]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/mm.h
NeilBrown <neilb@suse.de>
[net-next-2.6.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4 4#include <linux/errno.h>
c59ede7b 5#include <linux/capability.h>
1da177e4
LT
6
7#ifdef __KERNEL__
8
1da177e4
LT
9#include <linux/gfp.h>
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
13#include <linux/prio_tree.h>
14#include <linux/fs.h>
de5097c2 15#include <linux/mutex.h>
9a11b49a 16#include <linux/debug_locks.h>
d08b3851 17#include <linux/backing-dev.h>
5b99cd0e 18#include <linux/mm_types.h>
1da177e4
LT
19
20struct mempolicy;
21struct anon_vma;
e8edc6e0 22struct user_struct;
1da177e4
LT
23
24#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
25extern unsigned long max_mapnr;
26#endif
27
28extern unsigned long num_physpages;
29extern void * high_memory;
1da177e4
LT
30extern int page_cluster;
31
32#ifdef CONFIG_SYSCTL
33extern int sysctl_legacy_va_layout;
34#else
35#define sysctl_legacy_va_layout 0
36#endif
37
38#include <asm/page.h>
39#include <asm/pgtable.h>
40#include <asm/processor.h>
1da177e4 41
1da177e4
LT
42#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44/*
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
50 * mmap() functions).
51 */
52
53/*
54 * This struct defines a memory VMM memory area. There is one of these
55 * per VM-area/task. A VM area is any part of the process virtual memory
56 * space that has a special rule for the page-fault handlers (ie a shared
57 * library, the executable area etc).
58 */
59struct vm_area_struct {
60 struct mm_struct * vm_mm; /* The address space we belong to. */
61 unsigned long vm_start; /* Our start address within vm_mm. */
62 unsigned long vm_end; /* The first byte after our end address
63 within vm_mm. */
64
65 /* linked list of VM areas per task, sorted by address */
66 struct vm_area_struct *vm_next;
67
68 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
69 unsigned long vm_flags; /* Flags, listed below. */
70
71 struct rb_node vm_rb;
72
73 /*
74 * For areas with an address space and backing store,
75 * linkage into the address_space->i_mmap prio tree, or
76 * linkage to the list of like vmas hanging off its node, or
77 * linkage of vma in the address_space->i_mmap_nonlinear list.
78 */
79 union {
80 struct {
81 struct list_head list;
82 void *parent; /* aligns with prio_tree_node parent */
83 struct vm_area_struct *head;
84 } vm_set;
85
86 struct raw_prio_tree_node prio_tree_node;
87 } shared;
88
89 /*
90 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
91 * list, after a COW of one of the file pages. A MAP_SHARED vma
92 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
93 * or brk vma (with NULL file) can only be in an anon_vma list.
94 */
95 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
96 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
97
98 /* Function pointers to deal with this struct. */
99 struct vm_operations_struct * vm_ops;
100
101 /* Information about our backing store: */
102 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
103 units, *not* PAGE_CACHE_SIZE */
104 struct file * vm_file; /* File we map to (can be NULL). */
105 void * vm_private_data; /* was vm_pte (shared mem) */
106 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
107
108#ifndef CONFIG_MMU
109 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
110#endif
111#ifdef CONFIG_NUMA
112 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
113#endif
114};
115
c43692e8
CL
116extern struct kmem_cache *vm_area_cachep;
117
1da177e4
LT
118/*
119 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
120 * disabled, then there's a single shared list of VMAs maintained by the
121 * system, and mm's subscribe to these individually
122 */
123struct vm_list_struct {
124 struct vm_list_struct *next;
125 struct vm_area_struct *vma;
126};
127
128#ifndef CONFIG_MMU
129extern struct rb_root nommu_vma_tree;
130extern struct rw_semaphore nommu_vma_sem;
131
132extern unsigned int kobjsize(const void *objp);
133#endif
134
135/*
136 * vm_flags..
137 */
138#define VM_READ 0x00000001 /* currently active flags */
139#define VM_WRITE 0x00000002
140#define VM_EXEC 0x00000004
141#define VM_SHARED 0x00000008
142
7e2cff42 143/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
144#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
145#define VM_MAYWRITE 0x00000020
146#define VM_MAYEXEC 0x00000040
147#define VM_MAYSHARE 0x00000080
148
149#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
150#define VM_GROWSUP 0x00000200
6aab341e 151#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
152#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
153
154#define VM_EXECUTABLE 0x00001000
155#define VM_LOCKED 0x00002000
156#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
157
158 /* Used by sys_madvise() */
159#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
160#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
161
162#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
163#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 164#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4
LT
165#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
166#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
167#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
168#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
4d7672b4 169#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 170#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
1da177e4
LT
171
172#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
173#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
174#endif
175
176#ifdef CONFIG_STACK_GROWSUP
177#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
178#else
179#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
180#endif
181
182#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
183#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
184#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
185#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
186#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
187
188/*
189 * mapping from the currently active vm_flags protection bits (the
190 * low four bits) to a page protection mask..
191 */
192extern pgprot_t protection_map[16];
193
194
195/*
196 * These are the virtual MM functions - opening of an area, closing and
197 * unmapping it (needed to keep files on disk up-to-date etc), pointer
198 * to the functions called when a no-page or a wp-page exception occurs.
199 */
200struct vm_operations_struct {
201 void (*open)(struct vm_area_struct * area);
202 void (*close)(struct vm_area_struct * area);
203 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
f4b81804 204 unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
1da177e4 205 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
9637a5ef
DH
206
207 /* notification that a previously read-only page is about to become
208 * writable, if an error is returned it will cause a SIGBUS */
209 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
1da177e4
LT
210#ifdef CONFIG_NUMA
211 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
212 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
213 unsigned long addr);
7b2259b3
CL
214 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
215 const nodemask_t *to, unsigned long flags);
1da177e4
LT
216#endif
217};
218
219struct mmu_gather;
220struct inode;
221
349aef0b
AM
222#define page_private(page) ((page)->private)
223#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 224
1da177e4
LT
225/*
226 * FIXME: take this include out, include page-flags.h in
227 * files which need it (119 of them)
228 */
229#include <linux/page-flags.h>
230
725d704e
NP
231#ifdef CONFIG_DEBUG_VM
232#define VM_BUG_ON(cond) BUG_ON(cond)
233#else
234#define VM_BUG_ON(condition) do { } while(0)
235#endif
236
1da177e4
LT
237/*
238 * Methods to modify the page usage count.
239 *
240 * What counts for a page usage:
241 * - cache mapping (page->mapping)
242 * - private data (page->private)
243 * - page mapped in a task's page tables, each mapping
244 * is counted separately
245 *
246 * Also, many kernel routines increase the page count before a critical
247 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
248 */
249
250/*
da6052f7 251 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 252 */
7c8ee9a8
NP
253static inline int put_page_testzero(struct page *page)
254{
725d704e 255 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 256 return atomic_dec_and_test(&page->_count);
7c8ee9a8 257}
1da177e4
LT
258
259/*
7c8ee9a8
NP
260 * Try to grab a ref unless the page has a refcount of zero, return false if
261 * that is the case.
1da177e4 262 */
7c8ee9a8
NP
263static inline int get_page_unless_zero(struct page *page)
264{
725d704e 265 VM_BUG_ON(PageCompound(page));
8dc04efb 266 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 267}
1da177e4 268
d85f3385
CL
269static inline struct page *compound_head(struct page *page)
270{
6d777953 271 if (unlikely(PageTail(page)))
d85f3385
CL
272 return page->first_page;
273 return page;
274}
275
4c21e2f2 276static inline int page_count(struct page *page)
1da177e4 277{
d85f3385 278 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
279}
280
281static inline void get_page(struct page *page)
282{
d85f3385 283 page = compound_head(page);
725d704e 284 VM_BUG_ON(atomic_read(&page->_count) == 0);
1da177e4
LT
285 atomic_inc(&page->_count);
286}
287
b49af68f
CL
288static inline struct page *virt_to_head_page(const void *x)
289{
290 struct page *page = virt_to_page(x);
291 return compound_head(page);
292}
293
7835e98b
NP
294/*
295 * Setup the page count before being freed into the page allocator for
296 * the first time (boot or memory hotplug)
297 */
298static inline void init_page_count(struct page *page)
299{
300 atomic_set(&page->_count, 1);
301}
302
1da177e4 303void put_page(struct page *page);
1d7ea732 304void put_pages_list(struct list_head *pages);
1da177e4 305
8dfcc9ba 306void split_page(struct page *page, unsigned int order);
8dfcc9ba 307
33f2ef89
AW
308/*
309 * Compound pages have a destructor function. Provide a
310 * prototype for that function and accessor functions.
311 * These are _only_ valid on the head of a PG_compound page.
312 */
313typedef void compound_page_dtor(struct page *);
314
315static inline void set_compound_page_dtor(struct page *page,
316 compound_page_dtor *dtor)
317{
318 page[1].lru.next = (void *)dtor;
319}
320
321static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
322{
323 return (compound_page_dtor *)page[1].lru.next;
324}
325
d85f3385
CL
326static inline int compound_order(struct page *page)
327{
6d777953 328 if (!PageHead(page))
d85f3385
CL
329 return 0;
330 return (unsigned long)page[1].lru.prev;
331}
332
333static inline void set_compound_order(struct page *page, unsigned long order)
334{
335 page[1].lru.prev = (void *)order;
336}
337
1da177e4
LT
338/*
339 * Multiple processes may "see" the same page. E.g. for untouched
340 * mappings of /dev/null, all processes see the same page full of
341 * zeroes, and text pages of executables and shared libraries have
342 * only one copy in memory, at most, normally.
343 *
344 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
345 * page_count() == 0 means the page is free. page->lru is then used for
346 * freelist management in the buddy allocator.
da6052f7 347 * page_count() > 0 means the page has been allocated.
1da177e4 348 *
da6052f7
NP
349 * Pages are allocated by the slab allocator in order to provide memory
350 * to kmalloc and kmem_cache_alloc. In this case, the management of the
351 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
352 * unless a particular usage is carefully commented. (the responsibility of
353 * freeing the kmalloc memory is the caller's, of course).
1da177e4 354 *
da6052f7
NP
355 * A page may be used by anyone else who does a __get_free_page().
356 * In this case, page_count still tracks the references, and should only
357 * be used through the normal accessor functions. The top bits of page->flags
358 * and page->virtual store page management information, but all other fields
359 * are unused and could be used privately, carefully. The management of this
360 * page is the responsibility of the one who allocated it, and those who have
361 * subsequently been given references to it.
362 *
363 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
364 * managed by the Linux memory manager: I/O, buffers, swapping etc.
365 * The following discussion applies only to them.
366 *
da6052f7
NP
367 * A pagecache page contains an opaque `private' member, which belongs to the
368 * page's address_space. Usually, this is the address of a circular list of
369 * the page's disk buffers. PG_private must be set to tell the VM to call
370 * into the filesystem to release these pages.
1da177e4 371 *
da6052f7
NP
372 * A page may belong to an inode's memory mapping. In this case, page->mapping
373 * is the pointer to the inode, and page->index is the file offset of the page,
374 * in units of PAGE_CACHE_SIZE.
1da177e4 375 *
da6052f7
NP
376 * If pagecache pages are not associated with an inode, they are said to be
377 * anonymous pages. These may become associated with the swapcache, and in that
378 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 379 *
da6052f7
NP
380 * In either case (swapcache or inode backed), the pagecache itself holds one
381 * reference to the page. Setting PG_private should also increment the
382 * refcount. The each user mapping also has a reference to the page.
1da177e4 383 *
da6052f7
NP
384 * The pagecache pages are stored in a per-mapping radix tree, which is
385 * rooted at mapping->page_tree, and indexed by offset.
386 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
387 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 388 *
da6052f7 389 * All pagecache pages may be subject to I/O:
1da177e4
LT
390 * - inode pages may need to be read from disk,
391 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
392 * to be written back to the inode on disk,
393 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
394 * modified may need to be swapped out to swap space and (later) to be read
395 * back into memory.
1da177e4
LT
396 */
397
398/*
399 * The zone field is never updated after free_area_init_core()
400 * sets it, so none of the operations on it need to be atomic.
1da177e4 401 */
348f8b6c 402
d41dee36
AW
403
404/*
405 * page->flags layout:
406 *
407 * There are three possibilities for how page->flags get
408 * laid out. The first is for the normal case, without
409 * sparsemem. The second is for sparsemem when there is
410 * plenty of space for node and section. The last is when
411 * we have run out of space and have to fall back to an
412 * alternate (slower) way of determining the node.
413 *
414 * No sparsemem: | NODE | ZONE | ... | FLAGS |
415 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
416 * no space for node: | SECTION | ZONE | ... | FLAGS |
417 */
418#ifdef CONFIG_SPARSEMEM
419#define SECTIONS_WIDTH SECTIONS_SHIFT
420#else
421#define SECTIONS_WIDTH 0
422#endif
423
424#define ZONES_WIDTH ZONES_SHIFT
425
426#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
427#define NODES_WIDTH NODES_SHIFT
428#else
429#define NODES_WIDTH 0
430#endif
431
432/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 433#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
434#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
435#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
436
437/*
438 * We are going to use the flags for the page to node mapping if its in
439 * there. This includes the case where there is no node, so it is implicit.
440 */
89689ae7
CL
441#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
442#define NODE_NOT_IN_PAGE_FLAGS
443#endif
d41dee36
AW
444
445#ifndef PFN_SECTION_SHIFT
446#define PFN_SECTION_SHIFT 0
447#endif
348f8b6c
DH
448
449/*
450 * Define the bit shifts to access each section. For non-existant
451 * sections we define the shift as 0; that plus a 0 mask ensures
452 * the compiler will optimise away reference to them.
453 */
d41dee36
AW
454#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
455#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
456#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 457
89689ae7
CL
458/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
459#ifdef NODE_NOT_IN_PAGEFLAGS
460#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
461#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
462 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 463#else
89689ae7 464#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
465#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
466 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
467#endif
468
bd8029b6 469#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 470
d41dee36
AW
471#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
472#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
348f8b6c
DH
473#endif
474
d41dee36
AW
475#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
476#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
477#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 478#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 479
2f1b6248 480static inline enum zone_type page_zonenum(struct page *page)
1da177e4 481{
348f8b6c 482 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 483}
1da177e4 484
89689ae7
CL
485/*
486 * The identification function is only used by the buddy allocator for
487 * determining if two pages could be buddies. We are not really
488 * identifying a zone since we could be using a the section number
489 * id if we have not node id available in page flags.
490 * We guarantee only that it will return the same value for two
491 * combinable pages in a zone.
492 */
cb2b95e1
AW
493static inline int page_zone_id(struct page *page)
494{
89689ae7 495 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
496}
497
25ba77c1 498static inline int zone_to_nid(struct zone *zone)
89fa3024 499{
d5f541ed
CL
500#ifdef CONFIG_NUMA
501 return zone->node;
502#else
503 return 0;
504#endif
89fa3024
CL
505}
506
89689ae7 507#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 508extern int page_to_nid(struct page *page);
89689ae7 509#else
25ba77c1 510static inline int page_to_nid(struct page *page)
d41dee36 511{
89689ae7 512 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 513}
89689ae7
CL
514#endif
515
516static inline struct zone *page_zone(struct page *page)
517{
518 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
519}
520
d41dee36
AW
521static inline unsigned long page_to_section(struct page *page)
522{
523 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
524}
525
2f1b6248 526static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
527{
528 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
529 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
530}
2f1b6248 531
348f8b6c
DH
532static inline void set_page_node(struct page *page, unsigned long node)
533{
534 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
535 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 536}
89689ae7 537
d41dee36
AW
538static inline void set_page_section(struct page *page, unsigned long section)
539{
540 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
541 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
542}
1da177e4 543
2f1b6248 544static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 545 unsigned long node, unsigned long pfn)
1da177e4 546{
348f8b6c
DH
547 set_page_zone(page, zone);
548 set_page_node(page, node);
d41dee36 549 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
550}
551
f6ac2354
CL
552/*
553 * Some inline functions in vmstat.h depend on page_zone()
554 */
555#include <linux/vmstat.h>
556
652050ae 557static __always_inline void *lowmem_page_address(struct page *page)
1da177e4
LT
558{
559 return __va(page_to_pfn(page) << PAGE_SHIFT);
560}
561
562#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
563#define HASHED_PAGE_VIRTUAL
564#endif
565
566#if defined(WANT_PAGE_VIRTUAL)
567#define page_address(page) ((page)->virtual)
568#define set_page_address(page, address) \
569 do { \
570 (page)->virtual = (address); \
571 } while(0)
572#define page_address_init() do { } while(0)
573#endif
574
575#if defined(HASHED_PAGE_VIRTUAL)
576void *page_address(struct page *page);
577void set_page_address(struct page *page, void *virtual);
578void page_address_init(void);
579#endif
580
581#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
582#define page_address(page) lowmem_page_address(page)
583#define set_page_address(page, address) do { } while(0)
584#define page_address_init() do { } while(0)
585#endif
586
587/*
588 * On an anonymous page mapped into a user virtual memory area,
589 * page->mapping points to its anon_vma, not to a struct address_space;
590 * with the PAGE_MAPPING_ANON bit set to distinguish it.
591 *
592 * Please note that, confusingly, "page_mapping" refers to the inode
593 * address_space which maps the page from disk; whereas "page_mapped"
594 * refers to user virtual address space into which the page is mapped.
595 */
596#define PAGE_MAPPING_ANON 1
597
598extern struct address_space swapper_space;
599static inline struct address_space *page_mapping(struct page *page)
600{
601 struct address_space *mapping = page->mapping;
602
603 if (unlikely(PageSwapCache(page)))
604 mapping = &swapper_space;
b9bae340
HD
605#ifdef CONFIG_SLUB
606 else if (unlikely(PageSlab(page)))
607 mapping = NULL;
608#endif
1da177e4
LT
609 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
610 mapping = NULL;
611 return mapping;
612}
613
614static inline int PageAnon(struct page *page)
615{
616 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
617}
618
619/*
620 * Return the pagecache index of the passed page. Regular pagecache pages
621 * use ->index whereas swapcache pages use ->private
622 */
623static inline pgoff_t page_index(struct page *page)
624{
625 if (unlikely(PageSwapCache(page)))
4c21e2f2 626 return page_private(page);
1da177e4
LT
627 return page->index;
628}
629
630/*
631 * The atomic page->_mapcount, like _count, starts from -1:
632 * so that transitions both from it and to it can be tracked,
633 * using atomic_inc_and_test and atomic_add_negative(-1).
634 */
635static inline void reset_page_mapcount(struct page *page)
636{
637 atomic_set(&(page)->_mapcount, -1);
638}
639
640static inline int page_mapcount(struct page *page)
641{
642 return atomic_read(&(page)->_mapcount) + 1;
643}
644
645/*
646 * Return true if this page is mapped into pagetables.
647 */
648static inline int page_mapped(struct page *page)
649{
650 return atomic_read(&(page)->_mapcount) >= 0;
651}
652
653/*
654 * Error return values for the *_nopage functions
655 */
656#define NOPAGE_SIGBUS (NULL)
657#define NOPAGE_OOM ((struct page *) (-1))
7f7bbbe5 658#define NOPAGE_REFAULT ((struct page *) (-2)) /* Return to userspace, rerun */
1da177e4 659
f4b81804
JS
660/*
661 * Error return values for the *_nopfn functions
662 */
663#define NOPFN_SIGBUS ((unsigned long) -1)
664#define NOPFN_OOM ((unsigned long) -2)
22cd25ed 665#define NOPFN_REFAULT ((unsigned long) -3)
f4b81804 666
1da177e4
LT
667/*
668 * Different kinds of faults, as returned by handle_mm_fault().
669 * Used to decide whether a process gets delivered SIGBUS or
670 * just gets major/minor fault counters bumped up.
671 */
f33ea7f4
NP
672#define VM_FAULT_OOM 0x00
673#define VM_FAULT_SIGBUS 0x01
674#define VM_FAULT_MINOR 0x02
675#define VM_FAULT_MAJOR 0x03
676
677/*
678 * Special case for get_user_pages.
679 * Must be in a distinct bit from the above VM_FAULT_ flags.
680 */
681#define VM_FAULT_WRITE 0x10
1da177e4
LT
682
683#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
684
685extern void show_free_areas(void);
686
687#ifdef CONFIG_SHMEM
1da177e4
LT
688int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
689struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
690 unsigned long addr);
691int shmem_lock(struct file *file, int lock, struct user_struct *user);
692#else
03b00ebc
RK
693static inline int shmem_lock(struct file *file, int lock,
694 struct user_struct *user)
695{
696 return 0;
697}
698
699static inline int shmem_set_policy(struct vm_area_struct *vma,
700 struct mempolicy *new)
701{
702 return 0;
703}
704
705static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
706 unsigned long addr)
707{
708 return NULL;
709}
1da177e4
LT
710#endif
711struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
712
713int shmem_zero_setup(struct vm_area_struct *);
714
b0e15190
DH
715#ifndef CONFIG_MMU
716extern unsigned long shmem_get_unmapped_area(struct file *file,
717 unsigned long addr,
718 unsigned long len,
719 unsigned long pgoff,
720 unsigned long flags);
721#endif
722
e8edc6e0 723extern int can_do_mlock(void);
1da177e4
LT
724extern int user_shm_lock(size_t, struct user_struct *);
725extern void user_shm_unlock(size_t, struct user_struct *);
726
727/*
728 * Parameter block passed down to zap_pte_range in exceptional cases.
729 */
730struct zap_details {
731 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
732 struct address_space *check_mapping; /* Check page->mapping if set */
733 pgoff_t first_index; /* Lowest page->index to unmap */
734 pgoff_t last_index; /* Highest page->index to unmap */
735 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
736 unsigned long truncate_count; /* Compare vm_truncate_count */
737};
738
6aab341e 739struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
ee39b37b 740unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 741 unsigned long size, struct zap_details *);
508034a3 742unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
743 struct vm_area_struct *start_vma, unsigned long start_addr,
744 unsigned long end_addr, unsigned long *nr_accounted,
745 struct zap_details *);
3bf5ee95
HD
746void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
747 unsigned long end, unsigned long floor, unsigned long ceiling);
748void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
e0da382c 749 unsigned long floor, unsigned long ceiling);
1da177e4
LT
750int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
751 struct vm_area_struct *vma);
752int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
753 unsigned long size, pgprot_t prot);
754void unmap_mapping_range(struct address_space *mapping,
755 loff_t const holebegin, loff_t const holelen, int even_cows);
756
757static inline void unmap_shared_mapping_range(struct address_space *mapping,
758 loff_t const holebegin, loff_t const holelen)
759{
760 unmap_mapping_range(mapping, holebegin, holelen, 0);
761}
762
763extern int vmtruncate(struct inode * inode, loff_t offset);
f6b3ec23 764extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
1da177e4
LT
765extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
766extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
f33ea7f4 767
7ee1dd3f
DH
768#ifdef CONFIG_MMU
769extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
770 unsigned long address, int write_access);
771
772static inline int handle_mm_fault(struct mm_struct *mm,
773 struct vm_area_struct *vma, unsigned long address,
774 int write_access)
f33ea7f4 775{
7ee1dd3f
DH
776 return __handle_mm_fault(mm, vma, address, write_access) &
777 (~VM_FAULT_WRITE);
f33ea7f4 778}
7ee1dd3f
DH
779#else
780static inline int handle_mm_fault(struct mm_struct *mm,
781 struct vm_area_struct *vma, unsigned long address,
782 int write_access)
783{
784 /* should never happen if there's no MMU */
785 BUG();
786 return VM_FAULT_SIGBUS;
787}
788#endif
f33ea7f4 789
1da177e4
LT
790extern int make_pages_present(unsigned long addr, unsigned long end);
791extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
792void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
793
794int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
795 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
b5810039 796void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
1da177e4 797
cf9a2ae8
DH
798extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
799extern void do_invalidatepage(struct page *page, unsigned long offset);
800
1da177e4 801int __set_page_dirty_nobuffers(struct page *page);
76719325 802int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
803int redirty_page_for_writepage(struct writeback_control *wbc,
804 struct page *page);
805int FASTCALL(set_page_dirty(struct page *page));
806int set_page_dirty_lock(struct page *page);
807int clear_page_dirty_for_io(struct page *page);
808
809extern unsigned long do_mremap(unsigned long addr,
810 unsigned long old_len, unsigned long new_len,
811 unsigned long flags, unsigned long new_addr);
812
813/*
814 * Prototype to add a shrinker callback for ageable caches.
815 *
816 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
817 * scan `nr_to_scan' objects, attempting to free them.
818 *
845d3431 819 * The callback must return the number of objects which remain in the cache.
1da177e4 820 *
845d3431 821 * The callback will be passed nr_to_scan == 0 when the VM is querying the
1da177e4
LT
822 * cache size, so a fastpath for that case is appropriate.
823 */
6daa0e28 824typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
1da177e4
LT
825
826/*
827 * Add an aging callback. The int is the number of 'seeks' it takes
828 * to recreate one of the objects that these functions age.
829 */
830
831#define DEFAULT_SEEKS 2
832struct shrinker;
833extern struct shrinker *set_shrinker(int, shrinker_t);
834extern void remove_shrinker(struct shrinker *shrinker);
835
d08b3851
PZ
836/*
837 * Some shared mappigns will want the pages marked read-only
838 * to track write events. If so, we'll downgrade vm_page_prot
839 * to the private version (using protection_map[] without the
840 * VM_SHARED bit).
841 */
842static inline int vma_wants_writenotify(struct vm_area_struct *vma)
843{
844 unsigned int vm_flags = vma->vm_flags;
845
846 /* If it was private or non-writable, the write bit is already clear */
847 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
848 return 0;
849
850 /* The backer wishes to know when pages are first written to? */
851 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
852 return 1;
853
854 /* The open routine did something to the protections already? */
855 if (pgprot_val(vma->vm_page_prot) !=
856 pgprot_val(protection_map[vm_flags &
857 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
858 return 0;
859
860 /* Specialty mapping? */
861 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
862 return 0;
863
864 /* Can the mapping track the dirty pages? */
865 return vma->vm_file && vma->vm_file->f_mapping &&
866 mapping_cap_account_dirty(vma->vm_file->f_mapping);
867}
868
c9cfcddf
LT
869extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
870
5f22df00
NP
871#ifdef __PAGETABLE_PUD_FOLDED
872static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
873 unsigned long address)
874{
875 return 0;
876}
877#else
1bb3630e 878int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
879#endif
880
881#ifdef __PAGETABLE_PMD_FOLDED
882static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
883 unsigned long address)
884{
885 return 0;
886}
887#else
1bb3630e 888int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
889#endif
890
1bb3630e
HD
891int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
892int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
893
1da177e4
LT
894/*
895 * The following ifdef needed to get the 4level-fixup.h header to work.
896 * Remove it when 4level-fixup.h has been removed.
897 */
1bb3630e 898#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
899static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
900{
1bb3630e
HD
901 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
902 NULL: pud_offset(pgd, address);
1da177e4
LT
903}
904
905static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
906{
1bb3630e
HD
907 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
908 NULL: pmd_offset(pud, address);
1da177e4 909}
1bb3630e
HD
910#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
911
4c21e2f2
HD
912#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
913/*
914 * We tuck a spinlock to guard each pagetable page into its struct page,
915 * at page->private, with BUILD_BUG_ON to make sure that this will not
916 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
917 * When freeing, reset page->mapping so free_pages_check won't complain.
918 */
349aef0b 919#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
920#define pte_lock_init(_page) do { \
921 spin_lock_init(__pte_lockptr(_page)); \
922} while (0)
923#define pte_lock_deinit(page) ((page)->mapping = NULL)
924#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
925#else
926/*
927 * We use mm->page_table_lock to guard all pagetable pages of the mm.
928 */
929#define pte_lock_init(page) do {} while (0)
930#define pte_lock_deinit(page) do {} while (0)
931#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
932#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
933
c74df32c
HD
934#define pte_offset_map_lock(mm, pmd, address, ptlp) \
935({ \
4c21e2f2 936 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
937 pte_t *__pte = pte_offset_map(pmd, address); \
938 *(ptlp) = __ptl; \
939 spin_lock(__ptl); \
940 __pte; \
941})
942
943#define pte_unmap_unlock(pte, ptl) do { \
944 spin_unlock(ptl); \
945 pte_unmap(pte); \
946} while (0)
947
1bb3630e
HD
948#define pte_alloc_map(mm, pmd, address) \
949 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
950 NULL: pte_offset_map(pmd, address))
951
c74df32c
HD
952#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
953 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
954 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
955
1bb3630e
HD
956#define pte_alloc_kernel(pmd, address) \
957 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
958 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
959
960extern void free_area_init(unsigned long * zones_size);
961extern void free_area_init_node(int nid, pg_data_t *pgdat,
962 unsigned long * zones_size, unsigned long zone_start_pfn,
963 unsigned long *zholes_size);
c713216d
MG
964#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
965/*
966 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
967 * zones, allocate the backing mem_map and account for memory holes in a more
968 * architecture independent manner. This is a substitute for creating the
969 * zone_sizes[] and zholes_size[] arrays and passing them to
970 * free_area_init_node()
971 *
972 * An architecture is expected to register range of page frames backed by
973 * physical memory with add_active_range() before calling
974 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
975 * usage, an architecture is expected to do something like
976 *
977 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
978 * max_highmem_pfn};
979 * for_each_valid_physical_page_range()
980 * add_active_range(node_id, start_pfn, end_pfn)
981 * free_area_init_nodes(max_zone_pfns);
982 *
983 * If the architecture guarantees that there are no holes in the ranges
984 * registered with add_active_range(), free_bootmem_active_regions()
985 * will call free_bootmem_node() for each registered physical page range.
986 * Similarly sparse_memory_present_with_active_regions() calls
987 * memory_present() for each range when SPARSEMEM is enabled.
988 *
989 * See mm/page_alloc.c for more information on each function exposed by
990 * CONFIG_ARCH_POPULATES_NODE_MAP
991 */
992extern void free_area_init_nodes(unsigned long *max_zone_pfn);
993extern void add_active_range(unsigned int nid, unsigned long start_pfn,
994 unsigned long end_pfn);
995extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
996 unsigned long new_end_pfn);
fb01439c
MG
997extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
998 unsigned long end_pfn);
c713216d
MG
999extern void remove_all_active_ranges(void);
1000extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1001 unsigned long end_pfn);
1002extern void get_pfn_range_for_nid(unsigned int nid,
1003 unsigned long *start_pfn, unsigned long *end_pfn);
1004extern unsigned long find_min_pfn_with_active_regions(void);
1005extern unsigned long find_max_pfn_with_active_regions(void);
1006extern void free_bootmem_with_active_regions(int nid,
1007 unsigned long max_low_pfn);
1008extern void sparse_memory_present_with_active_regions(int nid);
1009#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1010extern int early_pfn_to_nid(unsigned long pfn);
1011#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1012#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
0e0b864e 1013extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1014extern void memmap_init_zone(unsigned long, int, unsigned long,
1015 unsigned long, enum memmap_context);
3947be19 1016extern void setup_per_zone_pages_min(void);
1da177e4
LT
1017extern void mem_init(void);
1018extern void show_mem(void);
1019extern void si_meminfo(struct sysinfo * val);
1020extern void si_meminfo_node(struct sysinfo *val, int nid);
1021
e7c8d5c9
CL
1022#ifdef CONFIG_NUMA
1023extern void setup_per_cpu_pageset(void);
1024#else
1025static inline void setup_per_cpu_pageset(void) {}
1026#endif
1027
1da177e4
LT
1028/* prio_tree.c */
1029void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1030void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1031void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1032struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1033 struct prio_tree_iter *iter);
1034
1035#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1036 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1037 (vma = vma_prio_tree_next(vma, iter)); )
1038
1039static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1040 struct list_head *list)
1041{
1042 vma->shared.vm_set.parent = NULL;
1043 list_add_tail(&vma->shared.vm_set.list, list);
1044}
1045
1046/* mmap.c */
1047extern int __vm_enough_memory(long pages, int cap_sys_admin);
1048extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1049 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1050extern struct vm_area_struct *vma_merge(struct mm_struct *,
1051 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1052 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1053 struct mempolicy *);
1054extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1055extern int split_vma(struct mm_struct *,
1056 struct vm_area_struct *, unsigned long addr, int new_below);
1057extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1058extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1059 struct rb_node **, struct rb_node *);
a8fb5618 1060extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1061extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1062 unsigned long addr, unsigned long len, pgoff_t pgoff);
1063extern void exit_mmap(struct mm_struct *);
119f657c 1064extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1065extern int install_special_mapping(struct mm_struct *mm,
1066 unsigned long addr, unsigned long len,
1067 unsigned long flags, struct page **pages);
1da177e4
LT
1068
1069extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1070
1071extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1072 unsigned long len, unsigned long prot,
1073 unsigned long flag, unsigned long pgoff);
1074
1075static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1076 unsigned long len, unsigned long prot,
1077 unsigned long flag, unsigned long offset)
1078{
1079 unsigned long ret = -EINVAL;
1080 if ((offset + PAGE_ALIGN(len)) < offset)
1081 goto out;
1082 if (!(offset & ~PAGE_MASK))
1083 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1084out:
1085 return ret;
1086}
1087
1088extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1089
1090extern unsigned long do_brk(unsigned long, unsigned long);
1091
1092/* filemap.c */
1093extern unsigned long page_unuse(struct page *);
1094extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1095extern void truncate_inode_pages_range(struct address_space *,
1096 loff_t lstart, loff_t lend);
1da177e4
LT
1097
1098/* generic vm_area_ops exported for stackable file systems */
1099extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1100extern int filemap_populate(struct vm_area_struct *, unsigned long,
1101 unsigned long, pgprot_t, unsigned long, int);
1102
1103/* mm/page-writeback.c */
1104int write_one_page(struct page *page, int wait);
1105
1106/* readahead.c */
1107#define VM_MAX_READAHEAD 128 /* kbytes */
1108#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1109#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
1110 * turning readahead off */
1111
1112int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1113 pgoff_t offset, unsigned long nr_to_read);
1da177e4 1114int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8
AM
1115 pgoff_t offset, unsigned long nr_to_read);
1116unsigned long page_cache_readahead(struct address_space *mapping,
1da177e4
LT
1117 struct file_ra_state *ra,
1118 struct file *filp,
7361f4d8 1119 pgoff_t offset,
1da177e4
LT
1120 unsigned long size);
1121void handle_ra_miss(struct address_space *mapping,
1122 struct file_ra_state *ra, pgoff_t offset);
1123unsigned long max_sane_readahead(unsigned long nr);
1124
1125/* Do stack extension */
46dea3d0 1126extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
9ab88515 1127#ifdef CONFIG_IA64
46dea3d0 1128extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
9ab88515 1129#endif
1da177e4
LT
1130
1131/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1132extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1133extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1134 struct vm_area_struct **pprev);
1135
1136/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1137 NULL if none. Assume start_addr < end_addr. */
1138static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1139{
1140 struct vm_area_struct * vma = find_vma(mm,start_addr);
1141
1142 if (vma && end_addr <= vma->vm_start)
1143 vma = NULL;
1144 return vma;
1145}
1146
1147static inline unsigned long vma_pages(struct vm_area_struct *vma)
1148{
1149 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1150}
1151
804af2cf 1152pgprot_t vm_get_page_prot(unsigned long vm_flags);
deceb6cd
HD
1153struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1154struct page *vmalloc_to_page(void *addr);
1155unsigned long vmalloc_to_pfn(void *addr);
1156int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1157 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1158int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1159int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1160 unsigned long pfn);
deceb6cd 1161
6aab341e 1162struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1163 unsigned int foll_flags);
1164#define FOLL_WRITE 0x01 /* check pte is writable */
1165#define FOLL_TOUCH 0x02 /* mark page accessed */
1166#define FOLL_GET 0x04 /* do get_page on page */
1167#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1da177e4 1168
aee16b3c
JF
1169typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1170 void *data);
1171extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1172 unsigned long size, pte_fn_t fn, void *data);
1173
1da177e4 1174#ifdef CONFIG_PROC_FS
ab50b8ed 1175void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1176#else
ab50b8ed 1177static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1178 unsigned long flags, struct file *file, long pages)
1179{
1180}
1181#endif /* CONFIG_PROC_FS */
1182
1da177e4
LT
1183#ifndef CONFIG_DEBUG_PAGEALLOC
1184static inline void
9858db50 1185kernel_map_pages(struct page *page, int numpages, int enable) {}
1da177e4
LT
1186#endif
1187
1188extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1189#ifdef __HAVE_ARCH_GATE_AREA
1190int in_gate_area_no_task(unsigned long addr);
1191int in_gate_area(struct task_struct *task, unsigned long addr);
1192#else
1193int in_gate_area_no_task(unsigned long addr);
1194#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1195#endif /* __HAVE_ARCH_GATE_AREA */
1196
9d0243bc
AM
1197int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1198 void __user *, size_t *, loff_t *);
69e05944 1199unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc
AM
1200 unsigned long lru_pages);
1201void drop_pagecache(void);
1202void drop_slab(void);
1203
7a9166e3
LY
1204#ifndef CONFIG_MMU
1205#define randomize_va_space 0
1206#else
a62eaf15 1207extern int randomize_va_space;
7a9166e3 1208#endif
a62eaf15 1209
f269fdd1 1210__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
e6e5494c 1211
1da177e4
LT
1212#endif /* __KERNEL__ */
1213#endif /* _LINUX_MM_H */