]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_sync.c
Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
fe4fa4b8
DC
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
fe4fa4b8
DC
29#include "xfs_inode.h"
30#include "xfs_dinode.h"
31#include "xfs_error.h"
fe4fa4b8
DC
32#include "xfs_filestream.h"
33#include "xfs_vnodeops.h"
fe4fa4b8 34#include "xfs_inode_item.h"
7d095257 35#include "xfs_quota.h"
0b1b213f 36#include "xfs_trace.h"
1a387d3b 37#include "xfs_fsops.h"
fe4fa4b8 38
a167b17e
DC
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41
5a34d5cd 42
75f3cb13
DC
43STATIC xfs_inode_t *
44xfs_inode_ag_lookup(
45 struct xfs_mount *mp,
46 struct xfs_perag *pag,
47 uint32_t *first_index,
48 int tag)
49{
50 int nr_found;
51 struct xfs_inode *ip;
52
53 /*
54 * use a gang lookup to find the next inode in the tree
55 * as the tree is sparse and a gang lookup walks to find
56 * the number of objects requested.
57 */
75f3cb13
DC
58 if (tag == XFS_ICI_NO_TAG) {
59 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
60 (void **)&ip, *first_index, 1);
61 } else {
62 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
63 (void **)&ip, *first_index, 1, tag);
64 }
65 if (!nr_found)
c8e20be0 66 return NULL;
75f3cb13
DC
67
68 /*
69 * Update the index for the next lookup. Catch overflows
70 * into the next AG range which can occur if we have inodes
71 * in the last block of the AG and we are currently
72 * pointing to the last inode.
73 */
74 *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
75 if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
c8e20be0 76 return NULL;
75f3cb13 77 return ip;
75f3cb13
DC
78}
79
80STATIC int
81xfs_inode_ag_walk(
82 struct xfs_mount *mp,
5017e97d 83 struct xfs_perag *pag,
75f3cb13
DC
84 int (*execute)(struct xfs_inode *ip,
85 struct xfs_perag *pag, int flags),
86 int flags,
c8e20be0 87 int tag,
9bf729c0
DC
88 int exclusive,
89 int *nr_to_scan)
75f3cb13 90{
75f3cb13
DC
91 uint32_t first_index;
92 int last_error = 0;
93 int skipped;
94
95restart:
96 skipped = 0;
97 first_index = 0;
98 do {
99 int error = 0;
100 xfs_inode_t *ip;
101
c8e20be0
DC
102 if (exclusive)
103 write_lock(&pag->pag_ici_lock);
104 else
105 read_lock(&pag->pag_ici_lock);
75f3cb13 106 ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
c8e20be0
DC
107 if (!ip) {
108 if (exclusive)
109 write_unlock(&pag->pag_ici_lock);
110 else
111 read_unlock(&pag->pag_ici_lock);
75f3cb13 112 break;
c8e20be0 113 }
75f3cb13 114
c8e20be0 115 /* execute releases pag->pag_ici_lock */
75f3cb13
DC
116 error = execute(ip, pag, flags);
117 if (error == EAGAIN) {
118 skipped++;
119 continue;
120 }
121 if (error)
122 last_error = error;
c8e20be0
DC
123
124 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
125 if (error == EFSCORRUPTED)
126 break;
127
9bf729c0 128 } while ((*nr_to_scan)--);
75f3cb13
DC
129
130 if (skipped) {
131 delay(1);
132 goto restart;
133 }
75f3cb13
DC
134 return last_error;
135}
136
16fd5367
DC
137/*
138 * Select the next per-ag structure to iterate during the walk. The reclaim
139 * walk is optimised only to walk AGs with reclaimable inodes in them.
140 */
141static struct xfs_perag *
142xfs_inode_ag_iter_next_pag(
143 struct xfs_mount *mp,
144 xfs_agnumber_t *first,
145 int tag)
146{
147 struct xfs_perag *pag = NULL;
148
149 if (tag == XFS_ICI_RECLAIM_TAG) {
150 int found;
151 int ref;
152
153 spin_lock(&mp->m_perag_lock);
154 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
155 (void **)&pag, *first, 1, tag);
156 if (found <= 0) {
157 spin_unlock(&mp->m_perag_lock);
158 return NULL;
159 }
160 *first = pag->pag_agno + 1;
161 /* open coded pag reference increment */
162 ref = atomic_inc_return(&pag->pag_ref);
163 spin_unlock(&mp->m_perag_lock);
164 trace_xfs_perag_get_reclaim(mp, pag->pag_agno, ref, _RET_IP_);
165 } else {
166 pag = xfs_perag_get(mp, *first);
167 (*first)++;
168 }
169 return pag;
170}
171
fe588ed3 172int
75f3cb13
DC
173xfs_inode_ag_iterator(
174 struct xfs_mount *mp,
175 int (*execute)(struct xfs_inode *ip,
176 struct xfs_perag *pag, int flags),
177 int flags,
c8e20be0 178 int tag,
9bf729c0
DC
179 int exclusive,
180 int *nr_to_scan)
75f3cb13 181{
16fd5367 182 struct xfs_perag *pag;
75f3cb13
DC
183 int error = 0;
184 int last_error = 0;
185 xfs_agnumber_t ag;
9bf729c0 186 int nr;
75f3cb13 187
9bf729c0 188 nr = nr_to_scan ? *nr_to_scan : INT_MAX;
16fd5367
DC
189 ag = 0;
190 while ((pag = xfs_inode_ag_iter_next_pag(mp, &ag, tag))) {
5017e97d 191 error = xfs_inode_ag_walk(mp, pag, execute, flags, tag,
9bf729c0 192 exclusive, &nr);
5017e97d 193 xfs_perag_put(pag);
75f3cb13
DC
194 if (error) {
195 last_error = error;
196 if (error == EFSCORRUPTED)
197 break;
198 }
9bf729c0
DC
199 if (nr <= 0)
200 break;
75f3cb13 201 }
9bf729c0
DC
202 if (nr_to_scan)
203 *nr_to_scan = nr;
75f3cb13
DC
204 return XFS_ERROR(last_error);
205}
206
1da8eeca 207/* must be called with pag_ici_lock held and releases it */
fe588ed3 208int
1da8eeca
DC
209xfs_sync_inode_valid(
210 struct xfs_inode *ip,
211 struct xfs_perag *pag)
212{
213 struct inode *inode = VFS_I(ip);
018027be 214 int error = EFSCORRUPTED;
1da8eeca
DC
215
216 /* nothing to sync during shutdown */
018027be
DC
217 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
218 goto out_unlock;
1da8eeca 219
018027be
DC
220 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
221 error = ENOENT;
222 if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
223 goto out_unlock;
1da8eeca 224
018027be
DC
225 /* If we can't grab the inode, it must on it's way to reclaim. */
226 if (!igrab(inode))
227 goto out_unlock;
228
229 if (is_bad_inode(inode)) {
1da8eeca 230 IRELE(ip);
018027be 231 goto out_unlock;
1da8eeca
DC
232 }
233
018027be
DC
234 /* inode is valid */
235 error = 0;
236out_unlock:
237 read_unlock(&pag->pag_ici_lock);
238 return error;
1da8eeca
DC
239}
240
5a34d5cd
DC
241STATIC int
242xfs_sync_inode_data(
243 struct xfs_inode *ip,
75f3cb13 244 struct xfs_perag *pag,
5a34d5cd
DC
245 int flags)
246{
247 struct inode *inode = VFS_I(ip);
248 struct address_space *mapping = inode->i_mapping;
249 int error = 0;
250
75f3cb13
DC
251 error = xfs_sync_inode_valid(ip, pag);
252 if (error)
253 return error;
254
5a34d5cd
DC
255 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
256 goto out_wait;
257
258 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
259 if (flags & SYNC_TRYLOCK)
260 goto out_wait;
261 xfs_ilock(ip, XFS_IOLOCK_SHARED);
262 }
263
264 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
0cadda1c 265 0 : XBF_ASYNC, FI_NONE);
5a34d5cd
DC
266 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
267
268 out_wait:
b0710ccc 269 if (flags & SYNC_WAIT)
5a34d5cd 270 xfs_ioend_wait(ip);
75f3cb13 271 IRELE(ip);
5a34d5cd
DC
272 return error;
273}
274
845b6d0c
CH
275STATIC int
276xfs_sync_inode_attr(
277 struct xfs_inode *ip,
75f3cb13 278 struct xfs_perag *pag,
845b6d0c
CH
279 int flags)
280{
281 int error = 0;
282
75f3cb13
DC
283 error = xfs_sync_inode_valid(ip, pag);
284 if (error)
285 return error;
286
845b6d0c
CH
287 xfs_ilock(ip, XFS_ILOCK_SHARED);
288 if (xfs_inode_clean(ip))
289 goto out_unlock;
290 if (!xfs_iflock_nowait(ip)) {
291 if (!(flags & SYNC_WAIT))
292 goto out_unlock;
293 xfs_iflock(ip);
294 }
295
296 if (xfs_inode_clean(ip)) {
297 xfs_ifunlock(ip);
298 goto out_unlock;
299 }
300
c854363e 301 error = xfs_iflush(ip, flags);
845b6d0c
CH
302
303 out_unlock:
304 xfs_iunlock(ip, XFS_ILOCK_SHARED);
75f3cb13 305 IRELE(ip);
845b6d0c
CH
306 return error;
307}
308
075fe102
CH
309/*
310 * Write out pagecache data for the whole filesystem.
311 */
64c86149 312STATIC int
075fe102
CH
313xfs_sync_data(
314 struct xfs_mount *mp,
315 int flags)
683a8970 316{
075fe102 317 int error;
fe4fa4b8 318
b0710ccc 319 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
fe4fa4b8 320
075fe102 321 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
9bf729c0 322 XFS_ICI_NO_TAG, 0, NULL);
075fe102
CH
323 if (error)
324 return XFS_ERROR(error);
e9f1c6ee 325
a14a348b 326 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
075fe102
CH
327 return 0;
328}
e9f1c6ee 329
075fe102
CH
330/*
331 * Write out inode metadata (attributes) for the whole filesystem.
332 */
64c86149 333STATIC int
075fe102
CH
334xfs_sync_attr(
335 struct xfs_mount *mp,
336 int flags)
337{
338 ASSERT((flags & ~SYNC_WAIT) == 0);
75f3cb13 339
075fe102 340 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
9bf729c0 341 XFS_ICI_NO_TAG, 0, NULL);
fe4fa4b8
DC
342}
343
5d77c0dc 344STATIC int
2af75df7 345xfs_sync_fsdata(
df308bcf 346 struct xfs_mount *mp)
2af75df7
CH
347{
348 struct xfs_buf *bp;
2af75df7
CH
349
350 /*
df308bcf
CH
351 * If the buffer is pinned then push on the log so we won't get stuck
352 * waiting in the write for someone, maybe ourselves, to flush the log.
353 *
354 * Even though we just pushed the log above, we did not have the
355 * superblock buffer locked at that point so it can become pinned in
356 * between there and here.
2af75df7 357 */
df308bcf
CH
358 bp = xfs_getsb(mp, 0);
359 if (XFS_BUF_ISPINNED(bp))
360 xfs_log_force(mp, 0);
2af75df7 361
df308bcf 362 return xfs_bwrite(mp, bp);
e9f1c6ee
DC
363}
364
365/*
a4e4c4f4
DC
366 * When remounting a filesystem read-only or freezing the filesystem, we have
367 * two phases to execute. This first phase is syncing the data before we
368 * quiesce the filesystem, and the second is flushing all the inodes out after
369 * we've waited for all the transactions created by the first phase to
370 * complete. The second phase ensures that the inodes are written to their
371 * location on disk rather than just existing in transactions in the log. This
372 * means after a quiesce there is no log replay required to write the inodes to
373 * disk (this is the main difference between a sync and a quiesce).
374 */
375/*
376 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
377 * so we flush delwri and delalloc buffers here, then wait for all I/O to
378 * complete. Data is frozen at that point. Metadata is not frozen,
a4e4c4f4
DC
379 * transactions can still occur here so don't bother flushing the buftarg
380 * because it'll just get dirty again.
e9f1c6ee
DC
381 */
382int
383xfs_quiesce_data(
384 struct xfs_mount *mp)
385{
df308bcf 386 int error, error2 = 0;
e9f1c6ee
DC
387
388 /* push non-blocking */
075fe102 389 xfs_sync_data(mp, 0);
8b5403a6 390 xfs_qm_sync(mp, SYNC_TRYLOCK);
e9f1c6ee 391
c90b07e8 392 /* push and block till complete */
b0710ccc 393 xfs_sync_data(mp, SYNC_WAIT);
7d095257 394 xfs_qm_sync(mp, SYNC_WAIT);
e9f1c6ee 395
a4e4c4f4 396 /* write superblock and hoover up shutdown errors */
df308bcf
CH
397 error = xfs_sync_fsdata(mp);
398
399 /* make sure all delwri buffers are written out */
400 xfs_flush_buftarg(mp->m_ddev_targp, 1);
401
402 /* mark the log as covered if needed */
403 if (xfs_log_need_covered(mp))
1a387d3b 404 error2 = xfs_fs_log_dummy(mp, SYNC_WAIT);
e9f1c6ee 405
a4e4c4f4 406 /* flush data-only devices */
e9f1c6ee
DC
407 if (mp->m_rtdev_targp)
408 XFS_bflush(mp->m_rtdev_targp);
409
df308bcf 410 return error ? error : error2;
2af75df7
CH
411}
412
76bf105c
DC
413STATIC void
414xfs_quiesce_fs(
415 struct xfs_mount *mp)
416{
417 int count = 0, pincount;
418
c854363e 419 xfs_reclaim_inodes(mp, 0);
76bf105c 420 xfs_flush_buftarg(mp->m_ddev_targp, 0);
76bf105c
DC
421
422 /*
423 * This loop must run at least twice. The first instance of the loop
424 * will flush most meta data but that will generate more meta data
425 * (typically directory updates). Which then must be flushed and
c854363e
DC
426 * logged before we can write the unmount record. We also so sync
427 * reclaim of inodes to catch any that the above delwri flush skipped.
76bf105c
DC
428 */
429 do {
c854363e 430 xfs_reclaim_inodes(mp, SYNC_WAIT);
075fe102 431 xfs_sync_attr(mp, SYNC_WAIT);
76bf105c
DC
432 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
433 if (!pincount) {
434 delay(50);
435 count++;
436 }
437 } while (count < 2);
438}
439
440/*
441 * Second stage of a quiesce. The data is already synced, now we have to take
442 * care of the metadata. New transactions are already blocked, so we need to
443 * wait for any remaining transactions to drain out before proceding.
444 */
445void
446xfs_quiesce_attr(
447 struct xfs_mount *mp)
448{
449 int error = 0;
450
451 /* wait for all modifications to complete */
452 while (atomic_read(&mp->m_active_trans) > 0)
453 delay(100);
454
455 /* flush inodes and push all remaining buffers out to disk */
456 xfs_quiesce_fs(mp);
457
5e106572
FB
458 /*
459 * Just warn here till VFS can correctly support
460 * read-only remount without racing.
461 */
462 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
463
464 /* Push the superblock and write an unmount record */
465 error = xfs_log_sbcount(mp, 1);
466 if (error)
467 xfs_fs_cmn_err(CE_WARN, mp,
468 "xfs_attr_quiesce: failed to log sb changes. "
469 "Frozen image may not be consistent.");
470 xfs_log_unmount_write(mp);
471 xfs_unmountfs_writesb(mp);
472}
473
a167b17e
DC
474/*
475 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
476 * Doing this has two advantages:
477 * - It saves on stack space, which is tight in certain situations
478 * - It can be used (with care) as a mechanism to avoid deadlocks.
479 * Flushing while allocating in a full filesystem requires both.
480 */
481STATIC void
482xfs_syncd_queue_work(
483 struct xfs_mount *mp,
484 void *data,
e43afd72
DC
485 void (*syncer)(struct xfs_mount *, void *),
486 struct completion *completion)
a167b17e 487{
a8d770d9 488 struct xfs_sync_work *work;
a167b17e 489
a8d770d9 490 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
a167b17e
DC
491 INIT_LIST_HEAD(&work->w_list);
492 work->w_syncer = syncer;
493 work->w_data = data;
494 work->w_mount = mp;
e43afd72 495 work->w_completion = completion;
a167b17e
DC
496 spin_lock(&mp->m_sync_lock);
497 list_add_tail(&work->w_list, &mp->m_sync_list);
498 spin_unlock(&mp->m_sync_lock);
499 wake_up_process(mp->m_sync_task);
500}
501
502/*
503 * Flush delayed allocate data, attempting to free up reserved space
504 * from existing allocations. At this point a new allocation attempt
505 * has failed with ENOSPC and we are in the process of scratching our
506 * heads, looking about for more room...
507 */
508STATIC void
a8d770d9 509xfs_flush_inodes_work(
a167b17e
DC
510 struct xfs_mount *mp,
511 void *arg)
512{
513 struct inode *inode = arg;
075fe102 514 xfs_sync_data(mp, SYNC_TRYLOCK);
b0710ccc 515 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
a167b17e
DC
516 iput(inode);
517}
518
519void
a8d770d9 520xfs_flush_inodes(
a167b17e
DC
521 xfs_inode_t *ip)
522{
523 struct inode *inode = VFS_I(ip);
e43afd72 524 DECLARE_COMPLETION_ONSTACK(completion);
a167b17e
DC
525
526 igrab(inode);
e43afd72
DC
527 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
528 wait_for_completion(&completion);
a14a348b 529 xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
a167b17e
DC
530}
531
aacaa880 532/*
df308bcf
CH
533 * Every sync period we need to unpin all items, reclaim inodes and sync
534 * disk quotas. We might need to cover the log to indicate that the
1a387d3b 535 * filesystem is idle and not frozen.
aacaa880 536 */
a167b17e
DC
537STATIC void
538xfs_sync_worker(
539 struct xfs_mount *mp,
540 void *unused)
541{
542 int error;
543
aacaa880 544 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
a14a348b 545 xfs_log_force(mp, 0);
c854363e 546 xfs_reclaim_inodes(mp, 0);
aacaa880 547 /* dgc: errors ignored here */
8b5403a6 548 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
1a387d3b
DC
549 if (mp->m_super->s_frozen == SB_UNFROZEN &&
550 xfs_log_need_covered(mp))
551 error = xfs_fs_log_dummy(mp, 0);
aacaa880 552 }
a167b17e
DC
553 mp->m_sync_seq++;
554 wake_up(&mp->m_wait_single_sync_task);
555}
556
557STATIC int
558xfssyncd(
559 void *arg)
560{
561 struct xfs_mount *mp = arg;
562 long timeleft;
a8d770d9 563 xfs_sync_work_t *work, *n;
a167b17e
DC
564 LIST_HEAD (tmp);
565
566 set_freezable();
567 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
568 for (;;) {
20f6b2c7
DC
569 if (list_empty(&mp->m_sync_list))
570 timeleft = schedule_timeout_interruptible(timeleft);
a167b17e
DC
571 /* swsusp */
572 try_to_freeze();
573 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
574 break;
575
576 spin_lock(&mp->m_sync_lock);
577 /*
578 * We can get woken by laptop mode, to do a sync -
579 * that's the (only!) case where the list would be
580 * empty with time remaining.
581 */
582 if (!timeleft || list_empty(&mp->m_sync_list)) {
583 if (!timeleft)
584 timeleft = xfs_syncd_centisecs *
585 msecs_to_jiffies(10);
586 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
587 list_add_tail(&mp->m_sync_work.w_list,
588 &mp->m_sync_list);
589 }
20f6b2c7 590 list_splice_init(&mp->m_sync_list, &tmp);
a167b17e
DC
591 spin_unlock(&mp->m_sync_lock);
592
593 list_for_each_entry_safe(work, n, &tmp, w_list) {
594 (*work->w_syncer)(mp, work->w_data);
595 list_del(&work->w_list);
596 if (work == &mp->m_sync_work)
597 continue;
e43afd72
DC
598 if (work->w_completion)
599 complete(work->w_completion);
a167b17e
DC
600 kmem_free(work);
601 }
602 }
603
604 return 0;
605}
606
607int
608xfs_syncd_init(
609 struct xfs_mount *mp)
610{
611 mp->m_sync_work.w_syncer = xfs_sync_worker;
612 mp->m_sync_work.w_mount = mp;
e43afd72 613 mp->m_sync_work.w_completion = NULL;
e2a07812 614 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname);
a167b17e
DC
615 if (IS_ERR(mp->m_sync_task))
616 return -PTR_ERR(mp->m_sync_task);
617 return 0;
618}
619
620void
621xfs_syncd_stop(
622 struct xfs_mount *mp)
623{
624 kthread_stop(mp->m_sync_task);
625}
626
bc990f5c
CH
627void
628__xfs_inode_set_reclaim_tag(
629 struct xfs_perag *pag,
630 struct xfs_inode *ip)
631{
632 radix_tree_tag_set(&pag->pag_ici_root,
633 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
634 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
635
636 if (!pag->pag_ici_reclaimable) {
637 /* propagate the reclaim tag up into the perag radix tree */
638 spin_lock(&ip->i_mount->m_perag_lock);
639 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
640 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
641 XFS_ICI_RECLAIM_TAG);
642 spin_unlock(&ip->i_mount->m_perag_lock);
643 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
644 -1, _RET_IP_);
645 }
9bf729c0 646 pag->pag_ici_reclaimable++;
bc990f5c
CH
647}
648
11654513
DC
649/*
650 * We set the inode flag atomically with the radix tree tag.
651 * Once we get tag lookups on the radix tree, this inode flag
652 * can go away.
653 */
396beb85
DC
654void
655xfs_inode_set_reclaim_tag(
656 xfs_inode_t *ip)
657{
5017e97d
DC
658 struct xfs_mount *mp = ip->i_mount;
659 struct xfs_perag *pag;
396beb85 660
5017e97d 661 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
f1f724e4 662 write_lock(&pag->pag_ici_lock);
396beb85 663 spin_lock(&ip->i_flags_lock);
bc990f5c 664 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 665 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 666 spin_unlock(&ip->i_flags_lock);
f1f724e4 667 write_unlock(&pag->pag_ici_lock);
5017e97d 668 xfs_perag_put(pag);
396beb85
DC
669}
670
671void
672__xfs_inode_clear_reclaim_tag(
673 xfs_mount_t *mp,
674 xfs_perag_t *pag,
675 xfs_inode_t *ip)
676{
677 radix_tree_tag_clear(&pag->pag_ici_root,
678 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
9bf729c0 679 pag->pag_ici_reclaimable--;
16fd5367
DC
680 if (!pag->pag_ici_reclaimable) {
681 /* clear the reclaim tag from the perag radix tree */
682 spin_lock(&ip->i_mount->m_perag_lock);
683 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
684 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
685 XFS_ICI_RECLAIM_TAG);
686 spin_unlock(&ip->i_mount->m_perag_lock);
687 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
688 -1, _RET_IP_);
689 }
396beb85
DC
690}
691
777df5af
DC
692/*
693 * Inodes in different states need to be treated differently, and the return
694 * value of xfs_iflush is not sufficient to get this right. The following table
695 * lists the inode states and the reclaim actions necessary for non-blocking
696 * reclaim:
697 *
698 *
699 * inode state iflush ret required action
700 * --------------- ---------- ---------------
701 * bad - reclaim
702 * shutdown EIO unpin and reclaim
703 * clean, unpinned 0 reclaim
704 * stale, unpinned 0 reclaim
c854363e
DC
705 * clean, pinned(*) 0 requeue
706 * stale, pinned EAGAIN requeue
707 * dirty, delwri ok 0 requeue
708 * dirty, delwri blocked EAGAIN requeue
709 * dirty, sync flush 0 reclaim
777df5af
DC
710 *
711 * (*) dgc: I don't think the clean, pinned state is possible but it gets
712 * handled anyway given the order of checks implemented.
713 *
c854363e
DC
714 * As can be seen from the table, the return value of xfs_iflush() is not
715 * sufficient to correctly decide the reclaim action here. The checks in
716 * xfs_iflush() might look like duplicates, but they are not.
717 *
718 * Also, because we get the flush lock first, we know that any inode that has
719 * been flushed delwri has had the flush completed by the time we check that
720 * the inode is clean. The clean inode check needs to be done before flushing
721 * the inode delwri otherwise we would loop forever requeuing clean inodes as
722 * we cannot tell apart a successful delwri flush and a clean inode from the
723 * return value of xfs_iflush().
724 *
725 * Note that because the inode is flushed delayed write by background
726 * writeback, the flush lock may already be held here and waiting on it can
727 * result in very long latencies. Hence for sync reclaims, where we wait on the
728 * flush lock, the caller should push out delayed write inodes first before
729 * trying to reclaim them to minimise the amount of time spent waiting. For
730 * background relaim, we just requeue the inode for the next pass.
731 *
777df5af
DC
732 * Hence the order of actions after gaining the locks should be:
733 * bad => reclaim
734 * shutdown => unpin and reclaim
c854363e
DC
735 * pinned, delwri => requeue
736 * pinned, sync => unpin
777df5af
DC
737 * stale => reclaim
738 * clean => reclaim
c854363e
DC
739 * dirty, delwri => flush and requeue
740 * dirty, sync => flush, wait and reclaim
777df5af 741 */
75f3cb13 742STATIC int
c8e20be0 743xfs_reclaim_inode(
75f3cb13
DC
744 struct xfs_inode *ip,
745 struct xfs_perag *pag,
c8e20be0 746 int sync_mode)
fce08f2f 747{
c854363e 748 int error = 0;
777df5af 749
c8e20be0
DC
750 /*
751 * The radix tree lock here protects a thread in xfs_iget from racing
752 * with us starting reclaim on the inode. Once we have the
753 * XFS_IRECLAIM flag set it will not touch us.
754 */
755 spin_lock(&ip->i_flags_lock);
756 ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
757 if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
758 /* ignore as it is already under reclaim */
759 spin_unlock(&ip->i_flags_lock);
760 write_unlock(&pag->pag_ici_lock);
75f3cb13 761 return 0;
fce08f2f 762 }
c8e20be0
DC
763 __xfs_iflags_set(ip, XFS_IRECLAIM);
764 spin_unlock(&ip->i_flags_lock);
765 write_unlock(&pag->pag_ici_lock);
766
c8e20be0 767 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
768 if (!xfs_iflock_nowait(ip)) {
769 if (!(sync_mode & SYNC_WAIT))
770 goto out;
771 xfs_iflock(ip);
772 }
7a3be02b 773
777df5af
DC
774 if (is_bad_inode(VFS_I(ip)))
775 goto reclaim;
776 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
777 xfs_iunpin_wait(ip);
778 goto reclaim;
779 }
c854363e
DC
780 if (xfs_ipincount(ip)) {
781 if (!(sync_mode & SYNC_WAIT)) {
782 xfs_ifunlock(ip);
783 goto out;
784 }
777df5af 785 xfs_iunpin_wait(ip);
c854363e 786 }
777df5af
DC
787 if (xfs_iflags_test(ip, XFS_ISTALE))
788 goto reclaim;
789 if (xfs_inode_clean(ip))
790 goto reclaim;
791
792 /* Now we have an inode that needs flushing */
793 error = xfs_iflush(ip, sync_mode);
c854363e
DC
794 if (sync_mode & SYNC_WAIT) {
795 xfs_iflock(ip);
796 goto reclaim;
c8e20be0
DC
797 }
798
c854363e
DC
799 /*
800 * When we have to flush an inode but don't have SYNC_WAIT set, we
801 * flush the inode out using a delwri buffer and wait for the next
802 * call into reclaim to find it in a clean state instead of waiting for
803 * it now. We also don't return errors here - if the error is transient
804 * then the next reclaim pass will flush the inode, and if the error
f1d486a3 805 * is permanent then the next sync reclaim will reclaim the inode and
c854363e
DC
806 * pass on the error.
807 */
f1d486a3 808 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
c854363e
DC
809 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
810 "inode 0x%llx background reclaim flush failed with %d",
811 (long long)ip->i_ino, error);
812 }
813out:
814 xfs_iflags_clear(ip, XFS_IRECLAIM);
815 xfs_iunlock(ip, XFS_ILOCK_EXCL);
816 /*
817 * We could return EAGAIN here to make reclaim rescan the inode tree in
818 * a short while. However, this just burns CPU time scanning the tree
819 * waiting for IO to complete and xfssyncd never goes back to the idle
820 * state. Instead, return 0 to let the next scheduled background reclaim
821 * attempt to reclaim the inode again.
822 */
823 return 0;
824
777df5af
DC
825reclaim:
826 xfs_ifunlock(ip);
c8e20be0 827 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
828
829 XFS_STATS_INC(xs_ig_reclaims);
830 /*
831 * Remove the inode from the per-AG radix tree.
832 *
833 * Because radix_tree_delete won't complain even if the item was never
834 * added to the tree assert that it's been there before to catch
835 * problems with the inode life time early on.
836 */
837 write_lock(&pag->pag_ici_lock);
838 if (!radix_tree_delete(&pag->pag_ici_root,
839 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
840 ASSERT(0);
841 write_unlock(&pag->pag_ici_lock);
842
843 /*
844 * Here we do an (almost) spurious inode lock in order to coordinate
845 * with inode cache radix tree lookups. This is because the lookup
846 * can reference the inodes in the cache without taking references.
847 *
848 * We make that OK here by ensuring that we wait until the inode is
849 * unlocked after the lookup before we go ahead and free it. We get
850 * both the ilock and the iolock because the code may need to drop the
851 * ilock one but will still hold the iolock.
852 */
853 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
854 xfs_qm_dqdetach(ip);
855 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
856
857 xfs_inode_free(ip);
c854363e
DC
858 return error;
859
7a3be02b
DC
860}
861
862int
863xfs_reclaim_inodes(
864 xfs_mount_t *mp,
7a3be02b
DC
865 int mode)
866{
c8e20be0 867 return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
9bf729c0
DC
868 XFS_ICI_RECLAIM_TAG, 1, NULL);
869}
870
871/*
872 * Shrinker infrastructure.
9bf729c0 873 */
9bf729c0
DC
874static int
875xfs_reclaim_inode_shrink(
7f8275d0 876 struct shrinker *shrink,
9bf729c0
DC
877 int nr_to_scan,
878 gfp_t gfp_mask)
879{
880 struct xfs_mount *mp;
881 struct xfs_perag *pag;
882 xfs_agnumber_t ag;
16fd5367 883 int reclaimable;
9bf729c0 884
70e60ce7 885 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
9bf729c0
DC
886 if (nr_to_scan) {
887 if (!(gfp_mask & __GFP_FS))
888 return -1;
889
70e60ce7 890 xfs_inode_ag_iterator(mp, xfs_reclaim_inode, 0,
9bf729c0 891 XFS_ICI_RECLAIM_TAG, 1, &nr_to_scan);
70e60ce7
DC
892 /* if we don't exhaust the scan, don't bother coming back */
893 if (nr_to_scan > 0)
894 return -1;
895 }
9bf729c0 896
16fd5367
DC
897 reclaimable = 0;
898 ag = 0;
899 while ((pag = xfs_inode_ag_iter_next_pag(mp, &ag,
900 XFS_ICI_RECLAIM_TAG))) {
70e60ce7
DC
901 reclaimable += pag->pag_ici_reclaimable;
902 xfs_perag_put(pag);
9bf729c0 903 }
9bf729c0
DC
904 return reclaimable;
905}
906
9bf729c0
DC
907void
908xfs_inode_shrinker_register(
909 struct xfs_mount *mp)
910{
70e60ce7
DC
911 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
912 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
913 register_shrinker(&mp->m_inode_shrink);
9bf729c0
DC
914}
915
916void
917xfs_inode_shrinker_unregister(
918 struct xfs_mount *mp)
919{
70e60ce7 920 unregister_shrinker(&mp->m_inode_shrink);
fce08f2f 921}