]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/slub_def.h
stmmac: add init/exit callback in plat_stmmacenet_data struct
[net-next-2.6.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
11#include <linux/workqueue.h>
12#include <linux/kobject.h>
e4f7c0b4 13#include <linux/kmemleak.h>
81819f0f 14
039ca4e7
LZ
15#include <trace/events/kmem.h>
16
8ff12cfc
CL
17enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
28 FREE_SLAB, /* Slab freed to the page allocator */
29 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
30 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
31 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
32 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
33 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
34 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
65c3376a 35 ORDER_FALLBACK, /* Number of times fallback was necessary */
8ff12cfc
CL
36 NR_SLUB_STAT_ITEMS };
37
dfb4f096 38struct kmem_cache_cpu {
da89b79e
CL
39 void **freelist; /* Pointer to first free per cpu object */
40 struct page *page; /* The slab from which we are allocating */
41 int node; /* The node of the page (or -1 for debug) */
8ff12cfc
CL
42#ifdef CONFIG_SLUB_STATS
43 unsigned stat[NR_SLUB_STAT_ITEMS];
44#endif
4c93c355 45};
dfb4f096 46
81819f0f
CL
47struct kmem_cache_node {
48 spinlock_t list_lock; /* Protect partial list and nr_partial */
49 unsigned long nr_partial;
81819f0f 50 struct list_head partial;
0c710013 51#ifdef CONFIG_SLUB_DEBUG
0f389ec6 52 atomic_long_t nr_slabs;
205ab99d 53 atomic_long_t total_objects;
643b1138 54 struct list_head full;
0c710013 55#endif
81819f0f
CL
56};
57
834f3d11
CL
58/*
59 * Word size structure that can be atomically updated or read and that
60 * contains both the order and the number of objects that a slab of the
61 * given order would contain.
62 */
63struct kmem_cache_order_objects {
64 unsigned long x;
65};
66
81819f0f
CL
67/*
68 * Slab cache management.
69 */
70struct kmem_cache {
1b5ad248 71 struct kmem_cache_cpu __percpu *cpu_slab;
81819f0f
CL
72 /* Used for retriving partial slabs etc */
73 unsigned long flags;
74 int size; /* The size of an object including meta data */
75 int objsize; /* The size of an object without meta data */
76 int offset; /* Free pointer offset. */
834f3d11 77 struct kmem_cache_order_objects oo;
81819f0f 78
81819f0f 79 /* Allocation and freeing of slabs */
205ab99d 80 struct kmem_cache_order_objects max;
65c3376a 81 struct kmem_cache_order_objects min;
b7a49f0d 82 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 83 int refcount; /* Refcount for slab cache destroy */
51cc5068 84 void (*ctor)(void *);
81819f0f
CL
85 int inuse; /* Offset to metadata */
86 int align; /* Alignment */
3b89d7d8 87 unsigned long min_partial;
81819f0f
CL
88 const char *name; /* Name (only for display!) */
89 struct list_head list; /* List of slab caches */
ab4d5ed5 90#ifdef CONFIG_SYSFS
81819f0f 91 struct kobject kobj; /* For sysfs */
0c710013 92#endif
81819f0f
CL
93
94#ifdef CONFIG_NUMA
9824601e
CL
95 /*
96 * Defragmentation by allocating from a remote node.
97 */
98 int remote_node_defrag_ratio;
81819f0f 99#endif
7340cc84 100 struct kmem_cache_node *node[MAX_NUMNODES];
81819f0f
CL
101};
102
103/*
104 * Kmalloc subsystem.
105 */
a6eb9fe1
FT
106#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
107#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
4b356be0
CL
108#else
109#define KMALLOC_MIN_SIZE 8
110#endif
111
112#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 113
a6eb9fe1
FT
114#ifdef ARCH_DMA_MINALIGN
115#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
116#else
4581ced3
DW
117#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
118#endif
119
120#ifndef ARCH_SLAB_MINALIGN
121#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
122#endif
123
ffadd4d0
CL
124/*
125 * Maximum kmalloc object size handled by SLUB. Larger object allocations
126 * are passed through to the page allocator. The page allocator "fastpath"
127 * is relatively slow so we need this value sufficiently high so that
128 * performance critical objects are allocated through the SLUB fastpath.
129 *
130 * This should be dropped to PAGE_SIZE / 2 once the page allocator
131 * "fastpath" becomes competitive with the slab allocator fastpaths.
132 */
51735a7c 133#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 134
51735a7c 135#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 136
756dee75
CL
137#ifdef CONFIG_ZONE_DMA
138#define SLUB_DMA __GFP_DMA
756dee75
CL
139#else
140/* Disable DMA functionality */
141#define SLUB_DMA (__force gfp_t)0
756dee75
CL
142#endif
143
81819f0f
CL
144/*
145 * We keep the general caches in an array of slab caches that are used for
146 * 2^x bytes of allocations.
147 */
51df1142 148extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
149
150/*
151 * Sorry that the following has to be that ugly but some versions of GCC
152 * have trouble with constant propagation and loops.
153 */
aa137f9d 154static __always_inline int kmalloc_index(size_t size)
81819f0f 155{
272c1d21
CL
156 if (!size)
157 return 0;
614410d5 158
4b356be0
CL
159 if (size <= KMALLOC_MIN_SIZE)
160 return KMALLOC_SHIFT_LOW;
161
acdfcd04 162 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 163 return 1;
acdfcd04 164 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
165 return 2;
166 if (size <= 8) return 3;
167 if (size <= 16) return 4;
168 if (size <= 32) return 5;
169 if (size <= 64) return 6;
170 if (size <= 128) return 7;
171 if (size <= 256) return 8;
172 if (size <= 512) return 9;
173 if (size <= 1024) return 10;
174 if (size <= 2 * 1024) return 11;
6446faa2 175 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
176/*
177 * The following is only needed to support architectures with a larger page
178 * size than 4k.
179 */
81819f0f
CL
180 if (size <= 8 * 1024) return 13;
181 if (size <= 16 * 1024) return 14;
182 if (size <= 32 * 1024) return 15;
183 if (size <= 64 * 1024) return 16;
184 if (size <= 128 * 1024) return 17;
185 if (size <= 256 * 1024) return 18;
aadb4bc4 186 if (size <= 512 * 1024) return 19;
81819f0f 187 if (size <= 1024 * 1024) return 20;
81819f0f 188 if (size <= 2 * 1024 * 1024) return 21;
81819f0f
CL
189 return -1;
190
191/*
192 * What we really wanted to do and cannot do because of compiler issues is:
193 * int i;
194 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
195 * if (size <= (1 << i))
196 * return i;
197 */
198}
199
200/*
201 * Find the slab cache for a given combination of allocation flags and size.
202 *
203 * This ought to end up with a global pointer to the right cache
204 * in kmalloc_caches.
205 */
aa137f9d 206static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
207{
208 int index = kmalloc_index(size);
209
210 if (index == 0)
211 return NULL;
212
51df1142 213 return kmalloc_caches[index];
81819f0f
CL
214}
215
6193a2ff
PM
216void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
217void *__kmalloc(size_t size, gfp_t flags);
218
0f24f128 219#ifdef CONFIG_TRACING
5b882be4
EGM
220extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
221#else
222static __always_inline void *
223kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
224{
225 return kmem_cache_alloc(s, gfpflags);
226}
227#endif
228
eada35ef
PE
229static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
230{
5b882be4
EGM
231 unsigned int order = get_order(size);
232 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
233
e4f7c0b4 234 kmemleak_alloc(ret, size, 1, flags);
ca2b84cb 235 trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
5b882be4
EGM
236
237 return ret;
eada35ef
PE
238}
239
aa137f9d 240static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 241{
5b882be4
EGM
242 void *ret;
243
aadb4bc4 244 if (__builtin_constant_p(size)) {
ffadd4d0 245 if (size > SLUB_MAX_SIZE)
eada35ef 246 return kmalloc_large(size, flags);
81819f0f 247
aadb4bc4
CL
248 if (!(flags & SLUB_DMA)) {
249 struct kmem_cache *s = kmalloc_slab(size);
250
251 if (!s)
252 return ZERO_SIZE_PTR;
81819f0f 253
5b882be4
EGM
254 ret = kmem_cache_alloc_notrace(s, flags);
255
ca2b84cb 256 trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
5b882be4
EGM
257
258 return ret;
aadb4bc4
CL
259 }
260 }
261 return __kmalloc(size, flags);
81819f0f
CL
262}
263
81819f0f 264#ifdef CONFIG_NUMA
6193a2ff
PM
265void *__kmalloc_node(size_t size, gfp_t flags, int node);
266void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 267
0f24f128 268#ifdef CONFIG_TRACING
5b882be4
EGM
269extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
270 gfp_t gfpflags,
271 int node);
272#else
273static __always_inline void *
274kmem_cache_alloc_node_notrace(struct kmem_cache *s,
275 gfp_t gfpflags,
276 int node)
277{
278 return kmem_cache_alloc_node(s, gfpflags, node);
279}
280#endif
281
aa137f9d 282static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 283{
5b882be4
EGM
284 void *ret;
285
aadb4bc4 286 if (__builtin_constant_p(size) &&
ffadd4d0 287 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 288 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
289
290 if (!s)
272c1d21 291 return ZERO_SIZE_PTR;
81819f0f 292
5b882be4
EGM
293 ret = kmem_cache_alloc_node_notrace(s, flags, node);
294
ca2b84cb
EGM
295 trace_kmalloc_node(_THIS_IP_, ret,
296 size, s->size, flags, node);
5b882be4
EGM
297
298 return ret;
aadb4bc4
CL
299 }
300 return __kmalloc_node(size, flags, node);
81819f0f
CL
301}
302#endif
303
304#endif /* _LINUX_SLUB_DEF_H */