]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/hrtimer.c
hrtimer: fix migration of CB_IRQSAFE_NO_SOFTIRQ hrtimers
[net-next-2.6.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
54cdfdb4 35#include <linux/irq.h>
c0a31329
TG
36#include <linux/module.h>
37#include <linux/percpu.h>
38#include <linux/hrtimer.h>
39#include <linux/notifier.h>
40#include <linux/syscalls.h>
54cdfdb4 41#include <linux/kallsyms.h>
c0a31329 42#include <linux/interrupt.h>
79bf2bb3 43#include <linux/tick.h>
54cdfdb4
TG
44#include <linux/seq_file.h>
45#include <linux/err.h>
237fc6e7 46#include <linux/debugobjects.h>
c0a31329
TG
47
48#include <asm/uaccess.h>
49
50/**
51 * ktime_get - get the monotonic time in ktime_t format
52 *
53 * returns the time in ktime_t format
54 */
d316c57f 55ktime_t ktime_get(void)
c0a31329
TG
56{
57 struct timespec now;
58
59 ktime_get_ts(&now);
60
61 return timespec_to_ktime(now);
62}
641b9e0e 63EXPORT_SYMBOL_GPL(ktime_get);
c0a31329
TG
64
65/**
66 * ktime_get_real - get the real (wall-) time in ktime_t format
67 *
68 * returns the time in ktime_t format
69 */
d316c57f 70ktime_t ktime_get_real(void)
c0a31329
TG
71{
72 struct timespec now;
73
74 getnstimeofday(&now);
75
76 return timespec_to_ktime(now);
77}
78
79EXPORT_SYMBOL_GPL(ktime_get_real);
80
81/*
82 * The timer bases:
7978672c
GA
83 *
84 * Note: If we want to add new timer bases, we have to skip the two
85 * clock ids captured by the cpu-timers. We do this by holding empty
86 * entries rather than doing math adjustment of the clock ids.
87 * This ensures that we capture erroneous accesses to these clock ids
88 * rather than moving them into the range of valid clock id's.
c0a31329 89 */
54cdfdb4 90DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 91{
3c8aa39d
TG
92
93 .clock_base =
c0a31329 94 {
3c8aa39d
TG
95 {
96 .index = CLOCK_REALTIME,
97 .get_time = &ktime_get_real,
54cdfdb4 98 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
99 },
100 {
101 .index = CLOCK_MONOTONIC,
102 .get_time = &ktime_get,
54cdfdb4 103 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
104 },
105 }
c0a31329
TG
106};
107
108/**
109 * ktime_get_ts - get the monotonic clock in timespec format
c0a31329
TG
110 * @ts: pointer to timespec variable
111 *
112 * The function calculates the monotonic clock from the realtime
113 * clock and the wall_to_monotonic offset and stores the result
72fd4a35 114 * in normalized timespec format in the variable pointed to by @ts.
c0a31329
TG
115 */
116void ktime_get_ts(struct timespec *ts)
117{
118 struct timespec tomono;
119 unsigned long seq;
120
121 do {
122 seq = read_seqbegin(&xtime_lock);
123 getnstimeofday(ts);
124 tomono = wall_to_monotonic;
125
126 } while (read_seqretry(&xtime_lock, seq));
127
128 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
129 ts->tv_nsec + tomono.tv_nsec);
130}
69778e32 131EXPORT_SYMBOL_GPL(ktime_get_ts);
c0a31329 132
92127c7a
TG
133/*
134 * Get the coarse grained time at the softirq based on xtime and
135 * wall_to_monotonic.
136 */
3c8aa39d 137static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
138{
139 ktime_t xtim, tomono;
ad28d94a 140 struct timespec xts, tom;
92127c7a
TG
141 unsigned long seq;
142
143 do {
144 seq = read_seqbegin(&xtime_lock);
2c6b47de 145 xts = current_kernel_time();
ad28d94a 146 tom = wall_to_monotonic;
92127c7a
TG
147 } while (read_seqretry(&xtime_lock, seq));
148
f4304ab2 149 xtim = timespec_to_ktime(xts);
ad28d94a 150 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
151 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
152 base->clock_base[CLOCK_MONOTONIC].softirq_time =
153 ktime_add(xtim, tomono);
92127c7a
TG
154}
155
c0a31329
TG
156/*
157 * Functions and macros which are different for UP/SMP systems are kept in a
158 * single place
159 */
160#ifdef CONFIG_SMP
161
c0a31329
TG
162/*
163 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
164 * means that all timers which are tied to this base via timer->base are
165 * locked, and the base itself is locked too.
166 *
167 * So __run_timers/migrate_timers can safely modify all timers which could
168 * be found on the lists/queues.
169 *
170 * When the timer's base is locked, and the timer removed from list, it is
171 * possible to set timer->base = NULL and drop the lock: the timer remains
172 * locked.
173 */
3c8aa39d
TG
174static
175struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
176 unsigned long *flags)
c0a31329 177{
3c8aa39d 178 struct hrtimer_clock_base *base;
c0a31329
TG
179
180 for (;;) {
181 base = timer->base;
182 if (likely(base != NULL)) {
3c8aa39d 183 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
184 if (likely(base == timer->base))
185 return base;
186 /* The timer has migrated to another CPU: */
3c8aa39d 187 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
188 }
189 cpu_relax();
190 }
191}
192
193/*
194 * Switch the timer base to the current CPU when possible.
195 */
3c8aa39d
TG
196static inline struct hrtimer_clock_base *
197switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 198{
3c8aa39d
TG
199 struct hrtimer_clock_base *new_base;
200 struct hrtimer_cpu_base *new_cpu_base;
c0a31329 201
3c8aa39d
TG
202 new_cpu_base = &__get_cpu_var(hrtimer_bases);
203 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
204
205 if (base != new_base) {
206 /*
207 * We are trying to schedule the timer on the local CPU.
208 * However we can't change timer's base while it is running,
209 * so we keep it on the same CPU. No hassle vs. reprogramming
210 * the event source in the high resolution case. The softirq
211 * code will take care of this when the timer function has
212 * completed. There is no conflict as we hold the lock until
213 * the timer is enqueued.
214 */
54cdfdb4 215 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
216 return base;
217
218 /* See the comment in lock_timer_base() */
219 timer->base = NULL;
3c8aa39d
TG
220 spin_unlock(&base->cpu_base->lock);
221 spin_lock(&new_base->cpu_base->lock);
c0a31329
TG
222 timer->base = new_base;
223 }
224 return new_base;
225}
226
227#else /* CONFIG_SMP */
228
3c8aa39d 229static inline struct hrtimer_clock_base *
c0a31329
TG
230lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
231{
3c8aa39d 232 struct hrtimer_clock_base *base = timer->base;
c0a31329 233
3c8aa39d 234 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
235
236 return base;
237}
238
54cdfdb4 239# define switch_hrtimer_base(t, b) (b)
c0a31329
TG
240
241#endif /* !CONFIG_SMP */
242
243/*
244 * Functions for the union type storage format of ktime_t which are
245 * too large for inlining:
246 */
247#if BITS_PER_LONG < 64
248# ifndef CONFIG_KTIME_SCALAR
249/**
250 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
251 * @kt: addend
252 * @nsec: the scalar nsec value to add
253 *
254 * Returns the sum of kt and nsec in ktime_t format
255 */
256ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
257{
258 ktime_t tmp;
259
260 if (likely(nsec < NSEC_PER_SEC)) {
261 tmp.tv64 = nsec;
262 } else {
263 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
264
265 tmp = ktime_set((long)nsec, rem);
266 }
267
268 return ktime_add(kt, tmp);
269}
b8b8fd2d
DH
270
271EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
272
273/**
274 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
275 * @kt: minuend
276 * @nsec: the scalar nsec value to subtract
277 *
278 * Returns the subtraction of @nsec from @kt in ktime_t format
279 */
280ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
281{
282 ktime_t tmp;
283
284 if (likely(nsec < NSEC_PER_SEC)) {
285 tmp.tv64 = nsec;
286 } else {
287 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
288
289 tmp = ktime_set((long)nsec, rem);
290 }
291
292 return ktime_sub(kt, tmp);
293}
294
295EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
296# endif /* !CONFIG_KTIME_SCALAR */
297
298/*
299 * Divide a ktime value by a nanosecond value
300 */
4d672e7a 301u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 302{
900cfa46 303 u64 dclc;
c0a31329
TG
304 int sft = 0;
305
900cfa46 306 dclc = ktime_to_ns(kt);
c0a31329
TG
307 /* Make sure the divisor is less than 2^32: */
308 while (div >> 32) {
309 sft++;
310 div >>= 1;
311 }
312 dclc >>= sft;
313 do_div(dclc, (unsigned long) div);
314
4d672e7a 315 return dclc;
c0a31329 316}
c0a31329
TG
317#endif /* BITS_PER_LONG >= 64 */
318
5a7780e7
TG
319/*
320 * Add two ktime values and do a safety check for overflow:
321 */
322ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
323{
324 ktime_t res = ktime_add(lhs, rhs);
325
326 /*
327 * We use KTIME_SEC_MAX here, the maximum timeout which we can
328 * return to user space in a timespec:
329 */
330 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
331 res = ktime_set(KTIME_SEC_MAX, 0);
332
333 return res;
334}
335
237fc6e7
TG
336#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337
338static struct debug_obj_descr hrtimer_debug_descr;
339
340/*
341 * fixup_init is called when:
342 * - an active object is initialized
343 */
344static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345{
346 struct hrtimer *timer = addr;
347
348 switch (state) {
349 case ODEBUG_STATE_ACTIVE:
350 hrtimer_cancel(timer);
351 debug_object_init(timer, &hrtimer_debug_descr);
352 return 1;
353 default:
354 return 0;
355 }
356}
357
358/*
359 * fixup_activate is called when:
360 * - an active object is activated
361 * - an unknown object is activated (might be a statically initialized object)
362 */
363static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
364{
365 switch (state) {
366
367 case ODEBUG_STATE_NOTAVAILABLE:
368 WARN_ON_ONCE(1);
369 return 0;
370
371 case ODEBUG_STATE_ACTIVE:
372 WARN_ON(1);
373
374 default:
375 return 0;
376 }
377}
378
379/*
380 * fixup_free is called when:
381 * - an active object is freed
382 */
383static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384{
385 struct hrtimer *timer = addr;
386
387 switch (state) {
388 case ODEBUG_STATE_ACTIVE:
389 hrtimer_cancel(timer);
390 debug_object_free(timer, &hrtimer_debug_descr);
391 return 1;
392 default:
393 return 0;
394 }
395}
396
397static struct debug_obj_descr hrtimer_debug_descr = {
398 .name = "hrtimer",
399 .fixup_init = hrtimer_fixup_init,
400 .fixup_activate = hrtimer_fixup_activate,
401 .fixup_free = hrtimer_fixup_free,
402};
403
404static inline void debug_hrtimer_init(struct hrtimer *timer)
405{
406 debug_object_init(timer, &hrtimer_debug_descr);
407}
408
409static inline void debug_hrtimer_activate(struct hrtimer *timer)
410{
411 debug_object_activate(timer, &hrtimer_debug_descr);
412}
413
414static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
415{
416 debug_object_deactivate(timer, &hrtimer_debug_descr);
417}
418
419static inline void debug_hrtimer_free(struct hrtimer *timer)
420{
421 debug_object_free(timer, &hrtimer_debug_descr);
422}
423
424static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode);
426
427void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
428 enum hrtimer_mode mode)
429{
430 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
431 __hrtimer_init(timer, clock_id, mode);
432}
433
434void destroy_hrtimer_on_stack(struct hrtimer *timer)
435{
436 debug_object_free(timer, &hrtimer_debug_descr);
437}
438
439#else
440static inline void debug_hrtimer_init(struct hrtimer *timer) { }
441static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
442static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
443#endif
444
d3d74453
PZ
445/*
446 * Check, whether the timer is on the callback pending list
447 */
448static inline int hrtimer_cb_pending(const struct hrtimer *timer)
449{
450 return timer->state & HRTIMER_STATE_PENDING;
451}
452
453/*
454 * Remove a timer from the callback pending list
455 */
456static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
457{
458 list_del_init(&timer->cb_entry);
459}
460
54cdfdb4
TG
461/* High resolution timer related functions */
462#ifdef CONFIG_HIGH_RES_TIMERS
463
464/*
465 * High resolution timer enabled ?
466 */
467static int hrtimer_hres_enabled __read_mostly = 1;
468
469/*
470 * Enable / Disable high resolution mode
471 */
472static int __init setup_hrtimer_hres(char *str)
473{
474 if (!strcmp(str, "off"))
475 hrtimer_hres_enabled = 0;
476 else if (!strcmp(str, "on"))
477 hrtimer_hres_enabled = 1;
478 else
479 return 0;
480 return 1;
481}
482
483__setup("highres=", setup_hrtimer_hres);
484
485/*
486 * hrtimer_high_res_enabled - query, if the highres mode is enabled
487 */
488static inline int hrtimer_is_hres_enabled(void)
489{
490 return hrtimer_hres_enabled;
491}
492
493/*
494 * Is the high resolution mode active ?
495 */
496static inline int hrtimer_hres_active(void)
497{
498 return __get_cpu_var(hrtimer_bases).hres_active;
499}
500
501/*
502 * Reprogram the event source with checking both queues for the
503 * next event
504 * Called with interrupts disabled and base->lock held
505 */
506static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
507{
508 int i;
509 struct hrtimer_clock_base *base = cpu_base->clock_base;
510 ktime_t expires;
511
512 cpu_base->expires_next.tv64 = KTIME_MAX;
513
514 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
515 struct hrtimer *timer;
516
517 if (!base->first)
518 continue;
519 timer = rb_entry(base->first, struct hrtimer, node);
520 expires = ktime_sub(timer->expires, base->offset);
521 if (expires.tv64 < cpu_base->expires_next.tv64)
522 cpu_base->expires_next = expires;
523 }
524
525 if (cpu_base->expires_next.tv64 != KTIME_MAX)
526 tick_program_event(cpu_base->expires_next, 1);
527}
528
529/*
530 * Shared reprogramming for clock_realtime and clock_monotonic
531 *
532 * When a timer is enqueued and expires earlier than the already enqueued
533 * timers, we have to check, whether it expires earlier than the timer for
534 * which the clock event device was armed.
535 *
536 * Called with interrupts disabled and base->cpu_base.lock held
537 */
538static int hrtimer_reprogram(struct hrtimer *timer,
539 struct hrtimer_clock_base *base)
540{
541 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
542 ktime_t expires = ktime_sub(timer->expires, base->offset);
543 int res;
544
63070a79
TG
545 WARN_ON_ONCE(timer->expires.tv64 < 0);
546
54cdfdb4
TG
547 /*
548 * When the callback is running, we do not reprogram the clock event
549 * device. The timer callback is either running on a different CPU or
3a4fa0a2 550 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
551 * reprogramming is handled either by the softirq, which called the
552 * callback or at the end of the hrtimer_interrupt.
553 */
554 if (hrtimer_callback_running(timer))
555 return 0;
556
63070a79
TG
557 /*
558 * CLOCK_REALTIME timer might be requested with an absolute
559 * expiry time which is less than base->offset. Nothing wrong
560 * about that, just avoid to call into the tick code, which
561 * has now objections against negative expiry values.
562 */
563 if (expires.tv64 < 0)
564 return -ETIME;
565
54cdfdb4
TG
566 if (expires.tv64 >= expires_next->tv64)
567 return 0;
568
569 /*
570 * Clockevents returns -ETIME, when the event was in the past.
571 */
572 res = tick_program_event(expires, 0);
573 if (!IS_ERR_VALUE(res))
574 *expires_next = expires;
575 return res;
576}
577
578
579/*
580 * Retrigger next event is called after clock was set
581 *
582 * Called with interrupts disabled via on_each_cpu()
583 */
584static void retrigger_next_event(void *arg)
585{
586 struct hrtimer_cpu_base *base;
587 struct timespec realtime_offset;
588 unsigned long seq;
589
590 if (!hrtimer_hres_active())
591 return;
592
593 do {
594 seq = read_seqbegin(&xtime_lock);
595 set_normalized_timespec(&realtime_offset,
596 -wall_to_monotonic.tv_sec,
597 -wall_to_monotonic.tv_nsec);
598 } while (read_seqretry(&xtime_lock, seq));
599
600 base = &__get_cpu_var(hrtimer_bases);
601
602 /* Adjust CLOCK_REALTIME offset */
603 spin_lock(&base->lock);
604 base->clock_base[CLOCK_REALTIME].offset =
605 timespec_to_ktime(realtime_offset);
606
607 hrtimer_force_reprogram(base);
608 spin_unlock(&base->lock);
609}
610
611/*
612 * Clock realtime was set
613 *
614 * Change the offset of the realtime clock vs. the monotonic
615 * clock.
616 *
617 * We might have to reprogram the high resolution timer interrupt. On
618 * SMP we call the architecture specific code to retrigger _all_ high
619 * resolution timer interrupts. On UP we just disable interrupts and
620 * call the high resolution interrupt code.
621 */
622void clock_was_set(void)
623{
624 /* Retrigger the CPU local events everywhere */
15c8b6c1 625 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
626}
627
995f054f
IM
628/*
629 * During resume we might have to reprogram the high resolution timer
630 * interrupt (on the local CPU):
631 */
632void hres_timers_resume(void)
633{
995f054f
IM
634 /* Retrigger the CPU local events: */
635 retrigger_next_event(NULL);
636}
637
54cdfdb4
TG
638/*
639 * Initialize the high resolution related parts of cpu_base
640 */
641static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
642{
643 base->expires_next.tv64 = KTIME_MAX;
644 base->hres_active = 0;
54cdfdb4
TG
645}
646
647/*
648 * Initialize the high resolution related parts of a hrtimer
649 */
650static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
651{
54cdfdb4
TG
652}
653
654/*
655 * When High resolution timers are active, try to reprogram. Note, that in case
656 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
657 * check happens. The timer gets enqueued into the rbtree. The reprogramming
658 * and expiry check is done in the hrtimer_interrupt or in the softirq.
659 */
660static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
661 struct hrtimer_clock_base *base)
662{
663 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
664
665 /* Timer is expired, act upon the callback mode */
666 switch(timer->cb_mode) {
667 case HRTIMER_CB_IRQSAFE_NO_RESTART:
237fc6e7 668 debug_hrtimer_deactivate(timer);
54cdfdb4
TG
669 /*
670 * We can call the callback from here. No restart
671 * happens, so no danger of recursion
672 */
673 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
674 return 1;
675 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
676 /*
677 * This is solely for the sched tick emulation with
678 * dynamic tick support to ensure that we do not
679 * restart the tick right on the edge and end up with
680 * the tick timer in the softirq ! The calling site
681 * takes care of this.
682 */
237fc6e7 683 debug_hrtimer_deactivate(timer);
54cdfdb4
TG
684 return 1;
685 case HRTIMER_CB_IRQSAFE:
686 case HRTIMER_CB_SOFTIRQ:
687 /*
688 * Move everything else into the softirq pending list !
689 */
690 list_add_tail(&timer->cb_entry,
691 &base->cpu_base->cb_pending);
692 timer->state = HRTIMER_STATE_PENDING;
54cdfdb4
TG
693 return 1;
694 default:
695 BUG();
696 }
697 }
698 return 0;
699}
700
701/*
702 * Switch to high resolution mode
703 */
f8953856 704static int hrtimer_switch_to_hres(void)
54cdfdb4 705{
820de5c3
IM
706 int cpu = smp_processor_id();
707 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
708 unsigned long flags;
709
710 if (base->hres_active)
f8953856 711 return 1;
54cdfdb4
TG
712
713 local_irq_save(flags);
714
715 if (tick_init_highres()) {
716 local_irq_restore(flags);
820de5c3
IM
717 printk(KERN_WARNING "Could not switch to high resolution "
718 "mode on CPU %d\n", cpu);
f8953856 719 return 0;
54cdfdb4
TG
720 }
721 base->hres_active = 1;
722 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
723 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
724
725 tick_setup_sched_timer();
726
727 /* "Retrigger" the interrupt to get things going */
728 retrigger_next_event(NULL);
729 local_irq_restore(flags);
edfed66e 730 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 731 smp_processor_id());
f8953856 732 return 1;
54cdfdb4
TG
733}
734
0c96c597
TG
735static inline void hrtimer_raise_softirq(void)
736{
737 raise_softirq(HRTIMER_SOFTIRQ);
738}
739
54cdfdb4
TG
740#else
741
742static inline int hrtimer_hres_active(void) { return 0; }
743static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 744static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
745static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
746static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
747 struct hrtimer_clock_base *base)
748{
749 return 0;
750}
54cdfdb4
TG
751static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
752static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
d3d74453
PZ
753static inline int hrtimer_reprogram(struct hrtimer *timer,
754 struct hrtimer_clock_base *base)
755{
756 return 0;
757}
0c96c597 758static inline void hrtimer_raise_softirq(void) { }
54cdfdb4
TG
759
760#endif /* CONFIG_HIGH_RES_TIMERS */
761
82f67cd9
IM
762#ifdef CONFIG_TIMER_STATS
763void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
764{
765 if (timer->start_site)
766 return;
767
768 timer->start_site = addr;
769 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
770 timer->start_pid = current->pid;
771}
772#endif
773
c0a31329 774/*
6506f2aa 775 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
776 */
777static inline
778void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
779{
3c8aa39d 780 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
781}
782
783/**
784 * hrtimer_forward - forward the timer expiry
c0a31329 785 * @timer: hrtimer to forward
44f21475 786 * @now: forward past this time
c0a31329
TG
787 * @interval: the interval to forward
788 *
789 * Forward the timer expiry so it will expire in the future.
8dca6f33 790 * Returns the number of overruns.
c0a31329 791 */
4d672e7a 792u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 793{
4d672e7a 794 u64 orun = 1;
44f21475 795 ktime_t delta;
c0a31329
TG
796
797 delta = ktime_sub(now, timer->expires);
798
799 if (delta.tv64 < 0)
800 return 0;
801
c9db4fa1
TG
802 if (interval.tv64 < timer->base->resolution.tv64)
803 interval.tv64 = timer->base->resolution.tv64;
804
c0a31329 805 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 806 s64 incr = ktime_to_ns(interval);
c0a31329
TG
807
808 orun = ktime_divns(delta, incr);
809 timer->expires = ktime_add_ns(timer->expires, incr * orun);
810 if (timer->expires.tv64 > now.tv64)
811 return orun;
812 /*
813 * This (and the ktime_add() below) is the
814 * correction for exact:
815 */
816 orun++;
817 }
5a7780e7 818 timer->expires = ktime_add_safe(timer->expires, interval);
c0a31329
TG
819
820 return orun;
821}
6bdb6b62 822EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
823
824/*
825 * enqueue_hrtimer - internal function to (re)start a timer
826 *
827 * The timer is inserted in expiry order. Insertion into the
828 * red black tree is O(log(n)). Must hold the base lock.
829 */
3c8aa39d 830static void enqueue_hrtimer(struct hrtimer *timer,
54cdfdb4 831 struct hrtimer_clock_base *base, int reprogram)
c0a31329
TG
832{
833 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
834 struct rb_node *parent = NULL;
835 struct hrtimer *entry;
99bc2fcb 836 int leftmost = 1;
c0a31329 837
237fc6e7
TG
838 debug_hrtimer_activate(timer);
839
c0a31329
TG
840 /*
841 * Find the right place in the rbtree:
842 */
843 while (*link) {
844 parent = *link;
845 entry = rb_entry(parent, struct hrtimer, node);
846 /*
847 * We dont care about collisions. Nodes with
848 * the same expiry time stay together.
849 */
99bc2fcb 850 if (timer->expires.tv64 < entry->expires.tv64) {
c0a31329 851 link = &(*link)->rb_left;
99bc2fcb 852 } else {
c0a31329 853 link = &(*link)->rb_right;
99bc2fcb
IM
854 leftmost = 0;
855 }
c0a31329
TG
856 }
857
858 /*
288867ec
TG
859 * Insert the timer to the rbtree and check whether it
860 * replaces the first pending timer
c0a31329 861 */
99bc2fcb 862 if (leftmost) {
54cdfdb4
TG
863 /*
864 * Reprogram the clock event device. When the timer is already
865 * expired hrtimer_enqueue_reprogram has either called the
866 * callback or added it to the pending list and raised the
867 * softirq.
868 *
869 * This is a NOP for !HIGHRES
870 */
871 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
872 return;
873
874 base->first = &timer->node;
875 }
876
c0a31329
TG
877 rb_link_node(&timer->node, parent, link);
878 rb_insert_color(&timer->node, &base->active);
303e967f
TG
879 /*
880 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
881 * state of a possibly running callback.
882 */
883 timer->state |= HRTIMER_STATE_ENQUEUED;
288867ec 884}
c0a31329
TG
885
886/*
887 * __remove_hrtimer - internal function to remove a timer
888 *
889 * Caller must hold the base lock.
54cdfdb4
TG
890 *
891 * High resolution timer mode reprograms the clock event device when the
892 * timer is the one which expires next. The caller can disable this by setting
893 * reprogram to zero. This is useful, when the context does a reprogramming
894 * anyway (e.g. timer interrupt)
c0a31329 895 */
3c8aa39d 896static void __remove_hrtimer(struct hrtimer *timer,
303e967f 897 struct hrtimer_clock_base *base,
54cdfdb4 898 unsigned long newstate, int reprogram)
c0a31329 899{
54cdfdb4
TG
900 /* High res. callback list. NOP for !HIGHRES */
901 if (hrtimer_cb_pending(timer))
902 hrtimer_remove_cb_pending(timer);
903 else {
904 /*
905 * Remove the timer from the rbtree and replace the
906 * first entry pointer if necessary.
907 */
908 if (base->first == &timer->node) {
909 base->first = rb_next(&timer->node);
910 /* Reprogram the clock event device. if enabled */
911 if (reprogram && hrtimer_hres_active())
912 hrtimer_force_reprogram(base->cpu_base);
913 }
914 rb_erase(&timer->node, &base->active);
915 }
303e967f 916 timer->state = newstate;
c0a31329
TG
917}
918
919/*
920 * remove hrtimer, called with base lock held
921 */
922static inline int
3c8aa39d 923remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 924{
303e967f 925 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
926 int reprogram;
927
928 /*
929 * Remove the timer and force reprogramming when high
930 * resolution mode is active and the timer is on the current
931 * CPU. If we remove a timer on another CPU, reprogramming is
932 * skipped. The interrupt event on this CPU is fired and
933 * reprogramming happens in the interrupt handler. This is a
934 * rare case and less expensive than a smp call.
935 */
237fc6e7 936 debug_hrtimer_deactivate(timer);
82f67cd9 937 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
938 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
939 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
940 reprogram);
c0a31329
TG
941 return 1;
942 }
943 return 0;
944}
945
946/**
947 * hrtimer_start - (re)start an relative timer on the current CPU
c0a31329
TG
948 * @timer: the timer to be added
949 * @tim: expiry time
950 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
951 *
952 * Returns:
953 * 0 on success
954 * 1 when the timer was active
955 */
956int
957hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
958{
3c8aa39d 959 struct hrtimer_clock_base *base, *new_base;
c0a31329 960 unsigned long flags;
0c96c597 961 int ret, raise;
c0a31329
TG
962
963 base = lock_hrtimer_base(timer, &flags);
964
965 /* Remove an active timer from the queue: */
966 ret = remove_hrtimer(timer, base);
967
968 /* Switch the timer base, if necessary: */
969 new_base = switch_hrtimer_base(timer, base);
970
c9cb2e3d 971 if (mode == HRTIMER_MODE_REL) {
5a7780e7 972 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
973 /*
974 * CONFIG_TIME_LOW_RES is a temporary way for architectures
975 * to signal that they simply return xtime in
976 * do_gettimeoffset(). In this case we want to round up by
977 * resolution when starting a relative timer, to avoid short
978 * timeouts. This will go away with the GTOD framework.
979 */
980#ifdef CONFIG_TIME_LOW_RES
5a7780e7 981 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
982#endif
983 }
237fc6e7 984
c0a31329
TG
985 timer->expires = tim;
986
82f67cd9
IM
987 timer_stats_hrtimer_set_start_info(timer);
988
935c631d
IM
989 /*
990 * Only allow reprogramming if the new base is on this CPU.
991 * (it might still be on another CPU if the timer was pending)
992 */
993 enqueue_hrtimer(timer, new_base,
994 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
c0a31329 995
0c96c597
TG
996 /*
997 * The timer may be expired and moved to the cb_pending
998 * list. We can not raise the softirq with base lock held due
999 * to a possible deadlock with runqueue lock.
1000 */
1001 raise = timer->state == HRTIMER_STATE_PENDING;
1002
ee3ece83
SR
1003 /*
1004 * We use preempt_disable to prevent this task from migrating after
1005 * setting up the softirq and raising it. Otherwise, if me migrate
1006 * we will raise the softirq on the wrong CPU.
1007 */
1008 preempt_disable();
1009
c0a31329
TG
1010 unlock_hrtimer_base(timer, &flags);
1011
0c96c597
TG
1012 if (raise)
1013 hrtimer_raise_softirq();
ee3ece83 1014 preempt_enable();
0c96c597 1015
c0a31329
TG
1016 return ret;
1017}
8d16b764 1018EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329
TG
1019
1020/**
1021 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1022 * @timer: hrtimer to stop
1023 *
1024 * Returns:
1025 * 0 when the timer was not active
1026 * 1 when the timer was active
1027 * -1 when the timer is currently excuting the callback function and
fa9799e3 1028 * cannot be stopped
c0a31329
TG
1029 */
1030int hrtimer_try_to_cancel(struct hrtimer *timer)
1031{
3c8aa39d 1032 struct hrtimer_clock_base *base;
c0a31329
TG
1033 unsigned long flags;
1034 int ret = -1;
1035
1036 base = lock_hrtimer_base(timer, &flags);
1037
303e967f 1038 if (!hrtimer_callback_running(timer))
c0a31329
TG
1039 ret = remove_hrtimer(timer, base);
1040
1041 unlock_hrtimer_base(timer, &flags);
1042
1043 return ret;
1044
1045}
8d16b764 1046EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1047
1048/**
1049 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1050 * @timer: the timer to be cancelled
1051 *
1052 * Returns:
1053 * 0 when the timer was not active
1054 * 1 when the timer was active
1055 */
1056int hrtimer_cancel(struct hrtimer *timer)
1057{
1058 for (;;) {
1059 int ret = hrtimer_try_to_cancel(timer);
1060
1061 if (ret >= 0)
1062 return ret;
5ef37b19 1063 cpu_relax();
c0a31329
TG
1064 }
1065}
8d16b764 1066EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1067
1068/**
1069 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1070 * @timer: the timer to read
1071 */
1072ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1073{
3c8aa39d 1074 struct hrtimer_clock_base *base;
c0a31329
TG
1075 unsigned long flags;
1076 ktime_t rem;
1077
1078 base = lock_hrtimer_base(timer, &flags);
3c8aa39d 1079 rem = ktime_sub(timer->expires, base->get_time());
c0a31329
TG
1080 unlock_hrtimer_base(timer, &flags);
1081
1082 return rem;
1083}
8d16b764 1084EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1085
ee9c5785 1086#ifdef CONFIG_NO_HZ
69239749
TL
1087/**
1088 * hrtimer_get_next_event - get the time until next expiry event
1089 *
1090 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1091 * is pending.
1092 */
1093ktime_t hrtimer_get_next_event(void)
1094{
3c8aa39d
TG
1095 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1096 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1097 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1098 unsigned long flags;
1099 int i;
1100
3c8aa39d
TG
1101 spin_lock_irqsave(&cpu_base->lock, flags);
1102
54cdfdb4
TG
1103 if (!hrtimer_hres_active()) {
1104 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1105 struct hrtimer *timer;
69239749 1106
54cdfdb4
TG
1107 if (!base->first)
1108 continue;
3c8aa39d 1109
54cdfdb4
TG
1110 timer = rb_entry(base->first, struct hrtimer, node);
1111 delta.tv64 = timer->expires.tv64;
1112 delta = ktime_sub(delta, base->get_time());
1113 if (delta.tv64 < mindelta.tv64)
1114 mindelta.tv64 = delta.tv64;
1115 }
69239749 1116 }
3c8aa39d
TG
1117
1118 spin_unlock_irqrestore(&cpu_base->lock, flags);
1119
69239749
TL
1120 if (mindelta.tv64 < 0)
1121 mindelta.tv64 = 0;
1122 return mindelta;
1123}
1124#endif
1125
237fc6e7
TG
1126static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1127 enum hrtimer_mode mode)
c0a31329 1128{
3c8aa39d 1129 struct hrtimer_cpu_base *cpu_base;
c0a31329 1130
7978672c
GA
1131 memset(timer, 0, sizeof(struct hrtimer));
1132
3c8aa39d 1133 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1134
c9cb2e3d 1135 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1136 clock_id = CLOCK_MONOTONIC;
1137
3c8aa39d 1138 timer->base = &cpu_base->clock_base[clock_id];
d3d74453 1139 INIT_LIST_HEAD(&timer->cb_entry);
54cdfdb4 1140 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1141
1142#ifdef CONFIG_TIMER_STATS
1143 timer->start_site = NULL;
1144 timer->start_pid = -1;
1145 memset(timer->start_comm, 0, TASK_COMM_LEN);
1146#endif
c0a31329 1147}
237fc6e7
TG
1148
1149/**
1150 * hrtimer_init - initialize a timer to the given clock
1151 * @timer: the timer to be initialized
1152 * @clock_id: the clock to be used
1153 * @mode: timer mode abs/rel
1154 */
1155void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1156 enum hrtimer_mode mode)
1157{
1158 debug_hrtimer_init(timer);
1159 __hrtimer_init(timer, clock_id, mode);
1160}
8d16b764 1161EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1162
1163/**
1164 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1165 * @which_clock: which clock to query
1166 * @tp: pointer to timespec variable to store the resolution
1167 *
72fd4a35
RD
1168 * Store the resolution of the clock selected by @which_clock in the
1169 * variable pointed to by @tp.
c0a31329
TG
1170 */
1171int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1172{
3c8aa39d 1173 struct hrtimer_cpu_base *cpu_base;
c0a31329 1174
3c8aa39d
TG
1175 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1176 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1177
1178 return 0;
1179}
8d16b764 1180EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1181
d3d74453
PZ
1182static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
1183{
1184 spin_lock_irq(&cpu_base->lock);
1185
1186 while (!list_empty(&cpu_base->cb_pending)) {
1187 enum hrtimer_restart (*fn)(struct hrtimer *);
1188 struct hrtimer *timer;
1189 int restart;
1190
1191 timer = list_entry(cpu_base->cb_pending.next,
1192 struct hrtimer, cb_entry);
1193
237fc6e7 1194 debug_hrtimer_deactivate(timer);
d3d74453
PZ
1195 timer_stats_account_hrtimer(timer);
1196
1197 fn = timer->function;
1198 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1199 spin_unlock_irq(&cpu_base->lock);
1200
1201 restart = fn(timer);
1202
1203 spin_lock_irq(&cpu_base->lock);
1204
1205 timer->state &= ~HRTIMER_STATE_CALLBACK;
1206 if (restart == HRTIMER_RESTART) {
1207 BUG_ON(hrtimer_active(timer));
1208 /*
1209 * Enqueue the timer, allow reprogramming of the event
1210 * device
1211 */
1212 enqueue_hrtimer(timer, timer->base, 1);
1213 } else if (hrtimer_active(timer)) {
1214 /*
1215 * If the timer was rearmed on another CPU, reprogram
1216 * the event device.
1217 */
d7b41a24
BS
1218 struct hrtimer_clock_base *base = timer->base;
1219
1220 if (base->first == &timer->node &&
1221 hrtimer_reprogram(timer, base)) {
1222 /*
1223 * Timer is expired. Thus move it from tree to
1224 * pending list again.
1225 */
1226 __remove_hrtimer(timer, base,
1227 HRTIMER_STATE_PENDING, 0);
1228 list_add_tail(&timer->cb_entry,
1229 &base->cpu_base->cb_pending);
1230 }
d3d74453
PZ
1231 }
1232 }
1233 spin_unlock_irq(&cpu_base->lock);
1234}
1235
1236static void __run_hrtimer(struct hrtimer *timer)
1237{
1238 struct hrtimer_clock_base *base = timer->base;
1239 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1240 enum hrtimer_restart (*fn)(struct hrtimer *);
1241 int restart;
1242
237fc6e7 1243 debug_hrtimer_deactivate(timer);
d3d74453
PZ
1244 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1245 timer_stats_account_hrtimer(timer);
1246
1247 fn = timer->function;
1248 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
1249 /*
1250 * Used for scheduler timers, avoid lock inversion with
1251 * rq->lock and tasklist_lock.
1252 *
1253 * These timers are required to deal with enqueue expiry
1254 * themselves and are not allowed to migrate.
1255 */
1256 spin_unlock(&cpu_base->lock);
1257 restart = fn(timer);
1258 spin_lock(&cpu_base->lock);
1259 } else
1260 restart = fn(timer);
1261
1262 /*
1263 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1264 * reprogramming of the event hardware. This happens at the end of this
1265 * function anyway.
1266 */
1267 if (restart != HRTIMER_NORESTART) {
1268 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1269 enqueue_hrtimer(timer, base, 0);
1270 }
1271 timer->state &= ~HRTIMER_STATE_CALLBACK;
1272}
1273
54cdfdb4
TG
1274#ifdef CONFIG_HIGH_RES_TIMERS
1275
1276/*
1277 * High resolution timer interrupt
1278 * Called with interrupts disabled
1279 */
1280void hrtimer_interrupt(struct clock_event_device *dev)
1281{
1282 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1283 struct hrtimer_clock_base *base;
1284 ktime_t expires_next, now;
1285 int i, raise = 0;
1286
1287 BUG_ON(!cpu_base->hres_active);
1288 cpu_base->nr_events++;
1289 dev->next_event.tv64 = KTIME_MAX;
1290
1291 retry:
1292 now = ktime_get();
1293
1294 expires_next.tv64 = KTIME_MAX;
1295
1296 base = cpu_base->clock_base;
1297
1298 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1299 ktime_t basenow;
1300 struct rb_node *node;
1301
1302 spin_lock(&cpu_base->lock);
1303
1304 basenow = ktime_add(now, base->offset);
1305
1306 while ((node = base->first)) {
1307 struct hrtimer *timer;
1308
1309 timer = rb_entry(node, struct hrtimer, node);
1310
1311 if (basenow.tv64 < timer->expires.tv64) {
1312 ktime_t expires;
1313
1314 expires = ktime_sub(timer->expires,
1315 base->offset);
1316 if (expires.tv64 < expires_next.tv64)
1317 expires_next = expires;
1318 break;
1319 }
1320
1321 /* Move softirq callbacks to the pending list */
1322 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1323 __remove_hrtimer(timer, base,
1324 HRTIMER_STATE_PENDING, 0);
1325 list_add_tail(&timer->cb_entry,
1326 &base->cpu_base->cb_pending);
1327 raise = 1;
1328 continue;
1329 }
1330
d3d74453 1331 __run_hrtimer(timer);
54cdfdb4
TG
1332 }
1333 spin_unlock(&cpu_base->lock);
1334 base++;
1335 }
1336
1337 cpu_base->expires_next = expires_next;
1338
1339 /* Reprogramming necessary ? */
1340 if (expires_next.tv64 != KTIME_MAX) {
1341 if (tick_program_event(expires_next, 0))
1342 goto retry;
1343 }
1344
1345 /* Raise softirq ? */
1346 if (raise)
1347 raise_softirq(HRTIMER_SOFTIRQ);
1348}
1349
1350static void run_hrtimer_softirq(struct softirq_action *h)
1351{
d3d74453
PZ
1352 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
1353}
54cdfdb4 1354
d3d74453 1355#endif /* CONFIG_HIGH_RES_TIMERS */
82f67cd9 1356
d3d74453
PZ
1357/*
1358 * Called from timer softirq every jiffy, expire hrtimers:
1359 *
1360 * For HRT its the fall back code to run the softirq in the timer
1361 * softirq context in case the hrtimer initialization failed or has
1362 * not been done yet.
1363 */
1364void hrtimer_run_pending(void)
1365{
1366 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
54cdfdb4 1367
d3d74453
PZ
1368 if (hrtimer_hres_active())
1369 return;
54cdfdb4 1370
d3d74453
PZ
1371 /*
1372 * This _is_ ugly: We have to check in the softirq context,
1373 * whether we can switch to highres and / or nohz mode. The
1374 * clocksource switch happens in the timer interrupt with
1375 * xtime_lock held. Notification from there only sets the
1376 * check bit in the tick_oneshot code, otherwise we might
1377 * deadlock vs. xtime_lock.
1378 */
1379 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1380 hrtimer_switch_to_hres();
54cdfdb4 1381
d3d74453 1382 run_hrtimer_pending(cpu_base);
54cdfdb4
TG
1383}
1384
c0a31329 1385/*
d3d74453 1386 * Called from hardirq context every jiffy
c0a31329 1387 */
833883d9 1388void hrtimer_run_queues(void)
c0a31329 1389{
288867ec 1390 struct rb_node *node;
833883d9
DS
1391 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1392 struct hrtimer_clock_base *base;
1393 int index, gettime = 1;
c0a31329 1394
833883d9 1395 if (hrtimer_hres_active())
3055adda
DS
1396 return;
1397
833883d9
DS
1398 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1399 base = &cpu_base->clock_base[index];
c0a31329 1400
833883d9 1401 if (!base->first)
d3d74453 1402 continue;
833883d9 1403
259aae86
TG
1404 if (base->get_softirq_time)
1405 base->softirq_time = base->get_softirq_time();
1406 else if (gettime) {
833883d9
DS
1407 hrtimer_get_softirq_time(cpu_base);
1408 gettime = 0;
b75f7a51 1409 }
d3d74453 1410
833883d9 1411 spin_lock(&cpu_base->lock);
c0a31329 1412
833883d9
DS
1413 while ((node = base->first)) {
1414 struct hrtimer *timer;
54cdfdb4 1415
833883d9
DS
1416 timer = rb_entry(node, struct hrtimer, node);
1417 if (base->softirq_time.tv64 <= timer->expires.tv64)
1418 break;
1419
1420 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1421 __remove_hrtimer(timer, base,
1422 HRTIMER_STATE_PENDING, 0);
1423 list_add_tail(&timer->cb_entry,
1424 &base->cpu_base->cb_pending);
1425 continue;
1426 }
92127c7a 1427
833883d9
DS
1428 __run_hrtimer(timer);
1429 }
1430 spin_unlock(&cpu_base->lock);
1431 }
c0a31329
TG
1432}
1433
10c94ec1
TG
1434/*
1435 * Sleep related functions:
1436 */
c9cb2e3d 1437static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1438{
1439 struct hrtimer_sleeper *t =
1440 container_of(timer, struct hrtimer_sleeper, timer);
1441 struct task_struct *task = t->task;
1442
1443 t->task = NULL;
1444 if (task)
1445 wake_up_process(task);
1446
1447 return HRTIMER_NORESTART;
1448}
1449
36c8b586 1450void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1451{
1452 sl->timer.function = hrtimer_wakeup;
1453 sl->task = task;
54cdfdb4 1454#ifdef CONFIG_HIGH_RES_TIMERS
37bb6cb4 1455 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
54cdfdb4 1456#endif
00362e33
TG
1457}
1458
669d7868 1459static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1460{
669d7868 1461 hrtimer_init_sleeper(t, current);
10c94ec1 1462
432569bb
RZ
1463 do {
1464 set_current_state(TASK_INTERRUPTIBLE);
1465 hrtimer_start(&t->timer, t->timer.expires, mode);
37bb6cb4
PZ
1466 if (!hrtimer_active(&t->timer))
1467 t->task = NULL;
432569bb 1468
54cdfdb4
TG
1469 if (likely(t->task))
1470 schedule();
432569bb 1471
669d7868 1472 hrtimer_cancel(&t->timer);
c9cb2e3d 1473 mode = HRTIMER_MODE_ABS;
669d7868
TG
1474
1475 } while (t->task && !signal_pending(current));
432569bb 1476
3588a085
PZ
1477 __set_current_state(TASK_RUNNING);
1478
669d7868 1479 return t->task == NULL;
10c94ec1
TG
1480}
1481
080344b9
ON
1482static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1483{
1484 struct timespec rmt;
1485 ktime_t rem;
1486
1487 rem = ktime_sub(timer->expires, timer->base->get_time());
1488 if (rem.tv64 <= 0)
1489 return 0;
1490 rmt = ktime_to_timespec(rem);
1491
1492 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1493 return -EFAULT;
1494
1495 return 1;
1496}
1497
1711ef38 1498long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1499{
669d7868 1500 struct hrtimer_sleeper t;
080344b9 1501 struct timespec __user *rmtp;
237fc6e7 1502 int ret = 0;
10c94ec1 1503
237fc6e7
TG
1504 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1505 HRTIMER_MODE_ABS);
029a07e0 1506 t.timer.expires.tv64 = restart->nanosleep.expires;
10c94ec1 1507
c9cb2e3d 1508 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1509 goto out;
10c94ec1 1510
029a07e0 1511 rmtp = restart->nanosleep.rmtp;
432569bb 1512 if (rmtp) {
237fc6e7 1513 ret = update_rmtp(&t.timer, rmtp);
080344b9 1514 if (ret <= 0)
237fc6e7 1515 goto out;
432569bb 1516 }
10c94ec1 1517
10c94ec1 1518 /* The other values in restart are already filled in */
237fc6e7
TG
1519 ret = -ERESTART_RESTARTBLOCK;
1520out:
1521 destroy_hrtimer_on_stack(&t.timer);
1522 return ret;
10c94ec1
TG
1523}
1524
080344b9 1525long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1526 const enum hrtimer_mode mode, const clockid_t clockid)
1527{
1528 struct restart_block *restart;
669d7868 1529 struct hrtimer_sleeper t;
237fc6e7 1530 int ret = 0;
10c94ec1 1531
237fc6e7 1532 hrtimer_init_on_stack(&t.timer, clockid, mode);
432569bb
RZ
1533 t.timer.expires = timespec_to_ktime(*rqtp);
1534 if (do_nanosleep(&t, mode))
237fc6e7 1535 goto out;
10c94ec1 1536
7978672c 1537 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1538 if (mode == HRTIMER_MODE_ABS) {
1539 ret = -ERESTARTNOHAND;
1540 goto out;
1541 }
10c94ec1 1542
432569bb 1543 if (rmtp) {
237fc6e7 1544 ret = update_rmtp(&t.timer, rmtp);
080344b9 1545 if (ret <= 0)
237fc6e7 1546 goto out;
432569bb 1547 }
10c94ec1
TG
1548
1549 restart = &current_thread_info()->restart_block;
1711ef38 1550 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1551 restart->nanosleep.index = t.timer.base->index;
1552 restart->nanosleep.rmtp = rmtp;
1553 restart->nanosleep.expires = t.timer.expires.tv64;
10c94ec1 1554
237fc6e7
TG
1555 ret = -ERESTART_RESTARTBLOCK;
1556out:
1557 destroy_hrtimer_on_stack(&t.timer);
1558 return ret;
10c94ec1
TG
1559}
1560
6ba1b912
TG
1561asmlinkage long
1562sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1563{
080344b9 1564 struct timespec tu;
6ba1b912
TG
1565
1566 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1567 return -EFAULT;
1568
1569 if (!timespec_valid(&tu))
1570 return -EINVAL;
1571
080344b9 1572 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1573}
1574
c0a31329
TG
1575/*
1576 * Functions related to boot-time initialization:
1577 */
0ec160dd 1578static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1579{
3c8aa39d 1580 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1581 int i;
1582
3c8aa39d 1583 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1584
1585 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1586 cpu_base->clock_base[i].cpu_base = cpu_base;
1587
d3d74453 1588 INIT_LIST_HEAD(&cpu_base->cb_pending);
54cdfdb4 1589 hrtimer_init_hres(cpu_base);
c0a31329
TG
1590}
1591
1592#ifdef CONFIG_HOTPLUG_CPU
1593
41e1022e 1594static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
3c8aa39d 1595 struct hrtimer_clock_base *new_base)
c0a31329
TG
1596{
1597 struct hrtimer *timer;
1598 struct rb_node *node;
41e1022e 1599 int raise = 0;
c0a31329
TG
1600
1601 while ((node = rb_first(&old_base->active))) {
1602 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1603 BUG_ON(hrtimer_callback_running(timer));
237fc6e7 1604 debug_hrtimer_deactivate(timer);
54cdfdb4 1605 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
c0a31329 1606 timer->base = new_base;
54cdfdb4
TG
1607 /*
1608 * Enqueue the timer. Allow reprogramming of the event device
1609 */
1610 enqueue_hrtimer(timer, new_base, 1);
41e1022e
TG
1611
1612#ifdef CONFIG_HIGH_RES_TIMERS
1613 /*
1614 * Happens with high res enabled when the timer was
1615 * already expired and the callback mode is
1616 * HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
1617 * (hrtimer_sleeper). The enqueue code does not move
1618 * them to the soft irq pending list for
1619 * performance/latency reasons, but in the migration
1620 * state, we need to do that otherwise we end up with
1621 * a stale timer.
1622 */
1623 if (timer->state == HRTIMER_STATE_INACTIVE) {
1624 timer->state = HRTIMER_STATE_PENDING;
1625 list_add_tail(&timer->cb_entry,
1626 &new_base->cpu_base->cb_pending);
1627 raise = 1;
1628 }
1629#endif
c0a31329 1630 }
41e1022e 1631 return raise;
c0a31329
TG
1632}
1633
7659e349
TG
1634#ifdef CONFIG_HIGH_RES_TIMERS
1635static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1636 struct hrtimer_cpu_base *new_base)
1637{
1638 struct hrtimer *timer;
1639 int raise = 0;
1640
1641 while (!list_empty(&old_base->cb_pending)) {
1642 timer = list_entry(old_base->cb_pending.next,
1643 struct hrtimer, cb_entry);
1644
1645 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
1646 timer->base = &new_base->clock_base[timer->base->index];
1647 list_add_tail(&timer->cb_entry, &new_base->cb_pending);
1648 raise = 1;
1649 }
1650 return raise;
1651}
1652#else
1653static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1654 struct hrtimer_cpu_base *new_base)
1655{
1656 return 0;
1657}
1658#endif
1659
c0a31329
TG
1660static void migrate_hrtimers(int cpu)
1661{
3c8aa39d 1662 struct hrtimer_cpu_base *old_base, *new_base;
7659e349 1663 int i, raise = 0;
c0a31329
TG
1664
1665 BUG_ON(cpu_online(cpu));
3c8aa39d
TG
1666 old_base = &per_cpu(hrtimer_bases, cpu);
1667 new_base = &get_cpu_var(hrtimer_bases);
c0a31329 1668
54cdfdb4
TG
1669 tick_cancel_sched_timer(cpu);
1670
c0a31329 1671 local_irq_disable();
8e60e05f
ON
1672 spin_lock(&new_base->lock);
1673 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1674
3c8aa39d 1675 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
41e1022e
TG
1676 if (migrate_hrtimer_list(&old_base->clock_base[i],
1677 &new_base->clock_base[i]))
1678 raise = 1;
c0a31329
TG
1679 }
1680
7659e349
TG
1681 if (migrate_hrtimer_pending(old_base, new_base))
1682 raise = 1;
1683
8e60e05f
ON
1684 spin_unlock(&old_base->lock);
1685 spin_unlock(&new_base->lock);
c0a31329
TG
1686 local_irq_enable();
1687 put_cpu_var(hrtimer_bases);
7659e349
TG
1688
1689 if (raise)
1690 hrtimer_raise_softirq();
c0a31329
TG
1691}
1692#endif /* CONFIG_HOTPLUG_CPU */
1693
8c78f307 1694static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1695 unsigned long action, void *hcpu)
1696{
7713a7d1 1697 unsigned int cpu = (long)hcpu;
c0a31329
TG
1698
1699 switch (action) {
1700
1701 case CPU_UP_PREPARE:
8bb78442 1702 case CPU_UP_PREPARE_FROZEN:
c0a31329
TG
1703 init_hrtimers_cpu(cpu);
1704 break;
1705
1706#ifdef CONFIG_HOTPLUG_CPU
1707 case CPU_DEAD:
8bb78442 1708 case CPU_DEAD_FROZEN:
d316c57f 1709 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
c0a31329
TG
1710 migrate_hrtimers(cpu);
1711 break;
1712#endif
1713
1714 default:
1715 break;
1716 }
1717
1718 return NOTIFY_OK;
1719}
1720
8c78f307 1721static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1722 .notifier_call = hrtimer_cpu_notify,
1723};
1724
1725void __init hrtimers_init(void)
1726{
1727 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1728 (void *)(long)smp_processor_id());
1729 register_cpu_notifier(&hrtimers_nb);
54cdfdb4 1730#ifdef CONFIG_HIGH_RES_TIMERS
962cf36c 1731 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
54cdfdb4 1732#endif
c0a31329
TG
1733}
1734