires.sched;
1da177e4
LT
928 break;
929 }
930 t->firing = 1;
931 list_move_tail(&t->entry, firing);
932 }
78f2c7db
PZ
933
934 /*
935 * Check for the special case thread timers.
936 */
937 if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
938 unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
939 unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
940
5a52dd50
PZ
941 if (hard != RLIM_INFINITY &&
942 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
943 /*
944 * At the hard limit, we just die.
945 * No need to calculate anything else now.
946 */
947 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
948 return;
949 }
950 if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
951 /*
952 * At the soft limit, send a SIGXCPU every second.
953 */
954 if (sig->rlim[RLIMIT_RTTIME].rlim_cur
955 < sig->rlim[RLIMIT_RTTIME].rlim_max) {
956 sig->rlim[RLIMIT_RTTIME].rlim_cur +=
957 USEC_PER_SEC;
958 }
81d50bb2
HS
959 printk(KERN_INFO
960 "RT Watchdog Timeout: %s[%d]\n",
961 tsk->comm, task_pid_nr(tsk));
78f2c7db
PZ
962 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
963 }
964 }
1da177e4
LT
965}
966
967/*
968 * Check for any per-thread CPU timers that have fired and move them
969 * off the tsk->*_timers list onto the firing list. Per-thread timers
970 * have already been taken off.
971 */
972static void check_process_timers(struct task_struct *tsk,
973 struct list_head *firing)
974{
e80eda94 975 int maxfire;
1da177e4 976 struct signal_struct *const sig = tsk->signal;
f06febc9 977 cputime_t utime, ptime, virt_expires, prof_expires;
41b86e9c 978 unsigned long long sum_sched_runtime, sched_expires;
1da177e4 979 struct list_head *timers = sig->cpu_timers;
f06febc9 980 struct task_cputime cputime;
1da177e4
LT
981
982 /*
983 * Don't sample the current process CPU clocks if there are no timers.
984 */
985 if (list_empty(&timers[CPUCLOCK_PROF]) &&
986 cputime_eq(sig->it_prof_expires, cputime_zero) &&
987 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
988 list_empty(&timers[CPUCLOCK_VIRT]) &&
989 cputime_eq(sig->it_virt_expires, cputime_zero) &&
990 list_empty(&timers[CPUCLOCK_SCHED]))
991 return;
992
993 /*
994 * Collect the current process totals.
995 */
f06febc9
FM
996 thread_group_cputime(tsk, &cputime);
997 utime = cputime.utime;
998 ptime = cputime_add(utime, cputime.stime);
999 sum_sched_runtime = cputime.sum_exec_runtime;
e80eda94 1000 maxfire = 20;
1da177e4
LT
1001 prof_expires = cputime_zero;
1002 while (!list_empty(timers)) {
ee7dd205 1003 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1004 struct cpu_timer_list,
1005 entry);
ee7dd205
WC
1006 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1007 prof_expires = tl->expires.cpu;
1da177e4
LT
1008 break;
1009 }
ee7dd205
WC
1010 tl->firing = 1;
1011 list_move_tail(&tl->entry, firing);
1da177e4
LT
1012 }
1013
1014 ++timers;
e80eda94 1015 maxfire = 20;
1da177e4
LT
1016 virt_expires = cputime_zero;
1017 while (!list_empty(timers)) {
ee7dd205 1018 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1019 struct cpu_timer_list,
1020 entry);
ee7dd205
WC
1021 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1022 virt_expires = tl->expires.cpu;
1da177e4
LT
1023 break;
1024 }
ee7dd205
WC
1025 tl->firing = 1;
1026 list_move_tail(&tl->entry, firing);
1da177e4
LT
1027 }
1028
1029 ++timers;
e80eda94 1030 maxfire = 20;
1da177e4
LT
1031 sched_expires = 0;
1032 while (!list_empty(timers)) {
ee7dd205 1033 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1034 struct cpu_timer_list,
1035 entry);
ee7dd205
WC
1036 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1037 sched_expires = tl->expires.sched;
1da177e4
LT
1038 break;
1039 }
ee7dd205
WC
1040 tl->firing = 1;
1041 list_move_tail(&tl->entry, firing);
1da177e4
LT
1042 }
1043
1044 /*
1045 * Check for the special case process timers.
1046 */
1047 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1048 if (cputime_ge(ptime, sig->it_prof_expires)) {
1049 /* ITIMER_PROF fires and reloads. */
1050 sig->it_prof_expires = sig->it_prof_incr;
1051 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1052 sig->it_prof_expires = cputime_add(
1053 sig->it_prof_expires, ptime);
1054 }
1055 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1056 }
1057 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1058 (cputime_eq(prof_expires, cputime_zero) ||
1059 cputime_lt(sig->it_prof_expires, prof_expires))) {
1060 prof_expires = sig->it_prof_expires;
1061 }
1062 }
1063 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1064 if (cputime_ge(utime, sig->it_virt_expires)) {
1065 /* ITIMER_VIRTUAL fires and reloads. */
1066 sig->it_virt_expires = sig->it_virt_incr;
1067 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1068 sig->it_virt_expires = cputime_add(
1069 sig->it_virt_expires, utime);
1070 }
1071 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1072 }
1073 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1074 (cputime_eq(virt_expires, cputime_zero) ||
1075 cputime_lt(sig->it_virt_expires, virt_expires))) {
1076 virt_expires = sig->it_virt_expires;
1077 }
1078 }
1079 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1080 unsigned long psecs = cputime_to_secs(ptime);
1081 cputime_t x;
1082 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1083 /*
1084 * At the hard limit, we just die.
1085 * No need to calculate anything else now.
1086 */
1087 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1088 return;
1089 }
1090 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1091 /*
1092 * At the soft limit, send a SIGXCPU every second.
1093 */
1094 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1095 if (sig->rlim[RLIMIT_CPU].rlim_cur
1096 < sig->rlim[RLIMIT_CPU].rlim_max) {
1097 sig->rlim[RLIMIT_CPU].rlim_cur++;
1098 }
1099 }
1100 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1101 if (cputime_eq(prof_expires, cputime_zero) ||
1102 cputime_lt(x, prof_expires)) {
1103 prof_expires = x;
1104 }
1105 }
1106
f06febc9
FM
1107 if (!cputime_eq(prof_expires, cputime_zero) &&
1108 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1109 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1110 sig->cputime_expires.prof_exp = prof_expires;
1111 if (!cputime_eq(virt_expires, cputime_zero) &&
1112 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1113 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1114 sig->cputime_expires.virt_exp = virt_expires;
1115 if (sched_expires != 0 &&
1116 (sig->cputime_expires.sched_exp == 0 ||
1117 sig->cputime_expires.sched_exp > sched_expires))
1118 sig->cputime_expires.sched_exp = sched_expires;
1da177e4
LT
1119}
1120
1121/*
1122 * This is called from the signal code (via do_schedule_next_timer)
1123 * when the last timer signal was delivered and we have to reload the timer.
1124 */
1125void posix_cpu_timer_schedule(struct k_itimer *timer)
1126{
1127 struct task_struct *p = timer->it.cpu.task;
1128 union cpu_time_count now;
1129
1130 if (unlikely(p == NULL))
1131 /*
1132 * The task was cleaned up already, no future firings.
1133 */
708f430d 1134 goto out;
1da177e4
LT
1135
1136 /*
1137 * Fetch the current sample and update the timer's expiry time.
1138 */
1139 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1140 cpu_clock_sample(timer->it_clock, p, &now);
1141 bump_cpu_timer(timer, now);
1142 if (unlikely(p->exit_state)) {
1143 clear_dead_task(timer, now);
708f430d 1144 goto out;
1da177e4
LT
1145 }
1146 read_lock(&tasklist_lock); /* arm_timer needs it. */
1147 } else {
1148 read_lock(&tasklist_lock);
1149 if (unlikely(p->signal == NULL)) {
1150 /*
1151 * The process has been reaped.
1152 * We can't even collect a sample any more.
1153 */
1154 put_task_struct(p);
1155 timer->it.cpu.task = p = NULL;
1156 timer->it.cpu.expires.sched = 0;
708f430d 1157 goto out_unlock;
1da177e4
LT
1158 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1159 /*
1160 * We've noticed that the thread is dead, but
1161 * not yet reaped. Take this opportunity to
1162 * drop our task ref.
1163 */
1164 clear_dead_task(timer, now);
708f430d 1165 goto out_unlock;
1da177e4
LT
1166 }
1167 cpu_clock_sample_group(timer->it_clock, p, &now);
1168 bump_cpu_timer(timer, now);
1169 /* Leave the tasklist_lock locked for the call below. */
1170 }
1171
1172 /*
1173 * Now re-arm for the new expiry time.
1174 */
1175 arm_timer(timer, now);
1176
708f430d 1177out_unlock:
1da177e4 1178 read_unlock(&tasklist_lock);
708f430d
RM
1179
1180out:
1181 timer->it_overrun_last = timer->it_overrun;
1182 timer->it_overrun = -1;
1183 ++timer->it_requeue_pending;
1da177e4
LT
1184}
1185
f06febc9
FM
1186/**
1187 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1188 *
1189 * @cputime: The struct to compare.
1190 *
1191 * Checks @cputime to see if all fields are zero. Returns true if all fields
1192 * are zero, false if any field is nonzero.
1193 */
1194static inline int task_cputime_zero(const struct task_cputime *cputime)
1195{
1196 if (cputime_eq(cputime->utime, cputime_zero) &&
1197 cputime_eq(cputime->stime, cputime_zero) &&
1198 cputime->sum_exec_runtime == 0)
1199 return 1;
1200 return 0;
1201}
1202
1203/**
1204 * task_cputime_expired - Compare two task_cputime entities.
1205 *
1206 * @sample: The task_cputime structure to be checked for expiration.
1207 * @expires: Expiration times, against which @sample will be checked.
1208 *
1209 * Checks @sample against @expires to see if any field of @sample has expired.
1210 * Returns true if any field of the former is greater than the corresponding
1211 * field of the latter if the latter field is set. Otherwise returns false.
1212 */
1213static inline int task_cputime_expired(const struct task_cputime *sample,
1214 const struct task_cputime *expires)
1215{
1216 if (!cputime_eq(expires->utime, cputime_zero) &&
1217 cputime_ge(sample->utime, expires->utime))
1218 return 1;
1219 if (!cputime_eq(expires->stime, cputime_zero) &&
1220 cputime_ge(cputime_add(sample->utime, sample->stime),
1221 expires->stime))
1222 return 1;
1223 if (expires->sum_exec_runtime != 0 &&
1224 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1225 return 1;
1226 return 0;
1227}
1228
1229/**
1230 * fastpath_timer_check - POSIX CPU timers fast path.
1231 *
1232 * @tsk: The task (thread) being checked.
f06febc9 1233 *
bb34d92f
FM
1234 * Check the task and thread group timers. If both are zero (there are no
1235 * timers set) return false. Otherwise snapshot the task and thread group
1236 * timers and compare them with the corresponding expiration times. Return
1237 * true if a timer has expired, else return false.
f06febc9 1238 */
bb34d92f 1239static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1240{
ad133ba3 1241 struct signal_struct *sig;
bb34d92f 1242
ad133ba3
ON
1243 /* tsk == current, ensure it is safe to use ->signal/sighand */
1244 if (unlikely(tsk->exit_state))
f06febc9 1245 return 0;
bb34d92f
FM
1246
1247 if (!task_cputime_zero(&tsk->cputime_expires)) {
1248 struct task_cputime task_sample = {
1249 .utime = tsk->utime,
1250 .stime = tsk->stime,
1251 .sum_exec_runtime = tsk->se.sum_exec_runtime
1252 };
1253
1254 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1255 return 1;
1256 }
ad133ba3
ON
1257
1258 sig = tsk->signal;
bb34d92f
FM
1259 if (!task_cputime_zero(&sig->cputime_expires)) {
1260 struct task_cputime group_sample;
1261
1262 thread_group_cputime(tsk, &group_sample);
1263 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1264 return 1;
1265 }
1266 return 0;
f06febc9
FM
1267}
1268
1da177e4
LT
1269/*
1270 * This is called from the timer interrupt handler. The irq handler has
1271 * already updated our counts. We need to check if any timers fire now.
1272 * Interrupts are disabled.
1273 */
1274void run_posix_cpu_timers(struct task_struct *tsk)
1275{
1276 LIST_HEAD(firing);
1277 struct k_itimer *timer, *next;
1278
1279 BUG_ON(!irqs_disabled());
1280
1da177e4 1281 /*
f06febc9 1282 * The fast path checks that there are no expired thread or thread
bb34d92f 1283 * group timers. If that's so, just return.
1da177e4 1284 */
bb34d92f 1285 if (!fastpath_timer_check(tsk))
f06febc9 1286 return;
5ce73a4a 1287
bb34d92f
FM
1288 spin_lock(&tsk->sighand->siglock);
1289 /*
1290 * Here we take off tsk->signal->cpu_timers[N] and
1291 * tsk->cpu_timers[N] all the timers that are firing, and
1292 * put them on the firing list.
1293 */
1294 check_thread_timers(tsk, &firing);
1295 check_process_timers(tsk, &firing);
1da177e4 1296
bb34d92f
FM
1297 /*
1298 * We must release these locks before taking any timer's lock.
1299 * There is a potential race with timer deletion here, as the
1300 * siglock now protects our private firing list. We have set
1301 * the firing flag in each timer, so that a deletion attempt
1302 * that gets the timer lock before we do will give it up and
1303 * spin until we've taken care of that timer below.
1304 */
1305 spin_unlock(&tsk->sighand->siglock);
1da177e4
LT
1306
1307 /*
1308 * Now that all the timers on our list have the firing flag,
1309 * noone will touch their list entries but us. We'll take
1310 * each timer's lock before clearing its firing flag, so no
1311 * timer call will interfere.
1312 */
1313 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1314 int firing;
1315 spin_lock(&timer->it_lock);
1316 list_del_init(&timer->it.cpu.entry);
1317 firing = timer->it.cpu.firing;
1318 timer->it.cpu.firing = 0;
1319 /*
1320 * The firing flag is -1 if we collided with a reset
1321 * of the timer, which already reported this
1322 * almost-firing as an overrun. So don't generate an event.
1323 */
1324 if (likely(firing >= 0)) {
1325 cpu_timer_fire(timer);
1326 }
1327 spin_unlock(&timer->it_lock);
1328 }
1329}
1330
1331/*
1332 * Set one of the process-wide special case CPU timers.
f06febc9
FM
1333 * The tsk->sighand->siglock must be held by the caller.
1334 * The *newval argument is relative and we update it to be absolute, *oldval
1335 * is absolute and we update it to be relative.
1da177e4
LT
1336 */
1337void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1338 cputime_t *newval, cputime_t *oldval)
1339{
1340 union cpu_time_count now;
1341 struct list_head *head;
1342
1343 BUG_ON(clock_idx == CPUCLOCK_SCHED);
bb34d92f 1344 cpu_clock_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1345
1346 if (oldval) {
1347 if (!cputime_eq(*oldval, cputime_zero)) {
1348 if (cputime_le(*oldval, now.cpu)) {
1349 /* Just about to fire. */
1350 *oldval = jiffies_to_cputime(1);
1351 } else {
1352 *oldval = cputime_sub(*oldval, now.cpu);
1353 }
1354 }
1355
1356 if (cputime_eq(*newval, cputime_zero))
1357 return;
1358 *newval = cputime_add(*newval, now.cpu);
1359
1360 /*
1361 * If the RLIMIT_CPU timer will expire before the
1362 * ITIMER_PROF timer, we have nothing else to do.
1363 */
1364 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1365 < cputime_to_secs(*newval))
1366 return;
1367 }
1368
1369 /*
1370 * Check whether there are any process timers already set to fire
1371 * before this one. If so, we don't have anything more to do.
1372 */
1373 head = &tsk->signal->cpu_timers[clock_idx];
1374 if (list_empty(head) ||
b5e61818 1375 cputime_ge(list_first_entry(head,
1da177e4
LT
1376 struct cpu_timer_list, entry)->expires.cpu,
1377 *newval)) {
f06febc9
FM
1378 switch (clock_idx) {
1379 case CPUCLOCK_PROF:
1380 tsk->signal->cputime_expires.prof_exp = *newval;
1381 break;
1382 case CPUCLOCK_VIRT:
1383 tsk->signal->cputime_expires.virt_exp = *newval;
1384 break;
1385 }
1da177e4
LT
1386 }
1387}
1388
e4b76555
TA
1389static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1390 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1391{
1da177e4
LT
1392 struct k_itimer timer;
1393 int error;
1394
1da177e4
LT
1395 /*
1396 * Set up a temporary timer and then wait for it to go off.
1397 */
1398 memset(&timer, 0, sizeof timer);
1399 spin_lock_init(&timer.it_lock);
1400 timer.it_clock = which_clock;
1401 timer.it_overrun = -1;
1402 error = posix_cpu_timer_create(&timer);
1403 timer.it_process = current;
1404 if (!error) {
1da177e4 1405 static struct itimerspec zero_it;
e4b76555
TA
1406
1407 memset(it, 0, sizeof *it);
1408 it->it_value = *rqtp;
1da177e4
LT
1409
1410 spin_lock_irq(&timer.it_lock);
e4b76555 1411 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1412 if (error) {
1413 spin_unlock_irq(&timer.it_lock);
1414 return error;
1415 }
1416
1417 while (!signal_pending(current)) {
1418 if (timer.it.cpu.expires.sched == 0) {
1419 /*
1420 * Our timer fired and was reset.
1421 */
1422 spin_unlock_irq(&timer.it_lock);
1423 return 0;
1424 }
1425
1426 /*
1427 * Block until cpu_timer_fire (or a signal) wakes us.
1428 */
1429 __set_current_state(TASK_INTERRUPTIBLE);
1430 spin_unlock_irq(&timer.it_lock);
1431 schedule();
1432 spin_lock_irq(&timer.it_lock);
1433 }
1434
1435 /*
1436 * We were interrupted by a signal.
1437 */
1438 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
e4b76555 1439 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1da177e4
LT
1440 spin_unlock_irq(&timer.it_lock);
1441
e4b76555 1442 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1443 /*
1444 * It actually did fire already.
1445 */
1446 return 0;
1447 }
1448
e4b76555
TA
1449 error = -ERESTART_RESTARTBLOCK;
1450 }
1451
1452 return error;
1453}
1454
1455int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1456 struct timespec *rqtp, struct timespec __user *rmtp)
1457{
1458 struct restart_block *restart_block =
1459 &current_thread_info()->restart_block;
1460 struct itimerspec it;
1461 int error;
1462
1463 /*
1464 * Diagnose required errors first.
1465 */
1466 if (CPUCLOCK_PERTHREAD(which_clock) &&
1467 (CPUCLOCK_PID(which_clock) == 0 ||
1468 CPUCLOCK_PID(which_clock) == current->pid))
1469 return -EINVAL;
1470
1471 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1472
1473 if (error == -ERESTART_RESTARTBLOCK) {
1474
1475 if (flags & TIMER_ABSTIME)
1476 return -ERESTARTNOHAND;
1da177e4 1477 /*
e4b76555
TA
1478 * Report back to the user the time still remaining.
1479 */
1480 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1481 return -EFAULT;
1482
1711ef38 1483 restart_block->fn = posix_cpu_nsleep_restart;
1da177e4 1484 restart_block->arg0 = which_clock;
97735f25 1485 restart_block->arg1 = (unsigned long) rmtp;
1da177e4
LT
1486 restart_block->arg2 = rqtp->tv_sec;
1487 restart_block->arg3 = rqtp->tv_nsec;
1da177e4 1488 }
1da177e4
LT
1489 return error;
1490}
1491
1711ef38 1492long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4
LT
1493{
1494 clockid_t which_clock = restart_block->arg0;
97735f25
TG
1495 struct timespec __user *rmtp;
1496 struct timespec t;
e4b76555
TA
1497 struct itimerspec it;
1498 int error;
97735f25
TG
1499
1500 rmtp = (struct timespec __user *) restart_block->arg1;
1501 t.tv_sec = restart_block->arg2;
1502 t.tv_nsec = restart_block->arg3;
1503
1da177e4 1504 restart_block->fn = do_no_restart_syscall;
e4b76555
TA
1505 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1506
1507 if (error == -ERESTART_RESTARTBLOCK) {
1508 /*
1509 * Report back to the user the time still remaining.
1510 */
1511 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1512 return -EFAULT;
1513
1514 restart_block->fn = posix_cpu_nsleep_restart;
1515 restart_block->arg0 = which_clock;
1516 restart_block->arg1 = (unsigned long) rmtp;
1517 restart_block->arg2 = t.tv_sec;
1518 restart_block->arg3 = t.tv_nsec;
1519 }
1520 return error;
1521
1da177e4
LT
1522}
1523
1524
1525#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1526#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1527
a924b04d
TG
1528static int process_cpu_clock_getres(const clockid_t which_clock,
1529 struct timespec *tp)
1da177e4
LT
1530{
1531 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1532}
a924b04d
TG
1533static int process_cpu_clock_get(const clockid_t which_clock,
1534 struct timespec *tp)
1da177e4
LT
1535{
1536 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1537}
1538static int process_cpu_timer_create(struct k_itimer *timer)
1539{
1540 timer->it_clock = PROCESS_CLOCK;
1541 return posix_cpu_timer_create(timer);
1542}
a924b04d 1543static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1544 struct timespec *rqtp,
1545 struct timespec __user *rmtp)
1da177e4 1546{
97735f25 1547 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1548}
1711ef38
TA
1549static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1550{
1551 return -EINVAL;
1552}
a924b04d
TG
1553static int thread_cpu_clock_getres(const clockid_t which_clock,
1554 struct timespec *tp)
1da177e4
LT
1555{
1556 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1557}
a924b04d
TG
1558static int thread_cpu_clock_get(const clockid_t which_clock,
1559 struct timespec *tp)
1da177e4
LT
1560{
1561 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1562}
1563static int thread_cpu_timer_create(struct k_itimer *timer)
1564{
1565 timer->it_clock = THREAD_CLOCK;
1566 return posix_cpu_timer_create(timer);
1567}
a924b04d 1568static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25 1569 struct timespec *rqtp, struct timespec __user *rmtp)
1da177e4
LT
1570{
1571 return -EINVAL;
1572}
1711ef38
TA
1573static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1574{
1575 return -EINVAL;
1576}
1da177e4
LT
1577
1578static __init int init_posix_cpu_timers(void)
1579{
1580 struct k_clock process = {
1581 .clock_getres = process_cpu_clock_getres,
1582 .clock_get = process_cpu_clock_get,
1583 .clock_set = do_posix_clock_nosettime,
1584 .timer_create = process_cpu_timer_create,
1585 .nsleep = process_cpu_nsleep,
1711ef38 1586 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1587 };
1588 struct k_clock thread = {
1589 .clock_getres = thread_cpu_clock_getres,
1590 .clock_get = thread_cpu_clock_get,
1591 .clock_set = do_posix_clock_nosettime,
1592 .timer_create = thread_cpu_timer_create,
1593 .nsleep = thread_cpu_nsleep,
1711ef38 1594 .nsleep_restart = thread_cpu_nsleep_restart,
1da177e4
LT
1595 };
1596
1597 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1598 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1599
1600 return 0;
1601}
1602__initcall(init_posix_cpu_timers);