]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/slub_def.h
SLUB: Introduce and use SLUB_MAX_SIZE and SLUB_PAGE_SHIFT constants
[net-next-2.6.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
11#include <linux/workqueue.h>
12#include <linux/kobject.h>
13
8ff12cfc
CL
14enum stat_item {
15 ALLOC_FASTPATH, /* Allocation from cpu slab */
16 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
17 FREE_FASTPATH, /* Free to cpu slub */
18 FREE_SLOWPATH, /* Freeing not to cpu slab */
19 FREE_FROZEN, /* Freeing to frozen slab */
20 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
21 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
22 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
23 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
24 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
25 FREE_SLAB, /* Slab freed to the page allocator */
26 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
27 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
28 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
29 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
30 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
31 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
65c3376a 32 ORDER_FALLBACK, /* Number of times fallback was necessary */
8ff12cfc
CL
33 NR_SLUB_STAT_ITEMS };
34
dfb4f096 35struct kmem_cache_cpu {
da89b79e
CL
36 void **freelist; /* Pointer to first free per cpu object */
37 struct page *page; /* The slab from which we are allocating */
38 int node; /* The node of the page (or -1 for debug) */
39 unsigned int offset; /* Freepointer offset (in word units) */
40 unsigned int objsize; /* Size of an object (from kmem_cache) */
8ff12cfc
CL
41#ifdef CONFIG_SLUB_STATS
42 unsigned stat[NR_SLUB_STAT_ITEMS];
43#endif
4c93c355 44};
dfb4f096 45
81819f0f
CL
46struct kmem_cache_node {
47 spinlock_t list_lock; /* Protect partial list and nr_partial */
48 unsigned long nr_partial;
5595cffc 49 unsigned long min_partial;
81819f0f 50 struct list_head partial;
0c710013 51#ifdef CONFIG_SLUB_DEBUG
0f389ec6 52 atomic_long_t nr_slabs;
205ab99d 53 atomic_long_t total_objects;
643b1138 54 struct list_head full;
0c710013 55#endif
81819f0f
CL
56};
57
834f3d11
CL
58/*
59 * Word size structure that can be atomically updated or read and that
60 * contains both the order and the number of objects that a slab of the
61 * given order would contain.
62 */
63struct kmem_cache_order_objects {
64 unsigned long x;
65};
66
81819f0f
CL
67/*
68 * Slab cache management.
69 */
70struct kmem_cache {
71 /* Used for retriving partial slabs etc */
72 unsigned long flags;
73 int size; /* The size of an object including meta data */
74 int objsize; /* The size of an object without meta data */
75 int offset; /* Free pointer offset. */
834f3d11 76 struct kmem_cache_order_objects oo;
81819f0f
CL
77
78 /*
79 * Avoid an extra cache line for UP, SMP and for the node local to
80 * struct kmem_cache.
81 */
82 struct kmem_cache_node local_node;
83
84 /* Allocation and freeing of slabs */
205ab99d 85 struct kmem_cache_order_objects max;
65c3376a 86 struct kmem_cache_order_objects min;
b7a49f0d 87 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 88 int refcount; /* Refcount for slab cache destroy */
51cc5068 89 void (*ctor)(void *);
81819f0f
CL
90 int inuse; /* Offset to metadata */
91 int align; /* Alignment */
92 const char *name; /* Name (only for display!) */
93 struct list_head list; /* List of slab caches */
0c710013 94#ifdef CONFIG_SLUB_DEBUG
81819f0f 95 struct kobject kobj; /* For sysfs */
0c710013 96#endif
81819f0f
CL
97
98#ifdef CONFIG_NUMA
9824601e
CL
99 /*
100 * Defragmentation by allocating from a remote node.
101 */
102 int remote_node_defrag_ratio;
81819f0f
CL
103 struct kmem_cache_node *node[MAX_NUMNODES];
104#endif
4c93c355
CL
105#ifdef CONFIG_SMP
106 struct kmem_cache_cpu *cpu_slab[NR_CPUS];
107#else
108 struct kmem_cache_cpu cpu_slab;
109#endif
81819f0f
CL
110};
111
112/*
113 * Kmalloc subsystem.
114 */
4b356be0
CL
115#if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
116#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
117#else
118#define KMALLOC_MIN_SIZE 8
119#endif
120
121#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 122
ffadd4d0
CL
123/*
124 * Maximum kmalloc object size handled by SLUB. Larger object allocations
125 * are passed through to the page allocator. The page allocator "fastpath"
126 * is relatively slow so we need this value sufficiently high so that
127 * performance critical objects are allocated through the SLUB fastpath.
128 *
129 * This should be dropped to PAGE_SIZE / 2 once the page allocator
130 * "fastpath" becomes competitive with the slab allocator fastpaths.
131 */
132#define SLUB_MAX_SIZE (PAGE_SIZE)
133
134#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 1)
135
81819f0f
CL
136/*
137 * We keep the general caches in an array of slab caches that are used for
138 * 2^x bytes of allocations.
139 */
ffadd4d0 140extern struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
141
142/*
143 * Sorry that the following has to be that ugly but some versions of GCC
144 * have trouble with constant propagation and loops.
145 */
aa137f9d 146static __always_inline int kmalloc_index(size_t size)
81819f0f 147{
272c1d21
CL
148 if (!size)
149 return 0;
614410d5 150
4b356be0
CL
151 if (size <= KMALLOC_MIN_SIZE)
152 return KMALLOC_SHIFT_LOW;
153
41d54d3b 154#if KMALLOC_MIN_SIZE <= 64
81819f0f
CL
155 if (size > 64 && size <= 96)
156 return 1;
157 if (size > 128 && size <= 192)
158 return 2;
41d54d3b 159#endif
81819f0f
CL
160 if (size <= 8) return 3;
161 if (size <= 16) return 4;
162 if (size <= 32) return 5;
163 if (size <= 64) return 6;
164 if (size <= 128) return 7;
165 if (size <= 256) return 8;
166 if (size <= 512) return 9;
167 if (size <= 1024) return 10;
168 if (size <= 2 * 1024) return 11;
6446faa2 169 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
170/*
171 * The following is only needed to support architectures with a larger page
172 * size than 4k.
173 */
81819f0f
CL
174 if (size <= 8 * 1024) return 13;
175 if (size <= 16 * 1024) return 14;
176 if (size <= 32 * 1024) return 15;
177 if (size <= 64 * 1024) return 16;
178 if (size <= 128 * 1024) return 17;
179 if (size <= 256 * 1024) return 18;
aadb4bc4 180 if (size <= 512 * 1024) return 19;
81819f0f 181 if (size <= 1024 * 1024) return 20;
81819f0f 182 if (size <= 2 * 1024 * 1024) return 21;
81819f0f
CL
183 return -1;
184
185/*
186 * What we really wanted to do and cannot do because of compiler issues is:
187 * int i;
188 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
189 * if (size <= (1 << i))
190 * return i;
191 */
192}
193
194/*
195 * Find the slab cache for a given combination of allocation flags and size.
196 *
197 * This ought to end up with a global pointer to the right cache
198 * in kmalloc_caches.
199 */
aa137f9d 200static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
201{
202 int index = kmalloc_index(size);
203
204 if (index == 0)
205 return NULL;
206
81819f0f
CL
207 return &kmalloc_caches[index];
208}
209
210#ifdef CONFIG_ZONE_DMA
211#define SLUB_DMA __GFP_DMA
212#else
213/* Disable DMA functionality */
d046943c 214#define SLUB_DMA (__force gfp_t)0
81819f0f
CL
215#endif
216
6193a2ff
PM
217void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
218void *__kmalloc(size_t size, gfp_t flags);
219
eada35ef
PE
220static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
221{
222 return (void *)__get_free_pages(flags | __GFP_COMP, get_order(size));
223}
224
aa137f9d 225static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 226{
aadb4bc4 227 if (__builtin_constant_p(size)) {
ffadd4d0 228 if (size > SLUB_MAX_SIZE)
eada35ef 229 return kmalloc_large(size, flags);
81819f0f 230
aadb4bc4
CL
231 if (!(flags & SLUB_DMA)) {
232 struct kmem_cache *s = kmalloc_slab(size);
233
234 if (!s)
235 return ZERO_SIZE_PTR;
81819f0f 236
aadb4bc4
CL
237 return kmem_cache_alloc(s, flags);
238 }
239 }
240 return __kmalloc(size, flags);
81819f0f
CL
241}
242
81819f0f 243#ifdef CONFIG_NUMA
6193a2ff
PM
244void *__kmalloc_node(size_t size, gfp_t flags, int node);
245void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 246
aa137f9d 247static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 248{
aadb4bc4 249 if (__builtin_constant_p(size) &&
ffadd4d0 250 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 251 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
252
253 if (!s)
272c1d21 254 return ZERO_SIZE_PTR;
81819f0f
CL
255
256 return kmem_cache_alloc_node(s, flags, node);
aadb4bc4
CL
257 }
258 return __kmalloc_node(size, flags, node);
81819f0f
CL
259}
260#endif
261
262#endif /* _LINUX_SLUB_DEF_H */