]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/hrtimer.c
[PATCH] hrtimers: cleanups and simplifications
[net-next-2.6.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API implemented in
10 * kernel/timer.c, hrtimers provide finer resolution and accuracy
11 * depending on system configuration and capabilities.
12 *
13 * These timers are currently used for:
14 * - itimers
15 * - POSIX timers
16 * - nanosleep
17 * - precise in-kernel timing
18 *
19 * Started by: Thomas Gleixner and Ingo Molnar
20 *
21 * Credits:
22 * based on kernel/timer.c
23 *
24 * For licencing details see kernel-base/COPYING
25 */
26
27#include <linux/cpu.h>
28#include <linux/module.h>
29#include <linux/percpu.h>
30#include <linux/hrtimer.h>
31#include <linux/notifier.h>
32#include <linux/syscalls.h>
33#include <linux/interrupt.h>
34
35#include <asm/uaccess.h>
36
37/**
38 * ktime_get - get the monotonic time in ktime_t format
39 *
40 * returns the time in ktime_t format
41 */
42static ktime_t ktime_get(void)
43{
44 struct timespec now;
45
46 ktime_get_ts(&now);
47
48 return timespec_to_ktime(now);
49}
50
51/**
52 * ktime_get_real - get the real (wall-) time in ktime_t format
53 *
54 * returns the time in ktime_t format
55 */
56static ktime_t ktime_get_real(void)
57{
58 struct timespec now;
59
60 getnstimeofday(&now);
61
62 return timespec_to_ktime(now);
63}
64
65EXPORT_SYMBOL_GPL(ktime_get_real);
66
67/*
68 * The timer bases:
7978672c
GA
69 *
70 * Note: If we want to add new timer bases, we have to skip the two
71 * clock ids captured by the cpu-timers. We do this by holding empty
72 * entries rather than doing math adjustment of the clock ids.
73 * This ensures that we capture erroneous accesses to these clock ids
74 * rather than moving them into the range of valid clock id's.
c0a31329
TG
75 */
76
77#define MAX_HRTIMER_BASES 2
78
79static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
80{
81 {
82 .index = CLOCK_REALTIME,
83 .get_time = &ktime_get_real,
84 .resolution = KTIME_REALTIME_RES,
85 },
86 {
87 .index = CLOCK_MONOTONIC,
88 .get_time = &ktime_get,
89 .resolution = KTIME_MONOTONIC_RES,
90 },
91};
92
93/**
94 * ktime_get_ts - get the monotonic clock in timespec format
95 *
96 * @ts: pointer to timespec variable
97 *
98 * The function calculates the monotonic clock from the realtime
99 * clock and the wall_to_monotonic offset and stores the result
100 * in normalized timespec format in the variable pointed to by ts.
101 */
102void ktime_get_ts(struct timespec *ts)
103{
104 struct timespec tomono;
105 unsigned long seq;
106
107 do {
108 seq = read_seqbegin(&xtime_lock);
109 getnstimeofday(ts);
110 tomono = wall_to_monotonic;
111
112 } while (read_seqretry(&xtime_lock, seq));
113
114 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
115 ts->tv_nsec + tomono.tv_nsec);
116}
69778e32 117EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329
TG
118
119/*
120 * Functions and macros which are different for UP/SMP systems are kept in a
121 * single place
122 */
123#ifdef CONFIG_SMP
124
125#define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
126
127/*
128 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
129 * means that all timers which are tied to this base via timer->base are
130 * locked, and the base itself is locked too.
131 *
132 * So __run_timers/migrate_timers can safely modify all timers which could
133 * be found on the lists/queues.
134 *
135 * When the timer's base is locked, and the timer removed from list, it is
136 * possible to set timer->base = NULL and drop the lock: the timer remains
137 * locked.
138 */
139static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
141{
142 struct hrtimer_base *base;
143
144 for (;;) {
145 base = timer->base;
146 if (likely(base != NULL)) {
147 spin_lock_irqsave(&base->lock, *flags);
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
151 spin_unlock_irqrestore(&base->lock, *flags);
152 }
153 cpu_relax();
154 }
155}
156
157/*
158 * Switch the timer base to the current CPU when possible.
159 */
160static inline struct hrtimer_base *
161switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
162{
163 struct hrtimer_base *new_base;
164
165 new_base = &__get_cpu_var(hrtimer_bases[base->index]);
166
167 if (base != new_base) {
168 /*
169 * We are trying to schedule the timer on the local CPU.
170 * However we can't change timer's base while it is running,
171 * so we keep it on the same CPU. No hassle vs. reprogramming
172 * the event source in the high resolution case. The softirq
173 * code will take care of this when the timer function has
174 * completed. There is no conflict as we hold the lock until
175 * the timer is enqueued.
176 */
177 if (unlikely(base->curr_timer == timer))
178 return base;
179
180 /* See the comment in lock_timer_base() */
181 timer->base = NULL;
182 spin_unlock(&base->lock);
183 spin_lock(&new_base->lock);
184 timer->base = new_base;
185 }
186 return new_base;
187}
188
189#else /* CONFIG_SMP */
190
191#define set_curr_timer(b, t) do { } while (0)
192
193static inline struct hrtimer_base *
194lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
195{
196 struct hrtimer_base *base = timer->base;
197
198 spin_lock_irqsave(&base->lock, *flags);
199
200 return base;
201}
202
203#define switch_hrtimer_base(t, b) (b)
204
205#endif /* !CONFIG_SMP */
206
207/*
208 * Functions for the union type storage format of ktime_t which are
209 * too large for inlining:
210 */
211#if BITS_PER_LONG < 64
212# ifndef CONFIG_KTIME_SCALAR
213/**
214 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
215 *
216 * @kt: addend
217 * @nsec: the scalar nsec value to add
218 *
219 * Returns the sum of kt and nsec in ktime_t format
220 */
221ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
222{
223 ktime_t tmp;
224
225 if (likely(nsec < NSEC_PER_SEC)) {
226 tmp.tv64 = nsec;
227 } else {
228 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
229
230 tmp = ktime_set((long)nsec, rem);
231 }
232
233 return ktime_add(kt, tmp);
234}
235
236#else /* CONFIG_KTIME_SCALAR */
237
238# endif /* !CONFIG_KTIME_SCALAR */
239
240/*
241 * Divide a ktime value by a nanosecond value
242 */
243static unsigned long ktime_divns(const ktime_t kt, nsec_t div)
244{
245 u64 dclc, inc, dns;
246 int sft = 0;
247
248 dclc = dns = ktime_to_ns(kt);
249 inc = div;
250 /* Make sure the divisor is less than 2^32: */
251 while (div >> 32) {
252 sft++;
253 div >>= 1;
254 }
255 dclc >>= sft;
256 do_div(dclc, (unsigned long) div);
257
258 return (unsigned long) dclc;
259}
260
261#else /* BITS_PER_LONG < 64 */
262# define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
263#endif /* BITS_PER_LONG >= 64 */
264
265/*
266 * Counterpart to lock_timer_base above:
267 */
268static inline
269void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
270{
271 spin_unlock_irqrestore(&timer->base->lock, *flags);
272}
273
274/**
275 * hrtimer_forward - forward the timer expiry
276 *
277 * @timer: hrtimer to forward
278 * @interval: the interval to forward
279 *
280 * Forward the timer expiry so it will expire in the future.
8dca6f33 281 * Returns the number of overruns.
c0a31329
TG
282 */
283unsigned long
c9db4fa1 284hrtimer_forward(struct hrtimer *timer, ktime_t interval)
c0a31329
TG
285{
286 unsigned long orun = 1;
287 ktime_t delta, now;
288
289 now = timer->base->get_time();
290
291 delta = ktime_sub(now, timer->expires);
292
293 if (delta.tv64 < 0)
294 return 0;
295
c9db4fa1
TG
296 if (interval.tv64 < timer->base->resolution.tv64)
297 interval.tv64 = timer->base->resolution.tv64;
298
c0a31329
TG
299 if (unlikely(delta.tv64 >= interval.tv64)) {
300 nsec_t incr = ktime_to_ns(interval);
301
302 orun = ktime_divns(delta, incr);
303 timer->expires = ktime_add_ns(timer->expires, incr * orun);
304 if (timer->expires.tv64 > now.tv64)
305 return orun;
306 /*
307 * This (and the ktime_add() below) is the
308 * correction for exact:
309 */
310 orun++;
311 }
312 timer->expires = ktime_add(timer->expires, interval);
313
314 return orun;
315}
316
317/*
318 * enqueue_hrtimer - internal function to (re)start a timer
319 *
320 * The timer is inserted in expiry order. Insertion into the
321 * red black tree is O(log(n)). Must hold the base lock.
322 */
323static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
324{
325 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
326 struct rb_node *parent = NULL;
327 struct hrtimer *entry;
328
329 /*
330 * Find the right place in the rbtree:
331 */
332 while (*link) {
333 parent = *link;
334 entry = rb_entry(parent, struct hrtimer, node);
335 /*
336 * We dont care about collisions. Nodes with
337 * the same expiry time stay together.
338 */
339 if (timer->expires.tv64 < entry->expires.tv64)
340 link = &(*link)->rb_left;
288867ec 341 else
c0a31329 342 link = &(*link)->rb_right;
c0a31329
TG
343 }
344
345 /*
288867ec
TG
346 * Insert the timer to the rbtree and check whether it
347 * replaces the first pending timer
c0a31329
TG
348 */
349 rb_link_node(&timer->node, parent, link);
350 rb_insert_color(&timer->node, &base->active);
c0a31329
TG
351
352 timer->state = HRTIMER_PENDING;
c0a31329 353
288867ec
TG
354 if (!base->first || timer->expires.tv64 <
355 rb_entry(base->first, struct hrtimer, node)->expires.tv64)
356 base->first = &timer->node;
357}
c0a31329
TG
358
359/*
360 * __remove_hrtimer - internal function to remove a timer
361 *
362 * Caller must hold the base lock.
363 */
364static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
365{
366 /*
288867ec
TG
367 * Remove the timer from the rbtree and replace the
368 * first entry pointer if necessary.
c0a31329 369 */
288867ec
TG
370 if (base->first == &timer->node)
371 base->first = rb_next(&timer->node);
c0a31329
TG
372 rb_erase(&timer->node, &base->active);
373}
374
375/*
376 * remove hrtimer, called with base lock held
377 */
378static inline int
379remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
380{
381 if (hrtimer_active(timer)) {
382 __remove_hrtimer(timer, base);
383 timer->state = HRTIMER_INACTIVE;
384 return 1;
385 }
386 return 0;
387}
388
389/**
390 * hrtimer_start - (re)start an relative timer on the current CPU
391 *
392 * @timer: the timer to be added
393 * @tim: expiry time
394 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
395 *
396 * Returns:
397 * 0 on success
398 * 1 when the timer was active
399 */
400int
401hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
402{
403 struct hrtimer_base *base, *new_base;
404 unsigned long flags;
405 int ret;
406
407 base = lock_hrtimer_base(timer, &flags);
408
409 /* Remove an active timer from the queue: */
410 ret = remove_hrtimer(timer, base);
411
412 /* Switch the timer base, if necessary: */
413 new_base = switch_hrtimer_base(timer, base);
414
415 if (mode == HRTIMER_REL)
416 tim = ktime_add(tim, new_base->get_time());
417 timer->expires = tim;
418
419 enqueue_hrtimer(timer, new_base);
420
421 unlock_hrtimer_base(timer, &flags);
422
423 return ret;
424}
425
426/**
427 * hrtimer_try_to_cancel - try to deactivate a timer
428 *
429 * @timer: hrtimer to stop
430 *
431 * Returns:
432 * 0 when the timer was not active
433 * 1 when the timer was active
434 * -1 when the timer is currently excuting the callback function and
435 * can not be stopped
436 */
437int hrtimer_try_to_cancel(struct hrtimer *timer)
438{
439 struct hrtimer_base *base;
440 unsigned long flags;
441 int ret = -1;
442
443 base = lock_hrtimer_base(timer, &flags);
444
445 if (base->curr_timer != timer)
446 ret = remove_hrtimer(timer, base);
447
448 unlock_hrtimer_base(timer, &flags);
449
450 return ret;
451
452}
453
454/**
455 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
456 *
457 * @timer: the timer to be cancelled
458 *
459 * Returns:
460 * 0 when the timer was not active
461 * 1 when the timer was active
462 */
463int hrtimer_cancel(struct hrtimer *timer)
464{
465 for (;;) {
466 int ret = hrtimer_try_to_cancel(timer);
467
468 if (ret >= 0)
469 return ret;
470 }
471}
472
473/**
474 * hrtimer_get_remaining - get remaining time for the timer
475 *
476 * @timer: the timer to read
477 */
478ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
479{
480 struct hrtimer_base *base;
481 unsigned long flags;
482 ktime_t rem;
483
484 base = lock_hrtimer_base(timer, &flags);
485 rem = ktime_sub(timer->expires, timer->base->get_time());
486 unlock_hrtimer_base(timer, &flags);
487
488 return rem;
489}
490
491/**
7978672c 492 * hrtimer_init - initialize a timer to the given clock
c0a31329 493 *
7978672c 494 * @timer: the timer to be initialized
c0a31329 495 * @clock_id: the clock to be used
7978672c 496 * @mode: timer mode abs/rel
c0a31329 497 */
7978672c
GA
498void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
499 enum hrtimer_mode mode)
c0a31329
TG
500{
501 struct hrtimer_base *bases;
502
7978672c
GA
503 memset(timer, 0, sizeof(struct hrtimer));
504
c0a31329 505 bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
c0a31329 506
7978672c
GA
507 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS)
508 clock_id = CLOCK_MONOTONIC;
509
510 timer->base = &bases[clock_id];
c0a31329
TG
511}
512
513/**
514 * hrtimer_get_res - get the timer resolution for a clock
515 *
516 * @which_clock: which clock to query
517 * @tp: pointer to timespec variable to store the resolution
518 *
519 * Store the resolution of the clock selected by which_clock in the
520 * variable pointed to by tp.
521 */
522int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
523{
524 struct hrtimer_base *bases;
525
c0a31329 526 bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
e2787630 527 *tp = ktime_to_timespec(bases[which_clock].resolution);
c0a31329
TG
528
529 return 0;
530}
531
532/*
533 * Expire the per base hrtimer-queue:
534 */
535static inline void run_hrtimer_queue(struct hrtimer_base *base)
536{
537 ktime_t now = base->get_time();
288867ec 538 struct rb_node *node;
c0a31329
TG
539
540 spin_lock_irq(&base->lock);
541
288867ec 542 while ((node = base->first)) {
c0a31329
TG
543 struct hrtimer *timer;
544 int (*fn)(void *);
545 int restart;
546 void *data;
547
288867ec 548 timer = rb_entry(node, struct hrtimer, node);
c0a31329
TG
549 if (now.tv64 <= timer->expires.tv64)
550 break;
551
552 fn = timer->function;
553 data = timer->data;
554 set_curr_timer(base, timer);
ff60a5dc 555 timer->state = HRTIMER_RUNNING;
c0a31329
TG
556 __remove_hrtimer(timer, base);
557 spin_unlock_irq(&base->lock);
558
559 /*
560 * fn == NULL is special case for the simplest timer
561 * variant - wake up process and do not restart:
562 */
563 if (!fn) {
564 wake_up_process(data);
565 restart = HRTIMER_NORESTART;
566 } else
567 restart = fn(data);
568
569 spin_lock_irq(&base->lock);
570
ff60a5dc
AM
571 /* Another CPU has added back the timer */
572 if (timer->state != HRTIMER_RUNNING)
573 continue;
574
c0a31329
TG
575 if (restart == HRTIMER_RESTART)
576 enqueue_hrtimer(timer, base);
577 else
578 timer->state = HRTIMER_EXPIRED;
579 }
580 set_curr_timer(base, NULL);
581 spin_unlock_irq(&base->lock);
582}
583
584/*
585 * Called from timer softirq every jiffy, expire hrtimers:
586 */
587void hrtimer_run_queues(void)
588{
589 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
590 int i;
591
592 for (i = 0; i < MAX_HRTIMER_BASES; i++)
593 run_hrtimer_queue(&base[i]);
594}
595
10c94ec1
TG
596/*
597 * Sleep related functions:
598 */
599
600/**
601 * schedule_hrtimer - sleep until timeout
602 *
603 * @timer: hrtimer variable initialized with the correct clock base
604 * @mode: timeout value is abs/rel
605 *
606 * Make the current task sleep until @timeout is
607 * elapsed.
608 *
609 * You can set the task state as follows -
610 *
611 * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to
612 * pass before the routine returns. The routine will return 0
613 *
614 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
615 * delivered to the current task. In this case the remaining time
616 * will be returned
617 *
618 * The current task state is guaranteed to be TASK_RUNNING when this
619 * routine returns.
620 */
621static ktime_t __sched
622schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode)
623{
624 /* fn stays NULL, meaning single-shot wakeup: */
625 timer->data = current;
626
627 hrtimer_start(timer, timer->expires, mode);
628
629 schedule();
630 hrtimer_cancel(timer);
631
632 /* Return the remaining time: */
633 if (timer->state != HRTIMER_EXPIRED)
634 return ktime_sub(timer->expires, timer->base->get_time());
635 else
636 return (ktime_t) {.tv64 = 0 };
637}
638
639static inline ktime_t __sched
640schedule_hrtimer_interruptible(struct hrtimer *timer,
641 const enum hrtimer_mode mode)
642{
643 set_current_state(TASK_INTERRUPTIBLE);
644
645 return schedule_hrtimer(timer, mode);
646}
647
7978672c 648static long __sched nanosleep_restart(struct restart_block *restart)
10c94ec1 649{
ea13dbc8
IM
650 struct timespec __user *rmtp;
651 struct timespec tu;
10c94ec1
TG
652 void *rfn_save = restart->fn;
653 struct hrtimer timer;
654 ktime_t rem;
655
656 restart->fn = do_no_restart_syscall;
657
7978672c 658 hrtimer_init(&timer, (clockid_t) restart->arg3, HRTIMER_ABS);
10c94ec1
TG
659
660 timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0;
661
662 rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS);
663
664 if (rem.tv64 <= 0)
665 return 0;
666
667 rmtp = (struct timespec __user *) restart->arg2;
668 tu = ktime_to_timespec(rem);
669 if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
670 return -EFAULT;
671
672 restart->fn = rfn_save;
673
674 /* The other values in restart are already filled in */
675 return -ERESTART_RESTARTBLOCK;
676}
677
10c94ec1
TG
678long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
679 const enum hrtimer_mode mode, const clockid_t clockid)
680{
681 struct restart_block *restart;
682 struct hrtimer timer;
683 struct timespec tu;
684 ktime_t rem;
685
7978672c 686 hrtimer_init(&timer, clockid, mode);
10c94ec1
TG
687
688 timer.expires = timespec_to_ktime(*rqtp);
689
690 rem = schedule_hrtimer_interruptible(&timer, mode);
691 if (rem.tv64 <= 0)
692 return 0;
693
7978672c 694 /* Absolute timers do not update the rmtp value and restart: */
10c94ec1
TG
695 if (mode == HRTIMER_ABS)
696 return -ERESTARTNOHAND;
697
698 tu = ktime_to_timespec(rem);
699
700 if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
701 return -EFAULT;
702
703 restart = &current_thread_info()->restart_block;
7978672c 704 restart->fn = nanosleep_restart;
10c94ec1
TG
705 restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF;
706 restart->arg1 = timer.expires.tv64 >> 32;
707 restart->arg2 = (unsigned long) rmtp;
7978672c 708 restart->arg3 = (unsigned long) timer.base->index;
10c94ec1
TG
709
710 return -ERESTART_RESTARTBLOCK;
711}
712
6ba1b912
TG
713asmlinkage long
714sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
715{
716 struct timespec tu;
717
718 if (copy_from_user(&tu, rqtp, sizeof(tu)))
719 return -EFAULT;
720
721 if (!timespec_valid(&tu))
722 return -EINVAL;
723
724 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
725}
726
c0a31329
TG
727/*
728 * Functions related to boot-time initialization:
729 */
730static void __devinit init_hrtimers_cpu(int cpu)
731{
732 struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
733 int i;
734
7978672c 735 for (i = 0; i < MAX_HRTIMER_BASES; i++, base++)
c0a31329 736 spin_lock_init(&base->lock);
c0a31329
TG
737}
738
739#ifdef CONFIG_HOTPLUG_CPU
740
741static void migrate_hrtimer_list(struct hrtimer_base *old_base,
742 struct hrtimer_base *new_base)
743{
744 struct hrtimer *timer;
745 struct rb_node *node;
746
747 while ((node = rb_first(&old_base->active))) {
748 timer = rb_entry(node, struct hrtimer, node);
749 __remove_hrtimer(timer, old_base);
750 timer->base = new_base;
751 enqueue_hrtimer(timer, new_base);
752 }
753}
754
755static void migrate_hrtimers(int cpu)
756{
757 struct hrtimer_base *old_base, *new_base;
758 int i;
759
760 BUG_ON(cpu_online(cpu));
761 old_base = per_cpu(hrtimer_bases, cpu);
762 new_base = get_cpu_var(hrtimer_bases);
763
764 local_irq_disable();
765
766 for (i = 0; i < MAX_HRTIMER_BASES; i++) {
767
768 spin_lock(&new_base->lock);
769 spin_lock(&old_base->lock);
770
771 BUG_ON(old_base->curr_timer);
772
773 migrate_hrtimer_list(old_base, new_base);
774
775 spin_unlock(&old_base->lock);
776 spin_unlock(&new_base->lock);
777 old_base++;
778 new_base++;
779 }
780
781 local_irq_enable();
782 put_cpu_var(hrtimer_bases);
783}
784#endif /* CONFIG_HOTPLUG_CPU */
785
786static int __devinit hrtimer_cpu_notify(struct notifier_block *self,
787 unsigned long action, void *hcpu)
788{
789 long cpu = (long)hcpu;
790
791 switch (action) {
792
793 case CPU_UP_PREPARE:
794 init_hrtimers_cpu(cpu);
795 break;
796
797#ifdef CONFIG_HOTPLUG_CPU
798 case CPU_DEAD:
799 migrate_hrtimers(cpu);
800 break;
801#endif
802
803 default:
804 break;
805 }
806
807 return NOTIFY_OK;
808}
809
810static struct notifier_block __devinitdata hrtimers_nb = {
811 .notifier_call = hrtimer_cpu_notify,
812};
813
814void __init hrtimers_init(void)
815{
816 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
817 (void *)(long)smp_processor_id());
818 register_cpu_notifier(&hrtimers_nb);
819}
820