]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cpuset.c
cpusets: allow cpusets to be configured/built on non-SMP systems
[net-next-2.6.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
1da177e4
LT
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
f90d4118
MX
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
202f72d5
PJ
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
7edc5962 76int number_of_cpusets __read_mostly;
202f72d5 77
2df167a3 78/* Forward declare cgroup structures */
8793d854
PM
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
3e0d98b9
PJ
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89};
90
1da177e4 91struct cpuset {
8793d854
PM
92 struct cgroup_subsys_state css;
93
1da177e4 94 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
1da177e4 98 struct cpuset *parent; /* my parent */
1da177e4
LT
99
100 /*
101 * Copy of global cpuset_mems_generation as of the most
102 * recent time this cpuset changed its mems_allowed.
103 */
3e0d98b9
PJ
104 int mems_generation;
105
106 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
107
108 /* partition number for rebuild_sched_domains() */
109 int pn;
956db3ca 110
1d3504fc
HS
111 /* for custom sched domain */
112 int relax_domain_level;
113
956db3ca
CW
114 /* used for walking a cpuset heirarchy */
115 struct list_head stack_list;
1da177e4
LT
116};
117
8793d854
PM
118/* Retrieve the cpuset for a cgroup */
119static inline struct cpuset *cgroup_cs(struct cgroup *cont)
120{
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
123}
124
125/* Retrieve the cpuset for a task */
126static inline struct cpuset *task_cs(struct task_struct *task)
127{
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
130}
8793d854 131
1da177e4
LT
132/* bits in struct cpuset flags field */
133typedef enum {
134 CS_CPU_EXCLUSIVE,
135 CS_MEM_EXCLUSIVE,
78608366 136 CS_MEM_HARDWALL,
45b07ef3 137 CS_MEMORY_MIGRATE,
029190c5 138 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
139 CS_SPREAD_PAGE,
140 CS_SPREAD_SLAB,
1da177e4
LT
141} cpuset_flagbits_t;
142
143/* convenient tests for these bits */
144static inline int is_cpu_exclusive(const struct cpuset *cs)
145{
7b5b9ef0 146 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
147}
148
149static inline int is_mem_exclusive(const struct cpuset *cs)
150{
7b5b9ef0 151 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
152}
153
78608366
PM
154static inline int is_mem_hardwall(const struct cpuset *cs)
155{
156 return test_bit(CS_MEM_HARDWALL, &cs->flags);
157}
158
029190c5
PJ
159static inline int is_sched_load_balance(const struct cpuset *cs)
160{
161 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
162}
163
45b07ef3
PJ
164static inline int is_memory_migrate(const struct cpuset *cs)
165{
7b5b9ef0 166 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
167}
168
825a46af
PJ
169static inline int is_spread_page(const struct cpuset *cs)
170{
171 return test_bit(CS_SPREAD_PAGE, &cs->flags);
172}
173
174static inline int is_spread_slab(const struct cpuset *cs)
175{
176 return test_bit(CS_SPREAD_SLAB, &cs->flags);
177}
178
1da177e4 179/*
151a4420 180 * Increment this integer everytime any cpuset changes its
1da177e4
LT
181 * mems_allowed value. Users of cpusets can track this generation
182 * number, and avoid having to lock and reload mems_allowed unless
183 * the cpuset they're using changes generation.
184 *
2df167a3 185 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
186 * reattach a task to a different cpuset, which must not have its
187 * generation numbers aliased with those of that tasks previous cpuset.
188 *
189 * Generations are needed for mems_allowed because one task cannot
2df167a3 190 * modify another's memory placement. So we must enable every task,
1da177e4
LT
191 * on every visit to __alloc_pages(), to efficiently check whether
192 * its current->cpuset->mems_allowed has changed, requiring an update
193 * of its current->mems_allowed.
151a4420 194 *
2df167a3 195 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 196 * there is no need to mark it atomic.
1da177e4 197 */
151a4420 198static int cpuset_mems_generation;
1da177e4
LT
199
200static struct cpuset top_cpuset = {
201 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
202};
203
1da177e4 204/*
2df167a3
PM
205 * There are two global mutexes guarding cpuset structures. The first
206 * is the main control groups cgroup_mutex, accessed via
207 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
208 * callback_mutex, below. They can nest. It is ok to first take
209 * cgroup_mutex, then nest callback_mutex. We also require taking
210 * task_lock() when dereferencing a task's cpuset pointer. See "The
211 * task_lock() exception", at the end of this comment.
053199ed 212 *
3d3f26a7 213 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 214 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 215 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
216 * and be able to modify cpusets. It can perform various checks on
217 * the cpuset structure first, knowing nothing will change. It can
2df167a3 218 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 219 * performing these checks, various callback routines can briefly
3d3f26a7
IM
220 * acquire callback_mutex to query cpusets. Once it is ready to make
221 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
222 *
223 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 224 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
225 * from one of the callbacks into the cpuset code from within
226 * __alloc_pages().
227 *
3d3f26a7 228 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
229 * access to cpusets.
230 *
231 * The task_struct fields mems_allowed and mems_generation may only
232 * be accessed in the context of that task, so require no locks.
233 *
3d3f26a7 234 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
235 * small pieces of code, such as when reading out possibly multi-word
236 * cpumasks and nodemasks.
237 *
2df167a3
PM
238 * Accessing a task's cpuset should be done in accordance with the
239 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
240 */
241
3d3f26a7 242static DEFINE_MUTEX(callback_mutex);
4247bdc6 243
75aa1994
DR
244/*
245 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
246 * buffers. They are statically allocated to prevent using excess stack
247 * when calling cpuset_print_task_mems_allowed().
248 */
249#define CPUSET_NAME_LEN (128)
250#define CPUSET_NODELIST_LEN (256)
251static char cpuset_name[CPUSET_NAME_LEN];
252static char cpuset_nodelist[CPUSET_NODELIST_LEN];
253static DEFINE_SPINLOCK(cpuset_buffer_lock);
254
cf417141
MK
255/*
256 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 257 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
258 * silently switch it to mount "cgroup" instead
259 */
454e2398
DH
260static int cpuset_get_sb(struct file_system_type *fs_type,
261 int flags, const char *unused_dev_name,
262 void *data, struct vfsmount *mnt)
1da177e4 263{
8793d854
PM
264 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
265 int ret = -ENODEV;
266 if (cgroup_fs) {
267 char mountopts[] =
268 "cpuset,noprefix,"
269 "release_agent=/sbin/cpuset_release_agent";
270 ret = cgroup_fs->get_sb(cgroup_fs, flags,
271 unused_dev_name, mountopts, mnt);
272 put_filesystem(cgroup_fs);
273 }
274 return ret;
1da177e4
LT
275}
276
277static struct file_system_type cpuset_fs_type = {
278 .name = "cpuset",
279 .get_sb = cpuset_get_sb,
1da177e4
LT
280};
281
1da177e4 282/*
300ed6cb 283 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
284 * are online. If none are online, walk up the cpuset hierarchy
285 * until we find one that does have some online cpus. If we get
286 * all the way to the top and still haven't found any online cpus,
287 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
288 * task, return cpu_online_map.
289 *
290 * One way or another, we guarantee to return some non-empty subset
291 * of cpu_online_map.
292 *
3d3f26a7 293 * Call with callback_mutex held.
1da177e4
LT
294 */
295
6af866af
LZ
296static void guarantee_online_cpus(const struct cpuset *cs,
297 struct cpumask *pmask)
1da177e4 298{
300ed6cb 299 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
300 cs = cs->parent;
301 if (cs)
300ed6cb 302 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 303 else
300ed6cb
LZ
304 cpumask_copy(pmask, cpu_online_mask);
305 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
306}
307
308/*
309 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
310 * are online, with memory. If none are online with memory, walk
311 * up the cpuset hierarchy until we find one that does have some
312 * online mems. If we get all the way to the top and still haven't
313 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
314 *
315 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 316 * of node_states[N_HIGH_MEMORY].
1da177e4 317 *
3d3f26a7 318 * Call with callback_mutex held.
1da177e4
LT
319 */
320
321static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
322{
0e1e7c7a
CL
323 while (cs && !nodes_intersects(cs->mems_allowed,
324 node_states[N_HIGH_MEMORY]))
1da177e4
LT
325 cs = cs->parent;
326 if (cs)
0e1e7c7a
CL
327 nodes_and(*pmask, cs->mems_allowed,
328 node_states[N_HIGH_MEMORY]);
1da177e4 329 else
0e1e7c7a
CL
330 *pmask = node_states[N_HIGH_MEMORY];
331 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
332}
333
cf2a473c
PJ
334/**
335 * cpuset_update_task_memory_state - update task memory placement
336 *
337 * If the current tasks cpusets mems_allowed changed behind our
338 * backs, update current->mems_allowed, mems_generation and task NUMA
339 * mempolicy to the new value.
053199ed 340 *
cf2a473c
PJ
341 * Task mempolicy is updated by rebinding it relative to the
342 * current->cpuset if a task has its memory placement changed.
343 * Do not call this routine if in_interrupt().
344 *
4a01c8d5 345 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
346 * called with or without cgroup_mutex held. Thanks in part to
347 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
348 * be NULL. This routine also might acquire callback_mutex during
349 * call.
053199ed 350 *
6b9c2603
PJ
351 * Reading current->cpuset->mems_generation doesn't need task_lock
352 * to guard the current->cpuset derefence, because it is guarded
2df167a3 353 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
354 *
355 * The rcu_dereference() is technically probably not needed,
356 * as I don't actually mind if I see a new cpuset pointer but
357 * an old value of mems_generation. However this really only
358 * matters on alpha systems using cpusets heavily. If I dropped
359 * that rcu_dereference(), it would save them a memory barrier.
360 * For all other arch's, rcu_dereference is a no-op anyway, and for
361 * alpha systems not using cpusets, another planned optimization,
362 * avoiding the rcu critical section for tasks in the root cpuset
363 * which is statically allocated, so can't vanish, will make this
364 * irrelevant. Better to use RCU as intended, than to engage in
365 * some cute trick to save a memory barrier that is impossible to
366 * test, for alpha systems using cpusets heavily, which might not
367 * even exist.
053199ed
PJ
368 *
369 * This routine is needed to update the per-task mems_allowed data,
370 * within the tasks context, when it is trying to allocate memory
371 * (in various mm/mempolicy.c routines) and notices that some other
372 * task has been modifying its cpuset.
1da177e4
LT
373 */
374
fe85a998 375void cpuset_update_task_memory_state(void)
1da177e4 376{
053199ed 377 int my_cpusets_mem_gen;
cf2a473c 378 struct task_struct *tsk = current;
6b9c2603 379 struct cpuset *cs;
053199ed 380
13337714
LJ
381 rcu_read_lock();
382 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
383 rcu_read_unlock();
1da177e4 384
cf2a473c 385 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 386 mutex_lock(&callback_mutex);
cf2a473c 387 task_lock(tsk);
8793d854 388 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
389 guarantee_online_mems(cs, &tsk->mems_allowed);
390 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
391 if (is_spread_page(cs))
392 tsk->flags |= PF_SPREAD_PAGE;
393 else
394 tsk->flags &= ~PF_SPREAD_PAGE;
395 if (is_spread_slab(cs))
396 tsk->flags |= PF_SPREAD_SLAB;
397 else
398 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 399 task_unlock(tsk);
3d3f26a7 400 mutex_unlock(&callback_mutex);
74cb2155 401 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
402 }
403}
404
405/*
406 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
407 *
408 * One cpuset is a subset of another if all its allowed CPUs and
409 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 410 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
411 */
412
413static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
414{
300ed6cb 415 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
416 nodes_subset(p->mems_allowed, q->mems_allowed) &&
417 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
418 is_mem_exclusive(p) <= is_mem_exclusive(q);
419}
420
645fcc9d
LZ
421/**
422 * alloc_trial_cpuset - allocate a trial cpuset
423 * @cs: the cpuset that the trial cpuset duplicates
424 */
425static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
426{
300ed6cb
LZ
427 struct cpuset *trial;
428
429 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
430 if (!trial)
431 return NULL;
432
433 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
434 kfree(trial);
435 return NULL;
436 }
437 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
438
439 return trial;
645fcc9d
LZ
440}
441
442/**
443 * free_trial_cpuset - free the trial cpuset
444 * @trial: the trial cpuset to be freed
445 */
446static void free_trial_cpuset(struct cpuset *trial)
447{
300ed6cb 448 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
449 kfree(trial);
450}
451
1da177e4
LT
452/*
453 * validate_change() - Used to validate that any proposed cpuset change
454 * follows the structural rules for cpusets.
455 *
456 * If we replaced the flag and mask values of the current cpuset
457 * (cur) with those values in the trial cpuset (trial), would
458 * our various subset and exclusive rules still be valid? Presumes
2df167a3 459 * cgroup_mutex held.
1da177e4
LT
460 *
461 * 'cur' is the address of an actual, in-use cpuset. Operations
462 * such as list traversal that depend on the actual address of the
463 * cpuset in the list must use cur below, not trial.
464 *
465 * 'trial' is the address of bulk structure copy of cur, with
466 * perhaps one or more of the fields cpus_allowed, mems_allowed,
467 * or flags changed to new, trial values.
468 *
469 * Return 0 if valid, -errno if not.
470 */
471
472static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
473{
8793d854 474 struct cgroup *cont;
1da177e4
LT
475 struct cpuset *c, *par;
476
477 /* Each of our child cpusets must be a subset of us */
8793d854
PM
478 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
479 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
480 return -EBUSY;
481 }
482
483 /* Remaining checks don't apply to root cpuset */
69604067 484 if (cur == &top_cpuset)
1da177e4
LT
485 return 0;
486
69604067
PJ
487 par = cur->parent;
488
1da177e4
LT
489 /* We must be a subset of our parent cpuset */
490 if (!is_cpuset_subset(trial, par))
491 return -EACCES;
492
2df167a3
PM
493 /*
494 * If either I or some sibling (!= me) is exclusive, we can't
495 * overlap
496 */
8793d854
PM
497 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
498 c = cgroup_cs(cont);
1da177e4
LT
499 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
500 c != cur &&
300ed6cb 501 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
1da177e4
LT
502 return -EINVAL;
503 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
504 c != cur &&
505 nodes_intersects(trial->mems_allowed, c->mems_allowed))
506 return -EINVAL;
507 }
508
020958b6
PJ
509 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
510 if (cgroup_task_count(cur->css.cgroup)) {
300ed6cb 511 if (cpumask_empty(trial->cpus_allowed) ||
020958b6
PJ
512 nodes_empty(trial->mems_allowed)) {
513 return -ENOSPC;
514 }
515 }
516
1da177e4
LT
517 return 0;
518}
519
db7f47cf 520#ifdef CONFIG_SMP
029190c5 521/*
cf417141 522 * Helper routine for generate_sched_domains().
029190c5
PJ
523 * Do cpusets a, b have overlapping cpus_allowed masks?
524 */
029190c5
PJ
525static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
526{
300ed6cb 527 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
528}
529
1d3504fc
HS
530static void
531update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
532{
1d3504fc
HS
533 if (dattr->relax_domain_level < c->relax_domain_level)
534 dattr->relax_domain_level = c->relax_domain_level;
535 return;
536}
537
f5393693
LJ
538static void
539update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
540{
541 LIST_HEAD(q);
542
543 list_add(&c->stack_list, &q);
544 while (!list_empty(&q)) {
545 struct cpuset *cp;
546 struct cgroup *cont;
547 struct cpuset *child;
548
549 cp = list_first_entry(&q, struct cpuset, stack_list);
550 list_del(q.next);
551
300ed6cb 552 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
553 continue;
554
555 if (is_sched_load_balance(cp))
556 update_domain_attr(dattr, cp);
557
558 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
559 child = cgroup_cs(cont);
560 list_add_tail(&child->stack_list, &q);
561 }
562 }
563}
564
029190c5 565/*
cf417141
MK
566 * generate_sched_domains()
567 *
568 * This function builds a partial partition of the systems CPUs
569 * A 'partial partition' is a set of non-overlapping subsets whose
570 * union is a subset of that set.
571 * The output of this function needs to be passed to kernel/sched.c
572 * partition_sched_domains() routine, which will rebuild the scheduler's
573 * load balancing domains (sched domains) as specified by that partial
574 * partition.
029190c5 575 *
45ce80fb 576 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
577 * for a background explanation of this.
578 *
579 * Does not return errors, on the theory that the callers of this
580 * routine would rather not worry about failures to rebuild sched
581 * domains when operating in the severe memory shortage situations
582 * that could cause allocation failures below.
583 *
cf417141 584 * Must be called with cgroup_lock held.
029190c5
PJ
585 *
586 * The three key local variables below are:
aeed6824 587 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
588 * top-down scan of all cpusets. This scan loads a pointer
589 * to each cpuset marked is_sched_load_balance into the
590 * array 'csa'. For our purposes, rebuilding the schedulers
591 * sched domains, we can ignore !is_sched_load_balance cpusets.
592 * csa - (for CpuSet Array) Array of pointers to all the cpusets
593 * that need to be load balanced, for convenient iterative
594 * access by the subsequent code that finds the best partition,
595 * i.e the set of domains (subsets) of CPUs such that the
596 * cpus_allowed of every cpuset marked is_sched_load_balance
597 * is a subset of one of these domains, while there are as
598 * many such domains as possible, each as small as possible.
599 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
600 * the kernel/sched.c routine partition_sched_domains() in a
601 * convenient format, that can be easily compared to the prior
602 * value to determine what partition elements (sched domains)
603 * were changed (added or removed.)
604 *
605 * Finding the best partition (set of domains):
606 * The triple nested loops below over i, j, k scan over the
607 * load balanced cpusets (using the array of cpuset pointers in
608 * csa[]) looking for pairs of cpusets that have overlapping
609 * cpus_allowed, but which don't have the same 'pn' partition
610 * number and gives them in the same partition number. It keeps
611 * looping on the 'restart' label until it can no longer find
612 * any such pairs.
613 *
614 * The union of the cpus_allowed masks from the set of
615 * all cpusets having the same 'pn' value then form the one
616 * element of the partition (one sched domain) to be passed to
617 * partition_sched_domains().
618 */
6af866af
LZ
619/* FIXME: see the FIXME in partition_sched_domains() */
620static int generate_sched_domains(struct cpumask **domains,
cf417141 621 struct sched_domain_attr **attributes)
029190c5 622{
cf417141 623 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
624 struct cpuset *cp; /* scans q */
625 struct cpuset **csa; /* array of all cpuset ptrs */
626 int csn; /* how many cpuset ptrs in csa so far */
627 int i, j, k; /* indices for partition finding loops */
6af866af 628 struct cpumask *doms; /* resulting partition; i.e. sched domains */
1d3504fc 629 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 630 int ndoms = 0; /* number of sched domains in result */
6af866af 631 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 632
029190c5 633 doms = NULL;
1d3504fc 634 dattr = NULL;
cf417141 635 csa = NULL;
029190c5
PJ
636
637 /* Special case for the 99% of systems with one, full, sched domain */
638 if (is_sched_load_balance(&top_cpuset)) {
6af866af 639 doms = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 640 if (!doms)
cf417141
MK
641 goto done;
642
1d3504fc
HS
643 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
644 if (dattr) {
645 *dattr = SD_ATTR_INIT;
93a65575 646 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 647 }
300ed6cb 648 cpumask_copy(doms, top_cpuset.cpus_allowed);
cf417141
MK
649
650 ndoms = 1;
651 goto done;
029190c5
PJ
652 }
653
029190c5
PJ
654 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
655 if (!csa)
656 goto done;
657 csn = 0;
658
aeed6824
LZ
659 list_add(&top_cpuset.stack_list, &q);
660 while (!list_empty(&q)) {
029190c5
PJ
661 struct cgroup *cont;
662 struct cpuset *child; /* scans child cpusets of cp */
489a5393 663
aeed6824
LZ
664 cp = list_first_entry(&q, struct cpuset, stack_list);
665 list_del(q.next);
666
300ed6cb 667 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
668 continue;
669
f5393693
LJ
670 /*
671 * All child cpusets contain a subset of the parent's cpus, so
672 * just skip them, and then we call update_domain_attr_tree()
673 * to calc relax_domain_level of the corresponding sched
674 * domain.
675 */
676 if (is_sched_load_balance(cp)) {
029190c5 677 csa[csn++] = cp;
f5393693
LJ
678 continue;
679 }
489a5393 680
029190c5
PJ
681 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
682 child = cgroup_cs(cont);
aeed6824 683 list_add_tail(&child->stack_list, &q);
029190c5
PJ
684 }
685 }
686
687 for (i = 0; i < csn; i++)
688 csa[i]->pn = i;
689 ndoms = csn;
690
691restart:
692 /* Find the best partition (set of sched domains) */
693 for (i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
695 int apn = a->pn;
696
697 for (j = 0; j < csn; j++) {
698 struct cpuset *b = csa[j];
699 int bpn = b->pn;
700
701 if (apn != bpn && cpusets_overlap(a, b)) {
702 for (k = 0; k < csn; k++) {
703 struct cpuset *c = csa[k];
704
705 if (c->pn == bpn)
706 c->pn = apn;
707 }
708 ndoms--; /* one less element */
709 goto restart;
710 }
711 }
712 }
713
cf417141
MK
714 /*
715 * Now we know how many domains to create.
716 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
717 */
6af866af 718 doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
700018e0 719 if (!doms)
cf417141 720 goto done;
cf417141
MK
721
722 /*
723 * The rest of the code, including the scheduler, can deal with
724 * dattr==NULL case. No need to abort if alloc fails.
725 */
1d3504fc 726 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
727
728 for (nslot = 0, i = 0; i < csn; i++) {
729 struct cpuset *a = csa[i];
6af866af 730 struct cpumask *dp;
029190c5
PJ
731 int apn = a->pn;
732
cf417141
MK
733 if (apn < 0) {
734 /* Skip completed partitions */
735 continue;
736 }
737
738 dp = doms + nslot;
739
740 if (nslot == ndoms) {
741 static int warnings = 10;
742 if (warnings) {
743 printk(KERN_WARNING
744 "rebuild_sched_domains confused:"
745 " nslot %d, ndoms %d, csn %d, i %d,"
746 " apn %d\n",
747 nslot, ndoms, csn, i, apn);
748 warnings--;
029190c5 749 }
cf417141
MK
750 continue;
751 }
029190c5 752
6af866af 753 cpumask_clear(dp);
cf417141
MK
754 if (dattr)
755 *(dattr + nslot) = SD_ATTR_INIT;
756 for (j = i; j < csn; j++) {
757 struct cpuset *b = csa[j];
758
759 if (apn == b->pn) {
300ed6cb 760 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
761 if (dattr)
762 update_domain_attr_tree(dattr + nslot, b);
763
764 /* Done with this partition */
765 b->pn = -1;
029190c5 766 }
029190c5 767 }
cf417141 768 nslot++;
029190c5
PJ
769 }
770 BUG_ON(nslot != ndoms);
771
cf417141
MK
772done:
773 kfree(csa);
774
700018e0
LZ
775 /*
776 * Fallback to the default domain if kmalloc() failed.
777 * See comments in partition_sched_domains().
778 */
779 if (doms == NULL)
780 ndoms = 1;
781
cf417141
MK
782 *domains = doms;
783 *attributes = dattr;
784 return ndoms;
785}
786
787/*
788 * Rebuild scheduler domains.
789 *
790 * Call with neither cgroup_mutex held nor within get_online_cpus().
791 * Takes both cgroup_mutex and get_online_cpus().
792 *
793 * Cannot be directly called from cpuset code handling changes
794 * to the cpuset pseudo-filesystem, because it cannot be called
795 * from code that already holds cgroup_mutex.
796 */
797static void do_rebuild_sched_domains(struct work_struct *unused)
798{
799 struct sched_domain_attr *attr;
6af866af 800 struct cpumask *doms;
cf417141
MK
801 int ndoms;
802
86ef5c9a 803 get_online_cpus();
cf417141
MK
804
805 /* Generate domain masks and attrs */
806 cgroup_lock();
807 ndoms = generate_sched_domains(&doms, &attr);
808 cgroup_unlock();
809
810 /* Have scheduler rebuild the domains */
811 partition_sched_domains(ndoms, doms, attr);
812
86ef5c9a 813 put_online_cpus();
cf417141 814}
db7f47cf
PM
815#else /* !CONFIG_SMP */
816static void do_rebuild_sched_domains(struct work_struct *unused)
817{
818}
819
820static int generate_sched_domains(struct cpumask **domains,
821 struct sched_domain_attr **attributes)
822{
823 *domains = NULL;
824 return 1;
825}
826#endif /* CONFIG_SMP */
029190c5 827
cf417141
MK
828static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
829
830/*
831 * Rebuild scheduler domains, asynchronously via workqueue.
832 *
833 * If the flag 'sched_load_balance' of any cpuset with non-empty
834 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
835 * which has that flag enabled, or if any cpuset with a non-empty
836 * 'cpus' is removed, then call this routine to rebuild the
837 * scheduler's dynamic sched domains.
838 *
839 * The rebuild_sched_domains() and partition_sched_domains()
840 * routines must nest cgroup_lock() inside get_online_cpus(),
841 * but such cpuset changes as these must nest that locking the
842 * other way, holding cgroup_lock() for much of the code.
843 *
844 * So in order to avoid an ABBA deadlock, the cpuset code handling
845 * these user changes delegates the actual sched domain rebuilding
846 * to a separate workqueue thread, which ends up processing the
847 * above do_rebuild_sched_domains() function.
848 */
849static void async_rebuild_sched_domains(void)
850{
f90d4118 851 queue_work(cpuset_wq, &rebuild_sched_domains_work);
cf417141
MK
852}
853
854/*
855 * Accomplishes the same scheduler domain rebuild as the above
856 * async_rebuild_sched_domains(), however it directly calls the
857 * rebuild routine synchronously rather than calling it via an
858 * asynchronous work thread.
859 *
860 * This can only be called from code that is not holding
861 * cgroup_mutex (not nested in a cgroup_lock() call.)
862 */
863void rebuild_sched_domains(void)
864{
865 do_rebuild_sched_domains(NULL);
029190c5
PJ
866}
867
58f4790b
CW
868/**
869 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
870 * @tsk: task to test
871 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
872 *
2df167a3 873 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
874 * Called for each task in a cgroup by cgroup_scan_tasks().
875 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
876 * words, if its mask is not equal to its cpuset's mask).
053199ed 877 */
9e0c914c
AB
878static int cpuset_test_cpumask(struct task_struct *tsk,
879 struct cgroup_scanner *scan)
58f4790b 880{
300ed6cb 881 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
882 (cgroup_cs(scan->cg))->cpus_allowed);
883}
053199ed 884
58f4790b
CW
885/**
886 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
887 * @tsk: task to test
888 * @scan: struct cgroup_scanner containing the cgroup of the task
889 *
890 * Called by cgroup_scan_tasks() for each task in a cgroup whose
891 * cpus_allowed mask needs to be changed.
892 *
893 * We don't need to re-check for the cgroup/cpuset membership, since we're
894 * holding cgroup_lock() at this point.
895 */
9e0c914c
AB
896static void cpuset_change_cpumask(struct task_struct *tsk,
897 struct cgroup_scanner *scan)
58f4790b 898{
300ed6cb 899 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
900}
901
0b2f630a
MX
902/**
903 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
904 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 905 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
906 *
907 * Called with cgroup_mutex held
908 *
909 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
910 * calling callback functions for each.
911 *
4e74339a
LZ
912 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
913 * if @heap != NULL.
0b2f630a 914 */
4e74339a 915static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
916{
917 struct cgroup_scanner scan;
0b2f630a
MX
918
919 scan.cg = cs->css.cgroup;
920 scan.test_task = cpuset_test_cpumask;
921 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
922 scan.heap = heap;
923 cgroup_scan_tasks(&scan);
0b2f630a
MX
924}
925
58f4790b
CW
926/**
927 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
928 * @cs: the cpuset to consider
929 * @buf: buffer of cpu numbers written to this cpuset
930 */
645fcc9d
LZ
931static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
932 const char *buf)
1da177e4 933{
4e74339a 934 struct ptr_heap heap;
58f4790b
CW
935 int retval;
936 int is_load_balanced;
1da177e4 937
4c4d50f7
PJ
938 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
939 if (cs == &top_cpuset)
940 return -EACCES;
941
6f7f02e7 942 /*
c8d9c90c 943 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
944 * Since cpulist_parse() fails on an empty mask, we special case
945 * that parsing. The validate_change() call ensures that cpusets
946 * with tasks have cpus.
6f7f02e7 947 */
020958b6 948 if (!*buf) {
300ed6cb 949 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 950 } else {
300ed6cb 951 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
952 if (retval < 0)
953 return retval;
37340746 954
300ed6cb 955 if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
37340746 956 return -EINVAL;
6f7f02e7 957 }
645fcc9d 958 retval = validate_change(cs, trialcs);
85d7b949
DG
959 if (retval < 0)
960 return retval;
029190c5 961
8707d8b8 962 /* Nothing to do if the cpus didn't change */
300ed6cb 963 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 964 return 0;
58f4790b 965
4e74339a
LZ
966 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
967 if (retval)
968 return retval;
969
645fcc9d 970 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 971
3d3f26a7 972 mutex_lock(&callback_mutex);
300ed6cb 973 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 974 mutex_unlock(&callback_mutex);
029190c5 975
8707d8b8
PM
976 /*
977 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 978 * that need an update.
8707d8b8 979 */
4e74339a
LZ
980 update_tasks_cpumask(cs, &heap);
981
982 heap_free(&heap);
58f4790b 983
8707d8b8 984 if (is_load_balanced)
cf417141 985 async_rebuild_sched_domains();
85d7b949 986 return 0;
1da177e4
LT
987}
988
e4e364e8
PJ
989/*
990 * cpuset_migrate_mm
991 *
992 * Migrate memory region from one set of nodes to another.
993 *
994 * Temporarilly set tasks mems_allowed to target nodes of migration,
995 * so that the migration code can allocate pages on these nodes.
996 *
2df167a3 997 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 998 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
999 * calls. Therefore we don't need to take task_lock around the
1000 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 1001 * our task's cpuset.
e4e364e8
PJ
1002 *
1003 * Hold callback_mutex around the two modifications of our tasks
1004 * mems_allowed to synchronize with cpuset_mems_allowed().
1005 *
1006 * While the mm_struct we are migrating is typically from some
1007 * other task, the task_struct mems_allowed that we are hacking
1008 * is for our current task, which must allocate new pages for that
1009 * migrating memory region.
1010 *
1011 * We call cpuset_update_task_memory_state() before hacking
1012 * our tasks mems_allowed, so that we are assured of being in
1013 * sync with our tasks cpuset, and in particular, callbacks to
1014 * cpuset_update_task_memory_state() from nested page allocations
1015 * won't see any mismatch of our cpuset and task mems_generation
1016 * values, so won't overwrite our hacked tasks mems_allowed
1017 * nodemask.
1018 */
1019
1020static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1021 const nodemask_t *to)
1022{
1023 struct task_struct *tsk = current;
1024
1025 cpuset_update_task_memory_state();
1026
1027 mutex_lock(&callback_mutex);
1028 tsk->mems_allowed = *to;
1029 mutex_unlock(&callback_mutex);
1030
1031 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1032
1033 mutex_lock(&callback_mutex);
8793d854 1034 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
1035 mutex_unlock(&callback_mutex);
1036}
1037
3b6766fe
LZ
1038/*
1039 * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new
1040 * nodes if memory_migrate flag is set. Called with cgroup_mutex held.
1041 */
1042static void cpuset_change_nodemask(struct task_struct *p,
1043 struct cgroup_scanner *scan)
1044{
1045 struct mm_struct *mm;
1046 struct cpuset *cs;
1047 int migrate;
1048 const nodemask_t *oldmem = scan->data;
1049
1050 mm = get_task_mm(p);
1051 if (!mm)
1052 return;
1053
1054 cs = cgroup_cs(scan->cg);
1055 migrate = is_memory_migrate(cs);
1056
1057 mpol_rebind_mm(mm, &cs->mems_allowed);
1058 if (migrate)
1059 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1060 mmput(mm);
1061}
1062
8793d854
PM
1063static void *cpuset_being_rebound;
1064
0b2f630a
MX
1065/**
1066 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1067 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1068 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1069 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
1070 *
1071 * Called with cgroup_mutex held
010cfac4
LZ
1072 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1073 * if @heap != NULL.
0b2f630a 1074 */
010cfac4
LZ
1075static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1076 struct ptr_heap *heap)
1da177e4 1077{
3b6766fe 1078 struct cgroup_scanner scan;
59dac16f 1079
846a16bf 1080 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1081
3b6766fe
LZ
1082 scan.cg = cs->css.cgroup;
1083 scan.test_task = NULL;
1084 scan.process_task = cpuset_change_nodemask;
010cfac4 1085 scan.heap = heap;
3b6766fe 1086 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1087
1088 /*
3b6766fe
LZ
1089 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1090 * take while holding tasklist_lock. Forks can happen - the
1091 * mpol_dup() cpuset_being_rebound check will catch such forks,
1092 * and rebind their vma mempolicies too. Because we still hold
1093 * the global cgroup_mutex, we know that no other rebind effort
1094 * will be contending for the global variable cpuset_being_rebound.
4225399a 1095 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1096 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1097 */
010cfac4 1098 cgroup_scan_tasks(&scan);
4225399a 1099
2df167a3 1100 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1101 cpuset_being_rebound = NULL;
1da177e4
LT
1102}
1103
0b2f630a
MX
1104/*
1105 * Handle user request to change the 'mems' memory placement
1106 * of a cpuset. Needs to validate the request, update the
1107 * cpusets mems_allowed and mems_generation, and for each
1108 * task in the cpuset, rebind any vma mempolicies and if
1109 * the cpuset is marked 'memory_migrate', migrate the tasks
1110 * pages to the new memory.
1111 *
1112 * Call with cgroup_mutex held. May take callback_mutex during call.
1113 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1114 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1115 * their mempolicies to the cpusets new mems_allowed.
1116 */
645fcc9d
LZ
1117static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1118 const char *buf)
0b2f630a 1119{
0b2f630a
MX
1120 nodemask_t oldmem;
1121 int retval;
010cfac4 1122 struct ptr_heap heap;
0b2f630a
MX
1123
1124 /*
1125 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1126 * it's read-only
1127 */
1128 if (cs == &top_cpuset)
1129 return -EACCES;
1130
0b2f630a
MX
1131 /*
1132 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1133 * Since nodelist_parse() fails on an empty mask, we special case
1134 * that parsing. The validate_change() call ensures that cpusets
1135 * with tasks have memory.
1136 */
1137 if (!*buf) {
645fcc9d 1138 nodes_clear(trialcs->mems_allowed);
0b2f630a 1139 } else {
645fcc9d 1140 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1141 if (retval < 0)
1142 goto done;
1143
645fcc9d 1144 if (!nodes_subset(trialcs->mems_allowed,
0b2f630a
MX
1145 node_states[N_HIGH_MEMORY]))
1146 return -EINVAL;
1147 }
1148 oldmem = cs->mems_allowed;
645fcc9d 1149 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1150 retval = 0; /* Too easy - nothing to do */
1151 goto done;
1152 }
645fcc9d 1153 retval = validate_change(cs, trialcs);
0b2f630a
MX
1154 if (retval < 0)
1155 goto done;
1156
010cfac4
LZ
1157 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1158 if (retval < 0)
1159 goto done;
1160
0b2f630a 1161 mutex_lock(&callback_mutex);
645fcc9d 1162 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1163 cs->mems_generation = cpuset_mems_generation++;
1164 mutex_unlock(&callback_mutex);
1165
010cfac4
LZ
1166 update_tasks_nodemask(cs, &oldmem, &heap);
1167
1168 heap_free(&heap);
0b2f630a
MX
1169done:
1170 return retval;
1171}
1172
8793d854
PM
1173int current_cpuset_is_being_rebound(void)
1174{
1175 return task_cs(current) == cpuset_being_rebound;
1176}
1177
5be7a479 1178static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1179{
db7f47cf 1180#ifdef CONFIG_SMP
30e0e178
LZ
1181 if (val < -1 || val >= SD_LV_MAX)
1182 return -EINVAL;
db7f47cf 1183#endif
1d3504fc
HS
1184
1185 if (val != cs->relax_domain_level) {
1186 cs->relax_domain_level = val;
300ed6cb
LZ
1187 if (!cpumask_empty(cs->cpus_allowed) &&
1188 is_sched_load_balance(cs))
cf417141 1189 async_rebuild_sched_domains();
1d3504fc
HS
1190 }
1191
1192 return 0;
1193}
1194
1da177e4
LT
1195/*
1196 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1197 * bit: the bit to update (see cpuset_flagbits_t)
1198 * cs: the cpuset to update
1199 * turning_on: whether the flag is being set or cleared
053199ed 1200 *
2df167a3 1201 * Call with cgroup_mutex held.
1da177e4
LT
1202 */
1203
700fe1ab
PM
1204static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1205 int turning_on)
1da177e4 1206{
645fcc9d 1207 struct cpuset *trialcs;
607717a6 1208 int err;
40b6a762 1209 int balance_flag_changed;
1da177e4 1210
645fcc9d
LZ
1211 trialcs = alloc_trial_cpuset(cs);
1212 if (!trialcs)
1213 return -ENOMEM;
1214
1da177e4 1215 if (turning_on)
645fcc9d 1216 set_bit(bit, &trialcs->flags);
1da177e4 1217 else
645fcc9d 1218 clear_bit(bit, &trialcs->flags);
1da177e4 1219
645fcc9d 1220 err = validate_change(cs, trialcs);
85d7b949 1221 if (err < 0)
645fcc9d 1222 goto out;
029190c5 1223
029190c5 1224 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1225 is_sched_load_balance(trialcs));
029190c5 1226
3d3f26a7 1227 mutex_lock(&callback_mutex);
645fcc9d 1228 cs->flags = trialcs->flags;
3d3f26a7 1229 mutex_unlock(&callback_mutex);
85d7b949 1230
300ed6cb 1231 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
cf417141 1232 async_rebuild_sched_domains();
029190c5 1233
645fcc9d
LZ
1234out:
1235 free_trial_cpuset(trialcs);
1236 return err;
1da177e4
LT
1237}
1238
3e0d98b9 1239/*
80f7228b 1240 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1241 *
1242 * These routines manage a digitally filtered, constant time based,
1243 * event frequency meter. There are four routines:
1244 * fmeter_init() - initialize a frequency meter.
1245 * fmeter_markevent() - called each time the event happens.
1246 * fmeter_getrate() - returns the recent rate of such events.
1247 * fmeter_update() - internal routine used to update fmeter.
1248 *
1249 * A common data structure is passed to each of these routines,
1250 * which is used to keep track of the state required to manage the
1251 * frequency meter and its digital filter.
1252 *
1253 * The filter works on the number of events marked per unit time.
1254 * The filter is single-pole low-pass recursive (IIR). The time unit
1255 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1256 * simulate 3 decimal digits of precision (multiplied by 1000).
1257 *
1258 * With an FM_COEF of 933, and a time base of 1 second, the filter
1259 * has a half-life of 10 seconds, meaning that if the events quit
1260 * happening, then the rate returned from the fmeter_getrate()
1261 * will be cut in half each 10 seconds, until it converges to zero.
1262 *
1263 * It is not worth doing a real infinitely recursive filter. If more
1264 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1265 * just compute FM_MAXTICKS ticks worth, by which point the level
1266 * will be stable.
1267 *
1268 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1269 * arithmetic overflow in the fmeter_update() routine.
1270 *
1271 * Given the simple 32 bit integer arithmetic used, this meter works
1272 * best for reporting rates between one per millisecond (msec) and
1273 * one per 32 (approx) seconds. At constant rates faster than one
1274 * per msec it maxes out at values just under 1,000,000. At constant
1275 * rates between one per msec, and one per second it will stabilize
1276 * to a value N*1000, where N is the rate of events per second.
1277 * At constant rates between one per second and one per 32 seconds,
1278 * it will be choppy, moving up on the seconds that have an event,
1279 * and then decaying until the next event. At rates slower than
1280 * about one in 32 seconds, it decays all the way back to zero between
1281 * each event.
1282 */
1283
1284#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1285#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1286#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1287#define FM_SCALE 1000 /* faux fixed point scale */
1288
1289/* Initialize a frequency meter */
1290static void fmeter_init(struct fmeter *fmp)
1291{
1292 fmp->cnt = 0;
1293 fmp->val = 0;
1294 fmp->time = 0;
1295 spin_lock_init(&fmp->lock);
1296}
1297
1298/* Internal meter update - process cnt events and update value */
1299static void fmeter_update(struct fmeter *fmp)
1300{
1301 time_t now = get_seconds();
1302 time_t ticks = now - fmp->time;
1303
1304 if (ticks == 0)
1305 return;
1306
1307 ticks = min(FM_MAXTICKS, ticks);
1308 while (ticks-- > 0)
1309 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1310 fmp->time = now;
1311
1312 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1313 fmp->cnt = 0;
1314}
1315
1316/* Process any previous ticks, then bump cnt by one (times scale). */
1317static void fmeter_markevent(struct fmeter *fmp)
1318{
1319 spin_lock(&fmp->lock);
1320 fmeter_update(fmp);
1321 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1322 spin_unlock(&fmp->lock);
1323}
1324
1325/* Process any previous ticks, then return current value. */
1326static int fmeter_getrate(struct fmeter *fmp)
1327{
1328 int val;
1329
1330 spin_lock(&fmp->lock);
1331 fmeter_update(fmp);
1332 val = fmp->val;
1333 spin_unlock(&fmp->lock);
1334 return val;
1335}
1336
2341d1b6
LZ
1337/* Protected by cgroup_lock */
1338static cpumask_var_t cpus_attach;
1339
2df167a3 1340/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1341static int cpuset_can_attach(struct cgroup_subsys *ss,
1342 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1343{
8793d854 1344 struct cpuset *cs = cgroup_cs(cont);
5771f0a2 1345 int ret = 0;
1da177e4 1346
300ed6cb 1347 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1348 return -ENOSPC;
9985b0ba 1349
5771f0a2 1350 if (tsk->flags & PF_THREAD_BOUND) {
9985b0ba 1351 mutex_lock(&callback_mutex);
300ed6cb 1352 if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
5771f0a2 1353 ret = -EINVAL;
9985b0ba 1354 mutex_unlock(&callback_mutex);
9985b0ba 1355 }
1da177e4 1356
5771f0a2 1357 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
8793d854 1358}
1da177e4 1359
8793d854
PM
1360static void cpuset_attach(struct cgroup_subsys *ss,
1361 struct cgroup *cont, struct cgroup *oldcont,
1362 struct task_struct *tsk)
1363{
8793d854
PM
1364 nodemask_t from, to;
1365 struct mm_struct *mm;
1366 struct cpuset *cs = cgroup_cs(cont);
1367 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1368 int err;
22fb52dd 1369
f5813d94 1370 if (cs == &top_cpuset) {
2341d1b6 1371 cpumask_copy(cpus_attach, cpu_possible_mask);
f5813d94
MX
1372 } else {
1373 mutex_lock(&callback_mutex);
2341d1b6 1374 guarantee_online_cpus(cs, cpus_attach);
f5813d94
MX
1375 mutex_unlock(&callback_mutex);
1376 }
2341d1b6 1377 err = set_cpus_allowed_ptr(tsk, cpus_attach);
9985b0ba
DR
1378 if (err)
1379 return;
1da177e4 1380
45b07ef3
PJ
1381 from = oldcs->mems_allowed;
1382 to = cs->mems_allowed;
4225399a
PJ
1383 mm = get_task_mm(tsk);
1384 if (mm) {
1385 mpol_rebind_mm(mm, &to);
2741a559 1386 if (is_memory_migrate(cs))
e4e364e8 1387 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1388 mmput(mm);
1389 }
1da177e4
LT
1390}
1391
1392/* The various types of files and directories in a cpuset file system */
1393
1394typedef enum {
45b07ef3 1395 FILE_MEMORY_MIGRATE,
1da177e4
LT
1396 FILE_CPULIST,
1397 FILE_MEMLIST,
1398 FILE_CPU_EXCLUSIVE,
1399 FILE_MEM_EXCLUSIVE,
78608366 1400 FILE_MEM_HARDWALL,
029190c5 1401 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1402 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1403 FILE_MEMORY_PRESSURE_ENABLED,
1404 FILE_MEMORY_PRESSURE,
825a46af
PJ
1405 FILE_SPREAD_PAGE,
1406 FILE_SPREAD_SLAB,
1da177e4
LT
1407} cpuset_filetype_t;
1408
700fe1ab
PM
1409static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1410{
1411 int retval = 0;
1412 struct cpuset *cs = cgroup_cs(cgrp);
1413 cpuset_filetype_t type = cft->private;
1414
e3712395 1415 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1416 return -ENODEV;
700fe1ab
PM
1417
1418 switch (type) {
1da177e4 1419 case FILE_CPU_EXCLUSIVE:
700fe1ab 1420 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1421 break;
1422 case FILE_MEM_EXCLUSIVE:
700fe1ab 1423 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1424 break;
78608366
PM
1425 case FILE_MEM_HARDWALL:
1426 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1427 break;
029190c5 1428 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1429 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1430 break;
45b07ef3 1431 case FILE_MEMORY_MIGRATE:
700fe1ab 1432 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1433 break;
3e0d98b9 1434 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1435 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1436 break;
1437 case FILE_MEMORY_PRESSURE:
1438 retval = -EACCES;
1439 break;
825a46af 1440 case FILE_SPREAD_PAGE:
700fe1ab 1441 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1442 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1443 break;
1444 case FILE_SPREAD_SLAB:
700fe1ab 1445 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1446 cs->mems_generation = cpuset_mems_generation++;
825a46af 1447 break;
1da177e4
LT
1448 default:
1449 retval = -EINVAL;
700fe1ab 1450 break;
1da177e4 1451 }
8793d854 1452 cgroup_unlock();
1da177e4
LT
1453 return retval;
1454}
1455
5be7a479
PM
1456static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1457{
1458 int retval = 0;
1459 struct cpuset *cs = cgroup_cs(cgrp);
1460 cpuset_filetype_t type = cft->private;
1461
e3712395 1462 if (!cgroup_lock_live_group(cgrp))
5be7a479 1463 return -ENODEV;
e3712395 1464
5be7a479
PM
1465 switch (type) {
1466 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1467 retval = update_relax_domain_level(cs, val);
1468 break;
1469 default:
1470 retval = -EINVAL;
1471 break;
1472 }
1473 cgroup_unlock();
1474 return retval;
1475}
1476
e3712395
PM
1477/*
1478 * Common handling for a write to a "cpus" or "mems" file.
1479 */
1480static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1481 const char *buf)
1482{
1483 int retval = 0;
645fcc9d
LZ
1484 struct cpuset *cs = cgroup_cs(cgrp);
1485 struct cpuset *trialcs;
e3712395
PM
1486
1487 if (!cgroup_lock_live_group(cgrp))
1488 return -ENODEV;
1489
645fcc9d
LZ
1490 trialcs = alloc_trial_cpuset(cs);
1491 if (!trialcs)
1492 return -ENOMEM;
1493
e3712395
PM
1494 switch (cft->private) {
1495 case FILE_CPULIST:
645fcc9d 1496 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1497 break;
1498 case FILE_MEMLIST:
645fcc9d 1499 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1500 break;
1501 default:
1502 retval = -EINVAL;
1503 break;
1504 }
645fcc9d
LZ
1505
1506 free_trial_cpuset(trialcs);
e3712395
PM
1507 cgroup_unlock();
1508 return retval;
1509}
1510
1da177e4
LT
1511/*
1512 * These ascii lists should be read in a single call, by using a user
1513 * buffer large enough to hold the entire map. If read in smaller
1514 * chunks, there is no guarantee of atomicity. Since the display format
1515 * used, list of ranges of sequential numbers, is variable length,
1516 * and since these maps can change value dynamically, one could read
1517 * gibberish by doing partial reads while a list was changing.
1518 * A single large read to a buffer that crosses a page boundary is
1519 * ok, because the result being copied to user land is not recomputed
1520 * across a page fault.
1521 */
1522
1523static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1524{
5a7625df 1525 int ret;
1da177e4 1526
3d3f26a7 1527 mutex_lock(&callback_mutex);
300ed6cb 1528 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1529 mutex_unlock(&callback_mutex);
1da177e4 1530
5a7625df 1531 return ret;
1da177e4
LT
1532}
1533
1534static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1535{
1536 nodemask_t mask;
1537
3d3f26a7 1538 mutex_lock(&callback_mutex);
1da177e4 1539 mask = cs->mems_allowed;
3d3f26a7 1540 mutex_unlock(&callback_mutex);
1da177e4
LT
1541
1542 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1543}
1544
8793d854
PM
1545static ssize_t cpuset_common_file_read(struct cgroup *cont,
1546 struct cftype *cft,
1547 struct file *file,
1548 char __user *buf,
1549 size_t nbytes, loff_t *ppos)
1da177e4 1550{
8793d854 1551 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1552 cpuset_filetype_t type = cft->private;
1553 char *page;
1554 ssize_t retval = 0;
1555 char *s;
1da177e4 1556
e12ba74d 1557 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1558 return -ENOMEM;
1559
1560 s = page;
1561
1562 switch (type) {
1563 case FILE_CPULIST:
1564 s += cpuset_sprintf_cpulist(s, cs);
1565 break;
1566 case FILE_MEMLIST:
1567 s += cpuset_sprintf_memlist(s, cs);
1568 break;
1da177e4
LT
1569 default:
1570 retval = -EINVAL;
1571 goto out;
1572 }
1573 *s++ = '\n';
1da177e4 1574
eacaa1f5 1575 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1576out:
1577 free_page((unsigned long)page);
1578 return retval;
1579}
1580
700fe1ab
PM
1581static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1582{
1583 struct cpuset *cs = cgroup_cs(cont);
1584 cpuset_filetype_t type = cft->private;
1585 switch (type) {
1586 case FILE_CPU_EXCLUSIVE:
1587 return is_cpu_exclusive(cs);
1588 case FILE_MEM_EXCLUSIVE:
1589 return is_mem_exclusive(cs);
78608366
PM
1590 case FILE_MEM_HARDWALL:
1591 return is_mem_hardwall(cs);
700fe1ab
PM
1592 case FILE_SCHED_LOAD_BALANCE:
1593 return is_sched_load_balance(cs);
1594 case FILE_MEMORY_MIGRATE:
1595 return is_memory_migrate(cs);
1596 case FILE_MEMORY_PRESSURE_ENABLED:
1597 return cpuset_memory_pressure_enabled;
1598 case FILE_MEMORY_PRESSURE:
1599 return fmeter_getrate(&cs->fmeter);
1600 case FILE_SPREAD_PAGE:
1601 return is_spread_page(cs);
1602 case FILE_SPREAD_SLAB:
1603 return is_spread_slab(cs);
1604 default:
1605 BUG();
1606 }
cf417141
MK
1607
1608 /* Unreachable but makes gcc happy */
1609 return 0;
700fe1ab 1610}
1da177e4 1611
5be7a479
PM
1612static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1613{
1614 struct cpuset *cs = cgroup_cs(cont);
1615 cpuset_filetype_t type = cft->private;
1616 switch (type) {
1617 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1618 return cs->relax_domain_level;
1619 default:
1620 BUG();
1621 }
cf417141
MK
1622
1623 /* Unrechable but makes gcc happy */
1624 return 0;
5be7a479
PM
1625}
1626
1da177e4
LT
1627
1628/*
1629 * for the common functions, 'private' gives the type of file
1630 */
1631
addf2c73
PM
1632static struct cftype files[] = {
1633 {
1634 .name = "cpus",
1635 .read = cpuset_common_file_read,
e3712395
PM
1636 .write_string = cpuset_write_resmask,
1637 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1638 .private = FILE_CPULIST,
1639 },
1640
1641 {
1642 .name = "mems",
1643 .read = cpuset_common_file_read,
e3712395
PM
1644 .write_string = cpuset_write_resmask,
1645 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1646 .private = FILE_MEMLIST,
1647 },
1648
1649 {
1650 .name = "cpu_exclusive",
1651 .read_u64 = cpuset_read_u64,
1652 .write_u64 = cpuset_write_u64,
1653 .private = FILE_CPU_EXCLUSIVE,
1654 },
1655
1656 {
1657 .name = "mem_exclusive",
1658 .read_u64 = cpuset_read_u64,
1659 .write_u64 = cpuset_write_u64,
1660 .private = FILE_MEM_EXCLUSIVE,
1661 },
1662
78608366
PM
1663 {
1664 .name = "mem_hardwall",
1665 .read_u64 = cpuset_read_u64,
1666 .write_u64 = cpuset_write_u64,
1667 .private = FILE_MEM_HARDWALL,
1668 },
1669
addf2c73
PM
1670 {
1671 .name = "sched_load_balance",
1672 .read_u64 = cpuset_read_u64,
1673 .write_u64 = cpuset_write_u64,
1674 .private = FILE_SCHED_LOAD_BALANCE,
1675 },
1676
1677 {
1678 .name = "sched_relax_domain_level",
5be7a479
PM
1679 .read_s64 = cpuset_read_s64,
1680 .write_s64 = cpuset_write_s64,
addf2c73
PM
1681 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1682 },
1683
1684 {
1685 .name = "memory_migrate",
1686 .read_u64 = cpuset_read_u64,
1687 .write_u64 = cpuset_write_u64,
1688 .private = FILE_MEMORY_MIGRATE,
1689 },
1690
1691 {
1692 .name = "memory_pressure",
1693 .read_u64 = cpuset_read_u64,
1694 .write_u64 = cpuset_write_u64,
1695 .private = FILE_MEMORY_PRESSURE,
099fca32 1696 .mode = S_IRUGO,
addf2c73
PM
1697 },
1698
1699 {
1700 .name = "memory_spread_page",
1701 .read_u64 = cpuset_read_u64,
1702 .write_u64 = cpuset_write_u64,
1703 .private = FILE_SPREAD_PAGE,
1704 },
1705
1706 {
1707 .name = "memory_spread_slab",
1708 .read_u64 = cpuset_read_u64,
1709 .write_u64 = cpuset_write_u64,
1710 .private = FILE_SPREAD_SLAB,
1711 },
45b07ef3
PJ
1712};
1713
3e0d98b9
PJ
1714static struct cftype cft_memory_pressure_enabled = {
1715 .name = "memory_pressure_enabled",
700fe1ab
PM
1716 .read_u64 = cpuset_read_u64,
1717 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1718 .private = FILE_MEMORY_PRESSURE_ENABLED,
1719};
1720
8793d854 1721static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1722{
1723 int err;
1724
addf2c73
PM
1725 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1726 if (err)
1da177e4 1727 return err;
8793d854 1728 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1729 if (!cont->parent)
8793d854 1730 err = cgroup_add_file(cont, ss,
addf2c73
PM
1731 &cft_memory_pressure_enabled);
1732 return err;
1da177e4
LT
1733}
1734
8793d854
PM
1735/*
1736 * post_clone() is called at the end of cgroup_clone().
1737 * 'cgroup' was just created automatically as a result of
1738 * a cgroup_clone(), and the current task is about to
1739 * be moved into 'cgroup'.
1740 *
1741 * Currently we refuse to set up the cgroup - thereby
1742 * refusing the task to be entered, and as a result refusing
1743 * the sys_unshare() or clone() which initiated it - if any
1744 * sibling cpusets have exclusive cpus or mem.
1745 *
1746 * If this becomes a problem for some users who wish to
1747 * allow that scenario, then cpuset_post_clone() could be
1748 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1749 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1750 * held.
8793d854
PM
1751 */
1752static void cpuset_post_clone(struct cgroup_subsys *ss,
1753 struct cgroup *cgroup)
1754{
1755 struct cgroup *parent, *child;
1756 struct cpuset *cs, *parent_cs;
1757
1758 parent = cgroup->parent;
1759 list_for_each_entry(child, &parent->children, sibling) {
1760 cs = cgroup_cs(child);
1761 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1762 return;
1763 }
1764 cs = cgroup_cs(cgroup);
1765 parent_cs = cgroup_cs(parent);
1766
1767 cs->mems_allowed = parent_cs->mems_allowed;
300ed6cb 1768 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
8793d854
PM
1769 return;
1770}
1771
1da177e4
LT
1772/*
1773 * cpuset_create - create a cpuset
2df167a3
PM
1774 * ss: cpuset cgroup subsystem
1775 * cont: control group that the new cpuset will be part of
1da177e4
LT
1776 */
1777
8793d854
PM
1778static struct cgroup_subsys_state *cpuset_create(
1779 struct cgroup_subsys *ss,
1780 struct cgroup *cont)
1da177e4
LT
1781{
1782 struct cpuset *cs;
8793d854 1783 struct cpuset *parent;
1da177e4 1784
8793d854
PM
1785 if (!cont->parent) {
1786 /* This is early initialization for the top cgroup */
1787 top_cpuset.mems_generation = cpuset_mems_generation++;
1788 return &top_cpuset.css;
1789 }
1790 parent = cgroup_cs(cont->parent);
1da177e4
LT
1791 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1792 if (!cs)
8793d854 1793 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1794 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1795 kfree(cs);
1796 return ERR_PTR(-ENOMEM);
1797 }
1da177e4 1798
cf2a473c 1799 cpuset_update_task_memory_state();
1da177e4 1800 cs->flags = 0;
825a46af
PJ
1801 if (is_spread_page(parent))
1802 set_bit(CS_SPREAD_PAGE, &cs->flags);
1803 if (is_spread_slab(parent))
1804 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1805 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1806 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1807 nodes_clear(cs->mems_allowed);
151a4420 1808 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1809 fmeter_init(&cs->fmeter);
1d3504fc 1810 cs->relax_domain_level = -1;
1da177e4
LT
1811
1812 cs->parent = parent;
202f72d5 1813 number_of_cpusets++;
8793d854 1814 return &cs->css ;
1da177e4
LT
1815}
1816
029190c5 1817/*
029190c5
PJ
1818 * If the cpuset being removed has its flag 'sched_load_balance'
1819 * enabled, then simulate turning sched_load_balance off, which
cf417141 1820 * will call async_rebuild_sched_domains().
029190c5
PJ
1821 */
1822
8793d854 1823static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1824{
8793d854 1825 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1826
cf2a473c 1827 cpuset_update_task_memory_state();
029190c5
PJ
1828
1829 if (is_sched_load_balance(cs))
700fe1ab 1830 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1831
202f72d5 1832 number_of_cpusets--;
300ed6cb 1833 free_cpumask_var(cs->cpus_allowed);
8793d854 1834 kfree(cs);
1da177e4
LT
1835}
1836
8793d854
PM
1837struct cgroup_subsys cpuset_subsys = {
1838 .name = "cpuset",
1839 .create = cpuset_create,
cf417141 1840 .destroy = cpuset_destroy,
8793d854
PM
1841 .can_attach = cpuset_can_attach,
1842 .attach = cpuset_attach,
1843 .populate = cpuset_populate,
1844 .post_clone = cpuset_post_clone,
1845 .subsys_id = cpuset_subsys_id,
1846 .early_init = 1,
1847};
1848
c417f024
PJ
1849/*
1850 * cpuset_init_early - just enough so that the calls to
1851 * cpuset_update_task_memory_state() in early init code
1852 * are harmless.
1853 */
1854
1855int __init cpuset_init_early(void)
1856{
300ed6cb
LZ
1857 alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
1858
8793d854 1859 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1860 return 0;
1861}
1862
8793d854 1863
1da177e4
LT
1864/**
1865 * cpuset_init - initialize cpusets at system boot
1866 *
1867 * Description: Initialize top_cpuset and the cpuset internal file system,
1868 **/
1869
1870int __init cpuset_init(void)
1871{
8793d854 1872 int err = 0;
1da177e4 1873
300ed6cb 1874 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1875 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1876
3e0d98b9 1877 fmeter_init(&top_cpuset.fmeter);
151a4420 1878 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1879 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1880 top_cpuset.relax_domain_level = -1;
1da177e4 1881
1da177e4
LT
1882 err = register_filesystem(&cpuset_fs_type);
1883 if (err < 0)
8793d854
PM
1884 return err;
1885
2341d1b6
LZ
1886 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1887 BUG();
1888
202f72d5 1889 number_of_cpusets = 1;
8793d854 1890 return 0;
1da177e4
LT
1891}
1892
956db3ca
CW
1893/**
1894 * cpuset_do_move_task - move a given task to another cpuset
1895 * @tsk: pointer to task_struct the task to move
1896 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1897 *
1898 * Called by cgroup_scan_tasks() for each task in a cgroup.
1899 * Return nonzero to stop the walk through the tasks.
1900 */
9e0c914c
AB
1901static void cpuset_do_move_task(struct task_struct *tsk,
1902 struct cgroup_scanner *scan)
956db3ca 1903{
7f81b1ae 1904 struct cgroup *new_cgroup = scan->data;
956db3ca 1905
7f81b1ae 1906 cgroup_attach_task(new_cgroup, tsk);
956db3ca
CW
1907}
1908
1909/**
1910 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1911 * @from: cpuset in which the tasks currently reside
1912 * @to: cpuset to which the tasks will be moved
1913 *
c8d9c90c
PJ
1914 * Called with cgroup_mutex held
1915 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1916 *
1917 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1918 * calling callback functions for each.
1919 */
1920static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1921{
7f81b1ae 1922 struct cgroup_scanner scan;
956db3ca 1923
7f81b1ae
LZ
1924 scan.cg = from->css.cgroup;
1925 scan.test_task = NULL; /* select all tasks in cgroup */
1926 scan.process_task = cpuset_do_move_task;
1927 scan.heap = NULL;
1928 scan.data = to->css.cgroup;
956db3ca 1929
7f81b1ae 1930 if (cgroup_scan_tasks(&scan))
956db3ca
CW
1931 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1932 "cgroup_scan_tasks failed\n");
1933}
1934
b1aac8bb 1935/*
cf417141 1936 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1937 * or memory nodes, we need to walk over the cpuset hierarchy,
1938 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1939 * last CPU or node from a cpuset, then move the tasks in the empty
1940 * cpuset to its next-highest non-empty parent.
b1aac8bb 1941 *
c8d9c90c
PJ
1942 * Called with cgroup_mutex held
1943 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1944 */
956db3ca
CW
1945static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1946{
1947 struct cpuset *parent;
1948
c8d9c90c
PJ
1949 /*
1950 * The cgroup's css_sets list is in use if there are tasks
1951 * in the cpuset; the list is empty if there are none;
1952 * the cs->css.refcnt seems always 0.
1953 */
956db3ca
CW
1954 if (list_empty(&cs->css.cgroup->css_sets))
1955 return;
b1aac8bb 1956
956db3ca
CW
1957 /*
1958 * Find its next-highest non-empty parent, (top cpuset
1959 * has online cpus, so can't be empty).
1960 */
1961 parent = cs->parent;
300ed6cb 1962 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 1963 nodes_empty(parent->mems_allowed))
956db3ca 1964 parent = parent->parent;
956db3ca
CW
1965
1966 move_member_tasks_to_cpuset(cs, parent);
1967}
1968
1969/*
1970 * Walk the specified cpuset subtree and look for empty cpusets.
1971 * The tasks of such cpuset must be moved to a parent cpuset.
1972 *
2df167a3 1973 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1974 * cpus_allowed and mems_allowed.
1975 *
1976 * This walk processes the tree from top to bottom, completing one layer
1977 * before dropping down to the next. It always processes a node before
1978 * any of its children.
1979 *
1980 * For now, since we lack memory hot unplug, we'll never see a cpuset
1981 * that has tasks along with an empty 'mems'. But if we did see such
1982 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1983 */
d294eb83 1984static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1985{
8d1e6266 1986 LIST_HEAD(queue);
956db3ca
CW
1987 struct cpuset *cp; /* scans cpusets being updated */
1988 struct cpuset *child; /* scans child cpusets of cp */
8793d854 1989 struct cgroup *cont;
f9b4fb8d 1990 nodemask_t oldmems;
b1aac8bb 1991
956db3ca
CW
1992 list_add_tail((struct list_head *)&root->stack_list, &queue);
1993
956db3ca 1994 while (!list_empty(&queue)) {
8d1e6266 1995 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
1996 list_del(queue.next);
1997 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1998 child = cgroup_cs(cont);
1999 list_add_tail(&child->stack_list, &queue);
2000 }
b4501295
PJ
2001
2002 /* Continue past cpusets with all cpus, mems online */
300ed6cb 2003 if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
b4501295
PJ
2004 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2005 continue;
2006
f9b4fb8d
MX
2007 oldmems = cp->mems_allowed;
2008
956db3ca 2009 /* Remove offline cpus and mems from this cpuset. */
b4501295 2010 mutex_lock(&callback_mutex);
300ed6cb
LZ
2011 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2012 cpu_online_mask);
956db3ca
CW
2013 nodes_and(cp->mems_allowed, cp->mems_allowed,
2014 node_states[N_HIGH_MEMORY]);
b4501295
PJ
2015 mutex_unlock(&callback_mutex);
2016
2017 /* Move tasks from the empty cpuset to a parent */
300ed6cb 2018 if (cpumask_empty(cp->cpus_allowed) ||
b4501295 2019 nodes_empty(cp->mems_allowed))
956db3ca 2020 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 2021 else {
4e74339a 2022 update_tasks_cpumask(cp, NULL);
010cfac4 2023 update_tasks_nodemask(cp, &oldmems, NULL);
f9b4fb8d 2024 }
b1aac8bb
PJ
2025 }
2026}
2027
4c4d50f7
PJ
2028/*
2029 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2030 * period. This is necessary in order to make cpusets transparent
2031 * (of no affect) on systems that are actively using CPU hotplug
2032 * but making no active use of cpusets.
2033 *
38837fc7
PJ
2034 * This routine ensures that top_cpuset.cpus_allowed tracks
2035 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
2036 *
2037 * Called within get_online_cpus(). Needs to call cgroup_lock()
2038 * before calling generate_sched_domains().
4c4d50f7 2039 */
cf417141 2040static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 2041 unsigned long phase, void *unused_cpu)
4c4d50f7 2042{
cf417141 2043 struct sched_domain_attr *attr;
6af866af 2044 struct cpumask *doms;
cf417141
MK
2045 int ndoms;
2046
3e84050c 2047 switch (phase) {
3e84050c
DA
2048 case CPU_ONLINE:
2049 case CPU_ONLINE_FROZEN:
2050 case CPU_DEAD:
2051 case CPU_DEAD_FROZEN:
3e84050c 2052 break;
cf417141 2053
3e84050c 2054 default:
ac076758 2055 return NOTIFY_DONE;
3e84050c 2056 }
ac076758 2057
cf417141 2058 cgroup_lock();
0b4217b3 2059 mutex_lock(&callback_mutex);
300ed6cb 2060 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
0b4217b3 2061 mutex_unlock(&callback_mutex);
cf417141
MK
2062 scan_for_empty_cpusets(&top_cpuset);
2063 ndoms = generate_sched_domains(&doms, &attr);
2064 cgroup_unlock();
2065
2066 /* Have scheduler rebuild the domains */
2067 partition_sched_domains(ndoms, doms, attr);
2068
3e84050c 2069 return NOTIFY_OK;
4c4d50f7 2070}
4c4d50f7 2071
b1aac8bb 2072#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2073/*
0e1e7c7a 2074 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2075 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2076 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2077 */
f481891f
MX
2078static int cpuset_track_online_nodes(struct notifier_block *self,
2079 unsigned long action, void *arg)
38837fc7 2080{
cf417141 2081 cgroup_lock();
f481891f
MX
2082 switch (action) {
2083 case MEM_ONLINE:
f481891f 2084 case MEM_OFFLINE:
0b4217b3 2085 mutex_lock(&callback_mutex);
f481891f 2086 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
0b4217b3
LZ
2087 mutex_unlock(&callback_mutex);
2088 if (action == MEM_OFFLINE)
2089 scan_for_empty_cpusets(&top_cpuset);
f481891f
MX
2090 break;
2091 default:
2092 break;
2093 }
cf417141 2094 cgroup_unlock();
f481891f 2095 return NOTIFY_OK;
38837fc7
PJ
2096}
2097#endif
2098
1da177e4
LT
2099/**
2100 * cpuset_init_smp - initialize cpus_allowed
2101 *
2102 * Description: Finish top cpuset after cpu, node maps are initialized
2103 **/
2104
2105void __init cpuset_init_smp(void)
2106{
300ed6cb 2107 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
0e1e7c7a 2108 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2109
cf417141 2110 hotcpu_notifier(cpuset_track_online_cpus, 0);
f481891f 2111 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
f90d4118
MX
2112
2113 cpuset_wq = create_singlethread_workqueue("cpuset");
2114 BUG_ON(!cpuset_wq);
1da177e4
LT
2115}
2116
2117/**
1da177e4
LT
2118 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2119 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2120 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2121 *
300ed6cb 2122 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4
LT
2123 * attached to the specified @tsk. Guaranteed to return some non-empty
2124 * subset of cpu_online_map, even if this means going outside the
2125 * tasks cpuset.
2126 **/
2127
6af866af 2128void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2129{
3d3f26a7 2130 mutex_lock(&callback_mutex);
f9a86fcb 2131 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2132 mutex_unlock(&callback_mutex);
470fd646
CW
2133}
2134
2135/**
2136 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2137 * Must be called with callback_mutex held.
470fd646 2138 **/
6af866af 2139void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
470fd646 2140{
909d75a3 2141 task_lock(tsk);
f9a86fcb 2142 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2143 task_unlock(tsk);
1da177e4
LT
2144}
2145
2146void cpuset_init_current_mems_allowed(void)
2147{
f9a86fcb 2148 nodes_setall(current->mems_allowed);
1da177e4
LT
2149}
2150
909d75a3
PJ
2151/**
2152 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2153 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2154 *
2155 * Description: Returns the nodemask_t mems_allowed of the cpuset
2156 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2157 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2158 * tasks cpuset.
2159 **/
2160
2161nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2162{
2163 nodemask_t mask;
2164
3d3f26a7 2165 mutex_lock(&callback_mutex);
909d75a3 2166 task_lock(tsk);
8793d854 2167 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2168 task_unlock(tsk);
3d3f26a7 2169 mutex_unlock(&callback_mutex);
909d75a3
PJ
2170
2171 return mask;
2172}
2173
d9fd8a6d 2174/**
19770b32
MG
2175 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2176 * @nodemask: the nodemask to be checked
d9fd8a6d 2177 *
19770b32 2178 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2179 */
19770b32 2180int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2181{
19770b32 2182 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2183}
2184
9bf2229f 2185/*
78608366
PM
2186 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2187 * mem_hardwall ancestor to the specified cpuset. Call holding
2188 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2189 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2190 */
78608366 2191static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2192{
78608366 2193 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2194 cs = cs->parent;
2195 return cs;
2196}
2197
d9fd8a6d 2198/**
a1bc5a4e
DR
2199 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2200 * @node: is this an allowed node?
02a0e53d 2201 * @gfp_mask: memory allocation flags
d9fd8a6d 2202 *
a1bc5a4e
DR
2203 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2204 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2205 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2206 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2207 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2208 * flag, yes.
9bf2229f
PJ
2209 * Otherwise, no.
2210 *
a1bc5a4e
DR
2211 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2212 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2213 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2214 *
a1bc5a4e
DR
2215 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2216 * cpusets, and never sleeps.
02a0e53d
PJ
2217 *
2218 * The __GFP_THISNODE placement logic is really handled elsewhere,
2219 * by forcibly using a zonelist starting at a specified node, and by
2220 * (in get_page_from_freelist()) refusing to consider the zones for
2221 * any node on the zonelist except the first. By the time any such
2222 * calls get to this routine, we should just shut up and say 'yes'.
2223 *
9bf2229f 2224 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2225 * and do not allow allocations outside the current tasks cpuset
2226 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2227 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2228 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2229 *
02a0e53d
PJ
2230 * Scanning up parent cpusets requires callback_mutex. The
2231 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2232 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2233 * current tasks mems_allowed came up empty on the first pass over
2234 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2235 * cpuset are short of memory, might require taking the callback_mutex
2236 * mutex.
9bf2229f 2237 *
36be57ff 2238 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2239 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2240 * so no allocation on a node outside the cpuset is allowed (unless
2241 * in interrupt, of course).
36be57ff
PJ
2242 *
2243 * The second pass through get_page_from_freelist() doesn't even call
2244 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2245 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2246 * in alloc_flags. That logic and the checks below have the combined
2247 * affect that:
9bf2229f
PJ
2248 * in_interrupt - any node ok (current task context irrelevant)
2249 * GFP_ATOMIC - any node ok
c596d9f3 2250 * TIF_MEMDIE - any node ok
78608366 2251 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2252 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2253 *
2254 * Rule:
a1bc5a4e 2255 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2256 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2257 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2258 */
a1bc5a4e 2259int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2260{
9bf2229f 2261 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2262 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2263
9b819d20 2264 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2265 return 1;
92d1dbd2 2266 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2267 if (node_isset(node, current->mems_allowed))
2268 return 1;
c596d9f3
DR
2269 /*
2270 * Allow tasks that have access to memory reserves because they have
2271 * been OOM killed to get memory anywhere.
2272 */
2273 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2274 return 1;
9bf2229f
PJ
2275 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2276 return 0;
2277
5563e770
BP
2278 if (current->flags & PF_EXITING) /* Let dying task have memory */
2279 return 1;
2280
9bf2229f 2281 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2282 mutex_lock(&callback_mutex);
053199ed 2283
053199ed 2284 task_lock(current);
78608366 2285 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2286 task_unlock(current);
2287
9bf2229f 2288 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2289 mutex_unlock(&callback_mutex);
9bf2229f 2290 return allowed;
1da177e4
LT
2291}
2292
02a0e53d 2293/*
a1bc5a4e
DR
2294 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2295 * @node: is this an allowed node?
02a0e53d
PJ
2296 * @gfp_mask: memory allocation flags
2297 *
a1bc5a4e
DR
2298 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2299 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2300 * yes. If the task has been OOM killed and has access to memory reserves as
2301 * specified by the TIF_MEMDIE flag, yes.
2302 * Otherwise, no.
02a0e53d
PJ
2303 *
2304 * The __GFP_THISNODE placement logic is really handled elsewhere,
2305 * by forcibly using a zonelist starting at a specified node, and by
2306 * (in get_page_from_freelist()) refusing to consider the zones for
2307 * any node on the zonelist except the first. By the time any such
2308 * calls get to this routine, we should just shut up and say 'yes'.
2309 *
a1bc5a4e
DR
2310 * Unlike the cpuset_node_allowed_softwall() variant, above,
2311 * this variant requires that the node be in the current task's
02a0e53d
PJ
2312 * mems_allowed or that we're in interrupt. It does not scan up the
2313 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2314 * It never sleeps.
2315 */
a1bc5a4e 2316int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2317{
02a0e53d
PJ
2318 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2319 return 1;
02a0e53d
PJ
2320 if (node_isset(node, current->mems_allowed))
2321 return 1;
dedf8b79
DW
2322 /*
2323 * Allow tasks that have access to memory reserves because they have
2324 * been OOM killed to get memory anywhere.
2325 */
2326 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2327 return 1;
02a0e53d
PJ
2328 return 0;
2329}
2330
505970b9
PJ
2331/**
2332 * cpuset_lock - lock out any changes to cpuset structures
2333 *
3d3f26a7 2334 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2335 * from being changed while it scans the tasklist looking for a
3d3f26a7 2336 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2337 * cpuset_lock() routine, so the oom code can lock it, before
2338 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2339 * must be taken inside callback_mutex.
505970b9
PJ
2340 */
2341
2342void cpuset_lock(void)
2343{
3d3f26a7 2344 mutex_lock(&callback_mutex);
505970b9
PJ
2345}
2346
2347/**
2348 * cpuset_unlock - release lock on cpuset changes
2349 *
2350 * Undo the lock taken in a previous cpuset_lock() call.
2351 */
2352
2353void cpuset_unlock(void)
2354{
3d3f26a7 2355 mutex_unlock(&callback_mutex);
505970b9
PJ
2356}
2357
825a46af
PJ
2358/**
2359 * cpuset_mem_spread_node() - On which node to begin search for a page
2360 *
2361 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2362 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2363 * and if the memory allocation used cpuset_mem_spread_node()
2364 * to determine on which node to start looking, as it will for
2365 * certain page cache or slab cache pages such as used for file
2366 * system buffers and inode caches, then instead of starting on the
2367 * local node to look for a free page, rather spread the starting
2368 * node around the tasks mems_allowed nodes.
2369 *
2370 * We don't have to worry about the returned node being offline
2371 * because "it can't happen", and even if it did, it would be ok.
2372 *
2373 * The routines calling guarantee_online_mems() are careful to
2374 * only set nodes in task->mems_allowed that are online. So it
2375 * should not be possible for the following code to return an
2376 * offline node. But if it did, that would be ok, as this routine
2377 * is not returning the node where the allocation must be, only
2378 * the node where the search should start. The zonelist passed to
2379 * __alloc_pages() will include all nodes. If the slab allocator
2380 * is passed an offline node, it will fall back to the local node.
2381 * See kmem_cache_alloc_node().
2382 */
2383
2384int cpuset_mem_spread_node(void)
2385{
2386 int node;
2387
2388 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2389 if (node == MAX_NUMNODES)
2390 node = first_node(current->mems_allowed);
2391 current->cpuset_mem_spread_rotor = node;
2392 return node;
2393}
2394EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2395
ef08e3b4 2396/**
bbe373f2
DR
2397 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2398 * @tsk1: pointer to task_struct of some task.
2399 * @tsk2: pointer to task_struct of some other task.
2400 *
2401 * Description: Return true if @tsk1's mems_allowed intersects the
2402 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2403 * one of the task's memory usage might impact the memory available
2404 * to the other.
ef08e3b4
PJ
2405 **/
2406
bbe373f2
DR
2407int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2408 const struct task_struct *tsk2)
ef08e3b4 2409{
bbe373f2 2410 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2411}
2412
75aa1994
DR
2413/**
2414 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2415 * @task: pointer to task_struct of some task.
2416 *
2417 * Description: Prints @task's name, cpuset name, and cached copy of its
2418 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2419 * dereferencing task_cs(task).
2420 */
2421void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2422{
2423 struct dentry *dentry;
2424
2425 dentry = task_cs(tsk)->css.cgroup->dentry;
2426 spin_lock(&cpuset_buffer_lock);
2427 snprintf(cpuset_name, CPUSET_NAME_LEN,
2428 dentry ? (const char *)dentry->d_name.name : "/");
2429 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2430 tsk->mems_allowed);
2431 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2432 tsk->comm, cpuset_name, cpuset_nodelist);
2433 spin_unlock(&cpuset_buffer_lock);
2434}
2435
3e0d98b9
PJ
2436/*
2437 * Collection of memory_pressure is suppressed unless
2438 * this flag is enabled by writing "1" to the special
2439 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2440 */
2441
c5b2aff8 2442int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2443
2444/**
2445 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2446 *
2447 * Keep a running average of the rate of synchronous (direct)
2448 * page reclaim efforts initiated by tasks in each cpuset.
2449 *
2450 * This represents the rate at which some task in the cpuset
2451 * ran low on memory on all nodes it was allowed to use, and
2452 * had to enter the kernels page reclaim code in an effort to
2453 * create more free memory by tossing clean pages or swapping
2454 * or writing dirty pages.
2455 *
2456 * Display to user space in the per-cpuset read-only file
2457 * "memory_pressure". Value displayed is an integer
2458 * representing the recent rate of entry into the synchronous
2459 * (direct) page reclaim by any task attached to the cpuset.
2460 **/
2461
2462void __cpuset_memory_pressure_bump(void)
2463{
3e0d98b9 2464 task_lock(current);
8793d854 2465 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2466 task_unlock(current);
2467}
2468
8793d854 2469#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2470/*
2471 * proc_cpuset_show()
2472 * - Print tasks cpuset path into seq_file.
2473 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2474 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2475 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2476 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2477 * anyway.
1da177e4 2478 */
029190c5 2479static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2480{
13b41b09 2481 struct pid *pid;
1da177e4
LT
2482 struct task_struct *tsk;
2483 char *buf;
8793d854 2484 struct cgroup_subsys_state *css;
99f89551 2485 int retval;
1da177e4 2486
99f89551 2487 retval = -ENOMEM;
1da177e4
LT
2488 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2489 if (!buf)
99f89551
EB
2490 goto out;
2491
2492 retval = -ESRCH;
13b41b09
EB
2493 pid = m->private;
2494 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2495 if (!tsk)
2496 goto out_free;
1da177e4 2497
99f89551 2498 retval = -EINVAL;
8793d854
PM
2499 cgroup_lock();
2500 css = task_subsys_state(tsk, cpuset_subsys_id);
2501 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2502 if (retval < 0)
99f89551 2503 goto out_unlock;
1da177e4
LT
2504 seq_puts(m, buf);
2505 seq_putc(m, '\n');
99f89551 2506out_unlock:
8793d854 2507 cgroup_unlock();
99f89551
EB
2508 put_task_struct(tsk);
2509out_free:
1da177e4 2510 kfree(buf);
99f89551 2511out:
1da177e4
LT
2512 return retval;
2513}
2514
2515static int cpuset_open(struct inode *inode, struct file *file)
2516{
13b41b09
EB
2517 struct pid *pid = PROC_I(inode)->pid;
2518 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2519}
2520
9a32144e 2521const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2522 .open = cpuset_open,
2523 .read = seq_read,
2524 .llseek = seq_lseek,
2525 .release = single_release,
2526};
8793d854 2527#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2528
2529/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2530void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2531{
2532 seq_printf(m, "Cpus_allowed:\t");
30e8e136 2533 seq_cpumask(m, &task->cpus_allowed);
df5f8314 2534 seq_printf(m, "\n");
39106dcf 2535 seq_printf(m, "Cpus_allowed_list:\t");
30e8e136 2536 seq_cpumask_list(m, &task->cpus_allowed);
39106dcf 2537 seq_printf(m, "\n");
df5f8314 2538 seq_printf(m, "Mems_allowed:\t");
30e8e136 2539 seq_nodemask(m, &task->mems_allowed);
df5f8314 2540 seq_printf(m, "\n");
39106dcf 2541 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2542 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2543 seq_printf(m, "\n");
1da177e4 2544}