]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/xfs_buf_item.c
xfs: fix the xfs_log_iovec i_addr type
[net-next-2.6.git] / fs / xfs / xfs_buf_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
1da177e4 25#include "xfs_sb.h"
da353b0d 26#include "xfs_ag.h"
1da177e4 27#include "xfs_mount.h"
a844f451 28#include "xfs_buf_item.h"
1da177e4 29#include "xfs_trans_priv.h"
1da177e4 30#include "xfs_error.h"
0b1b213f 31#include "xfs_trace.h"
1da177e4
LT
32
33
34kmem_zone_t *xfs_buf_item_zone;
35
7bfa31d8
CH
36static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37{
38 return container_of(lip, struct xfs_buf_log_item, bli_item);
39}
40
41
1da177e4
LT
42#ifdef XFS_TRANS_DEBUG
43/*
44 * This function uses an alternate strategy for tracking the bytes
45 * that the user requests to be logged. This can then be used
46 * in conjunction with the bli_orig array in the buf log item to
47 * catch bugs in our callers' code.
48 *
49 * We also double check the bits set in xfs_buf_item_log using a
50 * simple algorithm to check that every byte is accounted for.
51 */
52STATIC void
53xfs_buf_item_log_debug(
54 xfs_buf_log_item_t *bip,
55 uint first,
56 uint last)
57{
58 uint x;
59 uint byte;
60 uint nbytes;
61 uint chunk_num;
62 uint word_num;
63 uint bit_num;
64 uint bit_set;
65 uint *wordp;
66
67 ASSERT(bip->bli_logged != NULL);
68 byte = first;
69 nbytes = last - first + 1;
70 bfset(bip->bli_logged, first, nbytes);
71 for (x = 0; x < nbytes; x++) {
c1155410 72 chunk_num = byte >> XFS_BLF_SHIFT;
1da177e4
LT
73 word_num = chunk_num >> BIT_TO_WORD_SHIFT;
74 bit_num = chunk_num & (NBWORD - 1);
75 wordp = &(bip->bli_format.blf_data_map[word_num]);
76 bit_set = *wordp & (1 << bit_num);
77 ASSERT(bit_set);
78 byte++;
79 }
80}
81
82/*
83 * This function is called when we flush something into a buffer without
84 * logging it. This happens for things like inodes which are logged
85 * separately from the buffer.
86 */
87void
88xfs_buf_item_flush_log_debug(
89 xfs_buf_t *bp,
90 uint first,
91 uint last)
92{
93 xfs_buf_log_item_t *bip;
94 uint nbytes;
95
96 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
97 if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) {
98 return;
99 }
100
101 ASSERT(bip->bli_logged != NULL);
102 nbytes = last - first + 1;
103 bfset(bip->bli_logged, first, nbytes);
104}
105
106/*
c41564b5 107 * This function is called to verify that our callers have logged
1da177e4
LT
108 * all the bytes that they changed.
109 *
110 * It does this by comparing the original copy of the buffer stored in
111 * the buf log item's bli_orig array to the current copy of the buffer
c41564b5 112 * and ensuring that all bytes which mismatch are set in the bli_logged
1da177e4
LT
113 * array of the buf log item.
114 */
115STATIC void
116xfs_buf_item_log_check(
117 xfs_buf_log_item_t *bip)
118{
119 char *orig;
120 char *buffer;
121 int x;
122 xfs_buf_t *bp;
123
124 ASSERT(bip->bli_orig != NULL);
125 ASSERT(bip->bli_logged != NULL);
126
127 bp = bip->bli_buf;
128 ASSERT(XFS_BUF_COUNT(bp) > 0);
129 ASSERT(XFS_BUF_PTR(bp) != NULL);
130 orig = bip->bli_orig;
131 buffer = XFS_BUF_PTR(bp);
132 for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
133 if (orig[x] != buffer[x] && !btst(bip->bli_logged, x))
134 cmn_err(CE_PANIC,
135 "xfs_buf_item_log_check bip %x buffer %x orig %x index %d",
136 bip, bp, orig, x);
137 }
138}
139#else
140#define xfs_buf_item_log_debug(x,y,z)
141#define xfs_buf_item_log_check(x)
142#endif
143
144STATIC void xfs_buf_error_relse(xfs_buf_t *bp);
145STATIC void xfs_buf_do_callbacks(xfs_buf_t *bp, xfs_log_item_t *lip);
146
147/*
148 * This returns the number of log iovecs needed to log the
149 * given buf log item.
150 *
151 * It calculates this as 1 iovec for the buf log format structure
152 * and 1 for each stretch of non-contiguous chunks to be logged.
153 * Contiguous chunks are logged in a single iovec.
154 *
155 * If the XFS_BLI_STALE flag has been set, then log nothing.
156 */
ba0f32d4 157STATIC uint
1da177e4 158xfs_buf_item_size(
7bfa31d8 159 struct xfs_log_item *lip)
1da177e4 160{
7bfa31d8
CH
161 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
162 struct xfs_buf *bp = bip->bli_buf;
163 uint nvecs;
164 int next_bit;
165 int last_bit;
1da177e4
LT
166
167 ASSERT(atomic_read(&bip->bli_refcount) > 0);
168 if (bip->bli_flags & XFS_BLI_STALE) {
169 /*
170 * The buffer is stale, so all we need to log
171 * is the buf log format structure with the
172 * cancel flag in it.
173 */
0b1b213f 174 trace_xfs_buf_item_size_stale(bip);
c1155410 175 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
1da177e4
LT
176 return 1;
177 }
178
1da177e4
LT
179 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
180 nvecs = 1;
181 last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
182 bip->bli_format.blf_map_size, 0);
183 ASSERT(last_bit != -1);
184 nvecs++;
185 while (last_bit != -1) {
186 /*
187 * This takes the bit number to start looking from and
188 * returns the next set bit from there. It returns -1
189 * if there are no more bits set or the start bit is
190 * beyond the end of the bitmap.
191 */
192 next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
193 bip->bli_format.blf_map_size,
194 last_bit + 1);
195 /*
196 * If we run out of bits, leave the loop,
197 * else if we find a new set of bits bump the number of vecs,
198 * else keep scanning the current set of bits.
199 */
200 if (next_bit == -1) {
201 last_bit = -1;
202 } else if (next_bit != last_bit + 1) {
203 last_bit = next_bit;
204 nvecs++;
c1155410
DC
205 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
206 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
207 XFS_BLF_CHUNK)) {
1da177e4
LT
208 last_bit = next_bit;
209 nvecs++;
210 } else {
211 last_bit++;
212 }
213 }
214
0b1b213f 215 trace_xfs_buf_item_size(bip);
1da177e4
LT
216 return nvecs;
217}
218
219/*
220 * This is called to fill in the vector of log iovecs for the
221 * given log buf item. It fills the first entry with a buf log
222 * format structure, and the rest point to contiguous chunks
223 * within the buffer.
224 */
ba0f32d4 225STATIC void
1da177e4 226xfs_buf_item_format(
7bfa31d8
CH
227 struct xfs_log_item *lip,
228 struct xfs_log_iovec *vecp)
1da177e4 229{
7bfa31d8
CH
230 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
231 struct xfs_buf *bp = bip->bli_buf;
1da177e4
LT
232 uint base_size;
233 uint nvecs;
1da177e4
LT
234 int first_bit;
235 int last_bit;
236 int next_bit;
237 uint nbits;
238 uint buffer_offset;
239
240 ASSERT(atomic_read(&bip->bli_refcount) > 0);
241 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
242 (bip->bli_flags & XFS_BLI_STALE));
1da177e4
LT
243
244 /*
245 * The size of the base structure is the size of the
246 * declared structure plus the space for the extra words
247 * of the bitmap. We subtract one from the map size, because
248 * the first element of the bitmap is accounted for in the
249 * size of the base structure.
250 */
251 base_size =
252 (uint)(sizeof(xfs_buf_log_format_t) +
253 ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
4e0d5f92 254 vecp->i_addr = &bip->bli_format;
1da177e4 255 vecp->i_len = base_size;
4139b3b3 256 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
1da177e4
LT
257 vecp++;
258 nvecs = 1;
259
ccf7c23f
DC
260 /*
261 * If it is an inode buffer, transfer the in-memory state to the
262 * format flags and clear the in-memory state. We do not transfer
263 * this state if the inode buffer allocation has not yet been committed
264 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
265 * correct replay of the inode allocation.
266 */
267 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
268 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
7bfa31d8 269 xfs_log_item_in_current_chkpt(lip)))
ccf7c23f
DC
270 bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
271 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
272 }
273
1da177e4
LT
274 if (bip->bli_flags & XFS_BLI_STALE) {
275 /*
276 * The buffer is stale, so all we need to log
277 * is the buf log format structure with the
278 * cancel flag in it.
279 */
0b1b213f 280 trace_xfs_buf_item_format_stale(bip);
c1155410 281 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
1da177e4
LT
282 bip->bli_format.blf_size = nvecs;
283 return;
284 }
285
286 /*
287 * Fill in an iovec for each set of contiguous chunks.
288 */
289 first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
290 bip->bli_format.blf_map_size, 0);
291 ASSERT(first_bit != -1);
292 last_bit = first_bit;
293 nbits = 1;
294 for (;;) {
295 /*
296 * This takes the bit number to start looking from and
297 * returns the next set bit from there. It returns -1
298 * if there are no more bits set or the start bit is
299 * beyond the end of the bitmap.
300 */
301 next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
302 bip->bli_format.blf_map_size,
303 (uint)last_bit + 1);
304 /*
305 * If we run out of bits fill in the last iovec and get
306 * out of the loop.
307 * Else if we start a new set of bits then fill in the
308 * iovec for the series we were looking at and start
309 * counting the bits in the new one.
310 * Else we're still in the same set of bits so just
311 * keep counting and scanning.
312 */
313 if (next_bit == -1) {
c1155410 314 buffer_offset = first_bit * XFS_BLF_CHUNK;
1da177e4 315 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 316 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 317 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
318 nvecs++;
319 break;
320 } else if (next_bit != last_bit + 1) {
c1155410 321 buffer_offset = first_bit * XFS_BLF_CHUNK;
1da177e4 322 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 323 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 324 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
325 nvecs++;
326 vecp++;
327 first_bit = next_bit;
328 last_bit = next_bit;
329 nbits = 1;
c1155410
DC
330 } else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
331 (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
332 XFS_BLF_CHUNK)) {
333 buffer_offset = first_bit * XFS_BLF_CHUNK;
1da177e4 334 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 335 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 336 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
337/* You would think we need to bump the nvecs here too, but we do not
338 * this number is used by recovery, and it gets confused by the boundary
339 * split here
340 * nvecs++;
341 */
342 vecp++;
343 first_bit = next_bit;
344 last_bit = next_bit;
345 nbits = 1;
346 } else {
347 last_bit++;
348 nbits++;
349 }
350 }
351 bip->bli_format.blf_size = nvecs;
352
353 /*
354 * Check to make sure everything is consistent.
355 */
0b1b213f 356 trace_xfs_buf_item_format(bip);
1da177e4
LT
357 xfs_buf_item_log_check(bip);
358}
359
360/*
64fc35de 361 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 362 * so it cannot be written out.
64fc35de
DC
363 *
364 * We also always take a reference to the buffer log item here so that the bli
365 * is held while the item is pinned in memory. This means that we can
366 * unconditionally drop the reference count a transaction holds when the
367 * transaction is completed.
1da177e4 368 */
ba0f32d4 369STATIC void
1da177e4 370xfs_buf_item_pin(
7bfa31d8 371 struct xfs_log_item *lip)
1da177e4 372{
7bfa31d8 373 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 374
7bfa31d8 375 ASSERT(XFS_BUF_ISBUSY(bip->bli_buf));
1da177e4
LT
376 ASSERT(atomic_read(&bip->bli_refcount) > 0);
377 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
378 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 379
0b1b213f 380 trace_xfs_buf_item_pin(bip);
4d16e924
CH
381
382 atomic_inc(&bip->bli_refcount);
383 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
384}
385
1da177e4
LT
386/*
387 * This is called to unpin the buffer associated with the buf log
388 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
389 *
390 * Also drop the reference to the buf item for the current transaction.
391 * If the XFS_BLI_STALE flag is set and we are the last reference,
392 * then free up the buf log item and unlock the buffer.
9412e318
CH
393 *
394 * If the remove flag is set we are called from uncommit in the
395 * forced-shutdown path. If that is true and the reference count on
396 * the log item is going to drop to zero we need to free the item's
397 * descriptor in the transaction.
1da177e4 398 */
ba0f32d4 399STATIC void
1da177e4 400xfs_buf_item_unpin(
7bfa31d8 401 struct xfs_log_item *lip,
9412e318 402 int remove)
1da177e4 403{
7bfa31d8 404 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
9412e318 405 xfs_buf_t *bp = bip->bli_buf;
7bfa31d8 406 struct xfs_ail *ailp = lip->li_ailp;
8e123850 407 int stale = bip->bli_flags & XFS_BLI_STALE;
7bfa31d8 408 int freed;
1da177e4 409
1da177e4
LT
410 ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip);
411 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 412
0b1b213f 413 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
414
415 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
416
417 if (atomic_dec_and_test(&bp->b_pin_count))
418 wake_up_all(&bp->b_waiters);
7bfa31d8 419
1da177e4
LT
420 if (freed && stale) {
421 ASSERT(bip->bli_flags & XFS_BLI_STALE);
422 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
423 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
424 ASSERT(XFS_BUF_ISSTALE(bp));
c1155410 425 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 426
0b1b213f
CH
427 trace_xfs_buf_item_unpin_stale(bip);
428
9412e318
CH
429 if (remove) {
430 /*
431 * We have to remove the log item from the transaction
432 * as we are about to release our reference to the
433 * buffer. If we don't, the unlock that occurs later
434 * in xfs_trans_uncommit() will ry to reference the
435 * buffer which we no longer have a hold on.
436 */
7bfa31d8 437 xfs_trans_del_item(lip);
9412e318
CH
438
439 /*
440 * Since the transaction no longer refers to the buffer,
441 * the buffer should no longer refer to the transaction.
442 */
443 XFS_BUF_SET_FSPRIVATE2(bp, NULL);
444 }
445
1da177e4
LT
446 /*
447 * If we get called here because of an IO error, we may
783a2f65 448 * or may not have the item on the AIL. xfs_trans_ail_delete()
1da177e4 449 * will take care of that situation.
783a2f65 450 * xfs_trans_ail_delete() drops the AIL lock.
1da177e4
LT
451 */
452 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
453 xfs_buf_do_callbacks(bp, (xfs_log_item_t *)bip);
454 XFS_BUF_SET_FSPRIVATE(bp, NULL);
455 XFS_BUF_CLR_IODONE_FUNC(bp);
456 } else {
783a2f65
DC
457 spin_lock(&ailp->xa_lock);
458 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
1da177e4
LT
459 xfs_buf_item_relse(bp);
460 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL);
461 }
462 xfs_buf_relse(bp);
463 }
464}
465
1da177e4
LT
466/*
467 * This is called to attempt to lock the buffer associated with this
468 * buf log item. Don't sleep on the buffer lock. If we can't get
d808f617
DC
469 * the lock right away, return 0. If we can get the lock, take a
470 * reference to the buffer. If this is a delayed write buffer that
471 * needs AIL help to be written back, invoke the pushbuf routine
472 * rather than the normal success path.
1da177e4 473 */
ba0f32d4 474STATIC uint
1da177e4 475xfs_buf_item_trylock(
7bfa31d8 476 struct xfs_log_item *lip)
1da177e4 477{
7bfa31d8
CH
478 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
479 struct xfs_buf *bp = bip->bli_buf;
1da177e4 480
d808f617 481 if (XFS_BUF_ISPINNED(bp))
1da177e4 482 return XFS_ITEM_PINNED;
d808f617 483 if (!XFS_BUF_CPSEMA(bp))
1da177e4 484 return XFS_ITEM_LOCKED;
1da177e4 485
d808f617 486 /* take a reference to the buffer. */
1da177e4
LT
487 XFS_BUF_HOLD(bp);
488
489 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
0b1b213f 490 trace_xfs_buf_item_trylock(bip);
d808f617
DC
491 if (XFS_BUF_ISDELAYWRITE(bp))
492 return XFS_ITEM_PUSHBUF;
1da177e4
LT
493 return XFS_ITEM_SUCCESS;
494}
495
496/*
64fc35de
DC
497 * Release the buffer associated with the buf log item. If there is no dirty
498 * logged data associated with the buffer recorded in the buf log item, then
499 * free the buf log item and remove the reference to it in the buffer.
1da177e4 500 *
64fc35de
DC
501 * This call ignores the recursion count. It is only called when the buffer
502 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 503 *
64fc35de
DC
504 * We unconditionally drop the transaction's reference to the log item. If the
505 * item was logged, then another reference was taken when it was pinned, so we
506 * can safely drop the transaction reference now. This also allows us to avoid
507 * potential races with the unpin code freeing the bli by not referencing the
508 * bli after we've dropped the reference count.
509 *
510 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
511 * if necessary but do not unlock the buffer. This is for support of
512 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
513 * free the item.
1da177e4 514 */
ba0f32d4 515STATIC void
1da177e4 516xfs_buf_item_unlock(
7bfa31d8 517 struct xfs_log_item *lip)
1da177e4 518{
7bfa31d8
CH
519 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
520 struct xfs_buf *bp = bip->bli_buf;
521 int aborted;
522 uint hold;
1da177e4 523
64fc35de 524 /* Clear the buffer's association with this transaction. */
1da177e4
LT
525 XFS_BUF_SET_FSPRIVATE2(bp, NULL);
526
527 /*
64fc35de
DC
528 * If this is a transaction abort, don't return early. Instead, allow
529 * the brelse to happen. Normally it would be done for stale
530 * (cancelled) buffers at unpin time, but we'll never go through the
531 * pin/unpin cycle if we abort inside commit.
1da177e4 532 */
7bfa31d8 533 aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
1da177e4
LT
534
535 /*
64fc35de
DC
536 * Before possibly freeing the buf item, determine if we should
537 * release the buffer at the end of this routine.
538 */
539 hold = bip->bli_flags & XFS_BLI_HOLD;
540
541 /* Clear the per transaction state. */
542 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
543
544 /*
545 * If the buf item is marked stale, then don't do anything. We'll
546 * unlock the buffer and free the buf item when the buffer is unpinned
547 * for the last time.
1da177e4
LT
548 */
549 if (bip->bli_flags & XFS_BLI_STALE) {
0b1b213f 550 trace_xfs_buf_item_unlock_stale(bip);
c1155410 551 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
64fc35de
DC
552 if (!aborted) {
553 atomic_dec(&bip->bli_refcount);
1da177e4 554 return;
64fc35de 555 }
1da177e4
LT
556 }
557
0b1b213f 558 trace_xfs_buf_item_unlock(bip);
1da177e4
LT
559
560 /*
64fc35de
DC
561 * If the buf item isn't tracking any data, free it, otherwise drop the
562 * reference we hold to it.
1da177e4 563 */
24ad33ff 564 if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
64fc35de 565 bip->bli_format.blf_map_size))
1da177e4 566 xfs_buf_item_relse(bp);
64fc35de
DC
567 else
568 atomic_dec(&bip->bli_refcount);
1da177e4 569
64fc35de 570 if (!hold)
1da177e4 571 xfs_buf_relse(bp);
1da177e4
LT
572}
573
574/*
575 * This is called to find out where the oldest active copy of the
576 * buf log item in the on disk log resides now that the last log
577 * write of it completed at the given lsn.
578 * We always re-log all the dirty data in a buffer, so usually the
579 * latest copy in the on disk log is the only one that matters. For
580 * those cases we simply return the given lsn.
581 *
582 * The one exception to this is for buffers full of newly allocated
583 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
584 * flag set, indicating that only the di_next_unlinked fields from the
585 * inodes in the buffers will be replayed during recovery. If the
586 * original newly allocated inode images have not yet been flushed
587 * when the buffer is so relogged, then we need to make sure that we
588 * keep the old images in the 'active' portion of the log. We do this
589 * by returning the original lsn of that transaction here rather than
590 * the current one.
591 */
ba0f32d4 592STATIC xfs_lsn_t
1da177e4 593xfs_buf_item_committed(
7bfa31d8 594 struct xfs_log_item *lip,
1da177e4
LT
595 xfs_lsn_t lsn)
596{
7bfa31d8
CH
597 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
598
0b1b213f
CH
599 trace_xfs_buf_item_committed(bip);
600
7bfa31d8
CH
601 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
602 return lip->li_lsn;
603 return lsn;
1da177e4
LT
604}
605
1da177e4 606/*
d808f617
DC
607 * The buffer is locked, but is not a delayed write buffer. This happens
608 * if we race with IO completion and hence we don't want to try to write it
609 * again. Just release the buffer.
1da177e4 610 */
ba0f32d4 611STATIC void
1da177e4 612xfs_buf_item_push(
7bfa31d8 613 struct xfs_log_item *lip)
1da177e4 614{
7bfa31d8
CH
615 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
616 struct xfs_buf *bp = bip->bli_buf;
1da177e4
LT
617
618 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
7bfa31d8
CH
619 ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
620
0b1b213f 621 trace_xfs_buf_item_push(bip);
1da177e4 622
d808f617
DC
623 xfs_buf_relse(bp);
624}
1da177e4 625
d808f617
DC
626/*
627 * The buffer is locked and is a delayed write buffer. Promote the buffer
628 * in the delayed write queue as the caller knows that they must invoke
629 * the xfsbufd to get this buffer written. We have to unlock the buffer
630 * to allow the xfsbufd to write it, too.
631 */
632STATIC void
633xfs_buf_item_pushbuf(
7bfa31d8 634 struct xfs_log_item *lip)
d808f617 635{
7bfa31d8
CH
636 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
637 struct xfs_buf *bp = bip->bli_buf;
d808f617
DC
638
639 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
7bfa31d8
CH
640 ASSERT(XFS_BUF_ISDELAYWRITE(bp));
641
d808f617
DC
642 trace_xfs_buf_item_pushbuf(bip);
643
d808f617
DC
644 xfs_buf_delwri_promote(bp);
645 xfs_buf_relse(bp);
1da177e4
LT
646}
647
ba0f32d4 648STATIC void
7bfa31d8
CH
649xfs_buf_item_committing(
650 struct xfs_log_item *lip,
651 xfs_lsn_t commit_lsn)
1da177e4
LT
652{
653}
654
655/*
656 * This is the ops vector shared by all buf log items.
657 */
7989cb8e 658static struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
659 .iop_size = xfs_buf_item_size,
660 .iop_format = xfs_buf_item_format,
661 .iop_pin = xfs_buf_item_pin,
662 .iop_unpin = xfs_buf_item_unpin,
663 .iop_trylock = xfs_buf_item_trylock,
664 .iop_unlock = xfs_buf_item_unlock,
665 .iop_committed = xfs_buf_item_committed,
666 .iop_push = xfs_buf_item_push,
667 .iop_pushbuf = xfs_buf_item_pushbuf,
668 .iop_committing = xfs_buf_item_committing
1da177e4
LT
669};
670
671
672/*
673 * Allocate a new buf log item to go with the given buffer.
674 * Set the buffer's b_fsprivate field to point to the new
675 * buf log item. If there are other item's attached to the
676 * buffer (see xfs_buf_attach_iodone() below), then put the
677 * buf log item at the front.
678 */
679void
680xfs_buf_item_init(
681 xfs_buf_t *bp,
682 xfs_mount_t *mp)
683{
684 xfs_log_item_t *lip;
685 xfs_buf_log_item_t *bip;
686 int chunks;
687 int map_size;
688
689 /*
690 * Check to see if there is already a buf log item for
691 * this buffer. If there is, it is guaranteed to be
692 * the first. If we do already have one, there is
693 * nothing to do here so return.
694 */
15ac08a8
CH
695 if (bp->b_mount != mp)
696 bp->b_mount = mp;
1da177e4
LT
697 XFS_BUF_SET_BDSTRAT_FUNC(bp, xfs_bdstrat_cb);
698 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
699 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
700 if (lip->li_type == XFS_LI_BUF) {
701 return;
702 }
703 }
704
705 /*
c1155410 706 * chunks is the number of XFS_BLF_CHUNK size pieces
1da177e4
LT
707 * the buffer can be divided into. Make sure not to
708 * truncate any pieces. map_size is the size of the
709 * bitmap needed to describe the chunks of the buffer.
710 */
c1155410 711 chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
1da177e4
LT
712 map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
713
714 bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
715 KM_SLEEP);
43f5efc5 716 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 717 bip->bli_buf = bp;
e1f5dbd7 718 xfs_buf_hold(bp);
1da177e4
LT
719 bip->bli_format.blf_type = XFS_LI_BUF;
720 bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
721 bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
722 bip->bli_format.blf_map_size = map_size;
1da177e4
LT
723
724#ifdef XFS_TRANS_DEBUG
725 /*
726 * Allocate the arrays for tracking what needs to be logged
727 * and what our callers request to be logged. bli_orig
728 * holds a copy of the original, clean buffer for comparison
729 * against, and bli_logged keeps a 1 bit flag per byte in
730 * the buffer to indicate which bytes the callers have asked
731 * to have logged.
732 */
733 bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
734 memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp));
735 bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
736#endif
737
738 /*
739 * Put the buf item into the list of items attached to the
740 * buffer at the front.
741 */
742 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
743 bip->bli_item.li_bio_list =
744 XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
745 }
746 XFS_BUF_SET_FSPRIVATE(bp, bip);
747}
748
749
750/*
751 * Mark bytes first through last inclusive as dirty in the buf
752 * item's bitmap.
753 */
754void
755xfs_buf_item_log(
756 xfs_buf_log_item_t *bip,
757 uint first,
758 uint last)
759{
760 uint first_bit;
761 uint last_bit;
762 uint bits_to_set;
763 uint bits_set;
764 uint word_num;
765 uint *wordp;
766 uint bit;
767 uint end_bit;
768 uint mask;
769
770 /*
771 * Mark the item as having some dirty data for
772 * quick reference in xfs_buf_item_dirty.
773 */
774 bip->bli_flags |= XFS_BLI_DIRTY;
775
776 /*
777 * Convert byte offsets to bit numbers.
778 */
c1155410
DC
779 first_bit = first >> XFS_BLF_SHIFT;
780 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
781
782 /*
783 * Calculate the total number of bits to be set.
784 */
785 bits_to_set = last_bit - first_bit + 1;
786
787 /*
788 * Get a pointer to the first word in the bitmap
789 * to set a bit in.
790 */
791 word_num = first_bit >> BIT_TO_WORD_SHIFT;
792 wordp = &(bip->bli_format.blf_data_map[word_num]);
793
794 /*
795 * Calculate the starting bit in the first word.
796 */
797 bit = first_bit & (uint)(NBWORD - 1);
798
799 /*
800 * First set any bits in the first word of our range.
801 * If it starts at bit 0 of the word, it will be
802 * set below rather than here. That is what the variable
803 * bit tells us. The variable bits_set tracks the number
804 * of bits that have been set so far. End_bit is the number
805 * of the last bit to be set in this word plus one.
806 */
807 if (bit) {
808 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
809 mask = ((1 << (end_bit - bit)) - 1) << bit;
810 *wordp |= mask;
811 wordp++;
812 bits_set = end_bit - bit;
813 } else {
814 bits_set = 0;
815 }
816
817 /*
818 * Now set bits a whole word at a time that are between
819 * first_bit and last_bit.
820 */
821 while ((bits_to_set - bits_set) >= NBWORD) {
822 *wordp |= 0xffffffff;
823 bits_set += NBWORD;
824 wordp++;
825 }
826
827 /*
828 * Finally, set any bits left to be set in one last partial word.
829 */
830 end_bit = bits_to_set - bits_set;
831 if (end_bit) {
832 mask = (1 << end_bit) - 1;
833 *wordp |= mask;
834 }
835
836 xfs_buf_item_log_debug(bip, first, last);
837}
838
839
840/*
841 * Return 1 if the buffer has some data that has been logged (at any
842 * point, not just the current transaction) and 0 if not.
843 */
844uint
845xfs_buf_item_dirty(
846 xfs_buf_log_item_t *bip)
847{
848 return (bip->bli_flags & XFS_BLI_DIRTY);
849}
850
e1f5dbd7
LM
851STATIC void
852xfs_buf_item_free(
853 xfs_buf_log_item_t *bip)
854{
855#ifdef XFS_TRANS_DEBUG
856 kmem_free(bip->bli_orig);
857 kmem_free(bip->bli_logged);
858#endif /* XFS_TRANS_DEBUG */
859
e1f5dbd7
LM
860 kmem_zone_free(xfs_buf_item_zone, bip);
861}
862
1da177e4
LT
863/*
864 * This is called when the buf log item is no longer needed. It should
865 * free the buf log item associated with the given buffer and clear
866 * the buffer's pointer to the buf log item. If there are no more
867 * items in the list, clear the b_iodone field of the buffer (see
868 * xfs_buf_attach_iodone() below).
869 */
870void
871xfs_buf_item_relse(
872 xfs_buf_t *bp)
873{
874 xfs_buf_log_item_t *bip;
875
0b1b213f
CH
876 trace_xfs_buf_item_relse(bp, _RET_IP_);
877
1da177e4
LT
878 bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
879 XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list);
880 if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) &&
881 (XFS_BUF_IODONE_FUNC(bp) != NULL)) {
1da177e4
LT
882 XFS_BUF_CLR_IODONE_FUNC(bp);
883 }
e1f5dbd7
LM
884 xfs_buf_rele(bp);
885 xfs_buf_item_free(bip);
1da177e4
LT
886}
887
888
889/*
890 * Add the given log item with its callback to the list of callbacks
891 * to be called when the buffer's I/O completes. If it is not set
892 * already, set the buffer's b_iodone() routine to be
893 * xfs_buf_iodone_callbacks() and link the log item into the list of
894 * items rooted at b_fsprivate. Items are always added as the second
895 * entry in the list if there is a first, because the buf item code
896 * assumes that the buf log item is first.
897 */
898void
899xfs_buf_attach_iodone(
900 xfs_buf_t *bp,
901 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
902 xfs_log_item_t *lip)
903{
904 xfs_log_item_t *head_lip;
905
906 ASSERT(XFS_BUF_ISBUSY(bp));
907 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
908
909 lip->li_cb = cb;
910 if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
911 head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
912 lip->li_bio_list = head_lip->li_bio_list;
913 head_lip->li_bio_list = lip;
914 } else {
915 XFS_BUF_SET_FSPRIVATE(bp, lip);
916 }
917
918 ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) ||
919 (XFS_BUF_IODONE_FUNC(bp) == NULL));
920 XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
921}
922
923STATIC void
924xfs_buf_do_callbacks(
925 xfs_buf_t *bp,
926 xfs_log_item_t *lip)
927{
928 xfs_log_item_t *nlip;
929
930 while (lip != NULL) {
931 nlip = lip->li_bio_list;
932 ASSERT(lip->li_cb != NULL);
933 /*
934 * Clear the next pointer so we don't have any
935 * confusion if the item is added to another buf.
936 * Don't touch the log item after calling its
937 * callback, because it could have freed itself.
938 */
939 lip->li_bio_list = NULL;
940 lip->li_cb(bp, lip);
941 lip = nlip;
942 }
943}
944
945/*
946 * This is the iodone() function for buffers which have had callbacks
947 * attached to them by xfs_buf_attach_iodone(). It should remove each
948 * log item from the buffer's list and call the callback of each in turn.
949 * When done, the buffer's fsprivate field is set to NULL and the buffer
950 * is unlocked with a call to iodone().
951 */
952void
953xfs_buf_iodone_callbacks(
954 xfs_buf_t *bp)
955{
956 xfs_log_item_t *lip;
957 static ulong lasttime;
958 static xfs_buftarg_t *lasttarg;
959 xfs_mount_t *mp;
960
961 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
962 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
963
964 if (XFS_BUF_GETERROR(bp) != 0) {
965 /*
966 * If we've already decided to shutdown the filesystem
967 * because of IO errors, there's no point in giving this
968 * a retry.
969 */
970 mp = lip->li_mountp;
971 if (XFS_FORCED_SHUTDOWN(mp)) {
972 ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp);
973 XFS_BUF_SUPER_STALE(bp);
0b1b213f 974 trace_xfs_buf_item_iodone(bp, _RET_IP_);
1da177e4
LT
975 xfs_buf_do_callbacks(bp, lip);
976 XFS_BUF_SET_FSPRIVATE(bp, NULL);
977 XFS_BUF_CLR_IODONE_FUNC(bp);
4fdc7781 978 xfs_biodone(bp);
1da177e4
LT
979 return;
980 }
981
982 if ((XFS_BUF_TARGET(bp) != lasttarg) ||
983 (time_after(jiffies, (lasttime + 5*HZ)))) {
984 lasttime = jiffies;
b6574520
NS
985 cmn_err(CE_ALERT, "Device %s, XFS metadata write error"
986 " block 0x%llx in %s",
987 XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)),
1da177e4
LT
988 (__uint64_t)XFS_BUF_ADDR(bp), mp->m_fsname);
989 }
990 lasttarg = XFS_BUF_TARGET(bp);
991
992 if (XFS_BUF_ISASYNC(bp)) {
993 /*
994 * If the write was asynchronous then noone will be
995 * looking for the error. Clear the error state
996 * and write the buffer out again delayed write.
997 *
998 * XXXsup This is OK, so long as we catch these
999 * before we start the umount; we don't want these
1000 * DELWRI metadata bufs to be hanging around.
1001 */
1002 XFS_BUF_ERROR(bp,0); /* errno of 0 unsets the flag */
1003
1004 if (!(XFS_BUF_ISSTALE(bp))) {
1005 XFS_BUF_DELAYWRITE(bp);
1006 XFS_BUF_DONE(bp);
1007 XFS_BUF_SET_START(bp);
1008 }
1009 ASSERT(XFS_BUF_IODONE_FUNC(bp));
0b1b213f 1010 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1da177e4
LT
1011 xfs_buf_relse(bp);
1012 } else {
1013 /*
1014 * If the write of the buffer was not asynchronous,
1015 * then we want to make sure to return the error
1016 * to the caller of bwrite(). Because of this we
1017 * cannot clear the B_ERROR state at this point.
1018 * Instead we install a callback function that
1019 * will be called when the buffer is released, and
1020 * that routine will clear the error state and
1021 * set the buffer to be written out again after
1022 * some delay.
1023 */
1024 /* We actually overwrite the existing b-relse
1025 function at times, but we're gonna be shutting down
1026 anyway. */
1027 XFS_BUF_SET_BRELSE_FUNC(bp,xfs_buf_error_relse);
1028 XFS_BUF_DONE(bp);
b4dd330b 1029 XFS_BUF_FINISH_IOWAIT(bp);
1da177e4
LT
1030 }
1031 return;
1032 }
0b1b213f 1033
1da177e4
LT
1034 xfs_buf_do_callbacks(bp, lip);
1035 XFS_BUF_SET_FSPRIVATE(bp, NULL);
1036 XFS_BUF_CLR_IODONE_FUNC(bp);
1037 xfs_biodone(bp);
1038}
1039
1040/*
1041 * This is a callback routine attached to a buffer which gets an error
1042 * when being written out synchronously.
1043 */
1044STATIC void
1045xfs_buf_error_relse(
1046 xfs_buf_t *bp)
1047{
1048 xfs_log_item_t *lip;
1049 xfs_mount_t *mp;
1050
1051 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1052 mp = (xfs_mount_t *)lip->li_mountp;
1053 ASSERT(XFS_BUF_TARGET(bp) == mp->m_ddev_targp);
1054
1055 XFS_BUF_STALE(bp);
1056 XFS_BUF_DONE(bp);
1057 XFS_BUF_UNDELAYWRITE(bp);
1058 XFS_BUF_ERROR(bp,0);
0b1b213f
CH
1059
1060 trace_xfs_buf_error_relse(bp, _RET_IP_);
1061
1da177e4 1062 if (! XFS_FORCED_SHUTDOWN(mp))
7d04a335 1063 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1da177e4
LT
1064 /*
1065 * We have to unpin the pinned buffers so do the
1066 * callbacks.
1067 */
1068 xfs_buf_do_callbacks(bp, lip);
1069 XFS_BUF_SET_FSPRIVATE(bp, NULL);
1070 XFS_BUF_CLR_IODONE_FUNC(bp);
1071 XFS_BUF_SET_BRELSE_FUNC(bp,NULL);
1072 xfs_buf_relse(bp);
1073}
1074
1075
1076/*
1077 * This is the iodone() function for buffers which have been
1078 * logged. It is called when they are eventually flushed out.
1079 * It should remove the buf item from the AIL, and free the buf item.
1080 * It is called by xfs_buf_iodone_callbacks() above which will take
1081 * care of cleaning up the buffer itself.
1082 */
1da177e4
LT
1083void
1084xfs_buf_iodone(
ca30b2a7
CH
1085 struct xfs_buf *bp,
1086 struct xfs_log_item *lip)
1da177e4 1087{
ca30b2a7 1088 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 1089
ca30b2a7 1090 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 1091
e1f5dbd7 1092 xfs_buf_rele(bp);
1da177e4
LT
1093
1094 /*
1095 * If we are forcibly shutting down, this may well be
1096 * off the AIL already. That's because we simulate the
1097 * log-committed callbacks to unpin these buffers. Or we may never
1098 * have put this item on AIL because of the transaction was
783a2f65 1099 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1100 *
1101 * Either way, AIL is useless if we're forcing a shutdown.
1102 */
fc1829f3 1103 spin_lock(&ailp->xa_lock);
ca30b2a7
CH
1104 xfs_trans_ail_delete(ailp, lip);
1105 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1106}