]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/auditsc.c
[PATCH] switch audit_get_loginuid() to task_struct *
[net-next-2.6.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
3dc7e315 64#include <linux/selinux.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
74c3cbe3 68#include <linux/inotify.h>
1da177e4 69
fe7752ba 70#include "audit.h"
1da177e4 71
fe7752ba 72extern struct list_head audit_filter_list[];
1da177e4 73
1da177e4
LT
74/* AUDIT_NAMES is the number of slots we reserve in the audit_context
75 * for saving names from getname(). */
76#define AUDIT_NAMES 20
77
9c937dcc
AG
78/* Indicates that audit should log the full pathname. */
79#define AUDIT_NAME_FULL -1
80
471a5c7c
AV
81/* number of audit rules */
82int audit_n_rules;
83
e54dc243
AG
84/* determines whether we collect data for signals sent */
85int audit_signals;
86
1da177e4
LT
87/* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
90 *
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
92struct audit_names {
93 const char *name;
9c937dcc
AG
94 int name_len; /* number of name's characters to log */
95 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
96 unsigned long ino;
97 dev_t dev;
98 umode_t mode;
99 uid_t uid;
100 gid_t gid;
101 dev_t rdev;
1b50eed9 102 u32 osid;
1da177e4
LT
103};
104
105struct audit_aux_data {
106 struct audit_aux_data *next;
107 int type;
108};
109
110#define AUDIT_AUX_IPCPERM 0
111
e54dc243
AG
112/* Number of target pids per aux struct. */
113#define AUDIT_AUX_PIDS 16
114
20ca73bc
GW
115struct audit_aux_data_mq_open {
116 struct audit_aux_data d;
117 int oflag;
118 mode_t mode;
119 struct mq_attr attr;
120};
121
122struct audit_aux_data_mq_sendrecv {
123 struct audit_aux_data d;
124 mqd_t mqdes;
125 size_t msg_len;
126 unsigned int msg_prio;
127 struct timespec abs_timeout;
128};
129
130struct audit_aux_data_mq_notify {
131 struct audit_aux_data d;
132 mqd_t mqdes;
133 struct sigevent notification;
134};
135
136struct audit_aux_data_mq_getsetattr {
137 struct audit_aux_data d;
138 mqd_t mqdes;
139 struct mq_attr mqstat;
140};
141
1da177e4
LT
142struct audit_aux_data_ipcctl {
143 struct audit_aux_data d;
144 struct ipc_perm p;
145 unsigned long qbytes;
146 uid_t uid;
147 gid_t gid;
148 mode_t mode;
9c7aa6aa 149 u32 osid;
1da177e4
LT
150};
151
473ae30b
AV
152struct audit_aux_data_execve {
153 struct audit_aux_data d;
154 int argc;
155 int envc;
bdf4c48a 156 struct mm_struct *mm;
473ae30b
AV
157};
158
3ec3b2fb
DW
159struct audit_aux_data_socketcall {
160 struct audit_aux_data d;
161 int nargs;
162 unsigned long args[0];
163};
164
165struct audit_aux_data_sockaddr {
166 struct audit_aux_data d;
167 int len;
168 char a[0];
169};
170
db349509
AV
171struct audit_aux_data_fd_pair {
172 struct audit_aux_data d;
173 int fd[2];
174};
175
e54dc243
AG
176struct audit_aux_data_pids {
177 struct audit_aux_data d;
178 pid_t target_pid[AUDIT_AUX_PIDS];
179 u32 target_sid[AUDIT_AUX_PIDS];
180 int pid_count;
181};
182
74c3cbe3
AV
183struct audit_tree_refs {
184 struct audit_tree_refs *next;
185 struct audit_chunk *c[31];
186};
187
1da177e4
LT
188/* The per-task audit context. */
189struct audit_context {
d51374ad 190 int dummy; /* must be the first element */
1da177e4
LT
191 int in_syscall; /* 1 if task is in a syscall */
192 enum audit_state state;
193 unsigned int serial; /* serial number for record */
194 struct timespec ctime; /* time of syscall entry */
195 uid_t loginuid; /* login uid (identity) */
196 int major; /* syscall number */
197 unsigned long argv[4]; /* syscall arguments */
198 int return_valid; /* return code is valid */
2fd6f58b 199 long return_code;/* syscall return code */
1da177e4
LT
200 int auditable; /* 1 if record should be written */
201 int name_count;
202 struct audit_names names[AUDIT_NAMES];
5adc8a6a 203 char * filterkey; /* key for rule that triggered record */
8f37d47c
DW
204 struct dentry * pwd;
205 struct vfsmount * pwdmnt;
1da177e4
LT
206 struct audit_context *previous; /* For nested syscalls */
207 struct audit_aux_data *aux;
e54dc243 208 struct audit_aux_data *aux_pids;
1da177e4
LT
209
210 /* Save things to print about task_struct */
f46038ff 211 pid_t pid, ppid;
1da177e4
LT
212 uid_t uid, euid, suid, fsuid;
213 gid_t gid, egid, sgid, fsgid;
214 unsigned long personality;
2fd6f58b 215 int arch;
1da177e4 216
a5cb013d
AV
217 pid_t target_pid;
218 u32 target_sid;
219
74c3cbe3
AV
220 struct audit_tree_refs *trees, *first_trees;
221 int tree_count;
222
1da177e4
LT
223#if AUDIT_DEBUG
224 int put_count;
225 int ino_count;
226#endif
227};
228
55669bfa
AV
229#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
230static inline int open_arg(int flags, int mask)
231{
232 int n = ACC_MODE(flags);
233 if (flags & (O_TRUNC | O_CREAT))
234 n |= AUDIT_PERM_WRITE;
235 return n & mask;
236}
237
238static int audit_match_perm(struct audit_context *ctx, int mask)
239{
240 unsigned n = ctx->major;
241 switch (audit_classify_syscall(ctx->arch, n)) {
242 case 0: /* native */
243 if ((mask & AUDIT_PERM_WRITE) &&
244 audit_match_class(AUDIT_CLASS_WRITE, n))
245 return 1;
246 if ((mask & AUDIT_PERM_READ) &&
247 audit_match_class(AUDIT_CLASS_READ, n))
248 return 1;
249 if ((mask & AUDIT_PERM_ATTR) &&
250 audit_match_class(AUDIT_CLASS_CHATTR, n))
251 return 1;
252 return 0;
253 case 1: /* 32bit on biarch */
254 if ((mask & AUDIT_PERM_WRITE) &&
255 audit_match_class(AUDIT_CLASS_WRITE_32, n))
256 return 1;
257 if ((mask & AUDIT_PERM_READ) &&
258 audit_match_class(AUDIT_CLASS_READ_32, n))
259 return 1;
260 if ((mask & AUDIT_PERM_ATTR) &&
261 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
262 return 1;
263 return 0;
264 case 2: /* open */
265 return mask & ACC_MODE(ctx->argv[1]);
266 case 3: /* openat */
267 return mask & ACC_MODE(ctx->argv[2]);
268 case 4: /* socketcall */
269 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
270 case 5: /* execve */
271 return mask & AUDIT_PERM_EXEC;
272 default:
273 return 0;
274 }
275}
276
74c3cbe3
AV
277/*
278 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
279 * ->first_trees points to its beginning, ->trees - to the current end of data.
280 * ->tree_count is the number of free entries in array pointed to by ->trees.
281 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
282 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
283 * it's going to remain 1-element for almost any setup) until we free context itself.
284 * References in it _are_ dropped - at the same time we free/drop aux stuff.
285 */
286
287#ifdef CONFIG_AUDIT_TREE
288static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
289{
290 struct audit_tree_refs *p = ctx->trees;
291 int left = ctx->tree_count;
292 if (likely(left)) {
293 p->c[--left] = chunk;
294 ctx->tree_count = left;
295 return 1;
296 }
297 if (!p)
298 return 0;
299 p = p->next;
300 if (p) {
301 p->c[30] = chunk;
302 ctx->trees = p;
303 ctx->tree_count = 30;
304 return 1;
305 }
306 return 0;
307}
308
309static int grow_tree_refs(struct audit_context *ctx)
310{
311 struct audit_tree_refs *p = ctx->trees;
312 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
313 if (!ctx->trees) {
314 ctx->trees = p;
315 return 0;
316 }
317 if (p)
318 p->next = ctx->trees;
319 else
320 ctx->first_trees = ctx->trees;
321 ctx->tree_count = 31;
322 return 1;
323}
324#endif
325
326static void unroll_tree_refs(struct audit_context *ctx,
327 struct audit_tree_refs *p, int count)
328{
329#ifdef CONFIG_AUDIT_TREE
330 struct audit_tree_refs *q;
331 int n;
332 if (!p) {
333 /* we started with empty chain */
334 p = ctx->first_trees;
335 count = 31;
336 /* if the very first allocation has failed, nothing to do */
337 if (!p)
338 return;
339 }
340 n = count;
341 for (q = p; q != ctx->trees; q = q->next, n = 31) {
342 while (n--) {
343 audit_put_chunk(q->c[n]);
344 q->c[n] = NULL;
345 }
346 }
347 while (n-- > ctx->tree_count) {
348 audit_put_chunk(q->c[n]);
349 q->c[n] = NULL;
350 }
351 ctx->trees = p;
352 ctx->tree_count = count;
353#endif
354}
355
356static void free_tree_refs(struct audit_context *ctx)
357{
358 struct audit_tree_refs *p, *q;
359 for (p = ctx->first_trees; p; p = q) {
360 q = p->next;
361 kfree(p);
362 }
363}
364
365static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
366{
367#ifdef CONFIG_AUDIT_TREE
368 struct audit_tree_refs *p;
369 int n;
370 if (!tree)
371 return 0;
372 /* full ones */
373 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
374 for (n = 0; n < 31; n++)
375 if (audit_tree_match(p->c[n], tree))
376 return 1;
377 }
378 /* partial */
379 if (p) {
380 for (n = ctx->tree_count; n < 31; n++)
381 if (audit_tree_match(p->c[n], tree))
382 return 1;
383 }
384#endif
385 return 0;
386}
387
f368c07d 388/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
389/* Compare a task_struct with an audit_rule. Return 1 on match, 0
390 * otherwise. */
391static int audit_filter_rules(struct task_struct *tsk,
93315ed6 392 struct audit_krule *rule,
1da177e4 393 struct audit_context *ctx,
f368c07d 394 struct audit_names *name,
1da177e4
LT
395 enum audit_state *state)
396{
2ad312d2 397 int i, j, need_sid = 1;
3dc7e315
DG
398 u32 sid;
399
1da177e4 400 for (i = 0; i < rule->field_count; i++) {
93315ed6 401 struct audit_field *f = &rule->fields[i];
1da177e4
LT
402 int result = 0;
403
93315ed6 404 switch (f->type) {
1da177e4 405 case AUDIT_PID:
93315ed6 406 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 407 break;
3c66251e 408 case AUDIT_PPID:
419c58f1
AV
409 if (ctx) {
410 if (!ctx->ppid)
411 ctx->ppid = sys_getppid();
3c66251e 412 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 413 }
3c66251e 414 break;
1da177e4 415 case AUDIT_UID:
93315ed6 416 result = audit_comparator(tsk->uid, f->op, f->val);
1da177e4
LT
417 break;
418 case AUDIT_EUID:
93315ed6 419 result = audit_comparator(tsk->euid, f->op, f->val);
1da177e4
LT
420 break;
421 case AUDIT_SUID:
93315ed6 422 result = audit_comparator(tsk->suid, f->op, f->val);
1da177e4
LT
423 break;
424 case AUDIT_FSUID:
93315ed6 425 result = audit_comparator(tsk->fsuid, f->op, f->val);
1da177e4
LT
426 break;
427 case AUDIT_GID:
93315ed6 428 result = audit_comparator(tsk->gid, f->op, f->val);
1da177e4
LT
429 break;
430 case AUDIT_EGID:
93315ed6 431 result = audit_comparator(tsk->egid, f->op, f->val);
1da177e4
LT
432 break;
433 case AUDIT_SGID:
93315ed6 434 result = audit_comparator(tsk->sgid, f->op, f->val);
1da177e4
LT
435 break;
436 case AUDIT_FSGID:
93315ed6 437 result = audit_comparator(tsk->fsgid, f->op, f->val);
1da177e4
LT
438 break;
439 case AUDIT_PERS:
93315ed6 440 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 441 break;
2fd6f58b 442 case AUDIT_ARCH:
9f8dbe9c 443 if (ctx)
93315ed6 444 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 445 break;
1da177e4
LT
446
447 case AUDIT_EXIT:
448 if (ctx && ctx->return_valid)
93315ed6 449 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
450 break;
451 case AUDIT_SUCCESS:
b01f2cc1 452 if (ctx && ctx->return_valid) {
93315ed6
AG
453 if (f->val)
454 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 455 else
93315ed6 456 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 457 }
1da177e4
LT
458 break;
459 case AUDIT_DEVMAJOR:
f368c07d
AG
460 if (name)
461 result = audit_comparator(MAJOR(name->dev),
462 f->op, f->val);
463 else if (ctx) {
1da177e4 464 for (j = 0; j < ctx->name_count; j++) {
93315ed6 465 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
466 ++result;
467 break;
468 }
469 }
470 }
471 break;
472 case AUDIT_DEVMINOR:
f368c07d
AG
473 if (name)
474 result = audit_comparator(MINOR(name->dev),
475 f->op, f->val);
476 else if (ctx) {
1da177e4 477 for (j = 0; j < ctx->name_count; j++) {
93315ed6 478 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
479 ++result;
480 break;
481 }
482 }
483 }
484 break;
485 case AUDIT_INODE:
f368c07d 486 if (name)
9c937dcc 487 result = (name->ino == f->val);
f368c07d 488 else if (ctx) {
1da177e4 489 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 490 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
491 ++result;
492 break;
493 }
494 }
495 }
496 break;
f368c07d
AG
497 case AUDIT_WATCH:
498 if (name && rule->watch->ino != (unsigned long)-1)
499 result = (name->dev == rule->watch->dev &&
9c937dcc 500 name->ino == rule->watch->ino);
f368c07d 501 break;
74c3cbe3
AV
502 case AUDIT_DIR:
503 if (ctx)
504 result = match_tree_refs(ctx, rule->tree);
505 break;
1da177e4
LT
506 case AUDIT_LOGINUID:
507 result = 0;
508 if (ctx)
93315ed6 509 result = audit_comparator(ctx->loginuid, f->op, f->val);
1da177e4 510 break;
3a6b9f85
DG
511 case AUDIT_SUBJ_USER:
512 case AUDIT_SUBJ_ROLE:
513 case AUDIT_SUBJ_TYPE:
514 case AUDIT_SUBJ_SEN:
515 case AUDIT_SUBJ_CLR:
3dc7e315
DG
516 /* NOTE: this may return negative values indicating
517 a temporary error. We simply treat this as a
518 match for now to avoid losing information that
519 may be wanted. An error message will also be
520 logged upon error */
2ad312d2
SG
521 if (f->se_rule) {
522 if (need_sid) {
62bac018 523 selinux_get_task_sid(tsk, &sid);
2ad312d2
SG
524 need_sid = 0;
525 }
3dc7e315
DG
526 result = selinux_audit_rule_match(sid, f->type,
527 f->op,
528 f->se_rule,
529 ctx);
2ad312d2 530 }
3dc7e315 531 break;
6e5a2d1d
DG
532 case AUDIT_OBJ_USER:
533 case AUDIT_OBJ_ROLE:
534 case AUDIT_OBJ_TYPE:
535 case AUDIT_OBJ_LEV_LOW:
536 case AUDIT_OBJ_LEV_HIGH:
537 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
538 also applies here */
539 if (f->se_rule) {
540 /* Find files that match */
541 if (name) {
542 result = selinux_audit_rule_match(
543 name->osid, f->type, f->op,
544 f->se_rule, ctx);
545 } else if (ctx) {
546 for (j = 0; j < ctx->name_count; j++) {
547 if (selinux_audit_rule_match(
548 ctx->names[j].osid,
549 f->type, f->op,
550 f->se_rule, ctx)) {
551 ++result;
552 break;
553 }
554 }
555 }
556 /* Find ipc objects that match */
557 if (ctx) {
558 struct audit_aux_data *aux;
559 for (aux = ctx->aux; aux;
560 aux = aux->next) {
561 if (aux->type == AUDIT_IPC) {
562 struct audit_aux_data_ipcctl *axi = (void *)aux;
563 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
564 ++result;
565 break;
566 }
567 }
568 }
569 }
570 }
571 break;
1da177e4
LT
572 case AUDIT_ARG0:
573 case AUDIT_ARG1:
574 case AUDIT_ARG2:
575 case AUDIT_ARG3:
576 if (ctx)
93315ed6 577 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 578 break;
5adc8a6a
AG
579 case AUDIT_FILTERKEY:
580 /* ignore this field for filtering */
581 result = 1;
582 break;
55669bfa
AV
583 case AUDIT_PERM:
584 result = audit_match_perm(ctx, f->val);
585 break;
1da177e4
LT
586 }
587
1da177e4
LT
588 if (!result)
589 return 0;
590 }
5adc8a6a
AG
591 if (rule->filterkey)
592 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
593 switch (rule->action) {
594 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
595 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
596 }
597 return 1;
598}
599
600/* At process creation time, we can determine if system-call auditing is
601 * completely disabled for this task. Since we only have the task
602 * structure at this point, we can only check uid and gid.
603 */
604static enum audit_state audit_filter_task(struct task_struct *tsk)
605{
606 struct audit_entry *e;
607 enum audit_state state;
608
609 rcu_read_lock();
0f45aa18 610 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 611 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
612 rcu_read_unlock();
613 return state;
614 }
615 }
616 rcu_read_unlock();
617 return AUDIT_BUILD_CONTEXT;
618}
619
620/* At syscall entry and exit time, this filter is called if the
621 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 622 * also not high enough that we already know we have to write an audit
b0dd25a8 623 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
624 */
625static enum audit_state audit_filter_syscall(struct task_struct *tsk,
626 struct audit_context *ctx,
627 struct list_head *list)
628{
629 struct audit_entry *e;
c3896495 630 enum audit_state state;
1da177e4 631
351bb722 632 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
633 return AUDIT_DISABLED;
634
1da177e4 635 rcu_read_lock();
c3896495 636 if (!list_empty(list)) {
b63862f4
DK
637 int word = AUDIT_WORD(ctx->major);
638 int bit = AUDIT_BIT(ctx->major);
639
640 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
641 if ((e->rule.mask[word] & bit) == bit &&
642 audit_filter_rules(tsk, &e->rule, ctx, NULL,
643 &state)) {
644 rcu_read_unlock();
645 return state;
646 }
647 }
648 }
649 rcu_read_unlock();
650 return AUDIT_BUILD_CONTEXT;
651}
652
653/* At syscall exit time, this filter is called if any audit_names[] have been
654 * collected during syscall processing. We only check rules in sublists at hash
655 * buckets applicable to the inode numbers in audit_names[].
656 * Regarding audit_state, same rules apply as for audit_filter_syscall().
657 */
658enum audit_state audit_filter_inodes(struct task_struct *tsk,
659 struct audit_context *ctx)
660{
661 int i;
662 struct audit_entry *e;
663 enum audit_state state;
664
665 if (audit_pid && tsk->tgid == audit_pid)
666 return AUDIT_DISABLED;
667
668 rcu_read_lock();
669 for (i = 0; i < ctx->name_count; i++) {
670 int word = AUDIT_WORD(ctx->major);
671 int bit = AUDIT_BIT(ctx->major);
672 struct audit_names *n = &ctx->names[i];
673 int h = audit_hash_ino((u32)n->ino);
674 struct list_head *list = &audit_inode_hash[h];
675
676 if (list_empty(list))
677 continue;
678
679 list_for_each_entry_rcu(e, list, list) {
680 if ((e->rule.mask[word] & bit) == bit &&
681 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
682 rcu_read_unlock();
683 return state;
684 }
0f45aa18
DW
685 }
686 }
687 rcu_read_unlock();
1da177e4 688 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
689}
690
f368c07d
AG
691void audit_set_auditable(struct audit_context *ctx)
692{
693 ctx->auditable = 1;
694}
695
1da177e4
LT
696static inline struct audit_context *audit_get_context(struct task_struct *tsk,
697 int return_valid,
698 int return_code)
699{
700 struct audit_context *context = tsk->audit_context;
701
702 if (likely(!context))
703 return NULL;
704 context->return_valid = return_valid;
705 context->return_code = return_code;
706
d51374ad 707 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 708 enum audit_state state;
f368c07d 709
0f45aa18 710 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
711 if (state == AUDIT_RECORD_CONTEXT) {
712 context->auditable = 1;
713 goto get_context;
714 }
715
716 state = audit_filter_inodes(tsk, context);
1da177e4
LT
717 if (state == AUDIT_RECORD_CONTEXT)
718 context->auditable = 1;
f368c07d 719
1da177e4
LT
720 }
721
f368c07d 722get_context:
3f2792ff 723
1da177e4
LT
724 tsk->audit_context = NULL;
725 return context;
726}
727
728static inline void audit_free_names(struct audit_context *context)
729{
730 int i;
731
732#if AUDIT_DEBUG == 2
733 if (context->auditable
734 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 735 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
736 " name_count=%d put_count=%d"
737 " ino_count=%d [NOT freeing]\n",
73241ccc 738 __FILE__, __LINE__,
1da177e4
LT
739 context->serial, context->major, context->in_syscall,
740 context->name_count, context->put_count,
741 context->ino_count);
8c8570fb 742 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
743 printk(KERN_ERR "names[%d] = %p = %s\n", i,
744 context->names[i].name,
73241ccc 745 context->names[i].name ?: "(null)");
8c8570fb 746 }
1da177e4
LT
747 dump_stack();
748 return;
749 }
750#endif
751#if AUDIT_DEBUG
752 context->put_count = 0;
753 context->ino_count = 0;
754#endif
755
8c8570fb 756 for (i = 0; i < context->name_count; i++) {
9c937dcc 757 if (context->names[i].name && context->names[i].name_put)
1da177e4 758 __putname(context->names[i].name);
8c8570fb 759 }
1da177e4 760 context->name_count = 0;
8f37d47c
DW
761 if (context->pwd)
762 dput(context->pwd);
763 if (context->pwdmnt)
764 mntput(context->pwdmnt);
765 context->pwd = NULL;
766 context->pwdmnt = NULL;
1da177e4
LT
767}
768
769static inline void audit_free_aux(struct audit_context *context)
770{
771 struct audit_aux_data *aux;
772
773 while ((aux = context->aux)) {
774 context->aux = aux->next;
775 kfree(aux);
776 }
e54dc243
AG
777 while ((aux = context->aux_pids)) {
778 context->aux_pids = aux->next;
779 kfree(aux);
780 }
1da177e4
LT
781}
782
783static inline void audit_zero_context(struct audit_context *context,
784 enum audit_state state)
785{
786 uid_t loginuid = context->loginuid;
787
788 memset(context, 0, sizeof(*context));
789 context->state = state;
790 context->loginuid = loginuid;
791}
792
793static inline struct audit_context *audit_alloc_context(enum audit_state state)
794{
795 struct audit_context *context;
796
797 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
798 return NULL;
799 audit_zero_context(context, state);
800 return context;
801}
802
b0dd25a8
RD
803/**
804 * audit_alloc - allocate an audit context block for a task
805 * @tsk: task
806 *
807 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
808 * if necessary. Doing so turns on system call auditing for the
809 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
810 * needed.
811 */
1da177e4
LT
812int audit_alloc(struct task_struct *tsk)
813{
814 struct audit_context *context;
815 enum audit_state state;
816
817 if (likely(!audit_enabled))
818 return 0; /* Return if not auditing. */
819
820 state = audit_filter_task(tsk);
821 if (likely(state == AUDIT_DISABLED))
822 return 0;
823
824 if (!(context = audit_alloc_context(state))) {
825 audit_log_lost("out of memory in audit_alloc");
826 return -ENOMEM;
827 }
828
829 /* Preserve login uid */
830 context->loginuid = -1;
831 if (current->audit_context)
832 context->loginuid = current->audit_context->loginuid;
833
834 tsk->audit_context = context;
835 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
836 return 0;
837}
838
839static inline void audit_free_context(struct audit_context *context)
840{
841 struct audit_context *previous;
842 int count = 0;
843
844 do {
845 previous = context->previous;
846 if (previous || (count && count < 10)) {
847 ++count;
848 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
849 " freeing multiple contexts (%d)\n",
850 context->serial, context->major,
851 context->name_count, count);
852 }
853 audit_free_names(context);
74c3cbe3
AV
854 unroll_tree_refs(context, NULL, 0);
855 free_tree_refs(context);
1da177e4 856 audit_free_aux(context);
5adc8a6a 857 kfree(context->filterkey);
1da177e4
LT
858 kfree(context);
859 context = previous;
860 } while (context);
861 if (count >= 10)
862 printk(KERN_ERR "audit: freed %d contexts\n", count);
863}
864
161a09e7 865void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
866{
867 char *ctx = NULL;
c4823bce
AV
868 unsigned len;
869 int error;
870 u32 sid;
871
872 selinux_get_task_sid(current, &sid);
873 if (!sid)
874 return;
8c8570fb 875
c4823bce
AV
876 error = selinux_sid_to_string(sid, &ctx, &len);
877 if (error) {
878 if (error != -EINVAL)
8c8570fb
DK
879 goto error_path;
880 return;
881 }
882
8c8570fb 883 audit_log_format(ab, " subj=%s", ctx);
c4823bce 884 kfree(ctx);
7306a0b9 885 return;
8c8570fb
DK
886
887error_path:
7306a0b9 888 audit_panic("error in audit_log_task_context");
8c8570fb
DK
889 return;
890}
891
161a09e7
JL
892EXPORT_SYMBOL(audit_log_task_context);
893
e495149b 894static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 895{
45d9bb0e
AV
896 char name[sizeof(tsk->comm)];
897 struct mm_struct *mm = tsk->mm;
219f0817
SS
898 struct vm_area_struct *vma;
899
e495149b
AV
900 /* tsk == current */
901
45d9bb0e 902 get_task_comm(name, tsk);
99e45eea
DW
903 audit_log_format(ab, " comm=");
904 audit_log_untrustedstring(ab, name);
219f0817 905
e495149b
AV
906 if (mm) {
907 down_read(&mm->mmap_sem);
908 vma = mm->mmap;
909 while (vma) {
910 if ((vma->vm_flags & VM_EXECUTABLE) &&
911 vma->vm_file) {
912 audit_log_d_path(ab, "exe=",
a7a005fd
JS
913 vma->vm_file->f_path.dentry,
914 vma->vm_file->f_path.mnt);
e495149b
AV
915 break;
916 }
917 vma = vma->vm_next;
219f0817 918 }
e495149b 919 up_read(&mm->mmap_sem);
219f0817 920 }
e495149b 921 audit_log_task_context(ab);
219f0817
SS
922}
923
e54dc243
AG
924static int audit_log_pid_context(struct audit_context *context, pid_t pid,
925 u32 sid)
926{
927 struct audit_buffer *ab;
928 char *s = NULL;
929 u32 len;
930 int rc = 0;
931
932 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
933 if (!ab)
934 return 1;
935
936 if (selinux_sid_to_string(sid, &s, &len)) {
937 audit_log_format(ab, "opid=%d obj=(none)", pid);
938 rc = 1;
939 } else
940 audit_log_format(ab, "opid=%d obj=%s", pid, s);
941 audit_log_end(ab);
942 kfree(s);
943
944 return rc;
945}
946
bdf4c48a
PZ
947static void audit_log_execve_info(struct audit_buffer *ab,
948 struct audit_aux_data_execve *axi)
949{
950 int i;
951 long len, ret;
040b3a2d 952 const char __user *p;
bdf4c48a
PZ
953 char *buf;
954
955 if (axi->mm != current->mm)
956 return; /* execve failed, no additional info */
957
040b3a2d
PZ
958 p = (const char __user *)axi->mm->arg_start;
959
bdf4c48a 960 for (i = 0; i < axi->argc; i++, p += len) {
b6a2fea3 961 len = strnlen_user(p, MAX_ARG_STRLEN);
bdf4c48a
PZ
962 /*
963 * We just created this mm, if we can't find the strings
964 * we just copied into it something is _very_ wrong. Similar
965 * for strings that are too long, we should not have created
966 * any.
967 */
968 if (!len || len > MAX_ARG_STRLEN) {
969 WARN_ON(1);
970 send_sig(SIGKILL, current, 0);
971 }
972
973 buf = kmalloc(len, GFP_KERNEL);
974 if (!buf) {
975 audit_panic("out of memory for argv string\n");
976 break;
977 }
978
979 ret = copy_from_user(buf, p, len);
980 /*
981 * There is no reason for this copy to be short. We just
982 * copied them here, and the mm hasn't been exposed to user-
983 * space yet.
984 */
040b3a2d 985 if (ret) {
bdf4c48a
PZ
986 WARN_ON(1);
987 send_sig(SIGKILL, current, 0);
988 }
989
990 audit_log_format(ab, "a%d=", i);
991 audit_log_untrustedstring(ab, buf);
992 audit_log_format(ab, "\n");
993
994 kfree(buf);
995 }
996}
997
e495149b 998static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 999{
9c7aa6aa 1000 int i, call_panic = 0;
1da177e4 1001 struct audit_buffer *ab;
7551ced3 1002 struct audit_aux_data *aux;
a6c043a8 1003 const char *tty;
1da177e4 1004
e495149b 1005 /* tsk == current */
3f2792ff 1006 context->pid = tsk->pid;
419c58f1
AV
1007 if (!context->ppid)
1008 context->ppid = sys_getppid();
3f2792ff
AV
1009 context->uid = tsk->uid;
1010 context->gid = tsk->gid;
1011 context->euid = tsk->euid;
1012 context->suid = tsk->suid;
1013 context->fsuid = tsk->fsuid;
1014 context->egid = tsk->egid;
1015 context->sgid = tsk->sgid;
1016 context->fsgid = tsk->fsgid;
1017 context->personality = tsk->personality;
e495149b
AV
1018
1019 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1020 if (!ab)
1021 return; /* audit_panic has been called */
bccf6ae0
DW
1022 audit_log_format(ab, "arch=%x syscall=%d",
1023 context->arch, context->major);
1da177e4
LT
1024 if (context->personality != PER_LINUX)
1025 audit_log_format(ab, " per=%lx", context->personality);
1026 if (context->return_valid)
9f8dbe9c 1027 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1028 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1029 context->return_code);
eb84a20e
AC
1030
1031 mutex_lock(&tty_mutex);
24ec839c 1032 read_lock(&tasklist_lock);
45d9bb0e
AV
1033 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1034 tty = tsk->signal->tty->name;
a6c043a8
SG
1035 else
1036 tty = "(none)";
24ec839c 1037 read_unlock(&tasklist_lock);
1da177e4
LT
1038 audit_log_format(ab,
1039 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1040 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1041 " euid=%u suid=%u fsuid=%u"
a6c043a8 1042 " egid=%u sgid=%u fsgid=%u tty=%s",
1da177e4
LT
1043 context->argv[0],
1044 context->argv[1],
1045 context->argv[2],
1046 context->argv[3],
1047 context->name_count,
f46038ff 1048 context->ppid,
1da177e4
LT
1049 context->pid,
1050 context->loginuid,
1051 context->uid,
1052 context->gid,
1053 context->euid, context->suid, context->fsuid,
a6c043a8 1054 context->egid, context->sgid, context->fsgid, tty);
eb84a20e
AC
1055
1056 mutex_unlock(&tty_mutex);
1057
e495149b 1058 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1059 if (context->filterkey) {
1060 audit_log_format(ab, " key=");
1061 audit_log_untrustedstring(ab, context->filterkey);
1062 } else
1063 audit_log_format(ab, " key=(null)");
1da177e4 1064 audit_log_end(ab);
1da177e4 1065
7551ced3 1066 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1067
e495149b 1068 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1069 if (!ab)
1070 continue; /* audit_panic has been called */
1071
1da177e4 1072 switch (aux->type) {
20ca73bc
GW
1073 case AUDIT_MQ_OPEN: {
1074 struct audit_aux_data_mq_open *axi = (void *)aux;
1075 audit_log_format(ab,
1076 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1077 "mq_msgsize=%ld mq_curmsgs=%ld",
1078 axi->oflag, axi->mode, axi->attr.mq_flags,
1079 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1080 axi->attr.mq_curmsgs);
1081 break; }
1082
1083 case AUDIT_MQ_SENDRECV: {
1084 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1085 audit_log_format(ab,
1086 "mqdes=%d msg_len=%zd msg_prio=%u "
1087 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1088 axi->mqdes, axi->msg_len, axi->msg_prio,
1089 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1090 break; }
1091
1092 case AUDIT_MQ_NOTIFY: {
1093 struct audit_aux_data_mq_notify *axi = (void *)aux;
1094 audit_log_format(ab,
1095 "mqdes=%d sigev_signo=%d",
1096 axi->mqdes,
1097 axi->notification.sigev_signo);
1098 break; }
1099
1100 case AUDIT_MQ_GETSETATTR: {
1101 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1102 audit_log_format(ab,
1103 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1104 "mq_curmsgs=%ld ",
1105 axi->mqdes,
1106 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1107 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1108 break; }
1109
c0404993 1110 case AUDIT_IPC: {
1da177e4
LT
1111 struct audit_aux_data_ipcctl *axi = (void *)aux;
1112 audit_log_format(ab,
5b9a4262 1113 "ouid=%u ogid=%u mode=%#o",
ac03221a 1114 axi->uid, axi->gid, axi->mode);
9c7aa6aa
SG
1115 if (axi->osid != 0) {
1116 char *ctx = NULL;
1117 u32 len;
1a70cd40 1118 if (selinux_sid_to_string(
9c7aa6aa 1119 axi->osid, &ctx, &len)) {
ce29b682 1120 audit_log_format(ab, " osid=%u",
9c7aa6aa
SG
1121 axi->osid);
1122 call_panic = 1;
1123 } else
1124 audit_log_format(ab, " obj=%s", ctx);
1125 kfree(ctx);
1126 }
3ec3b2fb
DW
1127 break; }
1128
073115d6
SG
1129 case AUDIT_IPC_SET_PERM: {
1130 struct audit_aux_data_ipcctl *axi = (void *)aux;
1131 audit_log_format(ab,
5b9a4262 1132 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
073115d6 1133 axi->qbytes, axi->uid, axi->gid, axi->mode);
073115d6 1134 break; }
ac03221a 1135
473ae30b
AV
1136 case AUDIT_EXECVE: {
1137 struct audit_aux_data_execve *axi = (void *)aux;
bdf4c48a 1138 audit_log_execve_info(ab, axi);
473ae30b 1139 break; }
073115d6 1140
3ec3b2fb
DW
1141 case AUDIT_SOCKETCALL: {
1142 int i;
1143 struct audit_aux_data_socketcall *axs = (void *)aux;
1144 audit_log_format(ab, "nargs=%d", axs->nargs);
1145 for (i=0; i<axs->nargs; i++)
1146 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1147 break; }
1148
1149 case AUDIT_SOCKADDR: {
1150 struct audit_aux_data_sockaddr *axs = (void *)aux;
1151
1152 audit_log_format(ab, "saddr=");
1153 audit_log_hex(ab, axs->a, axs->len);
1154 break; }
01116105 1155
db349509
AV
1156 case AUDIT_FD_PAIR: {
1157 struct audit_aux_data_fd_pair *axs = (void *)aux;
1158 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1159 break; }
1160
1da177e4
LT
1161 }
1162 audit_log_end(ab);
1da177e4
LT
1163 }
1164
e54dc243
AG
1165 for (aux = context->aux_pids; aux; aux = aux->next) {
1166 struct audit_aux_data_pids *axs = (void *)aux;
1167 int i;
1168
1169 for (i = 0; i < axs->pid_count; i++)
1170 if (audit_log_pid_context(context, axs->target_pid[i],
1171 axs->target_sid[i]))
1172 call_panic = 1;
a5cb013d
AV
1173 }
1174
e54dc243
AG
1175 if (context->target_pid &&
1176 audit_log_pid_context(context, context->target_pid,
1177 context->target_sid))
1178 call_panic = 1;
1179
8f37d47c 1180 if (context->pwd && context->pwdmnt) {
e495149b 1181 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c
DW
1182 if (ab) {
1183 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
1184 audit_log_end(ab);
1185 }
1186 }
1da177e4 1187 for (i = 0; i < context->name_count; i++) {
9c937dcc 1188 struct audit_names *n = &context->names[i];
73241ccc 1189
e495149b 1190 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1191 if (!ab)
1192 continue; /* audit_panic has been called */
8f37d47c 1193
1da177e4 1194 audit_log_format(ab, "item=%d", i);
73241ccc 1195
9c937dcc
AG
1196 if (n->name) {
1197 switch(n->name_len) {
1198 case AUDIT_NAME_FULL:
1199 /* log the full path */
1200 audit_log_format(ab, " name=");
1201 audit_log_untrustedstring(ab, n->name);
1202 break;
1203 case 0:
1204 /* name was specified as a relative path and the
1205 * directory component is the cwd */
1206 audit_log_d_path(ab, " name=", context->pwd,
1207 context->pwdmnt);
1208 break;
1209 default:
1210 /* log the name's directory component */
1211 audit_log_format(ab, " name=");
1212 audit_log_n_untrustedstring(ab, n->name_len,
1213 n->name);
1214 }
1215 } else
1216 audit_log_format(ab, " name=(null)");
1217
1218 if (n->ino != (unsigned long)-1) {
1219 audit_log_format(ab, " inode=%lu"
1220 " dev=%02x:%02x mode=%#o"
1221 " ouid=%u ogid=%u rdev=%02x:%02x",
1222 n->ino,
1223 MAJOR(n->dev),
1224 MINOR(n->dev),
1225 n->mode,
1226 n->uid,
1227 n->gid,
1228 MAJOR(n->rdev),
1229 MINOR(n->rdev));
1230 }
1231 if (n->osid != 0) {
1b50eed9
SG
1232 char *ctx = NULL;
1233 u32 len;
1a70cd40 1234 if (selinux_sid_to_string(
9c937dcc
AG
1235 n->osid, &ctx, &len)) {
1236 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1237 call_panic = 2;
1b50eed9
SG
1238 } else
1239 audit_log_format(ab, " obj=%s", ctx);
1240 kfree(ctx);
8c8570fb
DK
1241 }
1242
1da177e4
LT
1243 audit_log_end(ab);
1244 }
9c7aa6aa
SG
1245 if (call_panic)
1246 audit_panic("error converting sid to string");
1da177e4
LT
1247}
1248
b0dd25a8
RD
1249/**
1250 * audit_free - free a per-task audit context
1251 * @tsk: task whose audit context block to free
1252 *
fa84cb93 1253 * Called from copy_process and do_exit
b0dd25a8 1254 */
1da177e4
LT
1255void audit_free(struct task_struct *tsk)
1256{
1257 struct audit_context *context;
1258
1da177e4 1259 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1260 if (likely(!context))
1261 return;
1262
1263 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1264 * function (e.g., exit_group), then free context block.
1265 * We use GFP_ATOMIC here because we might be doing this
f5561964 1266 * in the context of the idle thread */
e495149b 1267 /* that can happen only if we are called from do_exit() */
f7056d64 1268 if (context->in_syscall && context->auditable)
e495149b 1269 audit_log_exit(context, tsk);
1da177e4
LT
1270
1271 audit_free_context(context);
1272}
1273
b0dd25a8
RD
1274/**
1275 * audit_syscall_entry - fill in an audit record at syscall entry
1276 * @tsk: task being audited
1277 * @arch: architecture type
1278 * @major: major syscall type (function)
1279 * @a1: additional syscall register 1
1280 * @a2: additional syscall register 2
1281 * @a3: additional syscall register 3
1282 * @a4: additional syscall register 4
1283 *
1284 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1285 * audit context was created when the task was created and the state or
1286 * filters demand the audit context be built. If the state from the
1287 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1288 * then the record will be written at syscall exit time (otherwise, it
1289 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1290 * be written).
1291 */
5411be59 1292void audit_syscall_entry(int arch, int major,
1da177e4
LT
1293 unsigned long a1, unsigned long a2,
1294 unsigned long a3, unsigned long a4)
1295{
5411be59 1296 struct task_struct *tsk = current;
1da177e4
LT
1297 struct audit_context *context = tsk->audit_context;
1298 enum audit_state state;
1299
1300 BUG_ON(!context);
1301
b0dd25a8
RD
1302 /*
1303 * This happens only on certain architectures that make system
1da177e4
LT
1304 * calls in kernel_thread via the entry.S interface, instead of
1305 * with direct calls. (If you are porting to a new
1306 * architecture, hitting this condition can indicate that you
1307 * got the _exit/_leave calls backward in entry.S.)
1308 *
1309 * i386 no
1310 * x86_64 no
2ef9481e 1311 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1312 *
1313 * This also happens with vm86 emulation in a non-nested manner
1314 * (entries without exits), so this case must be caught.
1315 */
1316 if (context->in_syscall) {
1317 struct audit_context *newctx;
1318
1da177e4
LT
1319#if AUDIT_DEBUG
1320 printk(KERN_ERR
1321 "audit(:%d) pid=%d in syscall=%d;"
1322 " entering syscall=%d\n",
1323 context->serial, tsk->pid, context->major, major);
1324#endif
1325 newctx = audit_alloc_context(context->state);
1326 if (newctx) {
1327 newctx->previous = context;
1328 context = newctx;
1329 tsk->audit_context = newctx;
1330 } else {
1331 /* If we can't alloc a new context, the best we
1332 * can do is to leak memory (any pending putname
1333 * will be lost). The only other alternative is
1334 * to abandon auditing. */
1335 audit_zero_context(context, context->state);
1336 }
1337 }
1338 BUG_ON(context->in_syscall || context->name_count);
1339
1340 if (!audit_enabled)
1341 return;
1342
2fd6f58b 1343 context->arch = arch;
1da177e4
LT
1344 context->major = major;
1345 context->argv[0] = a1;
1346 context->argv[1] = a2;
1347 context->argv[2] = a3;
1348 context->argv[3] = a4;
1349
1350 state = context->state;
d51374ad
AV
1351 context->dummy = !audit_n_rules;
1352 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1353 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1354 if (likely(state == AUDIT_DISABLED))
1355 return;
1356
ce625a80 1357 context->serial = 0;
1da177e4
LT
1358 context->ctime = CURRENT_TIME;
1359 context->in_syscall = 1;
1360 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1361 context->ppid = 0;
1da177e4
LT
1362}
1363
b0dd25a8
RD
1364/**
1365 * audit_syscall_exit - deallocate audit context after a system call
1366 * @tsk: task being audited
1367 * @valid: success/failure flag
1368 * @return_code: syscall return value
1369 *
1370 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1371 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1372 * filtering, or because some other part of the kernel write an audit
1373 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1374 * free the names stored from getname().
1375 */
5411be59 1376void audit_syscall_exit(int valid, long return_code)
1da177e4 1377{
5411be59 1378 struct task_struct *tsk = current;
1da177e4
LT
1379 struct audit_context *context;
1380
2fd6f58b 1381 context = audit_get_context(tsk, valid, return_code);
1da177e4 1382
1da177e4 1383 if (likely(!context))
97e94c45 1384 return;
1da177e4 1385
f7056d64 1386 if (context->in_syscall && context->auditable)
e495149b 1387 audit_log_exit(context, tsk);
1da177e4
LT
1388
1389 context->in_syscall = 0;
1390 context->auditable = 0;
2fd6f58b 1391
1da177e4
LT
1392 if (context->previous) {
1393 struct audit_context *new_context = context->previous;
1394 context->previous = NULL;
1395 audit_free_context(context);
1396 tsk->audit_context = new_context;
1397 } else {
1398 audit_free_names(context);
74c3cbe3 1399 unroll_tree_refs(context, NULL, 0);
1da177e4 1400 audit_free_aux(context);
e54dc243
AG
1401 context->aux = NULL;
1402 context->aux_pids = NULL;
a5cb013d 1403 context->target_pid = 0;
e54dc243 1404 context->target_sid = 0;
5adc8a6a
AG
1405 kfree(context->filterkey);
1406 context->filterkey = NULL;
1da177e4
LT
1407 tsk->audit_context = context;
1408 }
1da177e4
LT
1409}
1410
74c3cbe3
AV
1411static inline void handle_one(const struct inode *inode)
1412{
1413#ifdef CONFIG_AUDIT_TREE
1414 struct audit_context *context;
1415 struct audit_tree_refs *p;
1416 struct audit_chunk *chunk;
1417 int count;
1418 if (likely(list_empty(&inode->inotify_watches)))
1419 return;
1420 context = current->audit_context;
1421 p = context->trees;
1422 count = context->tree_count;
1423 rcu_read_lock();
1424 chunk = audit_tree_lookup(inode);
1425 rcu_read_unlock();
1426 if (!chunk)
1427 return;
1428 if (likely(put_tree_ref(context, chunk)))
1429 return;
1430 if (unlikely(!grow_tree_refs(context))) {
1431 printk(KERN_WARNING "out of memory, audit has lost a tree reference");
1432 audit_set_auditable(context);
1433 audit_put_chunk(chunk);
1434 unroll_tree_refs(context, p, count);
1435 return;
1436 }
1437 put_tree_ref(context, chunk);
1438#endif
1439}
1440
1441static void handle_path(const struct dentry *dentry)
1442{
1443#ifdef CONFIG_AUDIT_TREE
1444 struct audit_context *context;
1445 struct audit_tree_refs *p;
1446 const struct dentry *d, *parent;
1447 struct audit_chunk *drop;
1448 unsigned long seq;
1449 int count;
1450
1451 context = current->audit_context;
1452 p = context->trees;
1453 count = context->tree_count;
1454retry:
1455 drop = NULL;
1456 d = dentry;
1457 rcu_read_lock();
1458 seq = read_seqbegin(&rename_lock);
1459 for(;;) {
1460 struct inode *inode = d->d_inode;
1461 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1462 struct audit_chunk *chunk;
1463 chunk = audit_tree_lookup(inode);
1464 if (chunk) {
1465 if (unlikely(!put_tree_ref(context, chunk))) {
1466 drop = chunk;
1467 break;
1468 }
1469 }
1470 }
1471 parent = d->d_parent;
1472 if (parent == d)
1473 break;
1474 d = parent;
1475 }
1476 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1477 rcu_read_unlock();
1478 if (!drop) {
1479 /* just a race with rename */
1480 unroll_tree_refs(context, p, count);
1481 goto retry;
1482 }
1483 audit_put_chunk(drop);
1484 if (grow_tree_refs(context)) {
1485 /* OK, got more space */
1486 unroll_tree_refs(context, p, count);
1487 goto retry;
1488 }
1489 /* too bad */
1490 printk(KERN_WARNING
1491 "out of memory, audit has lost a tree reference");
1492 unroll_tree_refs(context, p, count);
1493 audit_set_auditable(context);
1494 return;
1495 }
1496 rcu_read_unlock();
1497#endif
1498}
1499
b0dd25a8
RD
1500/**
1501 * audit_getname - add a name to the list
1502 * @name: name to add
1503 *
1504 * Add a name to the list of audit names for this context.
1505 * Called from fs/namei.c:getname().
1506 */
d8945bb5 1507void __audit_getname(const char *name)
1da177e4
LT
1508{
1509 struct audit_context *context = current->audit_context;
1510
d8945bb5 1511 if (IS_ERR(name) || !name)
1da177e4
LT
1512 return;
1513
1514 if (!context->in_syscall) {
1515#if AUDIT_DEBUG == 2
1516 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1517 __FILE__, __LINE__, context->serial, name);
1518 dump_stack();
1519#endif
1520 return;
1521 }
1522 BUG_ON(context->name_count >= AUDIT_NAMES);
1523 context->names[context->name_count].name = name;
9c937dcc
AG
1524 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1525 context->names[context->name_count].name_put = 1;
1da177e4 1526 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1527 context->names[context->name_count].osid = 0;
1da177e4 1528 ++context->name_count;
8f37d47c
DW
1529 if (!context->pwd) {
1530 read_lock(&current->fs->lock);
1531 context->pwd = dget(current->fs->pwd);
1532 context->pwdmnt = mntget(current->fs->pwdmnt);
1533 read_unlock(&current->fs->lock);
1534 }
9f8dbe9c 1535
1da177e4
LT
1536}
1537
b0dd25a8
RD
1538/* audit_putname - intercept a putname request
1539 * @name: name to intercept and delay for putname
1540 *
1541 * If we have stored the name from getname in the audit context,
1542 * then we delay the putname until syscall exit.
1543 * Called from include/linux/fs.h:putname().
1544 */
1da177e4
LT
1545void audit_putname(const char *name)
1546{
1547 struct audit_context *context = current->audit_context;
1548
1549 BUG_ON(!context);
1550 if (!context->in_syscall) {
1551#if AUDIT_DEBUG == 2
1552 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1553 __FILE__, __LINE__, context->serial, name);
1554 if (context->name_count) {
1555 int i;
1556 for (i = 0; i < context->name_count; i++)
1557 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1558 context->names[i].name,
73241ccc 1559 context->names[i].name ?: "(null)");
1da177e4
LT
1560 }
1561#endif
1562 __putname(name);
1563 }
1564#if AUDIT_DEBUG
1565 else {
1566 ++context->put_count;
1567 if (context->put_count > context->name_count) {
1568 printk(KERN_ERR "%s:%d(:%d): major=%d"
1569 " in_syscall=%d putname(%p) name_count=%d"
1570 " put_count=%d\n",
1571 __FILE__, __LINE__,
1572 context->serial, context->major,
1573 context->in_syscall, name, context->name_count,
1574 context->put_count);
1575 dump_stack();
1576 }
1577 }
1578#endif
1579}
1580
5712e88f
AG
1581static int audit_inc_name_count(struct audit_context *context,
1582 const struct inode *inode)
1583{
1584 if (context->name_count >= AUDIT_NAMES) {
1585 if (inode)
1586 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1587 "dev=%02x:%02x, inode=%lu",
1588 MAJOR(inode->i_sb->s_dev),
1589 MINOR(inode->i_sb->s_dev),
1590 inode->i_ino);
1591
1592 else
1593 printk(KERN_DEBUG "name_count maxed, losing inode data");
1594 return 1;
1595 }
1596 context->name_count++;
1597#if AUDIT_DEBUG
1598 context->ino_count++;
1599#endif
1600 return 0;
1601}
1602
3e2efce0
AG
1603/* Copy inode data into an audit_names. */
1604static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
8c8570fb 1605{
3e2efce0
AG
1606 name->ino = inode->i_ino;
1607 name->dev = inode->i_sb->s_dev;
1608 name->mode = inode->i_mode;
1609 name->uid = inode->i_uid;
1610 name->gid = inode->i_gid;
1611 name->rdev = inode->i_rdev;
1612 selinux_get_inode_sid(inode, &name->osid);
8c8570fb
DK
1613}
1614
b0dd25a8
RD
1615/**
1616 * audit_inode - store the inode and device from a lookup
1617 * @name: name being audited
481968f4 1618 * @dentry: dentry being audited
b0dd25a8
RD
1619 *
1620 * Called from fs/namei.c:path_lookup().
1621 */
5a190ae6 1622void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1623{
1624 int idx;
1625 struct audit_context *context = current->audit_context;
74c3cbe3 1626 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1627
1628 if (!context->in_syscall)
1629 return;
1630 if (context->name_count
1631 && context->names[context->name_count-1].name
1632 && context->names[context->name_count-1].name == name)
1633 idx = context->name_count - 1;
1634 else if (context->name_count > 1
1635 && context->names[context->name_count-2].name
1636 && context->names[context->name_count-2].name == name)
1637 idx = context->name_count - 2;
1638 else {
1639 /* FIXME: how much do we care about inodes that have no
1640 * associated name? */
5712e88f 1641 if (audit_inc_name_count(context, inode))
1da177e4 1642 return;
5712e88f 1643 idx = context->name_count - 1;
1da177e4 1644 context->names[idx].name = NULL;
1da177e4 1645 }
74c3cbe3 1646 handle_path(dentry);
3e2efce0 1647 audit_copy_inode(&context->names[idx], inode);
73241ccc
AG
1648}
1649
1650/**
1651 * audit_inode_child - collect inode info for created/removed objects
1652 * @dname: inode's dentry name
481968f4 1653 * @dentry: dentry being audited
73d3ec5a 1654 * @parent: inode of dentry parent
73241ccc
AG
1655 *
1656 * For syscalls that create or remove filesystem objects, audit_inode
1657 * can only collect information for the filesystem object's parent.
1658 * This call updates the audit context with the child's information.
1659 * Syscalls that create a new filesystem object must be hooked after
1660 * the object is created. Syscalls that remove a filesystem object
1661 * must be hooked prior, in order to capture the target inode during
1662 * unsuccessful attempts.
1663 */
5a190ae6 1664void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1665 const struct inode *parent)
73241ccc
AG
1666{
1667 int idx;
1668 struct audit_context *context = current->audit_context;
5712e88f 1669 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 1670 const struct inode *inode = dentry->d_inode;
9c937dcc 1671 int dirlen = 0;
73241ccc
AG
1672
1673 if (!context->in_syscall)
1674 return;
1675
74c3cbe3
AV
1676 if (inode)
1677 handle_one(inode);
73241ccc 1678 /* determine matching parent */
f368c07d 1679 if (!dname)
5712e88f 1680 goto add_names;
73241ccc 1681
5712e88f
AG
1682 /* parent is more likely, look for it first */
1683 for (idx = 0; idx < context->name_count; idx++) {
1684 struct audit_names *n = &context->names[idx];
f368c07d 1685
5712e88f
AG
1686 if (!n->name)
1687 continue;
1688
1689 if (n->ino == parent->i_ino &&
1690 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1691 n->name_len = dirlen; /* update parent data in place */
1692 found_parent = n->name;
1693 goto add_names;
f368c07d 1694 }
5712e88f 1695 }
73241ccc 1696
5712e88f
AG
1697 /* no matching parent, look for matching child */
1698 for (idx = 0; idx < context->name_count; idx++) {
1699 struct audit_names *n = &context->names[idx];
1700
1701 if (!n->name)
1702 continue;
1703
1704 /* strcmp() is the more likely scenario */
1705 if (!strcmp(dname, n->name) ||
1706 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1707 if (inode)
1708 audit_copy_inode(n, inode);
1709 else
1710 n->ino = (unsigned long)-1;
1711 found_child = n->name;
1712 goto add_names;
1713 }
ac9910ce 1714 }
5712e88f
AG
1715
1716add_names:
1717 if (!found_parent) {
1718 if (audit_inc_name_count(context, parent))
ac9910ce 1719 return;
5712e88f
AG
1720 idx = context->name_count - 1;
1721 context->names[idx].name = NULL;
73d3ec5a
AG
1722 audit_copy_inode(&context->names[idx], parent);
1723 }
5712e88f
AG
1724
1725 if (!found_child) {
1726 if (audit_inc_name_count(context, inode))
1727 return;
1728 idx = context->name_count - 1;
1729
1730 /* Re-use the name belonging to the slot for a matching parent
1731 * directory. All names for this context are relinquished in
1732 * audit_free_names() */
1733 if (found_parent) {
1734 context->names[idx].name = found_parent;
1735 context->names[idx].name_len = AUDIT_NAME_FULL;
1736 /* don't call __putname() */
1737 context->names[idx].name_put = 0;
1738 } else {
1739 context->names[idx].name = NULL;
1740 }
1741
1742 if (inode)
1743 audit_copy_inode(&context->names[idx], inode);
1744 else
1745 context->names[idx].ino = (unsigned long)-1;
1746 }
3e2efce0 1747}
50e437d5 1748EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1749
b0dd25a8
RD
1750/**
1751 * auditsc_get_stamp - get local copies of audit_context values
1752 * @ctx: audit_context for the task
1753 * @t: timespec to store time recorded in the audit_context
1754 * @serial: serial value that is recorded in the audit_context
1755 *
1756 * Also sets the context as auditable.
1757 */
bfb4496e
DW
1758void auditsc_get_stamp(struct audit_context *ctx,
1759 struct timespec *t, unsigned int *serial)
1da177e4 1760{
ce625a80
DW
1761 if (!ctx->serial)
1762 ctx->serial = audit_serial();
bfb4496e
DW
1763 t->tv_sec = ctx->ctime.tv_sec;
1764 t->tv_nsec = ctx->ctime.tv_nsec;
1765 *serial = ctx->serial;
1766 ctx->auditable = 1;
1da177e4
LT
1767}
1768
b0dd25a8
RD
1769/**
1770 * audit_set_loginuid - set a task's audit_context loginuid
1771 * @task: task whose audit context is being modified
1772 * @loginuid: loginuid value
1773 *
1774 * Returns 0.
1775 *
1776 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1777 */
456be6cd 1778int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 1779{
41757106
SG
1780 struct audit_context *context = task->audit_context;
1781
1782 if (context) {
1783 /* Only log if audit is enabled */
1784 if (context->in_syscall) {
1785 struct audit_buffer *ab;
1786
1787 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1788 if (ab) {
1789 audit_log_format(ab, "login pid=%d uid=%u "
1790 "old auid=%u new auid=%u",
1791 task->pid, task->uid,
1792 context->loginuid, loginuid);
1793 audit_log_end(ab);
1794 }
c0404993 1795 }
41757106 1796 context->loginuid = loginuid;
1da177e4
LT
1797 }
1798 return 0;
1799}
1800
b0dd25a8
RD
1801/**
1802 * audit_get_loginuid - get the loginuid for an audit_context
1803 * @ctx: the audit_context
1804 *
1805 * Returns the context's loginuid or -1 if @ctx is NULL.
1806 */
0c11b942 1807uid_t audit_get_loginuid(struct task_struct *task)
1da177e4 1808{
0c11b942 1809 struct audit_context *ctx = task->audit_context;
1da177e4
LT
1810 return ctx ? ctx->loginuid : -1;
1811}
1812
161a09e7
JL
1813EXPORT_SYMBOL(audit_get_loginuid);
1814
20ca73bc
GW
1815/**
1816 * __audit_mq_open - record audit data for a POSIX MQ open
1817 * @oflag: open flag
1818 * @mode: mode bits
1819 * @u_attr: queue attributes
1820 *
1821 * Returns 0 for success or NULL context or < 0 on error.
1822 */
1823int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1824{
1825 struct audit_aux_data_mq_open *ax;
1826 struct audit_context *context = current->audit_context;
1827
1828 if (!audit_enabled)
1829 return 0;
1830
1831 if (likely(!context))
1832 return 0;
1833
1834 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1835 if (!ax)
1836 return -ENOMEM;
1837
1838 if (u_attr != NULL) {
1839 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1840 kfree(ax);
1841 return -EFAULT;
1842 }
1843 } else
1844 memset(&ax->attr, 0, sizeof(ax->attr));
1845
1846 ax->oflag = oflag;
1847 ax->mode = mode;
1848
1849 ax->d.type = AUDIT_MQ_OPEN;
1850 ax->d.next = context->aux;
1851 context->aux = (void *)ax;
1852 return 0;
1853}
1854
1855/**
1856 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1857 * @mqdes: MQ descriptor
1858 * @msg_len: Message length
1859 * @msg_prio: Message priority
1dbe83c3 1860 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
1861 *
1862 * Returns 0 for success or NULL context or < 0 on error.
1863 */
1864int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1865 const struct timespec __user *u_abs_timeout)
1866{
1867 struct audit_aux_data_mq_sendrecv *ax;
1868 struct audit_context *context = current->audit_context;
1869
1870 if (!audit_enabled)
1871 return 0;
1872
1873 if (likely(!context))
1874 return 0;
1875
1876 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1877 if (!ax)
1878 return -ENOMEM;
1879
1880 if (u_abs_timeout != NULL) {
1881 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1882 kfree(ax);
1883 return -EFAULT;
1884 }
1885 } else
1886 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1887
1888 ax->mqdes = mqdes;
1889 ax->msg_len = msg_len;
1890 ax->msg_prio = msg_prio;
1891
1892 ax->d.type = AUDIT_MQ_SENDRECV;
1893 ax->d.next = context->aux;
1894 context->aux = (void *)ax;
1895 return 0;
1896}
1897
1898/**
1899 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1900 * @mqdes: MQ descriptor
1901 * @msg_len: Message length
1dbe83c3
RD
1902 * @u_msg_prio: Message priority
1903 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
1904 *
1905 * Returns 0 for success or NULL context or < 0 on error.
1906 */
1907int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1908 unsigned int __user *u_msg_prio,
1909 const struct timespec __user *u_abs_timeout)
1910{
1911 struct audit_aux_data_mq_sendrecv *ax;
1912 struct audit_context *context = current->audit_context;
1913
1914 if (!audit_enabled)
1915 return 0;
1916
1917 if (likely(!context))
1918 return 0;
1919
1920 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1921 if (!ax)
1922 return -ENOMEM;
1923
1924 if (u_msg_prio != NULL) {
1925 if (get_user(ax->msg_prio, u_msg_prio)) {
1926 kfree(ax);
1927 return -EFAULT;
1928 }
1929 } else
1930 ax->msg_prio = 0;
1931
1932 if (u_abs_timeout != NULL) {
1933 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1934 kfree(ax);
1935 return -EFAULT;
1936 }
1937 } else
1938 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1939
1940 ax->mqdes = mqdes;
1941 ax->msg_len = msg_len;
1942
1943 ax->d.type = AUDIT_MQ_SENDRECV;
1944 ax->d.next = context->aux;
1945 context->aux = (void *)ax;
1946 return 0;
1947}
1948
1949/**
1950 * __audit_mq_notify - record audit data for a POSIX MQ notify
1951 * @mqdes: MQ descriptor
1952 * @u_notification: Notification event
1953 *
1954 * Returns 0 for success or NULL context or < 0 on error.
1955 */
1956
1957int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1958{
1959 struct audit_aux_data_mq_notify *ax;
1960 struct audit_context *context = current->audit_context;
1961
1962 if (!audit_enabled)
1963 return 0;
1964
1965 if (likely(!context))
1966 return 0;
1967
1968 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1969 if (!ax)
1970 return -ENOMEM;
1971
1972 if (u_notification != NULL) {
1973 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1974 kfree(ax);
1975 return -EFAULT;
1976 }
1977 } else
1978 memset(&ax->notification, 0, sizeof(ax->notification));
1979
1980 ax->mqdes = mqdes;
1981
1982 ax->d.type = AUDIT_MQ_NOTIFY;
1983 ax->d.next = context->aux;
1984 context->aux = (void *)ax;
1985 return 0;
1986}
1987
1988/**
1989 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1990 * @mqdes: MQ descriptor
1991 * @mqstat: MQ flags
1992 *
1993 * Returns 0 for success or NULL context or < 0 on error.
1994 */
1995int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1996{
1997 struct audit_aux_data_mq_getsetattr *ax;
1998 struct audit_context *context = current->audit_context;
1999
2000 if (!audit_enabled)
2001 return 0;
2002
2003 if (likely(!context))
2004 return 0;
2005
2006 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2007 if (!ax)
2008 return -ENOMEM;
2009
2010 ax->mqdes = mqdes;
2011 ax->mqstat = *mqstat;
2012
2013 ax->d.type = AUDIT_MQ_GETSETATTR;
2014 ax->d.next = context->aux;
2015 context->aux = (void *)ax;
2016 return 0;
2017}
2018
b0dd25a8 2019/**
073115d6
SG
2020 * audit_ipc_obj - record audit data for ipc object
2021 * @ipcp: ipc permissions
2022 *
2023 * Returns 0 for success or NULL context or < 0 on error.
2024 */
d8945bb5 2025int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6
SG
2026{
2027 struct audit_aux_data_ipcctl *ax;
2028 struct audit_context *context = current->audit_context;
2029
073115d6
SG
2030 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2031 if (!ax)
2032 return -ENOMEM;
2033
2034 ax->uid = ipcp->uid;
2035 ax->gid = ipcp->gid;
2036 ax->mode = ipcp->mode;
2037 selinux_get_ipc_sid(ipcp, &ax->osid);
2038
2039 ax->d.type = AUDIT_IPC;
2040 ax->d.next = context->aux;
2041 context->aux = (void *)ax;
2042 return 0;
2043}
2044
2045/**
2046 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2047 * @qbytes: msgq bytes
2048 * @uid: msgq user id
2049 * @gid: msgq group id
2050 * @mode: msgq mode (permissions)
2051 *
2052 * Returns 0 for success or NULL context or < 0 on error.
2053 */
d8945bb5 2054int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4
LT
2055{
2056 struct audit_aux_data_ipcctl *ax;
2057 struct audit_context *context = current->audit_context;
2058
8c8570fb 2059 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1da177e4
LT
2060 if (!ax)
2061 return -ENOMEM;
2062
2063 ax->qbytes = qbytes;
2064 ax->uid = uid;
2065 ax->gid = gid;
2066 ax->mode = mode;
2067
073115d6 2068 ax->d.type = AUDIT_IPC_SET_PERM;
1da177e4
LT
2069 ax->d.next = context->aux;
2070 context->aux = (void *)ax;
2071 return 0;
2072}
c2f0c7c3 2073
bdf4c48a
PZ
2074int audit_argv_kb = 32;
2075
473ae30b
AV
2076int audit_bprm(struct linux_binprm *bprm)
2077{
2078 struct audit_aux_data_execve *ax;
2079 struct audit_context *context = current->audit_context;
473ae30b 2080
5ac3a9c2 2081 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2082 return 0;
2083
bdf4c48a
PZ
2084 /*
2085 * Even though the stack code doesn't limit the arg+env size any more,
2086 * the audit code requires that _all_ arguments be logged in a single
2087 * netlink skb. Hence cap it :-(
2088 */
2089 if (bprm->argv_len > (audit_argv_kb << 10))
2090 return -E2BIG;
2091
2092 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2093 if (!ax)
2094 return -ENOMEM;
2095
2096 ax->argc = bprm->argc;
2097 ax->envc = bprm->envc;
bdf4c48a 2098 ax->mm = bprm->mm;
473ae30b
AV
2099 ax->d.type = AUDIT_EXECVE;
2100 ax->d.next = context->aux;
2101 context->aux = (void *)ax;
2102 return 0;
2103}
2104
2105
b0dd25a8
RD
2106/**
2107 * audit_socketcall - record audit data for sys_socketcall
2108 * @nargs: number of args
2109 * @args: args array
2110 *
2111 * Returns 0 for success or NULL context or < 0 on error.
2112 */
3ec3b2fb
DW
2113int audit_socketcall(int nargs, unsigned long *args)
2114{
2115 struct audit_aux_data_socketcall *ax;
2116 struct audit_context *context = current->audit_context;
2117
5ac3a9c2 2118 if (likely(!context || context->dummy))
3ec3b2fb
DW
2119 return 0;
2120
2121 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2122 if (!ax)
2123 return -ENOMEM;
2124
2125 ax->nargs = nargs;
2126 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2127
2128 ax->d.type = AUDIT_SOCKETCALL;
2129 ax->d.next = context->aux;
2130 context->aux = (void *)ax;
2131 return 0;
2132}
2133
db349509
AV
2134/**
2135 * __audit_fd_pair - record audit data for pipe and socketpair
2136 * @fd1: the first file descriptor
2137 * @fd2: the second file descriptor
2138 *
2139 * Returns 0 for success or NULL context or < 0 on error.
2140 */
2141int __audit_fd_pair(int fd1, int fd2)
2142{
2143 struct audit_context *context = current->audit_context;
2144 struct audit_aux_data_fd_pair *ax;
2145
2146 if (likely(!context)) {
2147 return 0;
2148 }
2149
2150 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2151 if (!ax) {
2152 return -ENOMEM;
2153 }
2154
2155 ax->fd[0] = fd1;
2156 ax->fd[1] = fd2;
2157
2158 ax->d.type = AUDIT_FD_PAIR;
2159 ax->d.next = context->aux;
2160 context->aux = (void *)ax;
2161 return 0;
2162}
2163
b0dd25a8
RD
2164/**
2165 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2166 * @len: data length in user space
2167 * @a: data address in kernel space
2168 *
2169 * Returns 0 for success or NULL context or < 0 on error.
2170 */
3ec3b2fb
DW
2171int audit_sockaddr(int len, void *a)
2172{
2173 struct audit_aux_data_sockaddr *ax;
2174 struct audit_context *context = current->audit_context;
2175
5ac3a9c2 2176 if (likely(!context || context->dummy))
3ec3b2fb
DW
2177 return 0;
2178
2179 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2180 if (!ax)
2181 return -ENOMEM;
2182
2183 ax->len = len;
2184 memcpy(ax->a, a, len);
2185
2186 ax->d.type = AUDIT_SOCKADDR;
2187 ax->d.next = context->aux;
2188 context->aux = (void *)ax;
2189 return 0;
2190}
2191
a5cb013d
AV
2192void __audit_ptrace(struct task_struct *t)
2193{
2194 struct audit_context *context = current->audit_context;
2195
2196 context->target_pid = t->pid;
2197 selinux_get_task_sid(t, &context->target_sid);
2198}
2199
b0dd25a8
RD
2200/**
2201 * audit_signal_info - record signal info for shutting down audit subsystem
2202 * @sig: signal value
2203 * @t: task being signaled
2204 *
2205 * If the audit subsystem is being terminated, record the task (pid)
2206 * and uid that is doing that.
2207 */
e54dc243 2208int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2209{
e54dc243
AG
2210 struct audit_aux_data_pids *axp;
2211 struct task_struct *tsk = current;
2212 struct audit_context *ctx = tsk->audit_context;
c2f0c7c3
SG
2213 extern pid_t audit_sig_pid;
2214 extern uid_t audit_sig_uid;
e1396065
AV
2215 extern u32 audit_sig_sid;
2216
175fc484
AV
2217 if (audit_pid && t->tgid == audit_pid) {
2218 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2219 audit_sig_pid = tsk->pid;
2220 if (ctx)
2221 audit_sig_uid = ctx->loginuid;
2222 else
2223 audit_sig_uid = tsk->uid;
2224 selinux_get_task_sid(tsk, &audit_sig_sid);
2225 }
2226 if (!audit_signals || audit_dummy_context())
2227 return 0;
c2f0c7c3 2228 }
e54dc243 2229
e54dc243
AG
2230 /* optimize the common case by putting first signal recipient directly
2231 * in audit_context */
2232 if (!ctx->target_pid) {
2233 ctx->target_pid = t->tgid;
2234 selinux_get_task_sid(t, &ctx->target_sid);
2235 return 0;
2236 }
2237
2238 axp = (void *)ctx->aux_pids;
2239 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2240 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2241 if (!axp)
2242 return -ENOMEM;
2243
2244 axp->d.type = AUDIT_OBJ_PID;
2245 axp->d.next = ctx->aux_pids;
2246 ctx->aux_pids = (void *)axp;
2247 }
88ae704c 2248 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2249
2250 axp->target_pid[axp->pid_count] = t->tgid;
2251 selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2252 axp->pid_count++;
2253
2254 return 0;
c2f0c7c3 2255}
0a4ff8c2
SG
2256
2257/**
2258 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2259 * @signr: signal value
0a4ff8c2
SG
2260 *
2261 * If a process ends with a core dump, something fishy is going on and we
2262 * should record the event for investigation.
2263 */
2264void audit_core_dumps(long signr)
2265{
2266 struct audit_buffer *ab;
2267 u32 sid;
2268
2269 if (!audit_enabled)
2270 return;
2271
2272 if (signr == SIGQUIT) /* don't care for those */
2273 return;
2274
2275 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2276 audit_log_format(ab, "auid=%u uid=%u gid=%u",
0c11b942 2277 audit_get_loginuid(current),
0a4ff8c2
SG
2278 current->uid, current->gid);
2279 selinux_get_task_sid(current, &sid);
2280 if (sid) {
2281 char *ctx = NULL;
2282 u32 len;
2283
2284 if (selinux_sid_to_string(sid, &ctx, &len))
2285 audit_log_format(ab, " ssid=%u", sid);
2286 else
2287 audit_log_format(ab, " subj=%s", ctx);
2288 kfree(ctx);
2289 }
2290 audit_log_format(ab, " pid=%d comm=", current->pid);
2291 audit_log_untrustedstring(ab, current->comm);
2292 audit_log_format(ab, " sig=%ld", signr);
2293 audit_log_end(ab);
2294}