]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/auditsc.c
[PATCH] get rid of loginuid races
[net-next-2.6.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
3dc7e315 64#include <linux/selinux.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
74c3cbe3 68#include <linux/inotify.h>
1da177e4 69
fe7752ba 70#include "audit.h"
1da177e4 71
fe7752ba 72extern struct list_head audit_filter_list[];
1da177e4 73
1da177e4
LT
74/* AUDIT_NAMES is the number of slots we reserve in the audit_context
75 * for saving names from getname(). */
76#define AUDIT_NAMES 20
77
9c937dcc
AG
78/* Indicates that audit should log the full pathname. */
79#define AUDIT_NAME_FULL -1
80
471a5c7c
AV
81/* number of audit rules */
82int audit_n_rules;
83
e54dc243
AG
84/* determines whether we collect data for signals sent */
85int audit_signals;
86
1da177e4
LT
87/* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
90 *
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
92struct audit_names {
93 const char *name;
9c937dcc
AG
94 int name_len; /* number of name's characters to log */
95 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
96 unsigned long ino;
97 dev_t dev;
98 umode_t mode;
99 uid_t uid;
100 gid_t gid;
101 dev_t rdev;
1b50eed9 102 u32 osid;
1da177e4
LT
103};
104
105struct audit_aux_data {
106 struct audit_aux_data *next;
107 int type;
108};
109
110#define AUDIT_AUX_IPCPERM 0
111
e54dc243
AG
112/* Number of target pids per aux struct. */
113#define AUDIT_AUX_PIDS 16
114
20ca73bc
GW
115struct audit_aux_data_mq_open {
116 struct audit_aux_data d;
117 int oflag;
118 mode_t mode;
119 struct mq_attr attr;
120};
121
122struct audit_aux_data_mq_sendrecv {
123 struct audit_aux_data d;
124 mqd_t mqdes;
125 size_t msg_len;
126 unsigned int msg_prio;
127 struct timespec abs_timeout;
128};
129
130struct audit_aux_data_mq_notify {
131 struct audit_aux_data d;
132 mqd_t mqdes;
133 struct sigevent notification;
134};
135
136struct audit_aux_data_mq_getsetattr {
137 struct audit_aux_data d;
138 mqd_t mqdes;
139 struct mq_attr mqstat;
140};
141
1da177e4
LT
142struct audit_aux_data_ipcctl {
143 struct audit_aux_data d;
144 struct ipc_perm p;
145 unsigned long qbytes;
146 uid_t uid;
147 gid_t gid;
148 mode_t mode;
9c7aa6aa 149 u32 osid;
1da177e4
LT
150};
151
473ae30b
AV
152struct audit_aux_data_execve {
153 struct audit_aux_data d;
154 int argc;
155 int envc;
bdf4c48a 156 struct mm_struct *mm;
473ae30b
AV
157};
158
3ec3b2fb
DW
159struct audit_aux_data_socketcall {
160 struct audit_aux_data d;
161 int nargs;
162 unsigned long args[0];
163};
164
165struct audit_aux_data_sockaddr {
166 struct audit_aux_data d;
167 int len;
168 char a[0];
169};
170
db349509
AV
171struct audit_aux_data_fd_pair {
172 struct audit_aux_data d;
173 int fd[2];
174};
175
e54dc243
AG
176struct audit_aux_data_pids {
177 struct audit_aux_data d;
178 pid_t target_pid[AUDIT_AUX_PIDS];
179 u32 target_sid[AUDIT_AUX_PIDS];
180 int pid_count;
181};
182
74c3cbe3
AV
183struct audit_tree_refs {
184 struct audit_tree_refs *next;
185 struct audit_chunk *c[31];
186};
187
1da177e4
LT
188/* The per-task audit context. */
189struct audit_context {
d51374ad 190 int dummy; /* must be the first element */
1da177e4
LT
191 int in_syscall; /* 1 if task is in a syscall */
192 enum audit_state state;
193 unsigned int serial; /* serial number for record */
194 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
195 int major; /* syscall number */
196 unsigned long argv[4]; /* syscall arguments */
197 int return_valid; /* return code is valid */
2fd6f58b 198 long return_code;/* syscall return code */
1da177e4
LT
199 int auditable; /* 1 if record should be written */
200 int name_count;
201 struct audit_names names[AUDIT_NAMES];
5adc8a6a 202 char * filterkey; /* key for rule that triggered record */
8f37d47c
DW
203 struct dentry * pwd;
204 struct vfsmount * pwdmnt;
1da177e4
LT
205 struct audit_context *previous; /* For nested syscalls */
206 struct audit_aux_data *aux;
e54dc243 207 struct audit_aux_data *aux_pids;
1da177e4
LT
208
209 /* Save things to print about task_struct */
f46038ff 210 pid_t pid, ppid;
1da177e4
LT
211 uid_t uid, euid, suid, fsuid;
212 gid_t gid, egid, sgid, fsgid;
213 unsigned long personality;
2fd6f58b 214 int arch;
1da177e4 215
a5cb013d
AV
216 pid_t target_pid;
217 u32 target_sid;
218
74c3cbe3
AV
219 struct audit_tree_refs *trees, *first_trees;
220 int tree_count;
221
1da177e4
LT
222#if AUDIT_DEBUG
223 int put_count;
224 int ino_count;
225#endif
226};
227
55669bfa
AV
228#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
229static inline int open_arg(int flags, int mask)
230{
231 int n = ACC_MODE(flags);
232 if (flags & (O_TRUNC | O_CREAT))
233 n |= AUDIT_PERM_WRITE;
234 return n & mask;
235}
236
237static int audit_match_perm(struct audit_context *ctx, int mask)
238{
239 unsigned n = ctx->major;
240 switch (audit_classify_syscall(ctx->arch, n)) {
241 case 0: /* native */
242 if ((mask & AUDIT_PERM_WRITE) &&
243 audit_match_class(AUDIT_CLASS_WRITE, n))
244 return 1;
245 if ((mask & AUDIT_PERM_READ) &&
246 audit_match_class(AUDIT_CLASS_READ, n))
247 return 1;
248 if ((mask & AUDIT_PERM_ATTR) &&
249 audit_match_class(AUDIT_CLASS_CHATTR, n))
250 return 1;
251 return 0;
252 case 1: /* 32bit on biarch */
253 if ((mask & AUDIT_PERM_WRITE) &&
254 audit_match_class(AUDIT_CLASS_WRITE_32, n))
255 return 1;
256 if ((mask & AUDIT_PERM_READ) &&
257 audit_match_class(AUDIT_CLASS_READ_32, n))
258 return 1;
259 if ((mask & AUDIT_PERM_ATTR) &&
260 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
261 return 1;
262 return 0;
263 case 2: /* open */
264 return mask & ACC_MODE(ctx->argv[1]);
265 case 3: /* openat */
266 return mask & ACC_MODE(ctx->argv[2]);
267 case 4: /* socketcall */
268 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
269 case 5: /* execve */
270 return mask & AUDIT_PERM_EXEC;
271 default:
272 return 0;
273 }
274}
275
74c3cbe3
AV
276/*
277 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
278 * ->first_trees points to its beginning, ->trees - to the current end of data.
279 * ->tree_count is the number of free entries in array pointed to by ->trees.
280 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
281 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
282 * it's going to remain 1-element for almost any setup) until we free context itself.
283 * References in it _are_ dropped - at the same time we free/drop aux stuff.
284 */
285
286#ifdef CONFIG_AUDIT_TREE
287static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
288{
289 struct audit_tree_refs *p = ctx->trees;
290 int left = ctx->tree_count;
291 if (likely(left)) {
292 p->c[--left] = chunk;
293 ctx->tree_count = left;
294 return 1;
295 }
296 if (!p)
297 return 0;
298 p = p->next;
299 if (p) {
300 p->c[30] = chunk;
301 ctx->trees = p;
302 ctx->tree_count = 30;
303 return 1;
304 }
305 return 0;
306}
307
308static int grow_tree_refs(struct audit_context *ctx)
309{
310 struct audit_tree_refs *p = ctx->trees;
311 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
312 if (!ctx->trees) {
313 ctx->trees = p;
314 return 0;
315 }
316 if (p)
317 p->next = ctx->trees;
318 else
319 ctx->first_trees = ctx->trees;
320 ctx->tree_count = 31;
321 return 1;
322}
323#endif
324
325static void unroll_tree_refs(struct audit_context *ctx,
326 struct audit_tree_refs *p, int count)
327{
328#ifdef CONFIG_AUDIT_TREE
329 struct audit_tree_refs *q;
330 int n;
331 if (!p) {
332 /* we started with empty chain */
333 p = ctx->first_trees;
334 count = 31;
335 /* if the very first allocation has failed, nothing to do */
336 if (!p)
337 return;
338 }
339 n = count;
340 for (q = p; q != ctx->trees; q = q->next, n = 31) {
341 while (n--) {
342 audit_put_chunk(q->c[n]);
343 q->c[n] = NULL;
344 }
345 }
346 while (n-- > ctx->tree_count) {
347 audit_put_chunk(q->c[n]);
348 q->c[n] = NULL;
349 }
350 ctx->trees = p;
351 ctx->tree_count = count;
352#endif
353}
354
355static void free_tree_refs(struct audit_context *ctx)
356{
357 struct audit_tree_refs *p, *q;
358 for (p = ctx->first_trees; p; p = q) {
359 q = p->next;
360 kfree(p);
361 }
362}
363
364static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
365{
366#ifdef CONFIG_AUDIT_TREE
367 struct audit_tree_refs *p;
368 int n;
369 if (!tree)
370 return 0;
371 /* full ones */
372 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
373 for (n = 0; n < 31; n++)
374 if (audit_tree_match(p->c[n], tree))
375 return 1;
376 }
377 /* partial */
378 if (p) {
379 for (n = ctx->tree_count; n < 31; n++)
380 if (audit_tree_match(p->c[n], tree))
381 return 1;
382 }
383#endif
384 return 0;
385}
386
f368c07d 387/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
388/* Compare a task_struct with an audit_rule. Return 1 on match, 0
389 * otherwise. */
390static int audit_filter_rules(struct task_struct *tsk,
93315ed6 391 struct audit_krule *rule,
1da177e4 392 struct audit_context *ctx,
f368c07d 393 struct audit_names *name,
1da177e4
LT
394 enum audit_state *state)
395{
2ad312d2 396 int i, j, need_sid = 1;
3dc7e315
DG
397 u32 sid;
398
1da177e4 399 for (i = 0; i < rule->field_count; i++) {
93315ed6 400 struct audit_field *f = &rule->fields[i];
1da177e4
LT
401 int result = 0;
402
93315ed6 403 switch (f->type) {
1da177e4 404 case AUDIT_PID:
93315ed6 405 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 406 break;
3c66251e 407 case AUDIT_PPID:
419c58f1
AV
408 if (ctx) {
409 if (!ctx->ppid)
410 ctx->ppid = sys_getppid();
3c66251e 411 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 412 }
3c66251e 413 break;
1da177e4 414 case AUDIT_UID:
93315ed6 415 result = audit_comparator(tsk->uid, f->op, f->val);
1da177e4
LT
416 break;
417 case AUDIT_EUID:
93315ed6 418 result = audit_comparator(tsk->euid, f->op, f->val);
1da177e4
LT
419 break;
420 case AUDIT_SUID:
93315ed6 421 result = audit_comparator(tsk->suid, f->op, f->val);
1da177e4
LT
422 break;
423 case AUDIT_FSUID:
93315ed6 424 result = audit_comparator(tsk->fsuid, f->op, f->val);
1da177e4
LT
425 break;
426 case AUDIT_GID:
93315ed6 427 result = audit_comparator(tsk->gid, f->op, f->val);
1da177e4
LT
428 break;
429 case AUDIT_EGID:
93315ed6 430 result = audit_comparator(tsk->egid, f->op, f->val);
1da177e4
LT
431 break;
432 case AUDIT_SGID:
93315ed6 433 result = audit_comparator(tsk->sgid, f->op, f->val);
1da177e4
LT
434 break;
435 case AUDIT_FSGID:
93315ed6 436 result = audit_comparator(tsk->fsgid, f->op, f->val);
1da177e4
LT
437 break;
438 case AUDIT_PERS:
93315ed6 439 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 440 break;
2fd6f58b 441 case AUDIT_ARCH:
9f8dbe9c 442 if (ctx)
93315ed6 443 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 444 break;
1da177e4
LT
445
446 case AUDIT_EXIT:
447 if (ctx && ctx->return_valid)
93315ed6 448 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
449 break;
450 case AUDIT_SUCCESS:
b01f2cc1 451 if (ctx && ctx->return_valid) {
93315ed6
AG
452 if (f->val)
453 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 454 else
93315ed6 455 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 456 }
1da177e4
LT
457 break;
458 case AUDIT_DEVMAJOR:
f368c07d
AG
459 if (name)
460 result = audit_comparator(MAJOR(name->dev),
461 f->op, f->val);
462 else if (ctx) {
1da177e4 463 for (j = 0; j < ctx->name_count; j++) {
93315ed6 464 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
465 ++result;
466 break;
467 }
468 }
469 }
470 break;
471 case AUDIT_DEVMINOR:
f368c07d
AG
472 if (name)
473 result = audit_comparator(MINOR(name->dev),
474 f->op, f->val);
475 else if (ctx) {
1da177e4 476 for (j = 0; j < ctx->name_count; j++) {
93315ed6 477 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
478 ++result;
479 break;
480 }
481 }
482 }
483 break;
484 case AUDIT_INODE:
f368c07d 485 if (name)
9c937dcc 486 result = (name->ino == f->val);
f368c07d 487 else if (ctx) {
1da177e4 488 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 489 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
490 ++result;
491 break;
492 }
493 }
494 }
495 break;
f368c07d
AG
496 case AUDIT_WATCH:
497 if (name && rule->watch->ino != (unsigned long)-1)
498 result = (name->dev == rule->watch->dev &&
9c937dcc 499 name->ino == rule->watch->ino);
f368c07d 500 break;
74c3cbe3
AV
501 case AUDIT_DIR:
502 if (ctx)
503 result = match_tree_refs(ctx, rule->tree);
504 break;
1da177e4
LT
505 case AUDIT_LOGINUID:
506 result = 0;
507 if (ctx)
bfef93a5 508 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 509 break;
3a6b9f85
DG
510 case AUDIT_SUBJ_USER:
511 case AUDIT_SUBJ_ROLE:
512 case AUDIT_SUBJ_TYPE:
513 case AUDIT_SUBJ_SEN:
514 case AUDIT_SUBJ_CLR:
3dc7e315
DG
515 /* NOTE: this may return negative values indicating
516 a temporary error. We simply treat this as a
517 match for now to avoid losing information that
518 may be wanted. An error message will also be
519 logged upon error */
2ad312d2
SG
520 if (f->se_rule) {
521 if (need_sid) {
62bac018 522 selinux_get_task_sid(tsk, &sid);
2ad312d2
SG
523 need_sid = 0;
524 }
3dc7e315
DG
525 result = selinux_audit_rule_match(sid, f->type,
526 f->op,
527 f->se_rule,
528 ctx);
2ad312d2 529 }
3dc7e315 530 break;
6e5a2d1d
DG
531 case AUDIT_OBJ_USER:
532 case AUDIT_OBJ_ROLE:
533 case AUDIT_OBJ_TYPE:
534 case AUDIT_OBJ_LEV_LOW:
535 case AUDIT_OBJ_LEV_HIGH:
536 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
537 also applies here */
538 if (f->se_rule) {
539 /* Find files that match */
540 if (name) {
541 result = selinux_audit_rule_match(
542 name->osid, f->type, f->op,
543 f->se_rule, ctx);
544 } else if (ctx) {
545 for (j = 0; j < ctx->name_count; j++) {
546 if (selinux_audit_rule_match(
547 ctx->names[j].osid,
548 f->type, f->op,
549 f->se_rule, ctx)) {
550 ++result;
551 break;
552 }
553 }
554 }
555 /* Find ipc objects that match */
556 if (ctx) {
557 struct audit_aux_data *aux;
558 for (aux = ctx->aux; aux;
559 aux = aux->next) {
560 if (aux->type == AUDIT_IPC) {
561 struct audit_aux_data_ipcctl *axi = (void *)aux;
562 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
563 ++result;
564 break;
565 }
566 }
567 }
568 }
569 }
570 break;
1da177e4
LT
571 case AUDIT_ARG0:
572 case AUDIT_ARG1:
573 case AUDIT_ARG2:
574 case AUDIT_ARG3:
575 if (ctx)
93315ed6 576 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 577 break;
5adc8a6a
AG
578 case AUDIT_FILTERKEY:
579 /* ignore this field for filtering */
580 result = 1;
581 break;
55669bfa
AV
582 case AUDIT_PERM:
583 result = audit_match_perm(ctx, f->val);
584 break;
1da177e4
LT
585 }
586
1da177e4
LT
587 if (!result)
588 return 0;
589 }
5adc8a6a
AG
590 if (rule->filterkey)
591 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
592 switch (rule->action) {
593 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
594 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
595 }
596 return 1;
597}
598
599/* At process creation time, we can determine if system-call auditing is
600 * completely disabled for this task. Since we only have the task
601 * structure at this point, we can only check uid and gid.
602 */
603static enum audit_state audit_filter_task(struct task_struct *tsk)
604{
605 struct audit_entry *e;
606 enum audit_state state;
607
608 rcu_read_lock();
0f45aa18 609 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 610 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
611 rcu_read_unlock();
612 return state;
613 }
614 }
615 rcu_read_unlock();
616 return AUDIT_BUILD_CONTEXT;
617}
618
619/* At syscall entry and exit time, this filter is called if the
620 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 621 * also not high enough that we already know we have to write an audit
b0dd25a8 622 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
623 */
624static enum audit_state audit_filter_syscall(struct task_struct *tsk,
625 struct audit_context *ctx,
626 struct list_head *list)
627{
628 struct audit_entry *e;
c3896495 629 enum audit_state state;
1da177e4 630
351bb722 631 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
632 return AUDIT_DISABLED;
633
1da177e4 634 rcu_read_lock();
c3896495 635 if (!list_empty(list)) {
b63862f4
DK
636 int word = AUDIT_WORD(ctx->major);
637 int bit = AUDIT_BIT(ctx->major);
638
639 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
640 if ((e->rule.mask[word] & bit) == bit &&
641 audit_filter_rules(tsk, &e->rule, ctx, NULL,
642 &state)) {
643 rcu_read_unlock();
644 return state;
645 }
646 }
647 }
648 rcu_read_unlock();
649 return AUDIT_BUILD_CONTEXT;
650}
651
652/* At syscall exit time, this filter is called if any audit_names[] have been
653 * collected during syscall processing. We only check rules in sublists at hash
654 * buckets applicable to the inode numbers in audit_names[].
655 * Regarding audit_state, same rules apply as for audit_filter_syscall().
656 */
657enum audit_state audit_filter_inodes(struct task_struct *tsk,
658 struct audit_context *ctx)
659{
660 int i;
661 struct audit_entry *e;
662 enum audit_state state;
663
664 if (audit_pid && tsk->tgid == audit_pid)
665 return AUDIT_DISABLED;
666
667 rcu_read_lock();
668 for (i = 0; i < ctx->name_count; i++) {
669 int word = AUDIT_WORD(ctx->major);
670 int bit = AUDIT_BIT(ctx->major);
671 struct audit_names *n = &ctx->names[i];
672 int h = audit_hash_ino((u32)n->ino);
673 struct list_head *list = &audit_inode_hash[h];
674
675 if (list_empty(list))
676 continue;
677
678 list_for_each_entry_rcu(e, list, list) {
679 if ((e->rule.mask[word] & bit) == bit &&
680 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
681 rcu_read_unlock();
682 return state;
683 }
0f45aa18
DW
684 }
685 }
686 rcu_read_unlock();
1da177e4 687 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
688}
689
f368c07d
AG
690void audit_set_auditable(struct audit_context *ctx)
691{
692 ctx->auditable = 1;
693}
694
1da177e4
LT
695static inline struct audit_context *audit_get_context(struct task_struct *tsk,
696 int return_valid,
697 int return_code)
698{
699 struct audit_context *context = tsk->audit_context;
700
701 if (likely(!context))
702 return NULL;
703 context->return_valid = return_valid;
704 context->return_code = return_code;
705
d51374ad 706 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 707 enum audit_state state;
f368c07d 708
0f45aa18 709 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
710 if (state == AUDIT_RECORD_CONTEXT) {
711 context->auditable = 1;
712 goto get_context;
713 }
714
715 state = audit_filter_inodes(tsk, context);
1da177e4
LT
716 if (state == AUDIT_RECORD_CONTEXT)
717 context->auditable = 1;
f368c07d 718
1da177e4
LT
719 }
720
f368c07d 721get_context:
3f2792ff 722
1da177e4
LT
723 tsk->audit_context = NULL;
724 return context;
725}
726
727static inline void audit_free_names(struct audit_context *context)
728{
729 int i;
730
731#if AUDIT_DEBUG == 2
732 if (context->auditable
733 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 734 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
735 " name_count=%d put_count=%d"
736 " ino_count=%d [NOT freeing]\n",
73241ccc 737 __FILE__, __LINE__,
1da177e4
LT
738 context->serial, context->major, context->in_syscall,
739 context->name_count, context->put_count,
740 context->ino_count);
8c8570fb 741 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
742 printk(KERN_ERR "names[%d] = %p = %s\n", i,
743 context->names[i].name,
73241ccc 744 context->names[i].name ?: "(null)");
8c8570fb 745 }
1da177e4
LT
746 dump_stack();
747 return;
748 }
749#endif
750#if AUDIT_DEBUG
751 context->put_count = 0;
752 context->ino_count = 0;
753#endif
754
8c8570fb 755 for (i = 0; i < context->name_count; i++) {
9c937dcc 756 if (context->names[i].name && context->names[i].name_put)
1da177e4 757 __putname(context->names[i].name);
8c8570fb 758 }
1da177e4 759 context->name_count = 0;
8f37d47c
DW
760 if (context->pwd)
761 dput(context->pwd);
762 if (context->pwdmnt)
763 mntput(context->pwdmnt);
764 context->pwd = NULL;
765 context->pwdmnt = NULL;
1da177e4
LT
766}
767
768static inline void audit_free_aux(struct audit_context *context)
769{
770 struct audit_aux_data *aux;
771
772 while ((aux = context->aux)) {
773 context->aux = aux->next;
774 kfree(aux);
775 }
e54dc243
AG
776 while ((aux = context->aux_pids)) {
777 context->aux_pids = aux->next;
778 kfree(aux);
779 }
1da177e4
LT
780}
781
782static inline void audit_zero_context(struct audit_context *context,
783 enum audit_state state)
784{
1da177e4
LT
785 memset(context, 0, sizeof(*context));
786 context->state = state;
1da177e4
LT
787}
788
789static inline struct audit_context *audit_alloc_context(enum audit_state state)
790{
791 struct audit_context *context;
792
793 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
794 return NULL;
795 audit_zero_context(context, state);
796 return context;
797}
798
b0dd25a8
RD
799/**
800 * audit_alloc - allocate an audit context block for a task
801 * @tsk: task
802 *
803 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
804 * if necessary. Doing so turns on system call auditing for the
805 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
806 * needed.
807 */
1da177e4
LT
808int audit_alloc(struct task_struct *tsk)
809{
810 struct audit_context *context;
811 enum audit_state state;
812
813 if (likely(!audit_enabled))
814 return 0; /* Return if not auditing. */
815
816 state = audit_filter_task(tsk);
817 if (likely(state == AUDIT_DISABLED))
818 return 0;
819
820 if (!(context = audit_alloc_context(state))) {
821 audit_log_lost("out of memory in audit_alloc");
822 return -ENOMEM;
823 }
824
1da177e4
LT
825 tsk->audit_context = context;
826 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
827 return 0;
828}
829
830static inline void audit_free_context(struct audit_context *context)
831{
832 struct audit_context *previous;
833 int count = 0;
834
835 do {
836 previous = context->previous;
837 if (previous || (count && count < 10)) {
838 ++count;
839 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
840 " freeing multiple contexts (%d)\n",
841 context->serial, context->major,
842 context->name_count, count);
843 }
844 audit_free_names(context);
74c3cbe3
AV
845 unroll_tree_refs(context, NULL, 0);
846 free_tree_refs(context);
1da177e4 847 audit_free_aux(context);
5adc8a6a 848 kfree(context->filterkey);
1da177e4
LT
849 kfree(context);
850 context = previous;
851 } while (context);
852 if (count >= 10)
853 printk(KERN_ERR "audit: freed %d contexts\n", count);
854}
855
161a09e7 856void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
857{
858 char *ctx = NULL;
c4823bce
AV
859 unsigned len;
860 int error;
861 u32 sid;
862
863 selinux_get_task_sid(current, &sid);
864 if (!sid)
865 return;
8c8570fb 866
c4823bce
AV
867 error = selinux_sid_to_string(sid, &ctx, &len);
868 if (error) {
869 if (error != -EINVAL)
8c8570fb
DK
870 goto error_path;
871 return;
872 }
873
8c8570fb 874 audit_log_format(ab, " subj=%s", ctx);
c4823bce 875 kfree(ctx);
7306a0b9 876 return;
8c8570fb
DK
877
878error_path:
7306a0b9 879 audit_panic("error in audit_log_task_context");
8c8570fb
DK
880 return;
881}
882
161a09e7
JL
883EXPORT_SYMBOL(audit_log_task_context);
884
e495149b 885static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 886{
45d9bb0e
AV
887 char name[sizeof(tsk->comm)];
888 struct mm_struct *mm = tsk->mm;
219f0817
SS
889 struct vm_area_struct *vma;
890
e495149b
AV
891 /* tsk == current */
892
45d9bb0e 893 get_task_comm(name, tsk);
99e45eea
DW
894 audit_log_format(ab, " comm=");
895 audit_log_untrustedstring(ab, name);
219f0817 896
e495149b
AV
897 if (mm) {
898 down_read(&mm->mmap_sem);
899 vma = mm->mmap;
900 while (vma) {
901 if ((vma->vm_flags & VM_EXECUTABLE) &&
902 vma->vm_file) {
903 audit_log_d_path(ab, "exe=",
a7a005fd
JS
904 vma->vm_file->f_path.dentry,
905 vma->vm_file->f_path.mnt);
e495149b
AV
906 break;
907 }
908 vma = vma->vm_next;
219f0817 909 }
e495149b 910 up_read(&mm->mmap_sem);
219f0817 911 }
e495149b 912 audit_log_task_context(ab);
219f0817
SS
913}
914
e54dc243
AG
915static int audit_log_pid_context(struct audit_context *context, pid_t pid,
916 u32 sid)
917{
918 struct audit_buffer *ab;
919 char *s = NULL;
920 u32 len;
921 int rc = 0;
922
923 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
924 if (!ab)
925 return 1;
926
927 if (selinux_sid_to_string(sid, &s, &len)) {
928 audit_log_format(ab, "opid=%d obj=(none)", pid);
929 rc = 1;
930 } else
931 audit_log_format(ab, "opid=%d obj=%s", pid, s);
932 audit_log_end(ab);
933 kfree(s);
934
935 return rc;
936}
937
bdf4c48a
PZ
938static void audit_log_execve_info(struct audit_buffer *ab,
939 struct audit_aux_data_execve *axi)
940{
941 int i;
942 long len, ret;
040b3a2d 943 const char __user *p;
bdf4c48a
PZ
944 char *buf;
945
946 if (axi->mm != current->mm)
947 return; /* execve failed, no additional info */
948
040b3a2d
PZ
949 p = (const char __user *)axi->mm->arg_start;
950
bdf4c48a 951 for (i = 0; i < axi->argc; i++, p += len) {
b6a2fea3 952 len = strnlen_user(p, MAX_ARG_STRLEN);
bdf4c48a
PZ
953 /*
954 * We just created this mm, if we can't find the strings
955 * we just copied into it something is _very_ wrong. Similar
956 * for strings that are too long, we should not have created
957 * any.
958 */
959 if (!len || len > MAX_ARG_STRLEN) {
960 WARN_ON(1);
961 send_sig(SIGKILL, current, 0);
962 }
963
964 buf = kmalloc(len, GFP_KERNEL);
965 if (!buf) {
966 audit_panic("out of memory for argv string\n");
967 break;
968 }
969
970 ret = copy_from_user(buf, p, len);
971 /*
972 * There is no reason for this copy to be short. We just
973 * copied them here, and the mm hasn't been exposed to user-
974 * space yet.
975 */
040b3a2d 976 if (ret) {
bdf4c48a
PZ
977 WARN_ON(1);
978 send_sig(SIGKILL, current, 0);
979 }
980
981 audit_log_format(ab, "a%d=", i);
982 audit_log_untrustedstring(ab, buf);
983 audit_log_format(ab, "\n");
984
985 kfree(buf);
986 }
987}
988
e495149b 989static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 990{
9c7aa6aa 991 int i, call_panic = 0;
1da177e4 992 struct audit_buffer *ab;
7551ced3 993 struct audit_aux_data *aux;
a6c043a8 994 const char *tty;
1da177e4 995
e495149b 996 /* tsk == current */
3f2792ff 997 context->pid = tsk->pid;
419c58f1
AV
998 if (!context->ppid)
999 context->ppid = sys_getppid();
3f2792ff
AV
1000 context->uid = tsk->uid;
1001 context->gid = tsk->gid;
1002 context->euid = tsk->euid;
1003 context->suid = tsk->suid;
1004 context->fsuid = tsk->fsuid;
1005 context->egid = tsk->egid;
1006 context->sgid = tsk->sgid;
1007 context->fsgid = tsk->fsgid;
1008 context->personality = tsk->personality;
e495149b
AV
1009
1010 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1011 if (!ab)
1012 return; /* audit_panic has been called */
bccf6ae0
DW
1013 audit_log_format(ab, "arch=%x syscall=%d",
1014 context->arch, context->major);
1da177e4
LT
1015 if (context->personality != PER_LINUX)
1016 audit_log_format(ab, " per=%lx", context->personality);
1017 if (context->return_valid)
9f8dbe9c 1018 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1019 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1020 context->return_code);
eb84a20e
AC
1021
1022 mutex_lock(&tty_mutex);
24ec839c 1023 read_lock(&tasklist_lock);
45d9bb0e
AV
1024 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1025 tty = tsk->signal->tty->name;
a6c043a8
SG
1026 else
1027 tty = "(none)";
24ec839c 1028 read_unlock(&tasklist_lock);
1da177e4
LT
1029 audit_log_format(ab,
1030 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1031 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1032 " euid=%u suid=%u fsuid=%u"
a6c043a8 1033 " egid=%u sgid=%u fsgid=%u tty=%s",
1da177e4
LT
1034 context->argv[0],
1035 context->argv[1],
1036 context->argv[2],
1037 context->argv[3],
1038 context->name_count,
f46038ff 1039 context->ppid,
1da177e4 1040 context->pid,
bfef93a5 1041 tsk->loginuid,
1da177e4
LT
1042 context->uid,
1043 context->gid,
1044 context->euid, context->suid, context->fsuid,
a6c043a8 1045 context->egid, context->sgid, context->fsgid, tty);
eb84a20e
AC
1046
1047 mutex_unlock(&tty_mutex);
1048
e495149b 1049 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1050 if (context->filterkey) {
1051 audit_log_format(ab, " key=");
1052 audit_log_untrustedstring(ab, context->filterkey);
1053 } else
1054 audit_log_format(ab, " key=(null)");
1da177e4 1055 audit_log_end(ab);
1da177e4 1056
7551ced3 1057 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1058
e495149b 1059 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1060 if (!ab)
1061 continue; /* audit_panic has been called */
1062
1da177e4 1063 switch (aux->type) {
20ca73bc
GW
1064 case AUDIT_MQ_OPEN: {
1065 struct audit_aux_data_mq_open *axi = (void *)aux;
1066 audit_log_format(ab,
1067 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1068 "mq_msgsize=%ld mq_curmsgs=%ld",
1069 axi->oflag, axi->mode, axi->attr.mq_flags,
1070 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1071 axi->attr.mq_curmsgs);
1072 break; }
1073
1074 case AUDIT_MQ_SENDRECV: {
1075 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1076 audit_log_format(ab,
1077 "mqdes=%d msg_len=%zd msg_prio=%u "
1078 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1079 axi->mqdes, axi->msg_len, axi->msg_prio,
1080 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1081 break; }
1082
1083 case AUDIT_MQ_NOTIFY: {
1084 struct audit_aux_data_mq_notify *axi = (void *)aux;
1085 audit_log_format(ab,
1086 "mqdes=%d sigev_signo=%d",
1087 axi->mqdes,
1088 axi->notification.sigev_signo);
1089 break; }
1090
1091 case AUDIT_MQ_GETSETATTR: {
1092 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1093 audit_log_format(ab,
1094 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1095 "mq_curmsgs=%ld ",
1096 axi->mqdes,
1097 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1098 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1099 break; }
1100
c0404993 1101 case AUDIT_IPC: {
1da177e4
LT
1102 struct audit_aux_data_ipcctl *axi = (void *)aux;
1103 audit_log_format(ab,
5b9a4262 1104 "ouid=%u ogid=%u mode=%#o",
ac03221a 1105 axi->uid, axi->gid, axi->mode);
9c7aa6aa
SG
1106 if (axi->osid != 0) {
1107 char *ctx = NULL;
1108 u32 len;
1a70cd40 1109 if (selinux_sid_to_string(
9c7aa6aa 1110 axi->osid, &ctx, &len)) {
ce29b682 1111 audit_log_format(ab, " osid=%u",
9c7aa6aa
SG
1112 axi->osid);
1113 call_panic = 1;
1114 } else
1115 audit_log_format(ab, " obj=%s", ctx);
1116 kfree(ctx);
1117 }
3ec3b2fb
DW
1118 break; }
1119
073115d6
SG
1120 case AUDIT_IPC_SET_PERM: {
1121 struct audit_aux_data_ipcctl *axi = (void *)aux;
1122 audit_log_format(ab,
5b9a4262 1123 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
073115d6 1124 axi->qbytes, axi->uid, axi->gid, axi->mode);
073115d6 1125 break; }
ac03221a 1126
473ae30b
AV
1127 case AUDIT_EXECVE: {
1128 struct audit_aux_data_execve *axi = (void *)aux;
bdf4c48a 1129 audit_log_execve_info(ab, axi);
473ae30b 1130 break; }
073115d6 1131
3ec3b2fb
DW
1132 case AUDIT_SOCKETCALL: {
1133 int i;
1134 struct audit_aux_data_socketcall *axs = (void *)aux;
1135 audit_log_format(ab, "nargs=%d", axs->nargs);
1136 for (i=0; i<axs->nargs; i++)
1137 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1138 break; }
1139
1140 case AUDIT_SOCKADDR: {
1141 struct audit_aux_data_sockaddr *axs = (void *)aux;
1142
1143 audit_log_format(ab, "saddr=");
1144 audit_log_hex(ab, axs->a, axs->len);
1145 break; }
01116105 1146
db349509
AV
1147 case AUDIT_FD_PAIR: {
1148 struct audit_aux_data_fd_pair *axs = (void *)aux;
1149 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1150 break; }
1151
1da177e4
LT
1152 }
1153 audit_log_end(ab);
1da177e4
LT
1154 }
1155
e54dc243
AG
1156 for (aux = context->aux_pids; aux; aux = aux->next) {
1157 struct audit_aux_data_pids *axs = (void *)aux;
1158 int i;
1159
1160 for (i = 0; i < axs->pid_count; i++)
1161 if (audit_log_pid_context(context, axs->target_pid[i],
1162 axs->target_sid[i]))
1163 call_panic = 1;
a5cb013d
AV
1164 }
1165
e54dc243
AG
1166 if (context->target_pid &&
1167 audit_log_pid_context(context, context->target_pid,
1168 context->target_sid))
1169 call_panic = 1;
1170
8f37d47c 1171 if (context->pwd && context->pwdmnt) {
e495149b 1172 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c
DW
1173 if (ab) {
1174 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
1175 audit_log_end(ab);
1176 }
1177 }
1da177e4 1178 for (i = 0; i < context->name_count; i++) {
9c937dcc 1179 struct audit_names *n = &context->names[i];
73241ccc 1180
e495149b 1181 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1182 if (!ab)
1183 continue; /* audit_panic has been called */
8f37d47c 1184
1da177e4 1185 audit_log_format(ab, "item=%d", i);
73241ccc 1186
9c937dcc
AG
1187 if (n->name) {
1188 switch(n->name_len) {
1189 case AUDIT_NAME_FULL:
1190 /* log the full path */
1191 audit_log_format(ab, " name=");
1192 audit_log_untrustedstring(ab, n->name);
1193 break;
1194 case 0:
1195 /* name was specified as a relative path and the
1196 * directory component is the cwd */
1197 audit_log_d_path(ab, " name=", context->pwd,
1198 context->pwdmnt);
1199 break;
1200 default:
1201 /* log the name's directory component */
1202 audit_log_format(ab, " name=");
1203 audit_log_n_untrustedstring(ab, n->name_len,
1204 n->name);
1205 }
1206 } else
1207 audit_log_format(ab, " name=(null)");
1208
1209 if (n->ino != (unsigned long)-1) {
1210 audit_log_format(ab, " inode=%lu"
1211 " dev=%02x:%02x mode=%#o"
1212 " ouid=%u ogid=%u rdev=%02x:%02x",
1213 n->ino,
1214 MAJOR(n->dev),
1215 MINOR(n->dev),
1216 n->mode,
1217 n->uid,
1218 n->gid,
1219 MAJOR(n->rdev),
1220 MINOR(n->rdev));
1221 }
1222 if (n->osid != 0) {
1b50eed9
SG
1223 char *ctx = NULL;
1224 u32 len;
1a70cd40 1225 if (selinux_sid_to_string(
9c937dcc
AG
1226 n->osid, &ctx, &len)) {
1227 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1228 call_panic = 2;
1b50eed9
SG
1229 } else
1230 audit_log_format(ab, " obj=%s", ctx);
1231 kfree(ctx);
8c8570fb
DK
1232 }
1233
1da177e4
LT
1234 audit_log_end(ab);
1235 }
9c7aa6aa
SG
1236 if (call_panic)
1237 audit_panic("error converting sid to string");
1da177e4
LT
1238}
1239
b0dd25a8
RD
1240/**
1241 * audit_free - free a per-task audit context
1242 * @tsk: task whose audit context block to free
1243 *
fa84cb93 1244 * Called from copy_process and do_exit
b0dd25a8 1245 */
1da177e4
LT
1246void audit_free(struct task_struct *tsk)
1247{
1248 struct audit_context *context;
1249
1da177e4 1250 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1251 if (likely(!context))
1252 return;
1253
1254 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1255 * function (e.g., exit_group), then free context block.
1256 * We use GFP_ATOMIC here because we might be doing this
f5561964 1257 * in the context of the idle thread */
e495149b 1258 /* that can happen only if we are called from do_exit() */
f7056d64 1259 if (context->in_syscall && context->auditable)
e495149b 1260 audit_log_exit(context, tsk);
1da177e4
LT
1261
1262 audit_free_context(context);
1263}
1264
b0dd25a8
RD
1265/**
1266 * audit_syscall_entry - fill in an audit record at syscall entry
1267 * @tsk: task being audited
1268 * @arch: architecture type
1269 * @major: major syscall type (function)
1270 * @a1: additional syscall register 1
1271 * @a2: additional syscall register 2
1272 * @a3: additional syscall register 3
1273 * @a4: additional syscall register 4
1274 *
1275 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1276 * audit context was created when the task was created and the state or
1277 * filters demand the audit context be built. If the state from the
1278 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1279 * then the record will be written at syscall exit time (otherwise, it
1280 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1281 * be written).
1282 */
5411be59 1283void audit_syscall_entry(int arch, int major,
1da177e4
LT
1284 unsigned long a1, unsigned long a2,
1285 unsigned long a3, unsigned long a4)
1286{
5411be59 1287 struct task_struct *tsk = current;
1da177e4
LT
1288 struct audit_context *context = tsk->audit_context;
1289 enum audit_state state;
1290
1291 BUG_ON(!context);
1292
b0dd25a8
RD
1293 /*
1294 * This happens only on certain architectures that make system
1da177e4
LT
1295 * calls in kernel_thread via the entry.S interface, instead of
1296 * with direct calls. (If you are porting to a new
1297 * architecture, hitting this condition can indicate that you
1298 * got the _exit/_leave calls backward in entry.S.)
1299 *
1300 * i386 no
1301 * x86_64 no
2ef9481e 1302 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1303 *
1304 * This also happens with vm86 emulation in a non-nested manner
1305 * (entries without exits), so this case must be caught.
1306 */
1307 if (context->in_syscall) {
1308 struct audit_context *newctx;
1309
1da177e4
LT
1310#if AUDIT_DEBUG
1311 printk(KERN_ERR
1312 "audit(:%d) pid=%d in syscall=%d;"
1313 " entering syscall=%d\n",
1314 context->serial, tsk->pid, context->major, major);
1315#endif
1316 newctx = audit_alloc_context(context->state);
1317 if (newctx) {
1318 newctx->previous = context;
1319 context = newctx;
1320 tsk->audit_context = newctx;
1321 } else {
1322 /* If we can't alloc a new context, the best we
1323 * can do is to leak memory (any pending putname
1324 * will be lost). The only other alternative is
1325 * to abandon auditing. */
1326 audit_zero_context(context, context->state);
1327 }
1328 }
1329 BUG_ON(context->in_syscall || context->name_count);
1330
1331 if (!audit_enabled)
1332 return;
1333
2fd6f58b 1334 context->arch = arch;
1da177e4
LT
1335 context->major = major;
1336 context->argv[0] = a1;
1337 context->argv[1] = a2;
1338 context->argv[2] = a3;
1339 context->argv[3] = a4;
1340
1341 state = context->state;
d51374ad
AV
1342 context->dummy = !audit_n_rules;
1343 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1344 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1345 if (likely(state == AUDIT_DISABLED))
1346 return;
1347
ce625a80 1348 context->serial = 0;
1da177e4
LT
1349 context->ctime = CURRENT_TIME;
1350 context->in_syscall = 1;
1351 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1352 context->ppid = 0;
1da177e4
LT
1353}
1354
b0dd25a8
RD
1355/**
1356 * audit_syscall_exit - deallocate audit context after a system call
1357 * @tsk: task being audited
1358 * @valid: success/failure flag
1359 * @return_code: syscall return value
1360 *
1361 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1362 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1363 * filtering, or because some other part of the kernel write an audit
1364 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1365 * free the names stored from getname().
1366 */
5411be59 1367void audit_syscall_exit(int valid, long return_code)
1da177e4 1368{
5411be59 1369 struct task_struct *tsk = current;
1da177e4
LT
1370 struct audit_context *context;
1371
2fd6f58b 1372 context = audit_get_context(tsk, valid, return_code);
1da177e4 1373
1da177e4 1374 if (likely(!context))
97e94c45 1375 return;
1da177e4 1376
f7056d64 1377 if (context->in_syscall && context->auditable)
e495149b 1378 audit_log_exit(context, tsk);
1da177e4
LT
1379
1380 context->in_syscall = 0;
1381 context->auditable = 0;
2fd6f58b 1382
1da177e4
LT
1383 if (context->previous) {
1384 struct audit_context *new_context = context->previous;
1385 context->previous = NULL;
1386 audit_free_context(context);
1387 tsk->audit_context = new_context;
1388 } else {
1389 audit_free_names(context);
74c3cbe3 1390 unroll_tree_refs(context, NULL, 0);
1da177e4 1391 audit_free_aux(context);
e54dc243
AG
1392 context->aux = NULL;
1393 context->aux_pids = NULL;
a5cb013d 1394 context->target_pid = 0;
e54dc243 1395 context->target_sid = 0;
5adc8a6a
AG
1396 kfree(context->filterkey);
1397 context->filterkey = NULL;
1da177e4
LT
1398 tsk->audit_context = context;
1399 }
1da177e4
LT
1400}
1401
74c3cbe3
AV
1402static inline void handle_one(const struct inode *inode)
1403{
1404#ifdef CONFIG_AUDIT_TREE
1405 struct audit_context *context;
1406 struct audit_tree_refs *p;
1407 struct audit_chunk *chunk;
1408 int count;
1409 if (likely(list_empty(&inode->inotify_watches)))
1410 return;
1411 context = current->audit_context;
1412 p = context->trees;
1413 count = context->tree_count;
1414 rcu_read_lock();
1415 chunk = audit_tree_lookup(inode);
1416 rcu_read_unlock();
1417 if (!chunk)
1418 return;
1419 if (likely(put_tree_ref(context, chunk)))
1420 return;
1421 if (unlikely(!grow_tree_refs(context))) {
1422 printk(KERN_WARNING "out of memory, audit has lost a tree reference");
1423 audit_set_auditable(context);
1424 audit_put_chunk(chunk);
1425 unroll_tree_refs(context, p, count);
1426 return;
1427 }
1428 put_tree_ref(context, chunk);
1429#endif
1430}
1431
1432static void handle_path(const struct dentry *dentry)
1433{
1434#ifdef CONFIG_AUDIT_TREE
1435 struct audit_context *context;
1436 struct audit_tree_refs *p;
1437 const struct dentry *d, *parent;
1438 struct audit_chunk *drop;
1439 unsigned long seq;
1440 int count;
1441
1442 context = current->audit_context;
1443 p = context->trees;
1444 count = context->tree_count;
1445retry:
1446 drop = NULL;
1447 d = dentry;
1448 rcu_read_lock();
1449 seq = read_seqbegin(&rename_lock);
1450 for(;;) {
1451 struct inode *inode = d->d_inode;
1452 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1453 struct audit_chunk *chunk;
1454 chunk = audit_tree_lookup(inode);
1455 if (chunk) {
1456 if (unlikely(!put_tree_ref(context, chunk))) {
1457 drop = chunk;
1458 break;
1459 }
1460 }
1461 }
1462 parent = d->d_parent;
1463 if (parent == d)
1464 break;
1465 d = parent;
1466 }
1467 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1468 rcu_read_unlock();
1469 if (!drop) {
1470 /* just a race with rename */
1471 unroll_tree_refs(context, p, count);
1472 goto retry;
1473 }
1474 audit_put_chunk(drop);
1475 if (grow_tree_refs(context)) {
1476 /* OK, got more space */
1477 unroll_tree_refs(context, p, count);
1478 goto retry;
1479 }
1480 /* too bad */
1481 printk(KERN_WARNING
1482 "out of memory, audit has lost a tree reference");
1483 unroll_tree_refs(context, p, count);
1484 audit_set_auditable(context);
1485 return;
1486 }
1487 rcu_read_unlock();
1488#endif
1489}
1490
b0dd25a8
RD
1491/**
1492 * audit_getname - add a name to the list
1493 * @name: name to add
1494 *
1495 * Add a name to the list of audit names for this context.
1496 * Called from fs/namei.c:getname().
1497 */
d8945bb5 1498void __audit_getname(const char *name)
1da177e4
LT
1499{
1500 struct audit_context *context = current->audit_context;
1501
d8945bb5 1502 if (IS_ERR(name) || !name)
1da177e4
LT
1503 return;
1504
1505 if (!context->in_syscall) {
1506#if AUDIT_DEBUG == 2
1507 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1508 __FILE__, __LINE__, context->serial, name);
1509 dump_stack();
1510#endif
1511 return;
1512 }
1513 BUG_ON(context->name_count >= AUDIT_NAMES);
1514 context->names[context->name_count].name = name;
9c937dcc
AG
1515 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1516 context->names[context->name_count].name_put = 1;
1da177e4 1517 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1518 context->names[context->name_count].osid = 0;
1da177e4 1519 ++context->name_count;
8f37d47c
DW
1520 if (!context->pwd) {
1521 read_lock(&current->fs->lock);
1522 context->pwd = dget(current->fs->pwd);
1523 context->pwdmnt = mntget(current->fs->pwdmnt);
1524 read_unlock(&current->fs->lock);
1525 }
9f8dbe9c 1526
1da177e4
LT
1527}
1528
b0dd25a8
RD
1529/* audit_putname - intercept a putname request
1530 * @name: name to intercept and delay for putname
1531 *
1532 * If we have stored the name from getname in the audit context,
1533 * then we delay the putname until syscall exit.
1534 * Called from include/linux/fs.h:putname().
1535 */
1da177e4
LT
1536void audit_putname(const char *name)
1537{
1538 struct audit_context *context = current->audit_context;
1539
1540 BUG_ON(!context);
1541 if (!context->in_syscall) {
1542#if AUDIT_DEBUG == 2
1543 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1544 __FILE__, __LINE__, context->serial, name);
1545 if (context->name_count) {
1546 int i;
1547 for (i = 0; i < context->name_count; i++)
1548 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1549 context->names[i].name,
73241ccc 1550 context->names[i].name ?: "(null)");
1da177e4
LT
1551 }
1552#endif
1553 __putname(name);
1554 }
1555#if AUDIT_DEBUG
1556 else {
1557 ++context->put_count;
1558 if (context->put_count > context->name_count) {
1559 printk(KERN_ERR "%s:%d(:%d): major=%d"
1560 " in_syscall=%d putname(%p) name_count=%d"
1561 " put_count=%d\n",
1562 __FILE__, __LINE__,
1563 context->serial, context->major,
1564 context->in_syscall, name, context->name_count,
1565 context->put_count);
1566 dump_stack();
1567 }
1568 }
1569#endif
1570}
1571
5712e88f
AG
1572static int audit_inc_name_count(struct audit_context *context,
1573 const struct inode *inode)
1574{
1575 if (context->name_count >= AUDIT_NAMES) {
1576 if (inode)
1577 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1578 "dev=%02x:%02x, inode=%lu",
1579 MAJOR(inode->i_sb->s_dev),
1580 MINOR(inode->i_sb->s_dev),
1581 inode->i_ino);
1582
1583 else
1584 printk(KERN_DEBUG "name_count maxed, losing inode data");
1585 return 1;
1586 }
1587 context->name_count++;
1588#if AUDIT_DEBUG
1589 context->ino_count++;
1590#endif
1591 return 0;
1592}
1593
3e2efce0
AG
1594/* Copy inode data into an audit_names. */
1595static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
8c8570fb 1596{
3e2efce0
AG
1597 name->ino = inode->i_ino;
1598 name->dev = inode->i_sb->s_dev;
1599 name->mode = inode->i_mode;
1600 name->uid = inode->i_uid;
1601 name->gid = inode->i_gid;
1602 name->rdev = inode->i_rdev;
1603 selinux_get_inode_sid(inode, &name->osid);
8c8570fb
DK
1604}
1605
b0dd25a8
RD
1606/**
1607 * audit_inode - store the inode and device from a lookup
1608 * @name: name being audited
481968f4 1609 * @dentry: dentry being audited
b0dd25a8
RD
1610 *
1611 * Called from fs/namei.c:path_lookup().
1612 */
5a190ae6 1613void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1614{
1615 int idx;
1616 struct audit_context *context = current->audit_context;
74c3cbe3 1617 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1618
1619 if (!context->in_syscall)
1620 return;
1621 if (context->name_count
1622 && context->names[context->name_count-1].name
1623 && context->names[context->name_count-1].name == name)
1624 idx = context->name_count - 1;
1625 else if (context->name_count > 1
1626 && context->names[context->name_count-2].name
1627 && context->names[context->name_count-2].name == name)
1628 idx = context->name_count - 2;
1629 else {
1630 /* FIXME: how much do we care about inodes that have no
1631 * associated name? */
5712e88f 1632 if (audit_inc_name_count(context, inode))
1da177e4 1633 return;
5712e88f 1634 idx = context->name_count - 1;
1da177e4 1635 context->names[idx].name = NULL;
1da177e4 1636 }
74c3cbe3 1637 handle_path(dentry);
3e2efce0 1638 audit_copy_inode(&context->names[idx], inode);
73241ccc
AG
1639}
1640
1641/**
1642 * audit_inode_child - collect inode info for created/removed objects
1643 * @dname: inode's dentry name
481968f4 1644 * @dentry: dentry being audited
73d3ec5a 1645 * @parent: inode of dentry parent
73241ccc
AG
1646 *
1647 * For syscalls that create or remove filesystem objects, audit_inode
1648 * can only collect information for the filesystem object's parent.
1649 * This call updates the audit context with the child's information.
1650 * Syscalls that create a new filesystem object must be hooked after
1651 * the object is created. Syscalls that remove a filesystem object
1652 * must be hooked prior, in order to capture the target inode during
1653 * unsuccessful attempts.
1654 */
5a190ae6 1655void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1656 const struct inode *parent)
73241ccc
AG
1657{
1658 int idx;
1659 struct audit_context *context = current->audit_context;
5712e88f 1660 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 1661 const struct inode *inode = dentry->d_inode;
9c937dcc 1662 int dirlen = 0;
73241ccc
AG
1663
1664 if (!context->in_syscall)
1665 return;
1666
74c3cbe3
AV
1667 if (inode)
1668 handle_one(inode);
73241ccc 1669 /* determine matching parent */
f368c07d 1670 if (!dname)
5712e88f 1671 goto add_names;
73241ccc 1672
5712e88f
AG
1673 /* parent is more likely, look for it first */
1674 for (idx = 0; idx < context->name_count; idx++) {
1675 struct audit_names *n = &context->names[idx];
f368c07d 1676
5712e88f
AG
1677 if (!n->name)
1678 continue;
1679
1680 if (n->ino == parent->i_ino &&
1681 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1682 n->name_len = dirlen; /* update parent data in place */
1683 found_parent = n->name;
1684 goto add_names;
f368c07d 1685 }
5712e88f 1686 }
73241ccc 1687
5712e88f
AG
1688 /* no matching parent, look for matching child */
1689 for (idx = 0; idx < context->name_count; idx++) {
1690 struct audit_names *n = &context->names[idx];
1691
1692 if (!n->name)
1693 continue;
1694
1695 /* strcmp() is the more likely scenario */
1696 if (!strcmp(dname, n->name) ||
1697 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1698 if (inode)
1699 audit_copy_inode(n, inode);
1700 else
1701 n->ino = (unsigned long)-1;
1702 found_child = n->name;
1703 goto add_names;
1704 }
ac9910ce 1705 }
5712e88f
AG
1706
1707add_names:
1708 if (!found_parent) {
1709 if (audit_inc_name_count(context, parent))
ac9910ce 1710 return;
5712e88f
AG
1711 idx = context->name_count - 1;
1712 context->names[idx].name = NULL;
73d3ec5a
AG
1713 audit_copy_inode(&context->names[idx], parent);
1714 }
5712e88f
AG
1715
1716 if (!found_child) {
1717 if (audit_inc_name_count(context, inode))
1718 return;
1719 idx = context->name_count - 1;
1720
1721 /* Re-use the name belonging to the slot for a matching parent
1722 * directory. All names for this context are relinquished in
1723 * audit_free_names() */
1724 if (found_parent) {
1725 context->names[idx].name = found_parent;
1726 context->names[idx].name_len = AUDIT_NAME_FULL;
1727 /* don't call __putname() */
1728 context->names[idx].name_put = 0;
1729 } else {
1730 context->names[idx].name = NULL;
1731 }
1732
1733 if (inode)
1734 audit_copy_inode(&context->names[idx], inode);
1735 else
1736 context->names[idx].ino = (unsigned long)-1;
1737 }
3e2efce0 1738}
50e437d5 1739EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1740
b0dd25a8
RD
1741/**
1742 * auditsc_get_stamp - get local copies of audit_context values
1743 * @ctx: audit_context for the task
1744 * @t: timespec to store time recorded in the audit_context
1745 * @serial: serial value that is recorded in the audit_context
1746 *
1747 * Also sets the context as auditable.
1748 */
bfb4496e
DW
1749void auditsc_get_stamp(struct audit_context *ctx,
1750 struct timespec *t, unsigned int *serial)
1da177e4 1751{
ce625a80
DW
1752 if (!ctx->serial)
1753 ctx->serial = audit_serial();
bfb4496e
DW
1754 t->tv_sec = ctx->ctime.tv_sec;
1755 t->tv_nsec = ctx->ctime.tv_nsec;
1756 *serial = ctx->serial;
1757 ctx->auditable = 1;
1da177e4
LT
1758}
1759
b0dd25a8
RD
1760/**
1761 * audit_set_loginuid - set a task's audit_context loginuid
1762 * @task: task whose audit context is being modified
1763 * @loginuid: loginuid value
1764 *
1765 * Returns 0.
1766 *
1767 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1768 */
456be6cd 1769int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 1770{
41757106
SG
1771 struct audit_context *context = task->audit_context;
1772
bfef93a5
AV
1773 if (context && context->in_syscall) {
1774 struct audit_buffer *ab;
1775
1776 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1777 if (ab) {
1778 audit_log_format(ab, "login pid=%d uid=%u "
1779 "old auid=%u new auid=%u",
1780 task->pid, task->uid,
1781 task->loginuid, loginuid);
1782 audit_log_end(ab);
c0404993 1783 }
1da177e4 1784 }
bfef93a5 1785 task->loginuid = loginuid;
1da177e4
LT
1786 return 0;
1787}
1788
20ca73bc
GW
1789/**
1790 * __audit_mq_open - record audit data for a POSIX MQ open
1791 * @oflag: open flag
1792 * @mode: mode bits
1793 * @u_attr: queue attributes
1794 *
1795 * Returns 0 for success or NULL context or < 0 on error.
1796 */
1797int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1798{
1799 struct audit_aux_data_mq_open *ax;
1800 struct audit_context *context = current->audit_context;
1801
1802 if (!audit_enabled)
1803 return 0;
1804
1805 if (likely(!context))
1806 return 0;
1807
1808 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1809 if (!ax)
1810 return -ENOMEM;
1811
1812 if (u_attr != NULL) {
1813 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1814 kfree(ax);
1815 return -EFAULT;
1816 }
1817 } else
1818 memset(&ax->attr, 0, sizeof(ax->attr));
1819
1820 ax->oflag = oflag;
1821 ax->mode = mode;
1822
1823 ax->d.type = AUDIT_MQ_OPEN;
1824 ax->d.next = context->aux;
1825 context->aux = (void *)ax;
1826 return 0;
1827}
1828
1829/**
1830 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1831 * @mqdes: MQ descriptor
1832 * @msg_len: Message length
1833 * @msg_prio: Message priority
1dbe83c3 1834 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
1835 *
1836 * Returns 0 for success or NULL context or < 0 on error.
1837 */
1838int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1839 const struct timespec __user *u_abs_timeout)
1840{
1841 struct audit_aux_data_mq_sendrecv *ax;
1842 struct audit_context *context = current->audit_context;
1843
1844 if (!audit_enabled)
1845 return 0;
1846
1847 if (likely(!context))
1848 return 0;
1849
1850 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1851 if (!ax)
1852 return -ENOMEM;
1853
1854 if (u_abs_timeout != NULL) {
1855 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1856 kfree(ax);
1857 return -EFAULT;
1858 }
1859 } else
1860 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1861
1862 ax->mqdes = mqdes;
1863 ax->msg_len = msg_len;
1864 ax->msg_prio = msg_prio;
1865
1866 ax->d.type = AUDIT_MQ_SENDRECV;
1867 ax->d.next = context->aux;
1868 context->aux = (void *)ax;
1869 return 0;
1870}
1871
1872/**
1873 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1874 * @mqdes: MQ descriptor
1875 * @msg_len: Message length
1dbe83c3
RD
1876 * @u_msg_prio: Message priority
1877 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
1878 *
1879 * Returns 0 for success or NULL context or < 0 on error.
1880 */
1881int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1882 unsigned int __user *u_msg_prio,
1883 const struct timespec __user *u_abs_timeout)
1884{
1885 struct audit_aux_data_mq_sendrecv *ax;
1886 struct audit_context *context = current->audit_context;
1887
1888 if (!audit_enabled)
1889 return 0;
1890
1891 if (likely(!context))
1892 return 0;
1893
1894 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1895 if (!ax)
1896 return -ENOMEM;
1897
1898 if (u_msg_prio != NULL) {
1899 if (get_user(ax->msg_prio, u_msg_prio)) {
1900 kfree(ax);
1901 return -EFAULT;
1902 }
1903 } else
1904 ax->msg_prio = 0;
1905
1906 if (u_abs_timeout != NULL) {
1907 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1908 kfree(ax);
1909 return -EFAULT;
1910 }
1911 } else
1912 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1913
1914 ax->mqdes = mqdes;
1915 ax->msg_len = msg_len;
1916
1917 ax->d.type = AUDIT_MQ_SENDRECV;
1918 ax->d.next = context->aux;
1919 context->aux = (void *)ax;
1920 return 0;
1921}
1922
1923/**
1924 * __audit_mq_notify - record audit data for a POSIX MQ notify
1925 * @mqdes: MQ descriptor
1926 * @u_notification: Notification event
1927 *
1928 * Returns 0 for success or NULL context or < 0 on error.
1929 */
1930
1931int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1932{
1933 struct audit_aux_data_mq_notify *ax;
1934 struct audit_context *context = current->audit_context;
1935
1936 if (!audit_enabled)
1937 return 0;
1938
1939 if (likely(!context))
1940 return 0;
1941
1942 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1943 if (!ax)
1944 return -ENOMEM;
1945
1946 if (u_notification != NULL) {
1947 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1948 kfree(ax);
1949 return -EFAULT;
1950 }
1951 } else
1952 memset(&ax->notification, 0, sizeof(ax->notification));
1953
1954 ax->mqdes = mqdes;
1955
1956 ax->d.type = AUDIT_MQ_NOTIFY;
1957 ax->d.next = context->aux;
1958 context->aux = (void *)ax;
1959 return 0;
1960}
1961
1962/**
1963 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1964 * @mqdes: MQ descriptor
1965 * @mqstat: MQ flags
1966 *
1967 * Returns 0 for success or NULL context or < 0 on error.
1968 */
1969int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1970{
1971 struct audit_aux_data_mq_getsetattr *ax;
1972 struct audit_context *context = current->audit_context;
1973
1974 if (!audit_enabled)
1975 return 0;
1976
1977 if (likely(!context))
1978 return 0;
1979
1980 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1981 if (!ax)
1982 return -ENOMEM;
1983
1984 ax->mqdes = mqdes;
1985 ax->mqstat = *mqstat;
1986
1987 ax->d.type = AUDIT_MQ_GETSETATTR;
1988 ax->d.next = context->aux;
1989 context->aux = (void *)ax;
1990 return 0;
1991}
1992
b0dd25a8 1993/**
073115d6
SG
1994 * audit_ipc_obj - record audit data for ipc object
1995 * @ipcp: ipc permissions
1996 *
1997 * Returns 0 for success or NULL context or < 0 on error.
1998 */
d8945bb5 1999int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6
SG
2000{
2001 struct audit_aux_data_ipcctl *ax;
2002 struct audit_context *context = current->audit_context;
2003
073115d6
SG
2004 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2005 if (!ax)
2006 return -ENOMEM;
2007
2008 ax->uid = ipcp->uid;
2009 ax->gid = ipcp->gid;
2010 ax->mode = ipcp->mode;
2011 selinux_get_ipc_sid(ipcp, &ax->osid);
2012
2013 ax->d.type = AUDIT_IPC;
2014 ax->d.next = context->aux;
2015 context->aux = (void *)ax;
2016 return 0;
2017}
2018
2019/**
2020 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2021 * @qbytes: msgq bytes
2022 * @uid: msgq user id
2023 * @gid: msgq group id
2024 * @mode: msgq mode (permissions)
2025 *
2026 * Returns 0 for success or NULL context or < 0 on error.
2027 */
d8945bb5 2028int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4
LT
2029{
2030 struct audit_aux_data_ipcctl *ax;
2031 struct audit_context *context = current->audit_context;
2032
8c8570fb 2033 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1da177e4
LT
2034 if (!ax)
2035 return -ENOMEM;
2036
2037 ax->qbytes = qbytes;
2038 ax->uid = uid;
2039 ax->gid = gid;
2040 ax->mode = mode;
2041
073115d6 2042 ax->d.type = AUDIT_IPC_SET_PERM;
1da177e4
LT
2043 ax->d.next = context->aux;
2044 context->aux = (void *)ax;
2045 return 0;
2046}
c2f0c7c3 2047
bdf4c48a
PZ
2048int audit_argv_kb = 32;
2049
473ae30b
AV
2050int audit_bprm(struct linux_binprm *bprm)
2051{
2052 struct audit_aux_data_execve *ax;
2053 struct audit_context *context = current->audit_context;
473ae30b 2054
5ac3a9c2 2055 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2056 return 0;
2057
bdf4c48a
PZ
2058 /*
2059 * Even though the stack code doesn't limit the arg+env size any more,
2060 * the audit code requires that _all_ arguments be logged in a single
2061 * netlink skb. Hence cap it :-(
2062 */
2063 if (bprm->argv_len > (audit_argv_kb << 10))
2064 return -E2BIG;
2065
2066 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2067 if (!ax)
2068 return -ENOMEM;
2069
2070 ax->argc = bprm->argc;
2071 ax->envc = bprm->envc;
bdf4c48a 2072 ax->mm = bprm->mm;
473ae30b
AV
2073 ax->d.type = AUDIT_EXECVE;
2074 ax->d.next = context->aux;
2075 context->aux = (void *)ax;
2076 return 0;
2077}
2078
2079
b0dd25a8
RD
2080/**
2081 * audit_socketcall - record audit data for sys_socketcall
2082 * @nargs: number of args
2083 * @args: args array
2084 *
2085 * Returns 0 for success or NULL context or < 0 on error.
2086 */
3ec3b2fb
DW
2087int audit_socketcall(int nargs, unsigned long *args)
2088{
2089 struct audit_aux_data_socketcall *ax;
2090 struct audit_context *context = current->audit_context;
2091
5ac3a9c2 2092 if (likely(!context || context->dummy))
3ec3b2fb
DW
2093 return 0;
2094
2095 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2096 if (!ax)
2097 return -ENOMEM;
2098
2099 ax->nargs = nargs;
2100 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2101
2102 ax->d.type = AUDIT_SOCKETCALL;
2103 ax->d.next = context->aux;
2104 context->aux = (void *)ax;
2105 return 0;
2106}
2107
db349509
AV
2108/**
2109 * __audit_fd_pair - record audit data for pipe and socketpair
2110 * @fd1: the first file descriptor
2111 * @fd2: the second file descriptor
2112 *
2113 * Returns 0 for success or NULL context or < 0 on error.
2114 */
2115int __audit_fd_pair(int fd1, int fd2)
2116{
2117 struct audit_context *context = current->audit_context;
2118 struct audit_aux_data_fd_pair *ax;
2119
2120 if (likely(!context)) {
2121 return 0;
2122 }
2123
2124 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2125 if (!ax) {
2126 return -ENOMEM;
2127 }
2128
2129 ax->fd[0] = fd1;
2130 ax->fd[1] = fd2;
2131
2132 ax->d.type = AUDIT_FD_PAIR;
2133 ax->d.next = context->aux;
2134 context->aux = (void *)ax;
2135 return 0;
2136}
2137
b0dd25a8
RD
2138/**
2139 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2140 * @len: data length in user space
2141 * @a: data address in kernel space
2142 *
2143 * Returns 0 for success or NULL context or < 0 on error.
2144 */
3ec3b2fb
DW
2145int audit_sockaddr(int len, void *a)
2146{
2147 struct audit_aux_data_sockaddr *ax;
2148 struct audit_context *context = current->audit_context;
2149
5ac3a9c2 2150 if (likely(!context || context->dummy))
3ec3b2fb
DW
2151 return 0;
2152
2153 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2154 if (!ax)
2155 return -ENOMEM;
2156
2157 ax->len = len;
2158 memcpy(ax->a, a, len);
2159
2160 ax->d.type = AUDIT_SOCKADDR;
2161 ax->d.next = context->aux;
2162 context->aux = (void *)ax;
2163 return 0;
2164}
2165
a5cb013d
AV
2166void __audit_ptrace(struct task_struct *t)
2167{
2168 struct audit_context *context = current->audit_context;
2169
2170 context->target_pid = t->pid;
2171 selinux_get_task_sid(t, &context->target_sid);
2172}
2173
b0dd25a8
RD
2174/**
2175 * audit_signal_info - record signal info for shutting down audit subsystem
2176 * @sig: signal value
2177 * @t: task being signaled
2178 *
2179 * If the audit subsystem is being terminated, record the task (pid)
2180 * and uid that is doing that.
2181 */
e54dc243 2182int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2183{
e54dc243
AG
2184 struct audit_aux_data_pids *axp;
2185 struct task_struct *tsk = current;
2186 struct audit_context *ctx = tsk->audit_context;
c2f0c7c3
SG
2187 extern pid_t audit_sig_pid;
2188 extern uid_t audit_sig_uid;
e1396065
AV
2189 extern u32 audit_sig_sid;
2190
175fc484
AV
2191 if (audit_pid && t->tgid == audit_pid) {
2192 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2193 audit_sig_pid = tsk->pid;
bfef93a5
AV
2194 if (tsk->loginuid != -1)
2195 audit_sig_uid = tsk->loginuid;
175fc484
AV
2196 else
2197 audit_sig_uid = tsk->uid;
2198 selinux_get_task_sid(tsk, &audit_sig_sid);
2199 }
2200 if (!audit_signals || audit_dummy_context())
2201 return 0;
c2f0c7c3 2202 }
e54dc243 2203
e54dc243
AG
2204 /* optimize the common case by putting first signal recipient directly
2205 * in audit_context */
2206 if (!ctx->target_pid) {
2207 ctx->target_pid = t->tgid;
2208 selinux_get_task_sid(t, &ctx->target_sid);
2209 return 0;
2210 }
2211
2212 axp = (void *)ctx->aux_pids;
2213 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2214 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2215 if (!axp)
2216 return -ENOMEM;
2217
2218 axp->d.type = AUDIT_OBJ_PID;
2219 axp->d.next = ctx->aux_pids;
2220 ctx->aux_pids = (void *)axp;
2221 }
88ae704c 2222 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2223
2224 axp->target_pid[axp->pid_count] = t->tgid;
2225 selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2226 axp->pid_count++;
2227
2228 return 0;
c2f0c7c3 2229}
0a4ff8c2
SG
2230
2231/**
2232 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2233 * @signr: signal value
0a4ff8c2
SG
2234 *
2235 * If a process ends with a core dump, something fishy is going on and we
2236 * should record the event for investigation.
2237 */
2238void audit_core_dumps(long signr)
2239{
2240 struct audit_buffer *ab;
2241 u32 sid;
2242
2243 if (!audit_enabled)
2244 return;
2245
2246 if (signr == SIGQUIT) /* don't care for those */
2247 return;
2248
2249 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2250 audit_log_format(ab, "auid=%u uid=%u gid=%u",
0c11b942 2251 audit_get_loginuid(current),
0a4ff8c2
SG
2252 current->uid, current->gid);
2253 selinux_get_task_sid(current, &sid);
2254 if (sid) {
2255 char *ctx = NULL;
2256 u32 len;
2257
2258 if (selinux_sid_to_string(sid, &ctx, &len))
2259 audit_log_format(ab, " ssid=%u", sid);
2260 else
2261 audit_log_format(ab, " subj=%s", ctx);
2262 kfree(ctx);
2263 }
2264 audit_log_format(ab, " pid=%d comm=", current->pid);
2265 audit_log_untrustedstring(ab, current->comm);
2266 audit_log_format(ab, " sig=%ld", signr);
2267 audit_log_end(ab);
2268}