]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/percpu.h
this_cpu: Introduce this_cpu_ptr() and generic this_cpu_* operations
[net-next-2.6.git] / include / linux / percpu.h
CommitLineData
1da177e4
LT
1#ifndef __LINUX_PERCPU_H
2#define __LINUX_PERCPU_H
7ff6f082 3
0a3021f4 4#include <linux/preempt.h>
1da177e4
LT
5#include <linux/slab.h> /* For kmalloc() */
6#include <linux/smp.h>
7ff6f082 7#include <linux/cpumask.h>
6a242909 8#include <linux/pfn.h>
7ff6f082 9
1da177e4
LT
10#include <asm/percpu.h>
11
6a242909 12/* enough to cover all DEFINE_PER_CPUs in modules */
b00742d3 13#ifdef CONFIG_MODULES
6a242909 14#define PERCPU_MODULE_RESERVE (8 << 10)
b00742d3 15#else
6a242909 16#define PERCPU_MODULE_RESERVE 0
1da177e4
LT
17#endif
18
6a242909 19#ifndef PERCPU_ENOUGH_ROOM
b00742d3 20#define PERCPU_ENOUGH_ROOM \
6a242909
TH
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23#endif
b00742d3 24
632bbfee
JB
25/*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29#define get_cpu_var(var) (*({ \
a666ecfb 30 extern int simple_identifier_##var(void); \
632bbfee
JB
31 preempt_disable(); \
32 &__get_cpu_var(var); }))
1da177e4
LT
33#define put_cpu_var(var) preempt_enable()
34
35#ifdef CONFIG_SMP
36
8d408b4b 37/* minimum unit size, also is the maximum supported allocation size */
6a242909 38#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
8d408b4b
TH
39
40/*
41 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
6b19b0c2
TH
42 * back on the first chunk for dynamic percpu allocation if arch is
43 * manually allocating and mapping it for faster access (as a part of
44 * large page mapping for example).
8d408b4b 45 *
6b19b0c2
TH
46 * The following values give between one and two pages of free space
47 * after typical minimal boot (2-way SMP, single disk and NIC) with
48 * both defconfig and a distro config on x86_64 and 32. More
49 * intelligent way to determine this would be nice.
8d408b4b 50 */
6b19b0c2
TH
51#if BITS_PER_LONG > 32
52#define PERCPU_DYNAMIC_RESERVE (20 << 10)
53#else
54#define PERCPU_DYNAMIC_RESERVE (12 << 10)
55#endif
8d408b4b 56
fbf59bc9 57extern void *pcpu_base_addr;
fb435d52 58extern const unsigned long *pcpu_unit_offsets;
1da177e4 59
fd1e8a1f
TH
60struct pcpu_group_info {
61 int nr_units; /* aligned # of units */
62 unsigned long base_offset; /* base address offset */
63 unsigned int *cpu_map; /* unit->cpu map, empty
64 * entries contain NR_CPUS */
65};
66
67struct pcpu_alloc_info {
68 size_t static_size;
69 size_t reserved_size;
70 size_t dyn_size;
71 size_t unit_size;
72 size_t atom_size;
73 size_t alloc_size;
74 size_t __ai_size; /* internal, don't use */
75 int nr_groups; /* 0 if grouping unnecessary */
76 struct pcpu_group_info groups[];
77};
78
f58dc01b
TH
79enum pcpu_fc {
80 PCPU_FC_AUTO,
81 PCPU_FC_EMBED,
82 PCPU_FC_PAGE,
f58dc01b
TH
83
84 PCPU_FC_NR,
85};
86extern const char *pcpu_fc_names[PCPU_FC_NR];
87
88extern enum pcpu_fc pcpu_chosen_fc;
89
3cbc8565
TH
90typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
91 size_t align);
d4b95f80
TH
92typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
93typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
a530b795 94typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
fbf59bc9 95
fd1e8a1f
TH
96extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
97 int nr_units);
98extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
99
100extern struct pcpu_alloc_info * __init pcpu_build_alloc_info(
101 size_t reserved_size, ssize_t dyn_size,
102 size_t atom_size,
033e48fb 103 pcpu_fc_cpu_distance_fn_t cpu_distance_fn);
033e48fb 104
fb435d52
TH
105extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
106 void *base_addr);
8d408b4b 107
08fc4580 108#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
c8826dd5
TH
109extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
110 size_t atom_size,
111 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
112 pcpu_fc_alloc_fn_t alloc_fn,
113 pcpu_fc_free_fn_t free_fn);
08fc4580 114#endif
66c3a757 115
08fc4580 116#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
fb435d52 117extern int __init pcpu_page_first_chunk(size_t reserved_size,
d4b95f80
TH
118 pcpu_fc_alloc_fn_t alloc_fn,
119 pcpu_fc_free_fn_t free_fn,
120 pcpu_fc_populate_pte_fn_t populate_pte_fn);
08fc4580 121#endif
d4b95f80 122
f2a8205c
TH
123/*
124 * Use this to get to a cpu's version of the per-cpu object
125 * dynamically allocated. Non-atomic access to the current CPU's
126 * version should probably be combined with get_cpu()/put_cpu().
127 */
fbf59bc9
TH
128#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
129
edcb4639 130extern void *__alloc_reserved_percpu(size_t size, size_t align);
f2a8205c
TH
131extern void *__alloc_percpu(size_t size, size_t align);
132extern void free_percpu(void *__pdata);
1da177e4 133
e74e3962
TH
134#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
135extern void __init setup_per_cpu_areas(void);
136#endif
137
1da177e4
LT
138#else /* CONFIG_SMP */
139
b36128c8 140#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); })
7ff6f082 141
f2a8205c 142static inline void *__alloc_percpu(size_t size, size_t align)
7ff6f082 143{
f2a8205c
TH
144 /*
145 * Can't easily make larger alignment work with kmalloc. WARN
146 * on it. Larger alignment should only be used for module
147 * percpu sections on SMP for which this path isn't used.
148 */
e3176036 149 WARN_ON_ONCE(align > SMP_CACHE_BYTES);
d2b02615 150 return kzalloc(size, GFP_KERNEL);
7ff6f082
MP
151}
152
f2a8205c 153static inline void free_percpu(void *p)
7ff6f082 154{
f2a8205c 155 kfree(p);
1da177e4
LT
156}
157
e74e3962
TH
158static inline void __init setup_per_cpu_areas(void) { }
159
a76761b6
TH
160static inline void *pcpu_lpage_remapped(void *kaddr)
161{
162 return NULL;
163}
164
1da177e4
LT
165#endif /* CONFIG_SMP */
166
313e458f
RR
167#define alloc_percpu(type) (type *)__alloc_percpu(sizeof(type), \
168 __alignof__(type))
1da177e4 169
066123a5
TH
170/*
171 * Optional methods for optimized non-lvalue per-cpu variable access.
172 *
173 * @var can be a percpu variable or a field of it and its size should
174 * equal char, int or long. percpu_read() evaluates to a lvalue and
175 * all others to void.
176 *
177 * These operations are guaranteed to be atomic w.r.t. preemption.
178 * The generic versions use plain get/put_cpu_var(). Archs are
179 * encouraged to implement single-instruction alternatives which don't
180 * require preemption protection.
181 */
182#ifndef percpu_read
183# define percpu_read(var) \
184 ({ \
185 typeof(per_cpu_var(var)) __tmp_var__; \
186 __tmp_var__ = get_cpu_var(var); \
187 put_cpu_var(var); \
188 __tmp_var__; \
189 })
190#endif
191
192#define __percpu_generic_to_op(var, val, op) \
193do { \
194 get_cpu_var(var) op val; \
195 put_cpu_var(var); \
196} while (0)
197
198#ifndef percpu_write
199# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
200#endif
201
202#ifndef percpu_add
203# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
204#endif
205
206#ifndef percpu_sub
207# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
208#endif
209
210#ifndef percpu_and
211# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
212#endif
213
214#ifndef percpu_or
215# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
216#endif
217
218#ifndef percpu_xor
219# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
220#endif
221
7340a0b1
CL
222/*
223 * Branching function to split up a function into a set of functions that
224 * are called for different scalar sizes of the objects handled.
225 */
226
227extern void __bad_size_call_parameter(void);
228
229#define __size_call_return(stem, variable) \
230({ typeof(variable) ret__; \
231 switch(sizeof(variable)) { \
232 case 1: ret__ = stem##1(variable);break; \
233 case 2: ret__ = stem##2(variable);break; \
234 case 4: ret__ = stem##4(variable);break; \
235 case 8: ret__ = stem##8(variable);break; \
236 default: \
237 __bad_size_call_parameter();break; \
238 } \
239 ret__; \
240})
241
242#define __size_call(stem, variable, ...) \
243do { \
244 switch(sizeof(variable)) { \
245 case 1: stem##1(variable, __VA_ARGS__);break; \
246 case 2: stem##2(variable, __VA_ARGS__);break; \
247 case 4: stem##4(variable, __VA_ARGS__);break; \
248 case 8: stem##8(variable, __VA_ARGS__);break; \
249 default: \
250 __bad_size_call_parameter();break; \
251 } \
252} while (0)
253
254/*
255 * Optimized manipulation for memory allocated through the per cpu
256 * allocator or for addresses of per cpu variables (can be determined
257 * using per_cpu_var(xx).
258 *
259 * These operation guarantee exclusivity of access for other operations
260 * on the *same* processor. The assumption is that per cpu data is only
261 * accessed by a single processor instance (the current one).
262 *
263 * The first group is used for accesses that must be done in a
264 * preemption safe way since we know that the context is not preempt
265 * safe. Interrupts may occur. If the interrupt modifies the variable
266 * too then RMW actions will not be reliable.
267 *
268 * The arch code can provide optimized functions in two ways:
269 *
270 * 1. Override the function completely. F.e. define this_cpu_add().
271 * The arch must then ensure that the various scalar format passed
272 * are handled correctly.
273 *
274 * 2. Provide functions for certain scalar sizes. F.e. provide
275 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
276 * sized RMW actions. If arch code does not provide operations for
277 * a scalar size then the fallback in the generic code will be
278 * used.
279 */
280
281#define _this_cpu_generic_read(pcp) \
282({ typeof(pcp) ret__; \
283 preempt_disable(); \
284 ret__ = *this_cpu_ptr(&(pcp)); \
285 preempt_enable(); \
286 ret__; \
287})
288
289#ifndef this_cpu_read
290# ifndef this_cpu_read_1
291# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
292# endif
293# ifndef this_cpu_read_2
294# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
295# endif
296# ifndef this_cpu_read_4
297# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
298# endif
299# ifndef this_cpu_read_8
300# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
301# endif
302# define this_cpu_read(pcp) __size_call_return(this_cpu_read_, (pcp))
303#endif
304
305#define _this_cpu_generic_to_op(pcp, val, op) \
306do { \
307 preempt_disable(); \
308 *__this_cpu_ptr(&pcp) op val; \
309 preempt_enable(); \
310} while (0)
311
312#ifndef this_cpu_write
313# ifndef this_cpu_write_1
314# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
315# endif
316# ifndef this_cpu_write_2
317# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
318# endif
319# ifndef this_cpu_write_4
320# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
321# endif
322# ifndef this_cpu_write_8
323# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
324# endif
325# define this_cpu_write(pcp, val) __size_call(this_cpu_write_, (pcp), (val))
326#endif
327
328#ifndef this_cpu_add
329# ifndef this_cpu_add_1
330# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
331# endif
332# ifndef this_cpu_add_2
333# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
334# endif
335# ifndef this_cpu_add_4
336# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
337# endif
338# ifndef this_cpu_add_8
339# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
340# endif
341# define this_cpu_add(pcp, val) __size_call(this_cpu_add_, (pcp), (val))
342#endif
343
344#ifndef this_cpu_sub
345# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
346#endif
347
348#ifndef this_cpu_inc
349# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
350#endif
351
352#ifndef this_cpu_dec
353# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
354#endif
355
356#ifndef this_cpu_and
357# ifndef this_cpu_and_1
358# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
359# endif
360# ifndef this_cpu_and_2
361# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
362# endif
363# ifndef this_cpu_and_4
364# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
365# endif
366# ifndef this_cpu_and_8
367# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
368# endif
369# define this_cpu_and(pcp, val) __size_call(this_cpu_and_, (pcp), (val))
370#endif
371
372#ifndef this_cpu_or
373# ifndef this_cpu_or_1
374# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
375# endif
376# ifndef this_cpu_or_2
377# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
378# endif
379# ifndef this_cpu_or_4
380# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
381# endif
382# ifndef this_cpu_or_8
383# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
384# endif
385# define this_cpu_or(pcp, val) __size_call(this_cpu_or_, (pcp), (val))
386#endif
387
388#ifndef this_cpu_xor
389# ifndef this_cpu_xor_1
390# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
391# endif
392# ifndef this_cpu_xor_2
393# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
394# endif
395# ifndef this_cpu_xor_4
396# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
397# endif
398# ifndef this_cpu_xor_8
399# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
400# endif
401# define this_cpu_xor(pcp, val) __size_call(this_cpu_or_, (pcp), (val))
402#endif
403
404/*
405 * Generic percpu operations that do not require preemption handling.
406 * Either we do not care about races or the caller has the
407 * responsibility of handling preemptions issues. Arch code can still
408 * override these instructions since the arch per cpu code may be more
409 * efficient and may actually get race freeness for free (that is the
410 * case for x86 for example).
411 *
412 * If there is no other protection through preempt disable and/or
413 * disabling interupts then one of these RMW operations can show unexpected
414 * behavior because the execution thread was rescheduled on another processor
415 * or an interrupt occurred and the same percpu variable was modified from
416 * the interrupt context.
417 */
418#ifndef __this_cpu_read
419# ifndef __this_cpu_read_1
420# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
421# endif
422# ifndef __this_cpu_read_2
423# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
424# endif
425# ifndef __this_cpu_read_4
426# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
427# endif
428# ifndef __this_cpu_read_8
429# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
430# endif
431# define __this_cpu_read(pcp) __size_call_return(__this_cpu_read_, (pcp))
432#endif
433
434#define __this_cpu_generic_to_op(pcp, val, op) \
435do { \
436 *__this_cpu_ptr(&(pcp)) op val; \
437} while (0)
438
439#ifndef __this_cpu_write
440# ifndef __this_cpu_write_1
441# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
442# endif
443# ifndef __this_cpu_write_2
444# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
445# endif
446# ifndef __this_cpu_write_4
447# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
448# endif
449# ifndef __this_cpu_write_8
450# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
451# endif
452# define __this_cpu_write(pcp, val) __size_call(__this_cpu_write_, (pcp), (val))
453#endif
454
455#ifndef __this_cpu_add
456# ifndef __this_cpu_add_1
457# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
458# endif
459# ifndef __this_cpu_add_2
460# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
461# endif
462# ifndef __this_cpu_add_4
463# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
464# endif
465# ifndef __this_cpu_add_8
466# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
467# endif
468# define __this_cpu_add(pcp, val) __size_call(__this_cpu_add_, (pcp), (val))
469#endif
470
471#ifndef __this_cpu_sub
472# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
473#endif
474
475#ifndef __this_cpu_inc
476# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
477#endif
478
479#ifndef __this_cpu_dec
480# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
481#endif
482
483#ifndef __this_cpu_and
484# ifndef __this_cpu_and_1
485# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
486# endif
487# ifndef __this_cpu_and_2
488# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
489# endif
490# ifndef __this_cpu_and_4
491# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
492# endif
493# ifndef __this_cpu_and_8
494# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
495# endif
496# define __this_cpu_and(pcp, val) __size_call(__this_cpu_and_, (pcp), (val))
497#endif
498
499#ifndef __this_cpu_or
500# ifndef __this_cpu_or_1
501# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
502# endif
503# ifndef __this_cpu_or_2
504# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
505# endif
506# ifndef __this_cpu_or_4
507# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
508# endif
509# ifndef __this_cpu_or_8
510# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
511# endif
512# define __this_cpu_or(pcp, val) __size_call(__this_cpu_or_, (pcp), (val))
513#endif
514
515#ifndef __this_cpu_xor
516# ifndef __this_cpu_xor_1
517# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
518# endif
519# ifndef __this_cpu_xor_2
520# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
521# endif
522# ifndef __this_cpu_xor_4
523# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
524# endif
525# ifndef __this_cpu_xor_8
526# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
527# endif
528# define __this_cpu_xor(pcp, val) __size_call(__this_cpu_xor_, (pcp), (val))
529#endif
530
531/*
532 * IRQ safe versions of the per cpu RMW operations. Note that these operations
533 * are *not* safe against modification of the same variable from another
534 * processors (which one gets when using regular atomic operations)
535 . They are guaranteed to be atomic vs. local interrupts and
536 * preemption only.
537 */
538#define irqsafe_cpu_generic_to_op(pcp, val, op) \
539do { \
540 unsigned long flags; \
541 local_irq_save(flags); \
542 *__this_cpu_ptr(&(pcp)) op val; \
543 local_irq_restore(flags); \
544} while (0)
545
546#ifndef irqsafe_cpu_add
547# ifndef irqsafe_cpu_add_1
548# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
549# endif
550# ifndef irqsafe_cpu_add_2
551# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
552# endif
553# ifndef irqsafe_cpu_add_4
554# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
555# endif
556# ifndef irqsafe_cpu_add_8
557# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
558# endif
559# define irqsafe_cpu_add(pcp, val) __size_call(irqsafe_cpu_add_, (pcp), (val))
560#endif
561
562#ifndef irqsafe_cpu_sub
563# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
564#endif
565
566#ifndef irqsafe_cpu_inc
567# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
568#endif
569
570#ifndef irqsafe_cpu_dec
571# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
572#endif
573
574#ifndef irqsafe_cpu_and
575# ifndef irqsafe_cpu_and_1
576# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
577# endif
578# ifndef irqsafe_cpu_and_2
579# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
580# endif
581# ifndef irqsafe_cpu_and_4
582# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
583# endif
584# ifndef irqsafe_cpu_and_8
585# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
586# endif
587# define irqsafe_cpu_and(pcp, val) __size_call(irqsafe_cpu_and_, (val))
588#endif
589
590#ifndef irqsafe_cpu_or
591# ifndef irqsafe_cpu_or_1
592# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
593# endif
594# ifndef irqsafe_cpu_or_2
595# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
596# endif
597# ifndef irqsafe_cpu_or_4
598# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
599# endif
600# ifndef irqsafe_cpu_or_8
601# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
602# endif
603# define irqsafe_cpu_or(pcp, val) __size_call(irqsafe_cpu_or_, (val))
604#endif
605
606#ifndef irqsafe_cpu_xor
607# ifndef irqsafe_cpu_xor_1
608# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
609# endif
610# ifndef irqsafe_cpu_xor_2
611# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
612# endif
613# ifndef irqsafe_cpu_xor_4
614# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
615# endif
616# ifndef irqsafe_cpu_xor_8
617# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
618# endif
619# define irqsafe_cpu_xor(pcp, val) __size_call(irqsafe_cpu_xor_, (val))
620#endif
621
1da177e4 622#endif /* __LINUX_PERCPU_H */