]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/cgroup.c
CGroup API files: make CGROUP_DEBUG default to off
[net-next-2.6.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
26#include <linux/errno.h>
27#include <linux/fs.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/mutex.h>
32#include <linux/mount.h>
33#include <linux/pagemap.h>
a424316c 34#include <linux/proc_fs.h>
ddbcc7e8
PM
35#include <linux/rcupdate.h>
36#include <linux/sched.h>
817929ec 37#include <linux/backing-dev.h>
ddbcc7e8
PM
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/magic.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
bbcb81d0 43#include <linux/sort.h>
81a6a5cd 44#include <linux/kmod.h>
846c7bb0
BS
45#include <linux/delayacct.h>
46#include <linux/cgroupstats.h>
47
ddbcc7e8
PM
48#include <asm/atomic.h>
49
81a6a5cd
PM
50static DEFINE_MUTEX(cgroup_mutex);
51
ddbcc7e8
PM
52/* Generate an array of cgroup subsystem pointers */
53#define SUBSYS(_x) &_x ## _subsys,
54
55static struct cgroup_subsys *subsys[] = {
56#include <linux/cgroup_subsys.h>
57};
58
59/*
60 * A cgroupfs_root represents the root of a cgroup hierarchy,
61 * and may be associated with a superblock to form an active
62 * hierarchy
63 */
64struct cgroupfs_root {
65 struct super_block *sb;
66
67 /*
68 * The bitmask of subsystems intended to be attached to this
69 * hierarchy
70 */
71 unsigned long subsys_bits;
72
73 /* The bitmask of subsystems currently attached to this hierarchy */
74 unsigned long actual_subsys_bits;
75
76 /* A list running through the attached subsystems */
77 struct list_head subsys_list;
78
79 /* The root cgroup for this hierarchy */
80 struct cgroup top_cgroup;
81
82 /* Tracks how many cgroups are currently defined in hierarchy.*/
83 int number_of_cgroups;
84
85 /* A list running through the mounted hierarchies */
86 struct list_head root_list;
87
88 /* Hierarchy-specific flags */
89 unsigned long flags;
81a6a5cd
PM
90
91 /* The path to use for release notifications. No locking
92 * between setting and use - so if userspace updates this
93 * while child cgroups exist, you could miss a
94 * notification. We ensure that it's always a valid
95 * NUL-terminated string */
96 char release_agent_path[PATH_MAX];
ddbcc7e8
PM
97};
98
99
100/*
101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102 * subsystems that are otherwise unattached - it never has more than a
103 * single cgroup, and all tasks are part of that cgroup.
104 */
105static struct cgroupfs_root rootnode;
106
107/* The list of hierarchy roots */
108
109static LIST_HEAD(roots);
817929ec 110static int root_count;
ddbcc7e8
PM
111
112/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113#define dummytop (&rootnode.top_cgroup)
114
115/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
116 * check for fork/exit handlers to call. This avoids us having to do
117 * extra work in the fork/exit path if none of the subsystems need to
118 * be called.
ddbcc7e8
PM
119 */
120static int need_forkexit_callback;
121
ddbcc7e8 122/* convenient tests for these bits */
bd89aabc 123inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 124{
bd89aabc 125 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
126}
127
128/* bits in struct cgroupfs_root flags field */
129enum {
130 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
131};
132
e9685a03 133static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
134{
135 const int bits =
bd89aabc
PM
136 (1 << CGRP_RELEASABLE) |
137 (1 << CGRP_NOTIFY_ON_RELEASE);
138 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
139}
140
e9685a03 141static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 142{
bd89aabc 143 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
144}
145
ddbcc7e8
PM
146/*
147 * for_each_subsys() allows you to iterate on each subsystem attached to
148 * an active hierarchy
149 */
150#define for_each_subsys(_root, _ss) \
151list_for_each_entry(_ss, &_root->subsys_list, sibling)
152
153/* for_each_root() allows you to iterate across the active hierarchies */
154#define for_each_root(_root) \
155list_for_each_entry(_root, &roots, root_list)
156
81a6a5cd
PM
157/* the list of cgroups eligible for automatic release. Protected by
158 * release_list_lock */
159static LIST_HEAD(release_list);
160static DEFINE_SPINLOCK(release_list_lock);
161static void cgroup_release_agent(struct work_struct *work);
162static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 163static void check_for_release(struct cgroup *cgrp);
81a6a5cd 164
817929ec
PM
165/* Link structure for associating css_set objects with cgroups */
166struct cg_cgroup_link {
167 /*
168 * List running through cg_cgroup_links associated with a
169 * cgroup, anchored on cgroup->css_sets
170 */
bd89aabc 171 struct list_head cgrp_link_list;
817929ec
PM
172 /*
173 * List running through cg_cgroup_links pointing at a
174 * single css_set object, anchored on css_set->cg_links
175 */
176 struct list_head cg_link_list;
177 struct css_set *cg;
178};
179
180/* The default css_set - used by init and its children prior to any
181 * hierarchies being mounted. It contains a pointer to the root state
182 * for each subsystem. Also used to anchor the list of css_sets. Not
183 * reference-counted, to improve performance when child cgroups
184 * haven't been created.
185 */
186
187static struct css_set init_css_set;
188static struct cg_cgroup_link init_css_set_link;
189
190/* css_set_lock protects the list of css_set objects, and the
191 * chain of tasks off each css_set. Nests outside task->alloc_lock
192 * due to cgroup_iter_start() */
193static DEFINE_RWLOCK(css_set_lock);
194static int css_set_count;
195
196/* We don't maintain the lists running through each css_set to its
197 * task until after the first call to cgroup_iter_start(). This
198 * reduces the fork()/exit() overhead for people who have cgroups
199 * compiled into their kernel but not actually in use */
200static int use_task_css_set_links;
201
202/* When we create or destroy a css_set, the operation simply
203 * takes/releases a reference count on all the cgroups referenced
204 * by subsystems in this css_set. This can end up multiple-counting
205 * some cgroups, but that's OK - the ref-count is just a
206 * busy/not-busy indicator; ensuring that we only count each cgroup
207 * once would require taking a global lock to ensure that no
b4f48b63
PM
208 * subsystems moved between hierarchies while we were doing so.
209 *
210 * Possible TODO: decide at boot time based on the number of
211 * registered subsystems and the number of CPUs or NUMA nodes whether
212 * it's better for performance to ref-count every subsystem, or to
213 * take a global lock and only add one ref count to each hierarchy.
214 */
817929ec
PM
215
216/*
217 * unlink a css_set from the list and free it
218 */
81a6a5cd 219static void unlink_css_set(struct css_set *cg)
b4f48b63 220{
817929ec
PM
221 write_lock(&css_set_lock);
222 list_del(&cg->list);
223 css_set_count--;
224 while (!list_empty(&cg->cg_links)) {
225 struct cg_cgroup_link *link;
226 link = list_entry(cg->cg_links.next,
227 struct cg_cgroup_link, cg_link_list);
228 list_del(&link->cg_link_list);
bd89aabc 229 list_del(&link->cgrp_link_list);
817929ec
PM
230 kfree(link);
231 }
232 write_unlock(&css_set_lock);
81a6a5cd
PM
233}
234
235static void __release_css_set(struct kref *k, int taskexit)
236{
237 int i;
238 struct css_set *cg = container_of(k, struct css_set, ref);
239
240 unlink_css_set(cg);
241
242 rcu_read_lock();
243 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc
PM
244 struct cgroup *cgrp = cg->subsys[i]->cgroup;
245 if (atomic_dec_and_test(&cgrp->count) &&
246 notify_on_release(cgrp)) {
81a6a5cd 247 if (taskexit)
bd89aabc
PM
248 set_bit(CGRP_RELEASABLE, &cgrp->flags);
249 check_for_release(cgrp);
81a6a5cd
PM
250 }
251 }
252 rcu_read_unlock();
817929ec 253 kfree(cg);
b4f48b63
PM
254}
255
81a6a5cd
PM
256static void release_css_set(struct kref *k)
257{
258 __release_css_set(k, 0);
259}
260
261static void release_css_set_taskexit(struct kref *k)
262{
263 __release_css_set(k, 1);
264}
265
817929ec
PM
266/*
267 * refcounted get/put for css_set objects
268 */
269static inline void get_css_set(struct css_set *cg)
270{
271 kref_get(&cg->ref);
272}
273
274static inline void put_css_set(struct css_set *cg)
275{
276 kref_put(&cg->ref, release_css_set);
277}
278
81a6a5cd
PM
279static inline void put_css_set_taskexit(struct css_set *cg)
280{
281 kref_put(&cg->ref, release_css_set_taskexit);
282}
283
817929ec
PM
284/*
285 * find_existing_css_set() is a helper for
286 * find_css_set(), and checks to see whether an existing
287 * css_set is suitable. This currently walks a linked-list for
288 * simplicity; a later patch will use a hash table for better
289 * performance
290 *
291 * oldcg: the cgroup group that we're using before the cgroup
292 * transition
293 *
bd89aabc 294 * cgrp: the cgroup that we're moving into
817929ec
PM
295 *
296 * template: location in which to build the desired set of subsystem
297 * state objects for the new cgroup group
298 */
817929ec
PM
299static struct css_set *find_existing_css_set(
300 struct css_set *oldcg,
bd89aabc 301 struct cgroup *cgrp,
817929ec 302 struct cgroup_subsys_state *template[])
b4f48b63
PM
303{
304 int i;
bd89aabc 305 struct cgroupfs_root *root = cgrp->root;
817929ec
PM
306 struct list_head *l = &init_css_set.list;
307
308 /* Built the set of subsystem state objects that we want to
309 * see in the new css_set */
310 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 311 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
312 /* Subsystem is in this hierarchy. So we want
313 * the subsystem state from the new
314 * cgroup */
bd89aabc 315 template[i] = cgrp->subsys[i];
817929ec
PM
316 } else {
317 /* Subsystem is not in this hierarchy, so we
318 * don't want to change the subsystem state */
319 template[i] = oldcg->subsys[i];
320 }
321 }
322
323 /* Look through existing cgroup groups to find one to reuse */
324 do {
325 struct css_set *cg =
326 list_entry(l, struct css_set, list);
327
328 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
329 /* All subsystems matched */
330 return cg;
331 }
332 /* Try the next cgroup group */
333 l = l->next;
334 } while (l != &init_css_set.list);
335
336 /* No existing cgroup group matched */
337 return NULL;
338}
339
340/*
341 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 342 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
343 * success or a negative error
344 */
817929ec
PM
345static int allocate_cg_links(int count, struct list_head *tmp)
346{
347 struct cg_cgroup_link *link;
348 int i;
349 INIT_LIST_HEAD(tmp);
350 for (i = 0; i < count; i++) {
351 link = kmalloc(sizeof(*link), GFP_KERNEL);
352 if (!link) {
353 while (!list_empty(tmp)) {
354 link = list_entry(tmp->next,
355 struct cg_cgroup_link,
bd89aabc
PM
356 cgrp_link_list);
357 list_del(&link->cgrp_link_list);
817929ec
PM
358 kfree(link);
359 }
360 return -ENOMEM;
361 }
bd89aabc 362 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
363 }
364 return 0;
365}
366
367static void free_cg_links(struct list_head *tmp)
368{
369 while (!list_empty(tmp)) {
370 struct cg_cgroup_link *link;
371 link = list_entry(tmp->next,
372 struct cg_cgroup_link,
bd89aabc
PM
373 cgrp_link_list);
374 list_del(&link->cgrp_link_list);
817929ec
PM
375 kfree(link);
376 }
377}
378
379/*
380 * find_css_set() takes an existing cgroup group and a
381 * cgroup object, and returns a css_set object that's
382 * equivalent to the old group, but with the given cgroup
383 * substituted into the appropriate hierarchy. Must be called with
384 * cgroup_mutex held
385 */
817929ec 386static struct css_set *find_css_set(
bd89aabc 387 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
388{
389 struct css_set *res;
390 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
391 int i;
392
393 struct list_head tmp_cg_links;
394 struct cg_cgroup_link *link;
395
396 /* First see if we already have a cgroup group that matches
397 * the desired set */
398 write_lock(&css_set_lock);
bd89aabc 399 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
400 if (res)
401 get_css_set(res);
402 write_unlock(&css_set_lock);
403
404 if (res)
405 return res;
406
407 res = kmalloc(sizeof(*res), GFP_KERNEL);
408 if (!res)
409 return NULL;
410
411 /* Allocate all the cg_cgroup_link objects that we'll need */
412 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
413 kfree(res);
414 return NULL;
415 }
416
417 kref_init(&res->ref);
418 INIT_LIST_HEAD(&res->cg_links);
419 INIT_LIST_HEAD(&res->tasks);
420
421 /* Copy the set of subsystem state objects generated in
422 * find_existing_css_set() */
423 memcpy(res->subsys, template, sizeof(res->subsys));
424
425 write_lock(&css_set_lock);
426 /* Add reference counts and links from the new css_set. */
427 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc 428 struct cgroup *cgrp = res->subsys[i]->cgroup;
817929ec 429 struct cgroup_subsys *ss = subsys[i];
bd89aabc 430 atomic_inc(&cgrp->count);
817929ec
PM
431 /*
432 * We want to add a link once per cgroup, so we
433 * only do it for the first subsystem in each
434 * hierarchy
435 */
436 if (ss->root->subsys_list.next == &ss->sibling) {
437 BUG_ON(list_empty(&tmp_cg_links));
438 link = list_entry(tmp_cg_links.next,
439 struct cg_cgroup_link,
bd89aabc
PM
440 cgrp_link_list);
441 list_del(&link->cgrp_link_list);
442 list_add(&link->cgrp_link_list, &cgrp->css_sets);
817929ec
PM
443 link->cg = res;
444 list_add(&link->cg_link_list, &res->cg_links);
445 }
446 }
447 if (list_empty(&rootnode.subsys_list)) {
448 link = list_entry(tmp_cg_links.next,
449 struct cg_cgroup_link,
bd89aabc
PM
450 cgrp_link_list);
451 list_del(&link->cgrp_link_list);
452 list_add(&link->cgrp_link_list, &dummytop->css_sets);
817929ec
PM
453 link->cg = res;
454 list_add(&link->cg_link_list, &res->cg_links);
455 }
456
457 BUG_ON(!list_empty(&tmp_cg_links));
458
459 /* Link this cgroup group into the list */
460 list_add(&res->list, &init_css_set.list);
461 css_set_count++;
817929ec
PM
462 write_unlock(&css_set_lock);
463
464 return res;
b4f48b63
PM
465}
466
ddbcc7e8
PM
467/*
468 * There is one global cgroup mutex. We also require taking
469 * task_lock() when dereferencing a task's cgroup subsys pointers.
470 * See "The task_lock() exception", at the end of this comment.
471 *
472 * A task must hold cgroup_mutex to modify cgroups.
473 *
474 * Any task can increment and decrement the count field without lock.
475 * So in general, code holding cgroup_mutex can't rely on the count
476 * field not changing. However, if the count goes to zero, then only
956db3ca 477 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
478 * means that no tasks are currently attached, therefore there is no
479 * way a task attached to that cgroup can fork (the other way to
480 * increment the count). So code holding cgroup_mutex can safely
481 * assume that if the count is zero, it will stay zero. Similarly, if
482 * a task holds cgroup_mutex on a cgroup with zero count, it
483 * knows that the cgroup won't be removed, as cgroup_rmdir()
484 * needs that mutex.
485 *
486 * The cgroup_common_file_write handler for operations that modify
487 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
488 * single threading all such cgroup modifications across the system.
489 *
490 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
491 * (usually) take cgroup_mutex. These are the two most performance
492 * critical pieces of code here. The exception occurs on cgroup_exit(),
493 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
494 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
495 * to the release agent with the name of the cgroup (path relative to
496 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
497 *
498 * A cgroup can only be deleted if both its 'count' of using tasks
499 * is zero, and its list of 'children' cgroups is empty. Since all
500 * tasks in the system use _some_ cgroup, and since there is always at
501 * least one task in the system (init, pid == 1), therefore, top_cgroup
502 * always has either children cgroups and/or using tasks. So we don't
503 * need a special hack to ensure that top_cgroup cannot be deleted.
504 *
505 * The task_lock() exception
506 *
507 * The need for this exception arises from the action of
956db3ca 508 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 509 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
510 * several performance critical places that need to reference
511 * task->cgroup without the expense of grabbing a system global
512 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 513 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
514 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
515 * the task_struct routinely used for such matters.
516 *
517 * P.S. One more locking exception. RCU is used to guard the
956db3ca 518 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
519 */
520
ddbcc7e8
PM
521/**
522 * cgroup_lock - lock out any changes to cgroup structures
523 *
524 */
ddbcc7e8
PM
525void cgroup_lock(void)
526{
527 mutex_lock(&cgroup_mutex);
528}
529
530/**
531 * cgroup_unlock - release lock on cgroup changes
532 *
533 * Undo the lock taken in a previous cgroup_lock() call.
534 */
ddbcc7e8
PM
535void cgroup_unlock(void)
536{
537 mutex_unlock(&cgroup_mutex);
538}
539
540/*
541 * A couple of forward declarations required, due to cyclic reference loop:
542 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
543 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
544 * -> cgroup_mkdir.
545 */
546
547static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
548static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 549static int cgroup_populate_dir(struct cgroup *cgrp);
ddbcc7e8 550static struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
551static struct file_operations proc_cgroupstats_operations;
552
553static struct backing_dev_info cgroup_backing_dev_info = {
554 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
555};
ddbcc7e8
PM
556
557static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
558{
559 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
560
561 if (inode) {
562 inode->i_mode = mode;
563 inode->i_uid = current->fsuid;
564 inode->i_gid = current->fsgid;
565 inode->i_blocks = 0;
566 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
567 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
568 }
569 return inode;
570}
571
4fca88c8
KH
572/*
573 * Call subsys's pre_destroy handler.
574 * This is called before css refcnt check.
575 */
4fca88c8
KH
576static void cgroup_call_pre_destroy(struct cgroup *cgrp)
577{
578 struct cgroup_subsys *ss;
579 for_each_subsys(cgrp->root, ss)
580 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
581 ss->pre_destroy(ss, cgrp);
582 return;
583}
584
ddbcc7e8
PM
585static void cgroup_diput(struct dentry *dentry, struct inode *inode)
586{
587 /* is dentry a directory ? if so, kfree() associated cgroup */
588 if (S_ISDIR(inode->i_mode)) {
bd89aabc 589 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 590 struct cgroup_subsys *ss;
bd89aabc 591 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
592 /* It's possible for external users to be holding css
593 * reference counts on a cgroup; css_put() needs to
594 * be able to access the cgroup after decrementing
595 * the reference count in order to know if it needs to
596 * queue the cgroup to be handled by the release
597 * agent */
598 synchronize_rcu();
8dc4f3e1
PM
599
600 mutex_lock(&cgroup_mutex);
601 /*
602 * Release the subsystem state objects.
603 */
604 for_each_subsys(cgrp->root, ss) {
605 if (cgrp->subsys[ss->subsys_id])
606 ss->destroy(ss, cgrp);
607 }
608
609 cgrp->root->number_of_cgroups--;
610 mutex_unlock(&cgroup_mutex);
611
612 /* Drop the active superblock reference that we took when we
613 * created the cgroup */
614 deactivate_super(cgrp->root->sb);
615
bd89aabc 616 kfree(cgrp);
ddbcc7e8
PM
617 }
618 iput(inode);
619}
620
621static void remove_dir(struct dentry *d)
622{
623 struct dentry *parent = dget(d->d_parent);
624
625 d_delete(d);
626 simple_rmdir(parent->d_inode, d);
627 dput(parent);
628}
629
630static void cgroup_clear_directory(struct dentry *dentry)
631{
632 struct list_head *node;
633
634 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
635 spin_lock(&dcache_lock);
636 node = dentry->d_subdirs.next;
637 while (node != &dentry->d_subdirs) {
638 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
639 list_del_init(node);
640 if (d->d_inode) {
641 /* This should never be called on a cgroup
642 * directory with child cgroups */
643 BUG_ON(d->d_inode->i_mode & S_IFDIR);
644 d = dget_locked(d);
645 spin_unlock(&dcache_lock);
646 d_delete(d);
647 simple_unlink(dentry->d_inode, d);
648 dput(d);
649 spin_lock(&dcache_lock);
650 }
651 node = dentry->d_subdirs.next;
652 }
653 spin_unlock(&dcache_lock);
654}
655
656/*
657 * NOTE : the dentry must have been dget()'ed
658 */
659static void cgroup_d_remove_dir(struct dentry *dentry)
660{
661 cgroup_clear_directory(dentry);
662
663 spin_lock(&dcache_lock);
664 list_del_init(&dentry->d_u.d_child);
665 spin_unlock(&dcache_lock);
666 remove_dir(dentry);
667}
668
669static int rebind_subsystems(struct cgroupfs_root *root,
670 unsigned long final_bits)
671{
672 unsigned long added_bits, removed_bits;
bd89aabc 673 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
674 int i;
675
676 removed_bits = root->actual_subsys_bits & ~final_bits;
677 added_bits = final_bits & ~root->actual_subsys_bits;
678 /* Check that any added subsystems are currently free */
679 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 680 unsigned long bit = 1UL << i;
ddbcc7e8
PM
681 struct cgroup_subsys *ss = subsys[i];
682 if (!(bit & added_bits))
683 continue;
684 if (ss->root != &rootnode) {
685 /* Subsystem isn't free */
686 return -EBUSY;
687 }
688 }
689
690 /* Currently we don't handle adding/removing subsystems when
691 * any child cgroups exist. This is theoretically supportable
692 * but involves complex error handling, so it's being left until
693 * later */
bd89aabc 694 if (!list_empty(&cgrp->children))
ddbcc7e8
PM
695 return -EBUSY;
696
697 /* Process each subsystem */
698 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
699 struct cgroup_subsys *ss = subsys[i];
700 unsigned long bit = 1UL << i;
701 if (bit & added_bits) {
702 /* We're binding this subsystem to this hierarchy */
bd89aabc 703 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
704 BUG_ON(!dummytop->subsys[i]);
705 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
706 cgrp->subsys[i] = dummytop->subsys[i];
707 cgrp->subsys[i]->cgroup = cgrp;
ddbcc7e8
PM
708 list_add(&ss->sibling, &root->subsys_list);
709 rcu_assign_pointer(ss->root, root);
710 if (ss->bind)
bd89aabc 711 ss->bind(ss, cgrp);
ddbcc7e8
PM
712
713 } else if (bit & removed_bits) {
714 /* We're removing this subsystem */
bd89aabc
PM
715 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
716 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8
PM
717 if (ss->bind)
718 ss->bind(ss, dummytop);
719 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 720 cgrp->subsys[i] = NULL;
ddbcc7e8
PM
721 rcu_assign_pointer(subsys[i]->root, &rootnode);
722 list_del(&ss->sibling);
723 } else if (bit & final_bits) {
724 /* Subsystem state should already exist */
bd89aabc 725 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
726 } else {
727 /* Subsystem state shouldn't exist */
bd89aabc 728 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
729 }
730 }
731 root->subsys_bits = root->actual_subsys_bits = final_bits;
732 synchronize_rcu();
733
734 return 0;
735}
736
737static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
738{
739 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
740 struct cgroup_subsys *ss;
741
742 mutex_lock(&cgroup_mutex);
743 for_each_subsys(root, ss)
744 seq_printf(seq, ",%s", ss->name);
745 if (test_bit(ROOT_NOPREFIX, &root->flags))
746 seq_puts(seq, ",noprefix");
81a6a5cd
PM
747 if (strlen(root->release_agent_path))
748 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
ddbcc7e8
PM
749 mutex_unlock(&cgroup_mutex);
750 return 0;
751}
752
753struct cgroup_sb_opts {
754 unsigned long subsys_bits;
755 unsigned long flags;
81a6a5cd 756 char *release_agent;
ddbcc7e8
PM
757};
758
759/* Convert a hierarchy specifier into a bitmask of subsystems and
760 * flags. */
761static int parse_cgroupfs_options(char *data,
762 struct cgroup_sb_opts *opts)
763{
764 char *token, *o = data ?: "all";
765
766 opts->subsys_bits = 0;
767 opts->flags = 0;
81a6a5cd 768 opts->release_agent = NULL;
ddbcc7e8
PM
769
770 while ((token = strsep(&o, ",")) != NULL) {
771 if (!*token)
772 return -EINVAL;
773 if (!strcmp(token, "all")) {
8bab8dde
PM
774 /* Add all non-disabled subsystems */
775 int i;
776 opts->subsys_bits = 0;
777 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
778 struct cgroup_subsys *ss = subsys[i];
779 if (!ss->disabled)
780 opts->subsys_bits |= 1ul << i;
781 }
ddbcc7e8
PM
782 } else if (!strcmp(token, "noprefix")) {
783 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
784 } else if (!strncmp(token, "release_agent=", 14)) {
785 /* Specifying two release agents is forbidden */
786 if (opts->release_agent)
787 return -EINVAL;
788 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
789 if (!opts->release_agent)
790 return -ENOMEM;
791 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
792 opts->release_agent[PATH_MAX - 1] = 0;
ddbcc7e8
PM
793 } else {
794 struct cgroup_subsys *ss;
795 int i;
796 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
797 ss = subsys[i];
798 if (!strcmp(token, ss->name)) {
8bab8dde
PM
799 if (!ss->disabled)
800 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
801 break;
802 }
803 }
804 if (i == CGROUP_SUBSYS_COUNT)
805 return -ENOENT;
806 }
807 }
808
809 /* We can't have an empty hierarchy */
810 if (!opts->subsys_bits)
811 return -EINVAL;
812
813 return 0;
814}
815
816static int cgroup_remount(struct super_block *sb, int *flags, char *data)
817{
818 int ret = 0;
819 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 820 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
821 struct cgroup_sb_opts opts;
822
bd89aabc 823 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
824 mutex_lock(&cgroup_mutex);
825
826 /* See what subsystems are wanted */
827 ret = parse_cgroupfs_options(data, &opts);
828 if (ret)
829 goto out_unlock;
830
831 /* Don't allow flags to change at remount */
832 if (opts.flags != root->flags) {
833 ret = -EINVAL;
834 goto out_unlock;
835 }
836
837 ret = rebind_subsystems(root, opts.subsys_bits);
838
839 /* (re)populate subsystem files */
840 if (!ret)
bd89aabc 841 cgroup_populate_dir(cgrp);
ddbcc7e8 842
81a6a5cd
PM
843 if (opts.release_agent)
844 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 845 out_unlock:
81a6a5cd
PM
846 if (opts.release_agent)
847 kfree(opts.release_agent);
ddbcc7e8 848 mutex_unlock(&cgroup_mutex);
bd89aabc 849 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
850 return ret;
851}
852
853static struct super_operations cgroup_ops = {
854 .statfs = simple_statfs,
855 .drop_inode = generic_delete_inode,
856 .show_options = cgroup_show_options,
857 .remount_fs = cgroup_remount,
858};
859
860static void init_cgroup_root(struct cgroupfs_root *root)
861{
bd89aabc 862 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
863 INIT_LIST_HEAD(&root->subsys_list);
864 INIT_LIST_HEAD(&root->root_list);
865 root->number_of_cgroups = 1;
bd89aabc
PM
866 cgrp->root = root;
867 cgrp->top_cgroup = cgrp;
868 INIT_LIST_HEAD(&cgrp->sibling);
869 INIT_LIST_HEAD(&cgrp->children);
870 INIT_LIST_HEAD(&cgrp->css_sets);
871 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8
PM
872}
873
874static int cgroup_test_super(struct super_block *sb, void *data)
875{
876 struct cgroupfs_root *new = data;
877 struct cgroupfs_root *root = sb->s_fs_info;
878
879 /* First check subsystems */
880 if (new->subsys_bits != root->subsys_bits)
881 return 0;
882
883 /* Next check flags */
884 if (new->flags != root->flags)
885 return 0;
886
887 return 1;
888}
889
890static int cgroup_set_super(struct super_block *sb, void *data)
891{
892 int ret;
893 struct cgroupfs_root *root = data;
894
895 ret = set_anon_super(sb, NULL);
896 if (ret)
897 return ret;
898
899 sb->s_fs_info = root;
900 root->sb = sb;
901
902 sb->s_blocksize = PAGE_CACHE_SIZE;
903 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
904 sb->s_magic = CGROUP_SUPER_MAGIC;
905 sb->s_op = &cgroup_ops;
906
907 return 0;
908}
909
910static int cgroup_get_rootdir(struct super_block *sb)
911{
912 struct inode *inode =
913 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
914 struct dentry *dentry;
915
916 if (!inode)
917 return -ENOMEM;
918
ddbcc7e8
PM
919 inode->i_fop = &simple_dir_operations;
920 inode->i_op = &cgroup_dir_inode_operations;
921 /* directories start off with i_nlink == 2 (for "." entry) */
922 inc_nlink(inode);
923 dentry = d_alloc_root(inode);
924 if (!dentry) {
925 iput(inode);
926 return -ENOMEM;
927 }
928 sb->s_root = dentry;
929 return 0;
930}
931
932static int cgroup_get_sb(struct file_system_type *fs_type,
933 int flags, const char *unused_dev_name,
934 void *data, struct vfsmount *mnt)
935{
936 struct cgroup_sb_opts opts;
937 int ret = 0;
938 struct super_block *sb;
939 struct cgroupfs_root *root;
817929ec
PM
940 struct list_head tmp_cg_links, *l;
941 INIT_LIST_HEAD(&tmp_cg_links);
ddbcc7e8
PM
942
943 /* First find the desired set of subsystems */
944 ret = parse_cgroupfs_options(data, &opts);
81a6a5cd
PM
945 if (ret) {
946 if (opts.release_agent)
947 kfree(opts.release_agent);
ddbcc7e8 948 return ret;
81a6a5cd 949 }
ddbcc7e8
PM
950
951 root = kzalloc(sizeof(*root), GFP_KERNEL);
f7770738
LZ
952 if (!root) {
953 if (opts.release_agent)
954 kfree(opts.release_agent);
ddbcc7e8 955 return -ENOMEM;
f7770738 956 }
ddbcc7e8
PM
957
958 init_cgroup_root(root);
959 root->subsys_bits = opts.subsys_bits;
960 root->flags = opts.flags;
81a6a5cd
PM
961 if (opts.release_agent) {
962 strcpy(root->release_agent_path, opts.release_agent);
963 kfree(opts.release_agent);
964 }
ddbcc7e8
PM
965
966 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
967
968 if (IS_ERR(sb)) {
969 kfree(root);
970 return PTR_ERR(sb);
971 }
972
973 if (sb->s_fs_info != root) {
974 /* Reusing an existing superblock */
975 BUG_ON(sb->s_root == NULL);
976 kfree(root);
977 root = NULL;
978 } else {
979 /* New superblock */
bd89aabc 980 struct cgroup *cgrp = &root->top_cgroup;
817929ec 981 struct inode *inode;
ddbcc7e8
PM
982
983 BUG_ON(sb->s_root != NULL);
984
985 ret = cgroup_get_rootdir(sb);
986 if (ret)
987 goto drop_new_super;
817929ec 988 inode = sb->s_root->d_inode;
ddbcc7e8 989
817929ec 990 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
991 mutex_lock(&cgroup_mutex);
992
817929ec
PM
993 /*
994 * We're accessing css_set_count without locking
995 * css_set_lock here, but that's OK - it can only be
996 * increased by someone holding cgroup_lock, and
997 * that's us. The worst that can happen is that we
998 * have some link structures left over
999 */
1000 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1001 if (ret) {
1002 mutex_unlock(&cgroup_mutex);
1003 mutex_unlock(&inode->i_mutex);
1004 goto drop_new_super;
1005 }
1006
ddbcc7e8
PM
1007 ret = rebind_subsystems(root, root->subsys_bits);
1008 if (ret == -EBUSY) {
1009 mutex_unlock(&cgroup_mutex);
817929ec 1010 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1011 goto drop_new_super;
1012 }
1013
1014 /* EBUSY should be the only error here */
1015 BUG_ON(ret);
1016
1017 list_add(&root->root_list, &roots);
817929ec 1018 root_count++;
ddbcc7e8
PM
1019
1020 sb->s_root->d_fsdata = &root->top_cgroup;
1021 root->top_cgroup.dentry = sb->s_root;
1022
817929ec
PM
1023 /* Link the top cgroup in this hierarchy into all
1024 * the css_set objects */
1025 write_lock(&css_set_lock);
1026 l = &init_css_set.list;
1027 do {
1028 struct css_set *cg;
1029 struct cg_cgroup_link *link;
1030 cg = list_entry(l, struct css_set, list);
1031 BUG_ON(list_empty(&tmp_cg_links));
1032 link = list_entry(tmp_cg_links.next,
1033 struct cg_cgroup_link,
bd89aabc
PM
1034 cgrp_link_list);
1035 list_del(&link->cgrp_link_list);
817929ec 1036 link->cg = cg;
bd89aabc 1037 list_add(&link->cgrp_link_list,
817929ec
PM
1038 &root->top_cgroup.css_sets);
1039 list_add(&link->cg_link_list, &cg->cg_links);
1040 l = l->next;
1041 } while (l != &init_css_set.list);
1042 write_unlock(&css_set_lock);
1043
1044 free_cg_links(&tmp_cg_links);
1045
bd89aabc
PM
1046 BUG_ON(!list_empty(&cgrp->sibling));
1047 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1048 BUG_ON(root->number_of_cgroups != 1);
1049
bd89aabc 1050 cgroup_populate_dir(cgrp);
817929ec 1051 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1052 mutex_unlock(&cgroup_mutex);
1053 }
1054
1055 return simple_set_mnt(mnt, sb);
1056
1057 drop_new_super:
1058 up_write(&sb->s_umount);
1059 deactivate_super(sb);
817929ec 1060 free_cg_links(&tmp_cg_links);
ddbcc7e8
PM
1061 return ret;
1062}
1063
1064static void cgroup_kill_sb(struct super_block *sb) {
1065 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1066 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1067 int ret;
1068
1069 BUG_ON(!root);
1070
1071 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1072 BUG_ON(!list_empty(&cgrp->children));
1073 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1074
1075 mutex_lock(&cgroup_mutex);
1076
1077 /* Rebind all subsystems back to the default hierarchy */
1078 ret = rebind_subsystems(root, 0);
1079 /* Shouldn't be able to fail ... */
1080 BUG_ON(ret);
1081
817929ec
PM
1082 /*
1083 * Release all the links from css_sets to this hierarchy's
1084 * root cgroup
1085 */
1086 write_lock(&css_set_lock);
bd89aabc 1087 while (!list_empty(&cgrp->css_sets)) {
817929ec 1088 struct cg_cgroup_link *link;
bd89aabc
PM
1089 link = list_entry(cgrp->css_sets.next,
1090 struct cg_cgroup_link, cgrp_link_list);
817929ec 1091 list_del(&link->cg_link_list);
bd89aabc 1092 list_del(&link->cgrp_link_list);
817929ec
PM
1093 kfree(link);
1094 }
1095 write_unlock(&css_set_lock);
1096
1097 if (!list_empty(&root->root_list)) {
ddbcc7e8 1098 list_del(&root->root_list);
817929ec
PM
1099 root_count--;
1100 }
ddbcc7e8
PM
1101 mutex_unlock(&cgroup_mutex);
1102
1103 kfree(root);
1104 kill_litter_super(sb);
1105}
1106
1107static struct file_system_type cgroup_fs_type = {
1108 .name = "cgroup",
1109 .get_sb = cgroup_get_sb,
1110 .kill_sb = cgroup_kill_sb,
1111};
1112
bd89aabc 1113static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1114{
1115 return dentry->d_fsdata;
1116}
1117
1118static inline struct cftype *__d_cft(struct dentry *dentry)
1119{
1120 return dentry->d_fsdata;
1121}
1122
a043e3b2
LZ
1123/**
1124 * cgroup_path - generate the path of a cgroup
1125 * @cgrp: the cgroup in question
1126 * @buf: the buffer to write the path into
1127 * @buflen: the length of the buffer
1128 *
1129 * Called with cgroup_mutex held. Writes path of cgroup into buf.
ddbcc7e8
PM
1130 * Returns 0 on success, -errno on error.
1131 */
bd89aabc 1132int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1133{
1134 char *start;
1135
bd89aabc 1136 if (cgrp == dummytop) {
ddbcc7e8
PM
1137 /*
1138 * Inactive subsystems have no dentry for their root
1139 * cgroup
1140 */
1141 strcpy(buf, "/");
1142 return 0;
1143 }
1144
1145 start = buf + buflen;
1146
1147 *--start = '\0';
1148 for (;;) {
bd89aabc 1149 int len = cgrp->dentry->d_name.len;
ddbcc7e8
PM
1150 if ((start -= len) < buf)
1151 return -ENAMETOOLONG;
bd89aabc
PM
1152 memcpy(start, cgrp->dentry->d_name.name, len);
1153 cgrp = cgrp->parent;
1154 if (!cgrp)
ddbcc7e8 1155 break;
bd89aabc 1156 if (!cgrp->parent)
ddbcc7e8
PM
1157 continue;
1158 if (--start < buf)
1159 return -ENAMETOOLONG;
1160 *start = '/';
1161 }
1162 memmove(buf, start, buf + buflen - start);
1163 return 0;
1164}
1165
bbcb81d0
PM
1166/*
1167 * Return the first subsystem attached to a cgroup's hierarchy, and
1168 * its subsystem id.
1169 */
1170
bd89aabc 1171static void get_first_subsys(const struct cgroup *cgrp,
bbcb81d0
PM
1172 struct cgroup_subsys_state **css, int *subsys_id)
1173{
bd89aabc 1174 const struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1175 const struct cgroup_subsys *test_ss;
1176 BUG_ON(list_empty(&root->subsys_list));
1177 test_ss = list_entry(root->subsys_list.next,
1178 struct cgroup_subsys, sibling);
1179 if (css) {
bd89aabc 1180 *css = cgrp->subsys[test_ss->subsys_id];
bbcb81d0
PM
1181 BUG_ON(!*css);
1182 }
1183 if (subsys_id)
1184 *subsys_id = test_ss->subsys_id;
1185}
1186
a043e3b2
LZ
1187/**
1188 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1189 * @cgrp: the cgroup the task is attaching to
1190 * @tsk: the task to be attached
bbcb81d0 1191 *
a043e3b2
LZ
1192 * Call holding cgroup_mutex. May take task_lock of
1193 * the task 'tsk' during call.
bbcb81d0 1194 */
956db3ca 1195int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1196{
1197 int retval = 0;
1198 struct cgroup_subsys *ss;
bd89aabc 1199 struct cgroup *oldcgrp;
817929ec
PM
1200 struct css_set *cg = tsk->cgroups;
1201 struct css_set *newcg;
bd89aabc 1202 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1203 int subsys_id;
1204
bd89aabc 1205 get_first_subsys(cgrp, NULL, &subsys_id);
bbcb81d0
PM
1206
1207 /* Nothing to do if the task is already in that cgroup */
bd89aabc
PM
1208 oldcgrp = task_cgroup(tsk, subsys_id);
1209 if (cgrp == oldcgrp)
bbcb81d0
PM
1210 return 0;
1211
1212 for_each_subsys(root, ss) {
1213 if (ss->can_attach) {
bd89aabc 1214 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1215 if (retval)
bbcb81d0 1216 return retval;
bbcb81d0
PM
1217 }
1218 }
1219
817929ec
PM
1220 /*
1221 * Locate or allocate a new css_set for this task,
1222 * based on its final set of cgroups
1223 */
bd89aabc 1224 newcg = find_css_set(cg, cgrp);
e18f6318 1225 if (!newcg)
817929ec 1226 return -ENOMEM;
817929ec 1227
bbcb81d0
PM
1228 task_lock(tsk);
1229 if (tsk->flags & PF_EXITING) {
1230 task_unlock(tsk);
817929ec 1231 put_css_set(newcg);
bbcb81d0
PM
1232 return -ESRCH;
1233 }
817929ec 1234 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1235 task_unlock(tsk);
1236
817929ec
PM
1237 /* Update the css_set linked lists if we're using them */
1238 write_lock(&css_set_lock);
1239 if (!list_empty(&tsk->cg_list)) {
1240 list_del(&tsk->cg_list);
1241 list_add(&tsk->cg_list, &newcg->tasks);
1242 }
1243 write_unlock(&css_set_lock);
1244
bbcb81d0 1245 for_each_subsys(root, ss) {
e18f6318 1246 if (ss->attach)
bd89aabc 1247 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1248 }
bd89aabc 1249 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1250 synchronize_rcu();
817929ec 1251 put_css_set(cg);
bbcb81d0
PM
1252 return 0;
1253}
1254
1255/*
bd89aabc 1256 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
bbcb81d0
PM
1257 * cgroup_mutex, may take task_lock of task
1258 */
bd89aabc 1259static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
bbcb81d0
PM
1260{
1261 pid_t pid;
1262 struct task_struct *tsk;
1263 int ret;
1264
1265 if (sscanf(pidbuf, "%d", &pid) != 1)
1266 return -EIO;
1267
1268 if (pid) {
1269 rcu_read_lock();
73507f33 1270 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1271 if (!tsk || tsk->flags & PF_EXITING) {
1272 rcu_read_unlock();
1273 return -ESRCH;
1274 }
1275 get_task_struct(tsk);
1276 rcu_read_unlock();
1277
1278 if ((current->euid) && (current->euid != tsk->uid)
1279 && (current->euid != tsk->suid)) {
1280 put_task_struct(tsk);
1281 return -EACCES;
1282 }
1283 } else {
1284 tsk = current;
1285 get_task_struct(tsk);
1286 }
1287
956db3ca 1288 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1289 put_task_struct(tsk);
1290 return ret;
1291}
1292
ddbcc7e8 1293/* The various types of files and directories in a cgroup file system */
ddbcc7e8
PM
1294enum cgroup_filetype {
1295 FILE_ROOT,
1296 FILE_DIR,
1297 FILE_TASKLIST,
81a6a5cd 1298 FILE_NOTIFY_ON_RELEASE,
81a6a5cd 1299 FILE_RELEASE_AGENT,
ddbcc7e8
PM
1300};
1301
f4c753b7
PM
1302static ssize_t cgroup_write_u64(struct cgroup *cgrp, struct cftype *cft,
1303 struct file *file,
1304 const char __user *userbuf,
1305 size_t nbytes, loff_t *unused_ppos)
355e0c48
PM
1306{
1307 char buffer[64];
1308 int retval = 0;
1309 u64 val;
1310 char *end;
1311
1312 if (!nbytes)
1313 return -EINVAL;
1314 if (nbytes >= sizeof(buffer))
1315 return -E2BIG;
1316 if (copy_from_user(buffer, userbuf, nbytes))
1317 return -EFAULT;
1318
1319 buffer[nbytes] = 0; /* nul-terminate */
b7269dfc 1320 strstrip(buffer);
355e0c48
PM
1321 val = simple_strtoull(buffer, &end, 0);
1322 if (*end)
1323 return -EINVAL;
1324
1325 /* Pass to subsystem */
f4c753b7 1326 retval = cft->write_u64(cgrp, cft, val);
355e0c48
PM
1327 if (!retval)
1328 retval = nbytes;
1329 return retval;
1330}
1331
bd89aabc 1332static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
bbcb81d0
PM
1333 struct cftype *cft,
1334 struct file *file,
1335 const char __user *userbuf,
1336 size_t nbytes, loff_t *unused_ppos)
1337{
1338 enum cgroup_filetype type = cft->private;
1339 char *buffer;
1340 int retval = 0;
1341
1342 if (nbytes >= PATH_MAX)
1343 return -E2BIG;
1344
1345 /* +1 for nul-terminator */
1346 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1347 if (buffer == NULL)
1348 return -ENOMEM;
1349
1350 if (copy_from_user(buffer, userbuf, nbytes)) {
1351 retval = -EFAULT;
1352 goto out1;
1353 }
1354 buffer[nbytes] = 0; /* nul-terminate */
622d42ca 1355 strstrip(buffer); /* strip -just- trailing whitespace */
bbcb81d0
PM
1356
1357 mutex_lock(&cgroup_mutex);
1358
8dc4f3e1
PM
1359 /*
1360 * This was already checked for in cgroup_file_write(), but
1361 * check again now we're holding cgroup_mutex.
1362 */
bd89aabc 1363 if (cgroup_is_removed(cgrp)) {
bbcb81d0
PM
1364 retval = -ENODEV;
1365 goto out2;
1366 }
1367
1368 switch (type) {
1369 case FILE_TASKLIST:
bd89aabc 1370 retval = attach_task_by_pid(cgrp, buffer);
bbcb81d0 1371 break;
81a6a5cd 1372 case FILE_NOTIFY_ON_RELEASE:
bd89aabc 1373 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
81a6a5cd 1374 if (simple_strtoul(buffer, NULL, 10) != 0)
bd89aabc 1375 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd 1376 else
bd89aabc 1377 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
1378 break;
1379 case FILE_RELEASE_AGENT:
622d42ca
PJ
1380 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1381 strcpy(cgrp->root->release_agent_path, buffer);
81a6a5cd 1382 break;
bbcb81d0
PM
1383 default:
1384 retval = -EINVAL;
1385 goto out2;
1386 }
1387
1388 if (retval == 0)
1389 retval = nbytes;
1390out2:
1391 mutex_unlock(&cgroup_mutex);
1392out1:
1393 kfree(buffer);
1394 return retval;
1395}
1396
ddbcc7e8
PM
1397static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1398 size_t nbytes, loff_t *ppos)
1399{
1400 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1401 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1402
8dc4f3e1 1403 if (!cft || cgroup_is_removed(cgrp))
ddbcc7e8 1404 return -ENODEV;
355e0c48 1405 if (cft->write)
bd89aabc 1406 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1407 if (cft->write_u64)
1408 return cgroup_write_u64(cgrp, cft, file, buf, nbytes, ppos);
355e0c48 1409 return -EINVAL;
ddbcc7e8
PM
1410}
1411
f4c753b7
PM
1412static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1413 struct file *file,
1414 char __user *buf, size_t nbytes,
1415 loff_t *ppos)
ddbcc7e8
PM
1416{
1417 char tmp[64];
f4c753b7 1418 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
1419 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1420
1421 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1422}
1423
bd89aabc 1424static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
81a6a5cd
PM
1425 struct cftype *cft,
1426 struct file *file,
1427 char __user *buf,
1428 size_t nbytes, loff_t *ppos)
1429{
1430 enum cgroup_filetype type = cft->private;
1431 char *page;
1432 ssize_t retval = 0;
1433 char *s;
1434
1435 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1436 return -ENOMEM;
1437
1438 s = page;
1439
1440 switch (type) {
1441 case FILE_RELEASE_AGENT:
1442 {
1443 struct cgroupfs_root *root;
1444 size_t n;
1445 mutex_lock(&cgroup_mutex);
bd89aabc 1446 root = cgrp->root;
81a6a5cd
PM
1447 n = strnlen(root->release_agent_path,
1448 sizeof(root->release_agent_path));
1449 n = min(n, (size_t) PAGE_SIZE);
1450 strncpy(s, root->release_agent_path, n);
1451 mutex_unlock(&cgroup_mutex);
1452 s += n;
1453 break;
1454 }
1455 default:
1456 retval = -EINVAL;
1457 goto out;
1458 }
1459 *s++ = '\n';
1460
1461 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1462out:
1463 free_page((unsigned long)page);
1464 return retval;
1465}
1466
ddbcc7e8
PM
1467static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1468 size_t nbytes, loff_t *ppos)
1469{
1470 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1471 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1472
8dc4f3e1 1473 if (!cft || cgroup_is_removed(cgrp))
ddbcc7e8
PM
1474 return -ENODEV;
1475
1476 if (cft->read)
bd89aabc 1477 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1478 if (cft->read_u64)
1479 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1480 return -EINVAL;
1481}
1482
91796569
PM
1483/*
1484 * seqfile ops/methods for returning structured data. Currently just
1485 * supports string->u64 maps, but can be extended in future.
1486 */
1487
1488struct cgroup_seqfile_state {
1489 struct cftype *cft;
1490 struct cgroup *cgroup;
1491};
1492
1493static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1494{
1495 struct seq_file *sf = cb->state;
1496 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1497}
1498
1499static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1500{
1501 struct cgroup_seqfile_state *state = m->private;
1502 struct cftype *cft = state->cft;
1503 struct cgroup_map_cb cb = {
1504 .fill = cgroup_map_add,
1505 .state = m,
1506 };
1507 return cft->read_map(state->cgroup, cft, &cb);
1508}
1509
1510int cgroup_seqfile_release(struct inode *inode, struct file *file)
1511{
1512 struct seq_file *seq = file->private_data;
1513 kfree(seq->private);
1514 return single_release(inode, file);
1515}
1516
1517static struct file_operations cgroup_seqfile_operations = {
1518 .read = seq_read,
1519 .llseek = seq_lseek,
1520 .release = cgroup_seqfile_release,
1521};
1522
ddbcc7e8
PM
1523static int cgroup_file_open(struct inode *inode, struct file *file)
1524{
1525 int err;
1526 struct cftype *cft;
1527
1528 err = generic_file_open(inode, file);
1529 if (err)
1530 return err;
1531
1532 cft = __d_cft(file->f_dentry);
1533 if (!cft)
1534 return -ENODEV;
91796569
PM
1535 if (cft->read_map) {
1536 struct cgroup_seqfile_state *state =
1537 kzalloc(sizeof(*state), GFP_USER);
1538 if (!state)
1539 return -ENOMEM;
1540 state->cft = cft;
1541 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1542 file->f_op = &cgroup_seqfile_operations;
1543 err = single_open(file, cgroup_seqfile_show, state);
1544 if (err < 0)
1545 kfree(state);
1546 } else if (cft->open)
ddbcc7e8
PM
1547 err = cft->open(inode, file);
1548 else
1549 err = 0;
1550
1551 return err;
1552}
1553
1554static int cgroup_file_release(struct inode *inode, struct file *file)
1555{
1556 struct cftype *cft = __d_cft(file->f_dentry);
1557 if (cft->release)
1558 return cft->release(inode, file);
1559 return 0;
1560}
1561
1562/*
1563 * cgroup_rename - Only allow simple rename of directories in place.
1564 */
1565static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1566 struct inode *new_dir, struct dentry *new_dentry)
1567{
1568 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1569 return -ENOTDIR;
1570 if (new_dentry->d_inode)
1571 return -EEXIST;
1572 if (old_dir != new_dir)
1573 return -EIO;
1574 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1575}
1576
1577static struct file_operations cgroup_file_operations = {
1578 .read = cgroup_file_read,
1579 .write = cgroup_file_write,
1580 .llseek = generic_file_llseek,
1581 .open = cgroup_file_open,
1582 .release = cgroup_file_release,
1583};
1584
1585static struct inode_operations cgroup_dir_inode_operations = {
1586 .lookup = simple_lookup,
1587 .mkdir = cgroup_mkdir,
1588 .rmdir = cgroup_rmdir,
1589 .rename = cgroup_rename,
1590};
1591
1592static int cgroup_create_file(struct dentry *dentry, int mode,
1593 struct super_block *sb)
1594{
1595 static struct dentry_operations cgroup_dops = {
1596 .d_iput = cgroup_diput,
1597 };
1598
1599 struct inode *inode;
1600
1601 if (!dentry)
1602 return -ENOENT;
1603 if (dentry->d_inode)
1604 return -EEXIST;
1605
1606 inode = cgroup_new_inode(mode, sb);
1607 if (!inode)
1608 return -ENOMEM;
1609
1610 if (S_ISDIR(mode)) {
1611 inode->i_op = &cgroup_dir_inode_operations;
1612 inode->i_fop = &simple_dir_operations;
1613
1614 /* start off with i_nlink == 2 (for "." entry) */
1615 inc_nlink(inode);
1616
1617 /* start with the directory inode held, so that we can
1618 * populate it without racing with another mkdir */
817929ec 1619 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1620 } else if (S_ISREG(mode)) {
1621 inode->i_size = 0;
1622 inode->i_fop = &cgroup_file_operations;
1623 }
1624 dentry->d_op = &cgroup_dops;
1625 d_instantiate(dentry, inode);
1626 dget(dentry); /* Extra count - pin the dentry in core */
1627 return 0;
1628}
1629
1630/*
a043e3b2
LZ
1631 * cgroup_create_dir - create a directory for an object.
1632 * @cgrp: the cgroup we create the directory for. It must have a valid
1633 * ->parent field. And we are going to fill its ->dentry field.
1634 * @dentry: dentry of the new cgroup
1635 * @mode: mode to set on new directory.
ddbcc7e8 1636 */
bd89aabc 1637static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
ddbcc7e8
PM
1638 int mode)
1639{
1640 struct dentry *parent;
1641 int error = 0;
1642
bd89aabc
PM
1643 parent = cgrp->parent->dentry;
1644 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1645 if (!error) {
bd89aabc 1646 dentry->d_fsdata = cgrp;
ddbcc7e8 1647 inc_nlink(parent->d_inode);
bd89aabc 1648 cgrp->dentry = dentry;
ddbcc7e8
PM
1649 dget(dentry);
1650 }
1651 dput(dentry);
1652
1653 return error;
1654}
1655
bd89aabc 1656int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
1657 struct cgroup_subsys *subsys,
1658 const struct cftype *cft)
1659{
bd89aabc 1660 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
1661 struct dentry *dentry;
1662 int error;
1663
1664 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 1665 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
1666 strcpy(name, subsys->name);
1667 strcat(name, ".");
1668 }
1669 strcat(name, cft->name);
1670 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1671 dentry = lookup_one_len(name, dir, strlen(name));
1672 if (!IS_ERR(dentry)) {
1673 error = cgroup_create_file(dentry, 0644 | S_IFREG,
bd89aabc 1674 cgrp->root->sb);
ddbcc7e8
PM
1675 if (!error)
1676 dentry->d_fsdata = (void *)cft;
1677 dput(dentry);
1678 } else
1679 error = PTR_ERR(dentry);
1680 return error;
1681}
1682
bd89aabc 1683int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
1684 struct cgroup_subsys *subsys,
1685 const struct cftype cft[],
1686 int count)
1687{
1688 int i, err;
1689 for (i = 0; i < count; i++) {
bd89aabc 1690 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
1691 if (err)
1692 return err;
1693 }
1694 return 0;
1695}
1696
a043e3b2
LZ
1697/**
1698 * cgroup_task_count - count the number of tasks in a cgroup.
1699 * @cgrp: the cgroup in question
1700 *
1701 * Return the number of tasks in the cgroup.
1702 */
bd89aabc 1703int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
1704{
1705 int count = 0;
817929ec
PM
1706 struct list_head *l;
1707
1708 read_lock(&css_set_lock);
bd89aabc
PM
1709 l = cgrp->css_sets.next;
1710 while (l != &cgrp->css_sets) {
817929ec 1711 struct cg_cgroup_link *link =
bd89aabc 1712 list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1713 count += atomic_read(&link->cg->ref.refcount);
1714 l = l->next;
1715 }
1716 read_unlock(&css_set_lock);
bbcb81d0
PM
1717 return count;
1718}
1719
817929ec
PM
1720/*
1721 * Advance a list_head iterator. The iterator should be positioned at
1722 * the start of a css_set
1723 */
bd89aabc 1724static void cgroup_advance_iter(struct cgroup *cgrp,
817929ec
PM
1725 struct cgroup_iter *it)
1726{
1727 struct list_head *l = it->cg_link;
1728 struct cg_cgroup_link *link;
1729 struct css_set *cg;
1730
1731 /* Advance to the next non-empty css_set */
1732 do {
1733 l = l->next;
bd89aabc 1734 if (l == &cgrp->css_sets) {
817929ec
PM
1735 it->cg_link = NULL;
1736 return;
1737 }
bd89aabc 1738 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1739 cg = link->cg;
1740 } while (list_empty(&cg->tasks));
1741 it->cg_link = l;
1742 it->task = cg->tasks.next;
1743}
1744
31a7df01
CW
1745/*
1746 * To reduce the fork() overhead for systems that are not actually
1747 * using their cgroups capability, we don't maintain the lists running
1748 * through each css_set to its tasks until we see the list actually
1749 * used - in other words after the first call to cgroup_iter_start().
1750 *
1751 * The tasklist_lock is not held here, as do_each_thread() and
1752 * while_each_thread() are protected by RCU.
1753 */
3df91fe3 1754static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
1755{
1756 struct task_struct *p, *g;
1757 write_lock(&css_set_lock);
1758 use_task_css_set_links = 1;
1759 do_each_thread(g, p) {
1760 task_lock(p);
0e04388f
LZ
1761 /*
1762 * We should check if the process is exiting, otherwise
1763 * it will race with cgroup_exit() in that the list
1764 * entry won't be deleted though the process has exited.
1765 */
1766 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
1767 list_add(&p->cg_list, &p->cgroups->tasks);
1768 task_unlock(p);
1769 } while_each_thread(g, p);
1770 write_unlock(&css_set_lock);
1771}
1772
bd89aabc 1773void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1774{
1775 /*
1776 * The first time anyone tries to iterate across a cgroup,
1777 * we need to enable the list linking each css_set to its
1778 * tasks, and fix up all existing tasks.
1779 */
31a7df01
CW
1780 if (!use_task_css_set_links)
1781 cgroup_enable_task_cg_lists();
1782
817929ec 1783 read_lock(&css_set_lock);
bd89aabc
PM
1784 it->cg_link = &cgrp->css_sets;
1785 cgroup_advance_iter(cgrp, it);
817929ec
PM
1786}
1787
bd89aabc 1788struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
1789 struct cgroup_iter *it)
1790{
1791 struct task_struct *res;
1792 struct list_head *l = it->task;
1793
1794 /* If the iterator cg is NULL, we have no tasks */
1795 if (!it->cg_link)
1796 return NULL;
1797 res = list_entry(l, struct task_struct, cg_list);
1798 /* Advance iterator to find next entry */
1799 l = l->next;
1800 if (l == &res->cgroups->tasks) {
1801 /* We reached the end of this task list - move on to
1802 * the next cg_cgroup_link */
bd89aabc 1803 cgroup_advance_iter(cgrp, it);
817929ec
PM
1804 } else {
1805 it->task = l;
1806 }
1807 return res;
1808}
1809
bd89aabc 1810void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1811{
1812 read_unlock(&css_set_lock);
1813}
1814
31a7df01
CW
1815static inline int started_after_time(struct task_struct *t1,
1816 struct timespec *time,
1817 struct task_struct *t2)
1818{
1819 int start_diff = timespec_compare(&t1->start_time, time);
1820 if (start_diff > 0) {
1821 return 1;
1822 } else if (start_diff < 0) {
1823 return 0;
1824 } else {
1825 /*
1826 * Arbitrarily, if two processes started at the same
1827 * time, we'll say that the lower pointer value
1828 * started first. Note that t2 may have exited by now
1829 * so this may not be a valid pointer any longer, but
1830 * that's fine - it still serves to distinguish
1831 * between two tasks started (effectively) simultaneously.
1832 */
1833 return t1 > t2;
1834 }
1835}
1836
1837/*
1838 * This function is a callback from heap_insert() and is used to order
1839 * the heap.
1840 * In this case we order the heap in descending task start time.
1841 */
1842static inline int started_after(void *p1, void *p2)
1843{
1844 struct task_struct *t1 = p1;
1845 struct task_struct *t2 = p2;
1846 return started_after_time(t1, &t2->start_time, t2);
1847}
1848
1849/**
1850 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1851 * @scan: struct cgroup_scanner containing arguments for the scan
1852 *
1853 * Arguments include pointers to callback functions test_task() and
1854 * process_task().
1855 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1856 * and if it returns true, call process_task() for it also.
1857 * The test_task pointer may be NULL, meaning always true (select all tasks).
1858 * Effectively duplicates cgroup_iter_{start,next,end}()
1859 * but does not lock css_set_lock for the call to process_task().
1860 * The struct cgroup_scanner may be embedded in any structure of the caller's
1861 * creation.
1862 * It is guaranteed that process_task() will act on every task that
1863 * is a member of the cgroup for the duration of this call. This
1864 * function may or may not call process_task() for tasks that exit
1865 * or move to a different cgroup during the call, or are forked or
1866 * move into the cgroup during the call.
1867 *
1868 * Note that test_task() may be called with locks held, and may in some
1869 * situations be called multiple times for the same task, so it should
1870 * be cheap.
1871 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1872 * pre-allocated and will be used for heap operations (and its "gt" member will
1873 * be overwritten), else a temporary heap will be used (allocation of which
1874 * may cause this function to fail).
1875 */
1876int cgroup_scan_tasks(struct cgroup_scanner *scan)
1877{
1878 int retval, i;
1879 struct cgroup_iter it;
1880 struct task_struct *p, *dropped;
1881 /* Never dereference latest_task, since it's not refcounted */
1882 struct task_struct *latest_task = NULL;
1883 struct ptr_heap tmp_heap;
1884 struct ptr_heap *heap;
1885 struct timespec latest_time = { 0, 0 };
1886
1887 if (scan->heap) {
1888 /* The caller supplied our heap and pre-allocated its memory */
1889 heap = scan->heap;
1890 heap->gt = &started_after;
1891 } else {
1892 /* We need to allocate our own heap memory */
1893 heap = &tmp_heap;
1894 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1895 if (retval)
1896 /* cannot allocate the heap */
1897 return retval;
1898 }
1899
1900 again:
1901 /*
1902 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1903 * to determine which are of interest, and using the scanner's
1904 * "process_task" callback to process any of them that need an update.
1905 * Since we don't want to hold any locks during the task updates,
1906 * gather tasks to be processed in a heap structure.
1907 * The heap is sorted by descending task start time.
1908 * If the statically-sized heap fills up, we overflow tasks that
1909 * started later, and in future iterations only consider tasks that
1910 * started after the latest task in the previous pass. This
1911 * guarantees forward progress and that we don't miss any tasks.
1912 */
1913 heap->size = 0;
1914 cgroup_iter_start(scan->cg, &it);
1915 while ((p = cgroup_iter_next(scan->cg, &it))) {
1916 /*
1917 * Only affect tasks that qualify per the caller's callback,
1918 * if he provided one
1919 */
1920 if (scan->test_task && !scan->test_task(p, scan))
1921 continue;
1922 /*
1923 * Only process tasks that started after the last task
1924 * we processed
1925 */
1926 if (!started_after_time(p, &latest_time, latest_task))
1927 continue;
1928 dropped = heap_insert(heap, p);
1929 if (dropped == NULL) {
1930 /*
1931 * The new task was inserted; the heap wasn't
1932 * previously full
1933 */
1934 get_task_struct(p);
1935 } else if (dropped != p) {
1936 /*
1937 * The new task was inserted, and pushed out a
1938 * different task
1939 */
1940 get_task_struct(p);
1941 put_task_struct(dropped);
1942 }
1943 /*
1944 * Else the new task was newer than anything already in
1945 * the heap and wasn't inserted
1946 */
1947 }
1948 cgroup_iter_end(scan->cg, &it);
1949
1950 if (heap->size) {
1951 for (i = 0; i < heap->size; i++) {
4fe91d51 1952 struct task_struct *q = heap->ptrs[i];
31a7df01 1953 if (i == 0) {
4fe91d51
PJ
1954 latest_time = q->start_time;
1955 latest_task = q;
31a7df01
CW
1956 }
1957 /* Process the task per the caller's callback */
4fe91d51
PJ
1958 scan->process_task(q, scan);
1959 put_task_struct(q);
31a7df01
CW
1960 }
1961 /*
1962 * If we had to process any tasks at all, scan again
1963 * in case some of them were in the middle of forking
1964 * children that didn't get processed.
1965 * Not the most efficient way to do it, but it avoids
1966 * having to take callback_mutex in the fork path
1967 */
1968 goto again;
1969 }
1970 if (heap == &tmp_heap)
1971 heap_free(&tmp_heap);
1972 return 0;
1973}
1974
bbcb81d0
PM
1975/*
1976 * Stuff for reading the 'tasks' file.
1977 *
1978 * Reading this file can return large amounts of data if a cgroup has
1979 * *lots* of attached tasks. So it may need several calls to read(),
1980 * but we cannot guarantee that the information we produce is correct
1981 * unless we produce it entirely atomically.
1982 *
1983 * Upon tasks file open(), a struct ctr_struct is allocated, that
1984 * will have a pointer to an array (also allocated here). The struct
1985 * ctr_struct * is stored in file->private_data. Its resources will
1986 * be freed by release() when the file is closed. The array is used
1987 * to sprintf the PIDs and then used by read().
1988 */
1989struct ctr_struct {
1990 char *buf;
1991 int bufsz;
1992};
1993
1994/*
1995 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
bd89aabc 1996 * 'cgrp'. Return actual number of pids loaded. No need to
bbcb81d0
PM
1997 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1998 * read section, so the css_set can't go away, and is
1999 * immutable after creation.
2000 */
bd89aabc 2001static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
bbcb81d0
PM
2002{
2003 int n = 0;
817929ec
PM
2004 struct cgroup_iter it;
2005 struct task_struct *tsk;
bd89aabc
PM
2006 cgroup_iter_start(cgrp, &it);
2007 while ((tsk = cgroup_iter_next(cgrp, &it))) {
817929ec
PM
2008 if (unlikely(n == npids))
2009 break;
73507f33 2010 pidarray[n++] = task_pid_vnr(tsk);
817929ec 2011 }
bd89aabc 2012 cgroup_iter_end(cgrp, &it);
bbcb81d0
PM
2013 return n;
2014}
2015
846c7bb0 2016/**
a043e3b2 2017 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2018 * @stats: cgroupstats to fill information into
2019 * @dentry: A dentry entry belonging to the cgroup for which stats have
2020 * been requested.
a043e3b2
LZ
2021 *
2022 * Build and fill cgroupstats so that taskstats can export it to user
2023 * space.
846c7bb0
BS
2024 */
2025int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2026{
2027 int ret = -EINVAL;
bd89aabc 2028 struct cgroup *cgrp;
846c7bb0
BS
2029 struct cgroup_iter it;
2030 struct task_struct *tsk;
2031 /*
2032 * Validate dentry by checking the superblock operations
2033 */
2034 if (dentry->d_sb->s_op != &cgroup_ops)
2035 goto err;
2036
2037 ret = 0;
bd89aabc 2038 cgrp = dentry->d_fsdata;
846c7bb0
BS
2039 rcu_read_lock();
2040
bd89aabc
PM
2041 cgroup_iter_start(cgrp, &it);
2042 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2043 switch (tsk->state) {
2044 case TASK_RUNNING:
2045 stats->nr_running++;
2046 break;
2047 case TASK_INTERRUPTIBLE:
2048 stats->nr_sleeping++;
2049 break;
2050 case TASK_UNINTERRUPTIBLE:
2051 stats->nr_uninterruptible++;
2052 break;
2053 case TASK_STOPPED:
2054 stats->nr_stopped++;
2055 break;
2056 default:
2057 if (delayacct_is_task_waiting_on_io(tsk))
2058 stats->nr_io_wait++;
2059 break;
2060 }
2061 }
bd89aabc 2062 cgroup_iter_end(cgrp, &it);
846c7bb0
BS
2063
2064 rcu_read_unlock();
2065err:
2066 return ret;
2067}
2068
bbcb81d0
PM
2069static int cmppid(const void *a, const void *b)
2070{
2071 return *(pid_t *)a - *(pid_t *)b;
2072}
2073
2074/*
2075 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2076 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2077 * count 'cnt' of how many chars would be written if buf were large enough.
2078 */
2079static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2080{
2081 int cnt = 0;
2082 int i;
2083
2084 for (i = 0; i < npids; i++)
2085 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2086 return cnt;
2087}
2088
2089/*
2090 * Handle an open on 'tasks' file. Prepare a buffer listing the
2091 * process id's of tasks currently attached to the cgroup being opened.
2092 *
2093 * Does not require any specific cgroup mutexes, and does not take any.
2094 */
2095static int cgroup_tasks_open(struct inode *unused, struct file *file)
2096{
bd89aabc 2097 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
bbcb81d0
PM
2098 struct ctr_struct *ctr;
2099 pid_t *pidarray;
2100 int npids;
2101 char c;
2102
2103 if (!(file->f_mode & FMODE_READ))
2104 return 0;
2105
2106 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2107 if (!ctr)
2108 goto err0;
2109
2110 /*
2111 * If cgroup gets more users after we read count, we won't have
2112 * enough space - tough. This race is indistinguishable to the
2113 * caller from the case that the additional cgroup users didn't
2114 * show up until sometime later on.
2115 */
bd89aabc 2116 npids = cgroup_task_count(cgrp);
bbcb81d0
PM
2117 if (npids) {
2118 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2119 if (!pidarray)
2120 goto err1;
2121
bd89aabc 2122 npids = pid_array_load(pidarray, npids, cgrp);
bbcb81d0
PM
2123 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2124
2125 /* Call pid_array_to_buf() twice, first just to get bufsz */
2126 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2127 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2128 if (!ctr->buf)
2129 goto err2;
2130 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2131
2132 kfree(pidarray);
2133 } else {
9dce07f1 2134 ctr->buf = NULL;
bbcb81d0
PM
2135 ctr->bufsz = 0;
2136 }
2137 file->private_data = ctr;
2138 return 0;
2139
2140err2:
2141 kfree(pidarray);
2142err1:
2143 kfree(ctr);
2144err0:
2145 return -ENOMEM;
2146}
2147
bd89aabc 2148static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
bbcb81d0
PM
2149 struct cftype *cft,
2150 struct file *file, char __user *buf,
2151 size_t nbytes, loff_t *ppos)
2152{
2153 struct ctr_struct *ctr = file->private_data;
2154
2155 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2156}
2157
2158static int cgroup_tasks_release(struct inode *unused_inode,
2159 struct file *file)
2160{
2161 struct ctr_struct *ctr;
2162
2163 if (file->f_mode & FMODE_READ) {
2164 ctr = file->private_data;
2165 kfree(ctr->buf);
2166 kfree(ctr);
2167 }
2168 return 0;
2169}
2170
bd89aabc 2171static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
2172 struct cftype *cft)
2173{
bd89aabc 2174 return notify_on_release(cgrp);
81a6a5cd
PM
2175}
2176
bbcb81d0
PM
2177/*
2178 * for the common functions, 'private' gives the type of file
2179 */
81a6a5cd
PM
2180static struct cftype files[] = {
2181 {
2182 .name = "tasks",
2183 .open = cgroup_tasks_open,
2184 .read = cgroup_tasks_read,
2185 .write = cgroup_common_file_write,
2186 .release = cgroup_tasks_release,
2187 .private = FILE_TASKLIST,
2188 },
2189
2190 {
2191 .name = "notify_on_release",
f4c753b7 2192 .read_u64 = cgroup_read_notify_on_release,
81a6a5cd
PM
2193 .write = cgroup_common_file_write,
2194 .private = FILE_NOTIFY_ON_RELEASE,
2195 },
81a6a5cd
PM
2196};
2197
2198static struct cftype cft_release_agent = {
2199 .name = "release_agent",
2200 .read = cgroup_common_file_read,
bbcb81d0 2201 .write = cgroup_common_file_write,
81a6a5cd 2202 .private = FILE_RELEASE_AGENT,
bbcb81d0
PM
2203};
2204
bd89aabc 2205static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
2206{
2207 int err;
2208 struct cgroup_subsys *ss;
2209
2210 /* First clear out any existing files */
bd89aabc 2211 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 2212
bd89aabc 2213 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
2214 if (err < 0)
2215 return err;
2216
bd89aabc
PM
2217 if (cgrp == cgrp->top_cgroup) {
2218 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
2219 return err;
2220 }
2221
bd89aabc
PM
2222 for_each_subsys(cgrp->root, ss) {
2223 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
2224 return err;
2225 }
2226
2227 return 0;
2228}
2229
2230static void init_cgroup_css(struct cgroup_subsys_state *css,
2231 struct cgroup_subsys *ss,
bd89aabc 2232 struct cgroup *cgrp)
ddbcc7e8 2233{
bd89aabc 2234 css->cgroup = cgrp;
ddbcc7e8
PM
2235 atomic_set(&css->refcnt, 0);
2236 css->flags = 0;
bd89aabc 2237 if (cgrp == dummytop)
ddbcc7e8 2238 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
2239 BUG_ON(cgrp->subsys[ss->subsys_id]);
2240 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
2241}
2242
2243/*
a043e3b2
LZ
2244 * cgroup_create - create a cgroup
2245 * @parent: cgroup that will be parent of the new cgroup
2246 * @dentry: dentry of the new cgroup
2247 * @mode: mode to set on new inode
ddbcc7e8 2248 *
a043e3b2 2249 * Must be called with the mutex on the parent inode held
ddbcc7e8 2250 */
ddbcc7e8
PM
2251static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2252 int mode)
2253{
bd89aabc 2254 struct cgroup *cgrp;
ddbcc7e8
PM
2255 struct cgroupfs_root *root = parent->root;
2256 int err = 0;
2257 struct cgroup_subsys *ss;
2258 struct super_block *sb = root->sb;
2259
bd89aabc
PM
2260 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2261 if (!cgrp)
ddbcc7e8
PM
2262 return -ENOMEM;
2263
2264 /* Grab a reference on the superblock so the hierarchy doesn't
2265 * get deleted on unmount if there are child cgroups. This
2266 * can be done outside cgroup_mutex, since the sb can't
2267 * disappear while someone has an open control file on the
2268 * fs */
2269 atomic_inc(&sb->s_active);
2270
2271 mutex_lock(&cgroup_mutex);
2272
bd89aabc
PM
2273 INIT_LIST_HEAD(&cgrp->sibling);
2274 INIT_LIST_HEAD(&cgrp->children);
2275 INIT_LIST_HEAD(&cgrp->css_sets);
2276 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8 2277
bd89aabc
PM
2278 cgrp->parent = parent;
2279 cgrp->root = parent->root;
2280 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 2281
b6abdb0e
LZ
2282 if (notify_on_release(parent))
2283 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2284
ddbcc7e8 2285 for_each_subsys(root, ss) {
bd89aabc 2286 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2287 if (IS_ERR(css)) {
2288 err = PTR_ERR(css);
2289 goto err_destroy;
2290 }
bd89aabc 2291 init_cgroup_css(css, ss, cgrp);
ddbcc7e8
PM
2292 }
2293
bd89aabc 2294 list_add(&cgrp->sibling, &cgrp->parent->children);
ddbcc7e8
PM
2295 root->number_of_cgroups++;
2296
bd89aabc 2297 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2298 if (err < 0)
2299 goto err_remove;
2300
2301 /* The cgroup directory was pre-locked for us */
bd89aabc 2302 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2303
bd89aabc 2304 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2305 /* If err < 0, we have a half-filled directory - oh well ;) */
2306
2307 mutex_unlock(&cgroup_mutex);
bd89aabc 2308 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2309
2310 return 0;
2311
2312 err_remove:
2313
bd89aabc 2314 list_del(&cgrp->sibling);
ddbcc7e8
PM
2315 root->number_of_cgroups--;
2316
2317 err_destroy:
2318
2319 for_each_subsys(root, ss) {
bd89aabc
PM
2320 if (cgrp->subsys[ss->subsys_id])
2321 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2322 }
2323
2324 mutex_unlock(&cgroup_mutex);
2325
2326 /* Release the reference count that we took on the superblock */
2327 deactivate_super(sb);
2328
bd89aabc 2329 kfree(cgrp);
ddbcc7e8
PM
2330 return err;
2331}
2332
2333static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2334{
2335 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2336
2337 /* the vfs holds inode->i_mutex already */
2338 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2339}
2340
bd89aabc 2341static inline int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2342{
2343 /* Check the reference count on each subsystem. Since we
2344 * already established that there are no tasks in the
2345 * cgroup, if the css refcount is also 0, then there should
2346 * be no outstanding references, so the subsystem is safe to
2347 * destroy. We scan across all subsystems rather than using
2348 * the per-hierarchy linked list of mounted subsystems since
2349 * we can be called via check_for_release() with no
2350 * synchronization other than RCU, and the subsystem linked
2351 * list isn't RCU-safe */
2352 int i;
2353 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2354 struct cgroup_subsys *ss = subsys[i];
2355 struct cgroup_subsys_state *css;
2356 /* Skip subsystems not in this hierarchy */
bd89aabc 2357 if (ss->root != cgrp->root)
81a6a5cd 2358 continue;
bd89aabc 2359 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
2360 /* When called from check_for_release() it's possible
2361 * that by this point the cgroup has been removed
2362 * and the css deleted. But a false-positive doesn't
2363 * matter, since it can only happen if the cgroup
2364 * has been deleted and hence no longer needs the
2365 * release agent to be called anyway. */
e18f6318 2366 if (css && atomic_read(&css->refcnt))
81a6a5cd 2367 return 1;
81a6a5cd
PM
2368 }
2369 return 0;
2370}
2371
ddbcc7e8
PM
2372static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2373{
bd89aabc 2374 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
2375 struct dentry *d;
2376 struct cgroup *parent;
ddbcc7e8
PM
2377 struct super_block *sb;
2378 struct cgroupfs_root *root;
ddbcc7e8
PM
2379
2380 /* the vfs holds both inode->i_mutex already */
2381
2382 mutex_lock(&cgroup_mutex);
bd89aabc 2383 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
2384 mutex_unlock(&cgroup_mutex);
2385 return -EBUSY;
2386 }
bd89aabc 2387 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
2388 mutex_unlock(&cgroup_mutex);
2389 return -EBUSY;
2390 }
2391
bd89aabc
PM
2392 parent = cgrp->parent;
2393 root = cgrp->root;
ddbcc7e8 2394 sb = root->sb;
a043e3b2 2395
4fca88c8 2396 /*
a043e3b2
LZ
2397 * Call pre_destroy handlers of subsys. Notify subsystems
2398 * that rmdir() request comes.
4fca88c8
KH
2399 */
2400 cgroup_call_pre_destroy(cgrp);
ddbcc7e8 2401
bd89aabc 2402 if (cgroup_has_css_refs(cgrp)) {
ddbcc7e8
PM
2403 mutex_unlock(&cgroup_mutex);
2404 return -EBUSY;
2405 }
2406
81a6a5cd 2407 spin_lock(&release_list_lock);
bd89aabc
PM
2408 set_bit(CGRP_REMOVED, &cgrp->flags);
2409 if (!list_empty(&cgrp->release_list))
2410 list_del(&cgrp->release_list);
81a6a5cd 2411 spin_unlock(&release_list_lock);
ddbcc7e8 2412 /* delete my sibling from parent->children */
bd89aabc
PM
2413 list_del(&cgrp->sibling);
2414 spin_lock(&cgrp->dentry->d_lock);
2415 d = dget(cgrp->dentry);
2416 cgrp->dentry = NULL;
ddbcc7e8
PM
2417 spin_unlock(&d->d_lock);
2418
2419 cgroup_d_remove_dir(d);
2420 dput(d);
ddbcc7e8 2421
bd89aabc 2422 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
2423 check_for_release(parent);
2424
ddbcc7e8 2425 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
2426 return 0;
2427}
2428
2429static void cgroup_init_subsys(struct cgroup_subsys *ss)
2430{
ddbcc7e8 2431 struct cgroup_subsys_state *css;
817929ec 2432 struct list_head *l;
cfe36bde
DC
2433
2434 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
2435
2436 /* Create the top cgroup state for this subsystem */
2437 ss->root = &rootnode;
2438 css = ss->create(ss, dummytop);
2439 /* We don't handle early failures gracefully */
2440 BUG_ON(IS_ERR(css));
2441 init_cgroup_css(css, ss, dummytop);
2442
817929ec
PM
2443 /* Update all cgroup groups to contain a subsys
2444 * pointer to this state - since the subsystem is
2445 * newly registered, all tasks and hence all cgroup
2446 * groups are in the subsystem's top cgroup. */
2447 write_lock(&css_set_lock);
2448 l = &init_css_set.list;
2449 do {
2450 struct css_set *cg =
2451 list_entry(l, struct css_set, list);
2452 cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2453 l = l->next;
2454 } while (l != &init_css_set.list);
2455 write_unlock(&css_set_lock);
ddbcc7e8
PM
2456
2457 /* If this subsystem requested that it be notified with fork
2458 * events, we should send it one now for every process in the
2459 * system */
81a6a5cd
PM
2460 if (ss->fork) {
2461 struct task_struct *g, *p;
2462
2463 read_lock(&tasklist_lock);
2464 do_each_thread(g, p) {
2465 ss->fork(ss, p);
2466 } while_each_thread(g, p);
2467 read_unlock(&tasklist_lock);
2468 }
ddbcc7e8
PM
2469
2470 need_forkexit_callback |= ss->fork || ss->exit;
2471
2472 ss->active = 1;
2473}
2474
2475/**
a043e3b2
LZ
2476 * cgroup_init_early - cgroup initialization at system boot
2477 *
2478 * Initialize cgroups at system boot, and initialize any
2479 * subsystems that request early init.
ddbcc7e8
PM
2480 */
2481int __init cgroup_init_early(void)
2482{
2483 int i;
817929ec
PM
2484 kref_init(&init_css_set.ref);
2485 kref_get(&init_css_set.ref);
2486 INIT_LIST_HEAD(&init_css_set.list);
2487 INIT_LIST_HEAD(&init_css_set.cg_links);
2488 INIT_LIST_HEAD(&init_css_set.tasks);
2489 css_set_count = 1;
ddbcc7e8
PM
2490 init_cgroup_root(&rootnode);
2491 list_add(&rootnode.root_list, &roots);
817929ec
PM
2492 root_count = 1;
2493 init_task.cgroups = &init_css_set;
2494
2495 init_css_set_link.cg = &init_css_set;
bd89aabc 2496 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
2497 &rootnode.top_cgroup.css_sets);
2498 list_add(&init_css_set_link.cg_link_list,
2499 &init_css_set.cg_links);
ddbcc7e8
PM
2500
2501 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2502 struct cgroup_subsys *ss = subsys[i];
2503
2504 BUG_ON(!ss->name);
2505 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2506 BUG_ON(!ss->create);
2507 BUG_ON(!ss->destroy);
2508 if (ss->subsys_id != i) {
cfe36bde 2509 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
2510 ss->name, ss->subsys_id);
2511 BUG();
2512 }
2513
2514 if (ss->early_init)
2515 cgroup_init_subsys(ss);
2516 }
2517 return 0;
2518}
2519
2520/**
a043e3b2
LZ
2521 * cgroup_init - cgroup initialization
2522 *
2523 * Register cgroup filesystem and /proc file, and initialize
2524 * any subsystems that didn't request early init.
ddbcc7e8
PM
2525 */
2526int __init cgroup_init(void)
2527{
2528 int err;
2529 int i;
a424316c
PM
2530 struct proc_dir_entry *entry;
2531
2532 err = bdi_init(&cgroup_backing_dev_info);
2533 if (err)
2534 return err;
ddbcc7e8
PM
2535
2536 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2537 struct cgroup_subsys *ss = subsys[i];
2538 if (!ss->early_init)
2539 cgroup_init_subsys(ss);
2540 }
2541
2542 err = register_filesystem(&cgroup_fs_type);
2543 if (err < 0)
2544 goto out;
2545
a424316c
PM
2546 entry = create_proc_entry("cgroups", 0, NULL);
2547 if (entry)
2548 entry->proc_fops = &proc_cgroupstats_operations;
2549
ddbcc7e8 2550out:
a424316c
PM
2551 if (err)
2552 bdi_destroy(&cgroup_backing_dev_info);
2553
ddbcc7e8
PM
2554 return err;
2555}
b4f48b63 2556
a424316c
PM
2557/*
2558 * proc_cgroup_show()
2559 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2560 * - Used for /proc/<pid>/cgroup.
2561 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2562 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 2563 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
2564 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2565 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2566 * cgroup to top_cgroup.
2567 */
2568
2569/* TODO: Use a proper seq_file iterator */
2570static int proc_cgroup_show(struct seq_file *m, void *v)
2571{
2572 struct pid *pid;
2573 struct task_struct *tsk;
2574 char *buf;
2575 int retval;
2576 struct cgroupfs_root *root;
2577
2578 retval = -ENOMEM;
2579 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2580 if (!buf)
2581 goto out;
2582
2583 retval = -ESRCH;
2584 pid = m->private;
2585 tsk = get_pid_task(pid, PIDTYPE_PID);
2586 if (!tsk)
2587 goto out_free;
2588
2589 retval = 0;
2590
2591 mutex_lock(&cgroup_mutex);
2592
2593 for_each_root(root) {
2594 struct cgroup_subsys *ss;
bd89aabc 2595 struct cgroup *cgrp;
a424316c
PM
2596 int subsys_id;
2597 int count = 0;
2598
2599 /* Skip this hierarchy if it has no active subsystems */
2600 if (!root->actual_subsys_bits)
2601 continue;
b6c3006d 2602 seq_printf(m, "%lu:", root->subsys_bits);
a424316c
PM
2603 for_each_subsys(root, ss)
2604 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2605 seq_putc(m, ':');
2606 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
bd89aabc
PM
2607 cgrp = task_cgroup(tsk, subsys_id);
2608 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
2609 if (retval < 0)
2610 goto out_unlock;
2611 seq_puts(m, buf);
2612 seq_putc(m, '\n');
2613 }
2614
2615out_unlock:
2616 mutex_unlock(&cgroup_mutex);
2617 put_task_struct(tsk);
2618out_free:
2619 kfree(buf);
2620out:
2621 return retval;
2622}
2623
2624static int cgroup_open(struct inode *inode, struct file *file)
2625{
2626 struct pid *pid = PROC_I(inode)->pid;
2627 return single_open(file, proc_cgroup_show, pid);
2628}
2629
2630struct file_operations proc_cgroup_operations = {
2631 .open = cgroup_open,
2632 .read = seq_read,
2633 .llseek = seq_lseek,
2634 .release = single_release,
2635};
2636
2637/* Display information about each subsystem and each hierarchy */
2638static int proc_cgroupstats_show(struct seq_file *m, void *v)
2639{
2640 int i;
a424316c 2641
8bab8dde 2642 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
a424316c 2643 mutex_lock(&cgroup_mutex);
a424316c
PM
2644 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2645 struct cgroup_subsys *ss = subsys[i];
8bab8dde 2646 seq_printf(m, "%s\t%lu\t%d\t%d\n",
817929ec 2647 ss->name, ss->root->subsys_bits,
8bab8dde 2648 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
2649 }
2650 mutex_unlock(&cgroup_mutex);
2651 return 0;
2652}
2653
2654static int cgroupstats_open(struct inode *inode, struct file *file)
2655{
9dce07f1 2656 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
2657}
2658
2659static struct file_operations proc_cgroupstats_operations = {
2660 .open = cgroupstats_open,
2661 .read = seq_read,
2662 .llseek = seq_lseek,
2663 .release = single_release,
2664};
2665
b4f48b63
PM
2666/**
2667 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 2668 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
2669 *
2670 * Description: A task inherits its parent's cgroup at fork().
2671 *
2672 * A pointer to the shared css_set was automatically copied in
2673 * fork.c by dup_task_struct(). However, we ignore that copy, since
2674 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 2675 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
2676 * have already changed current->cgroups, allowing the previously
2677 * referenced cgroup group to be removed and freed.
b4f48b63
PM
2678 *
2679 * At the point that cgroup_fork() is called, 'current' is the parent
2680 * task, and the passed argument 'child' points to the child task.
2681 */
2682void cgroup_fork(struct task_struct *child)
2683{
817929ec
PM
2684 task_lock(current);
2685 child->cgroups = current->cgroups;
2686 get_css_set(child->cgroups);
2687 task_unlock(current);
2688 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
2689}
2690
2691/**
a043e3b2
LZ
2692 * cgroup_fork_callbacks - run fork callbacks
2693 * @child: the new task
2694 *
2695 * Called on a new task very soon before adding it to the
2696 * tasklist. No need to take any locks since no-one can
2697 * be operating on this task.
b4f48b63
PM
2698 */
2699void cgroup_fork_callbacks(struct task_struct *child)
2700{
2701 if (need_forkexit_callback) {
2702 int i;
2703 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2704 struct cgroup_subsys *ss = subsys[i];
2705 if (ss->fork)
2706 ss->fork(ss, child);
2707 }
2708 }
2709}
2710
817929ec 2711/**
a043e3b2
LZ
2712 * cgroup_post_fork - called on a new task after adding it to the task list
2713 * @child: the task in question
2714 *
2715 * Adds the task to the list running through its css_set if necessary.
2716 * Has to be after the task is visible on the task list in case we race
2717 * with the first call to cgroup_iter_start() - to guarantee that the
2718 * new task ends up on its list.
2719 */
817929ec
PM
2720void cgroup_post_fork(struct task_struct *child)
2721{
2722 if (use_task_css_set_links) {
2723 write_lock(&css_set_lock);
2724 if (list_empty(&child->cg_list))
2725 list_add(&child->cg_list, &child->cgroups->tasks);
2726 write_unlock(&css_set_lock);
2727 }
2728}
b4f48b63
PM
2729/**
2730 * cgroup_exit - detach cgroup from exiting task
2731 * @tsk: pointer to task_struct of exiting process
a043e3b2 2732 * @run_callback: run exit callbacks?
b4f48b63
PM
2733 *
2734 * Description: Detach cgroup from @tsk and release it.
2735 *
2736 * Note that cgroups marked notify_on_release force every task in
2737 * them to take the global cgroup_mutex mutex when exiting.
2738 * This could impact scaling on very large systems. Be reluctant to
2739 * use notify_on_release cgroups where very high task exit scaling
2740 * is required on large systems.
2741 *
2742 * the_top_cgroup_hack:
2743 *
2744 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2745 *
2746 * We call cgroup_exit() while the task is still competent to
2747 * handle notify_on_release(), then leave the task attached to the
2748 * root cgroup in each hierarchy for the remainder of its exit.
2749 *
2750 * To do this properly, we would increment the reference count on
2751 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2752 * code we would add a second cgroup function call, to drop that
2753 * reference. This would just create an unnecessary hot spot on
2754 * the top_cgroup reference count, to no avail.
2755 *
2756 * Normally, holding a reference to a cgroup without bumping its
2757 * count is unsafe. The cgroup could go away, or someone could
2758 * attach us to a different cgroup, decrementing the count on
2759 * the first cgroup that we never incremented. But in this case,
2760 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
2761 * which wards off any cgroup_attach_task() attempts, or task is a failed
2762 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
2763 */
2764void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2765{
2766 int i;
817929ec 2767 struct css_set *cg;
b4f48b63
PM
2768
2769 if (run_callbacks && need_forkexit_callback) {
2770 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2771 struct cgroup_subsys *ss = subsys[i];
2772 if (ss->exit)
2773 ss->exit(ss, tsk);
2774 }
2775 }
817929ec
PM
2776
2777 /*
2778 * Unlink from the css_set task list if necessary.
2779 * Optimistically check cg_list before taking
2780 * css_set_lock
2781 */
2782 if (!list_empty(&tsk->cg_list)) {
2783 write_lock(&css_set_lock);
2784 if (!list_empty(&tsk->cg_list))
2785 list_del(&tsk->cg_list);
2786 write_unlock(&css_set_lock);
2787 }
2788
b4f48b63
PM
2789 /* Reassign the task to the init_css_set. */
2790 task_lock(tsk);
817929ec
PM
2791 cg = tsk->cgroups;
2792 tsk->cgroups = &init_css_set;
b4f48b63 2793 task_unlock(tsk);
817929ec 2794 if (cg)
81a6a5cd 2795 put_css_set_taskexit(cg);
b4f48b63 2796}
697f4161
PM
2797
2798/**
a043e3b2
LZ
2799 * cgroup_clone - clone the cgroup the given subsystem is attached to
2800 * @tsk: the task to be moved
2801 * @subsys: the given subsystem
2802 *
2803 * Duplicate the current cgroup in the hierarchy that the given
2804 * subsystem is attached to, and move this task into the new
2805 * child.
697f4161
PM
2806 */
2807int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2808{
2809 struct dentry *dentry;
2810 int ret = 0;
2811 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2812 struct cgroup *parent, *child;
2813 struct inode *inode;
2814 struct css_set *cg;
2815 struct cgroupfs_root *root;
2816 struct cgroup_subsys *ss;
2817
2818 /* We shouldn't be called by an unregistered subsystem */
2819 BUG_ON(!subsys->active);
2820
2821 /* First figure out what hierarchy and cgroup we're dealing
2822 * with, and pin them so we can drop cgroup_mutex */
2823 mutex_lock(&cgroup_mutex);
2824 again:
2825 root = subsys->root;
2826 if (root == &rootnode) {
2827 printk(KERN_INFO
2828 "Not cloning cgroup for unused subsystem %s\n",
2829 subsys->name);
2830 mutex_unlock(&cgroup_mutex);
2831 return 0;
2832 }
817929ec 2833 cg = tsk->cgroups;
697f4161
PM
2834 parent = task_cgroup(tsk, subsys->subsys_id);
2835
2836 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2837
2838 /* Pin the hierarchy */
2839 atomic_inc(&parent->root->sb->s_active);
2840
817929ec
PM
2841 /* Keep the cgroup alive */
2842 get_css_set(cg);
697f4161
PM
2843 mutex_unlock(&cgroup_mutex);
2844
2845 /* Now do the VFS work to create a cgroup */
2846 inode = parent->dentry->d_inode;
2847
2848 /* Hold the parent directory mutex across this operation to
2849 * stop anyone else deleting the new cgroup */
2850 mutex_lock(&inode->i_mutex);
2851 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2852 if (IS_ERR(dentry)) {
2853 printk(KERN_INFO
cfe36bde 2854 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
2855 PTR_ERR(dentry));
2856 ret = PTR_ERR(dentry);
2857 goto out_release;
2858 }
2859
2860 /* Create the cgroup directory, which also creates the cgroup */
2861 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
bd89aabc 2862 child = __d_cgrp(dentry);
697f4161
PM
2863 dput(dentry);
2864 if (ret) {
2865 printk(KERN_INFO
2866 "Failed to create cgroup %s: %d\n", nodename,
2867 ret);
2868 goto out_release;
2869 }
2870
2871 if (!child) {
2872 printk(KERN_INFO
2873 "Couldn't find new cgroup %s\n", nodename);
2874 ret = -ENOMEM;
2875 goto out_release;
2876 }
2877
2878 /* The cgroup now exists. Retake cgroup_mutex and check
2879 * that we're still in the same state that we thought we
2880 * were. */
2881 mutex_lock(&cgroup_mutex);
2882 if ((root != subsys->root) ||
2883 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2884 /* Aargh, we raced ... */
2885 mutex_unlock(&inode->i_mutex);
817929ec 2886 put_css_set(cg);
697f4161
PM
2887
2888 deactivate_super(parent->root->sb);
2889 /* The cgroup is still accessible in the VFS, but
2890 * we're not going to try to rmdir() it at this
2891 * point. */
2892 printk(KERN_INFO
2893 "Race in cgroup_clone() - leaking cgroup %s\n",
2894 nodename);
2895 goto again;
2896 }
2897
2898 /* do any required auto-setup */
2899 for_each_subsys(root, ss) {
2900 if (ss->post_clone)
2901 ss->post_clone(ss, child);
2902 }
2903
2904 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 2905 ret = cgroup_attach_task(child, tsk);
697f4161
PM
2906 mutex_unlock(&cgroup_mutex);
2907
2908 out_release:
2909 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
2910
2911 mutex_lock(&cgroup_mutex);
817929ec 2912 put_css_set(cg);
81a6a5cd 2913 mutex_unlock(&cgroup_mutex);
697f4161
PM
2914 deactivate_super(parent->root->sb);
2915 return ret;
2916}
2917
a043e3b2
LZ
2918/**
2919 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2920 * @cgrp: the cgroup in question
2921 *
2922 * See if @cgrp is a descendant of the current task's cgroup in
2923 * the appropriate hierarchy.
697f4161
PM
2924 *
2925 * If we are sending in dummytop, then presumably we are creating
2926 * the top cgroup in the subsystem.
2927 *
2928 * Called only by the ns (nsproxy) cgroup.
2929 */
bd89aabc 2930int cgroup_is_descendant(const struct cgroup *cgrp)
697f4161
PM
2931{
2932 int ret;
2933 struct cgroup *target;
2934 int subsys_id;
2935
bd89aabc 2936 if (cgrp == dummytop)
697f4161
PM
2937 return 1;
2938
bd89aabc 2939 get_first_subsys(cgrp, NULL, &subsys_id);
697f4161 2940 target = task_cgroup(current, subsys_id);
bd89aabc
PM
2941 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2942 cgrp = cgrp->parent;
2943 ret = (cgrp == target);
697f4161
PM
2944 return ret;
2945}
81a6a5cd 2946
bd89aabc 2947static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
2948{
2949 /* All of these checks rely on RCU to keep the cgroup
2950 * structure alive */
bd89aabc
PM
2951 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2952 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
2953 /* Control Group is currently removeable. If it's not
2954 * already queued for a userspace notification, queue
2955 * it now */
2956 int need_schedule_work = 0;
2957 spin_lock(&release_list_lock);
bd89aabc
PM
2958 if (!cgroup_is_removed(cgrp) &&
2959 list_empty(&cgrp->release_list)) {
2960 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
2961 need_schedule_work = 1;
2962 }
2963 spin_unlock(&release_list_lock);
2964 if (need_schedule_work)
2965 schedule_work(&release_agent_work);
2966 }
2967}
2968
2969void __css_put(struct cgroup_subsys_state *css)
2970{
bd89aabc 2971 struct cgroup *cgrp = css->cgroup;
81a6a5cd 2972 rcu_read_lock();
bd89aabc
PM
2973 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2974 set_bit(CGRP_RELEASABLE, &cgrp->flags);
2975 check_for_release(cgrp);
81a6a5cd
PM
2976 }
2977 rcu_read_unlock();
2978}
2979
2980/*
2981 * Notify userspace when a cgroup is released, by running the
2982 * configured release agent with the name of the cgroup (path
2983 * relative to the root of cgroup file system) as the argument.
2984 *
2985 * Most likely, this user command will try to rmdir this cgroup.
2986 *
2987 * This races with the possibility that some other task will be
2988 * attached to this cgroup before it is removed, or that some other
2989 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
2990 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
2991 * unused, and this cgroup will be reprieved from its death sentence,
2992 * to continue to serve a useful existence. Next time it's released,
2993 * we will get notified again, if it still has 'notify_on_release' set.
2994 *
2995 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
2996 * means only wait until the task is successfully execve()'d. The
2997 * separate release agent task is forked by call_usermodehelper(),
2998 * then control in this thread returns here, without waiting for the
2999 * release agent task. We don't bother to wait because the caller of
3000 * this routine has no use for the exit status of the release agent
3001 * task, so no sense holding our caller up for that.
81a6a5cd 3002 */
81a6a5cd
PM
3003static void cgroup_release_agent(struct work_struct *work)
3004{
3005 BUG_ON(work != &release_agent_work);
3006 mutex_lock(&cgroup_mutex);
3007 spin_lock(&release_list_lock);
3008 while (!list_empty(&release_list)) {
3009 char *argv[3], *envp[3];
3010 int i;
3011 char *pathbuf;
bd89aabc 3012 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
3013 struct cgroup,
3014 release_list);
bd89aabc 3015 list_del_init(&cgrp->release_list);
81a6a5cd
PM
3016 spin_unlock(&release_list_lock);
3017 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3018 if (!pathbuf) {
3019 spin_lock(&release_list_lock);
3020 continue;
3021 }
3022
bd89aabc 3023 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
81a6a5cd
PM
3024 kfree(pathbuf);
3025 spin_lock(&release_list_lock);
3026 continue;
3027 }
3028
3029 i = 0;
bd89aabc 3030 argv[i++] = cgrp->root->release_agent_path;
81a6a5cd
PM
3031 argv[i++] = (char *)pathbuf;
3032 argv[i] = NULL;
3033
3034 i = 0;
3035 /* minimal command environment */
3036 envp[i++] = "HOME=/";
3037 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3038 envp[i] = NULL;
3039
3040 /* Drop the lock while we invoke the usermode helper,
3041 * since the exec could involve hitting disk and hence
3042 * be a slow process */
3043 mutex_unlock(&cgroup_mutex);
3044 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3045 kfree(pathbuf);
3046 mutex_lock(&cgroup_mutex);
3047 spin_lock(&release_list_lock);
3048 }
3049 spin_unlock(&release_list_lock);
3050 mutex_unlock(&cgroup_mutex);
3051}
8bab8dde
PM
3052
3053static int __init cgroup_disable(char *str)
3054{
3055 int i;
3056 char *token;
3057
3058 while ((token = strsep(&str, ",")) != NULL) {
3059 if (!*token)
3060 continue;
3061
3062 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3063 struct cgroup_subsys *ss = subsys[i];
3064
3065 if (!strcmp(token, ss->name)) {
3066 ss->disabled = 1;
3067 printk(KERN_INFO "Disabling %s control group"
3068 " subsystem\n", ss->name);
3069 break;
3070 }
3071 }
3072 }
3073 return 1;
3074}
3075__setup("cgroup_disable=", cgroup_disable);