]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_aops.c
[XFS] pass full 64bit offsets to xfs_add_to_ioend
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir.h"
25#include "xfs_dir2.h"
26#include "xfs_trans.h"
27#include "xfs_dmapi.h"
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
1da177e4
LT
32#include "xfs_dir_sf.h"
33#include "xfs_dir2_sf.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4
LT
35#include "xfs_dinode.h"
36#include "xfs_inode.h"
a844f451
NS
37#include "xfs_alloc.h"
38#include "xfs_btree.h"
1da177e4
LT
39#include "xfs_error.h"
40#include "xfs_rw.h"
41#include "xfs_iomap.h"
42#include <linux/mpage.h>
10ce4444 43#include <linux/pagevec.h>
1da177e4
LT
44#include <linux/writeback.h>
45
46STATIC void xfs_count_page_state(struct page *, int *, int *, int *);
1da177e4
LT
47
48#if defined(XFS_RW_TRACE)
49void
50xfs_page_trace(
51 int tag,
52 struct inode *inode,
53 struct page *page,
54 int mask)
55{
56 xfs_inode_t *ip;
57 bhv_desc_t *bdp;
58 vnode_t *vp = LINVFS_GET_VP(inode);
59 loff_t isize = i_size_read(inode);
f6d6d4fc 60 loff_t offset = page_offset(page);
1da177e4
LT
61 int delalloc = -1, unmapped = -1, unwritten = -1;
62
63 if (page_has_buffers(page))
64 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
65
66 bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops);
67 ip = XFS_BHVTOI(bdp);
68 if (!ip->i_rwtrace)
69 return;
70
71 ktrace_enter(ip->i_rwtrace,
72 (void *)((unsigned long)tag),
73 (void *)ip,
74 (void *)inode,
75 (void *)page,
76 (void *)((unsigned long)mask),
77 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
78 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
79 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
80 (void *)((unsigned long)(isize & 0xffffffff)),
81 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
82 (void *)((unsigned long)(offset & 0xffffffff)),
83 (void *)((unsigned long)delalloc),
84 (void *)((unsigned long)unmapped),
85 (void *)((unsigned long)unwritten),
86 (void *)NULL,
87 (void *)NULL);
88}
89#else
90#define xfs_page_trace(tag, inode, page, mask)
91#endif
92
0829c360
CH
93/*
94 * Schedule IO completion handling on a xfsdatad if this was
95 * the final hold on this ioend.
96 */
97STATIC void
98xfs_finish_ioend(
99 xfs_ioend_t *ioend)
100{
101 if (atomic_dec_and_test(&ioend->io_remaining))
102 queue_work(xfsdatad_workqueue, &ioend->io_work);
103}
104
f6d6d4fc
CH
105/*
106 * We're now finished for good with this ioend structure.
107 * Update the page state via the associated buffer_heads,
108 * release holds on the inode and bio, and finally free
109 * up memory. Do not use the ioend after this.
110 */
0829c360
CH
111STATIC void
112xfs_destroy_ioend(
113 xfs_ioend_t *ioend)
114{
f6d6d4fc
CH
115 struct buffer_head *bh, *next;
116
117 for (bh = ioend->io_buffer_head; bh; bh = next) {
118 next = bh->b_private;
119 bh->b_end_io(bh, ioend->io_uptodate);
120 }
121
0829c360
CH
122 vn_iowake(ioend->io_vnode);
123 mempool_free(ioend, xfs_ioend_pool);
124}
125
126/*
f6d6d4fc
CH
127 * Buffered IO write completion for delayed allocate extents.
128 * TODO: Update ondisk isize now that we know the file data
129 * has been flushed (i.e. the notorious "NULL file" problem).
130 */
131STATIC void
132xfs_end_bio_delalloc(
133 void *data)
134{
135 xfs_ioend_t *ioend = data;
136
137 xfs_destroy_ioend(ioend);
138}
139
140/*
141 * Buffered IO write completion for regular, written extents.
142 */
143STATIC void
144xfs_end_bio_written(
145 void *data)
146{
147 xfs_ioend_t *ioend = data;
148
149 xfs_destroy_ioend(ioend);
150}
151
152/*
153 * IO write completion for unwritten extents.
154 *
0829c360 155 * Issue transactions to convert a buffer range from unwritten
f0973863 156 * to written extents.
0829c360
CH
157 */
158STATIC void
159xfs_end_bio_unwritten(
160 void *data)
161{
162 xfs_ioend_t *ioend = data;
163 vnode_t *vp = ioend->io_vnode;
164 xfs_off_t offset = ioend->io_offset;
165 size_t size = ioend->io_size;
166 int error;
167
168 if (ioend->io_uptodate)
169 VOP_BMAP(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL, error);
170 xfs_destroy_ioend(ioend);
171}
172
173/*
174 * Allocate and initialise an IO completion structure.
175 * We need to track unwritten extent write completion here initially.
176 * We'll need to extend this for updating the ondisk inode size later
177 * (vs. incore size).
178 */
179STATIC xfs_ioend_t *
180xfs_alloc_ioend(
f6d6d4fc
CH
181 struct inode *inode,
182 unsigned int type)
0829c360
CH
183{
184 xfs_ioend_t *ioend;
185
186 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
187
188 /*
189 * Set the count to 1 initially, which will prevent an I/O
190 * completion callback from happening before we have started
191 * all the I/O from calling the completion routine too early.
192 */
193 atomic_set(&ioend->io_remaining, 1);
194 ioend->io_uptodate = 1; /* cleared if any I/O fails */
f6d6d4fc
CH
195 ioend->io_list = NULL;
196 ioend->io_type = type;
0829c360 197 ioend->io_vnode = LINVFS_GET_VP(inode);
c1a073bd 198 ioend->io_buffer_head = NULL;
f6d6d4fc 199 ioend->io_buffer_tail = NULL;
0829c360
CH
200 atomic_inc(&ioend->io_vnode->v_iocount);
201 ioend->io_offset = 0;
202 ioend->io_size = 0;
203
f6d6d4fc
CH
204 if (type == IOMAP_UNWRITTEN)
205 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten, ioend);
206 else if (type == IOMAP_DELAY)
207 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc, ioend);
208 else
209 INIT_WORK(&ioend->io_work, xfs_end_bio_written, ioend);
0829c360
CH
210
211 return ioend;
212}
213
1da177e4
LT
214STATIC int
215xfs_map_blocks(
216 struct inode *inode,
217 loff_t offset,
218 ssize_t count,
219 xfs_iomap_t *mapp,
220 int flags)
221{
222 vnode_t *vp = LINVFS_GET_VP(inode);
223 int error, nmaps = 1;
224
225 VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error);
226 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
227 VMODIFY(vp);
228 return -error;
229}
230
1defeac9
CH
231STATIC inline int
232xfs_iomap_valid(
1da177e4 233 xfs_iomap_t *iomapp,
1defeac9 234 loff_t offset)
1da177e4 235{
1defeac9
CH
236 return offset >= iomapp->iomap_offset &&
237 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
238}
239
f6d6d4fc
CH
240/*
241 * BIO completion handler for buffered IO.
242 */
243STATIC int
244xfs_end_bio(
245 struct bio *bio,
246 unsigned int bytes_done,
247 int error)
248{
249 xfs_ioend_t *ioend = bio->bi_private;
250
251 if (bio->bi_size)
252 return 1;
253
254 ASSERT(ioend);
255 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
256
257 /* Toss bio and pass work off to an xfsdatad thread */
258 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
259 ioend->io_uptodate = 0;
260 bio->bi_private = NULL;
261 bio->bi_end_io = NULL;
262
263 bio_put(bio);
264 xfs_finish_ioend(ioend);
265 return 0;
266}
267
268STATIC void
269xfs_submit_ioend_bio(
270 xfs_ioend_t *ioend,
271 struct bio *bio)
272{
273 atomic_inc(&ioend->io_remaining);
274
275 bio->bi_private = ioend;
276 bio->bi_end_io = xfs_end_bio;
277
278 submit_bio(WRITE, bio);
279 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
280 bio_put(bio);
281}
282
283STATIC struct bio *
284xfs_alloc_ioend_bio(
285 struct buffer_head *bh)
286{
287 struct bio *bio;
288 int nvecs = bio_get_nr_vecs(bh->b_bdev);
289
290 do {
291 bio = bio_alloc(GFP_NOIO, nvecs);
292 nvecs >>= 1;
293 } while (!bio);
294
295 ASSERT(bio->bi_private == NULL);
296 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
297 bio->bi_bdev = bh->b_bdev;
298 bio_get(bio);
299 return bio;
300}
301
302STATIC void
303xfs_start_buffer_writeback(
304 struct buffer_head *bh)
305{
306 ASSERT(buffer_mapped(bh));
307 ASSERT(buffer_locked(bh));
308 ASSERT(!buffer_delay(bh));
309 ASSERT(!buffer_unwritten(bh));
310
311 mark_buffer_async_write(bh);
312 set_buffer_uptodate(bh);
313 clear_buffer_dirty(bh);
314}
315
316STATIC void
317xfs_start_page_writeback(
318 struct page *page,
319 struct writeback_control *wbc,
320 int clear_dirty,
321 int buffers)
322{
323 ASSERT(PageLocked(page));
324 ASSERT(!PageWriteback(page));
325 set_page_writeback(page);
326 if (clear_dirty)
327 clear_page_dirty(page);
328 unlock_page(page);
329 if (!buffers) {
330 end_page_writeback(page);
331 wbc->pages_skipped++; /* We didn't write this page */
332 }
333}
334
335static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
336{
337 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
338}
339
340/*
341 * Submit all of the bios for all of the ioends we have saved up,
342 * covering the initial writepage page and also any probed pages.
343 */
344STATIC void
345xfs_submit_ioend(
346 xfs_ioend_t *ioend)
347{
348 xfs_ioend_t *next;
349 struct buffer_head *bh;
350 struct bio *bio;
351 sector_t lastblock = 0;
352
353 do {
354 next = ioend->io_list;
355 bio = NULL;
356
357 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
358 xfs_start_buffer_writeback(bh);
359
360 if (!bio) {
361 retry:
362 bio = xfs_alloc_ioend_bio(bh);
363 } else if (bh->b_blocknr != lastblock + 1) {
364 xfs_submit_ioend_bio(ioend, bio);
365 goto retry;
366 }
367
368 if (bio_add_buffer(bio, bh) != bh->b_size) {
369 xfs_submit_ioend_bio(ioend, bio);
370 goto retry;
371 }
372
373 lastblock = bh->b_blocknr;
374 }
375 if (bio)
376 xfs_submit_ioend_bio(ioend, bio);
377 xfs_finish_ioend(ioend);
378 } while ((ioend = next) != NULL);
379}
380
381/*
382 * Cancel submission of all buffer_heads so far in this endio.
383 * Toss the endio too. Only ever called for the initial page
384 * in a writepage request, so only ever one page.
385 */
386STATIC void
387xfs_cancel_ioend(
388 xfs_ioend_t *ioend)
389{
390 xfs_ioend_t *next;
391 struct buffer_head *bh, *next_bh;
392
393 do {
394 next = ioend->io_list;
395 bh = ioend->io_buffer_head;
396 do {
397 next_bh = bh->b_private;
398 clear_buffer_async_write(bh);
399 unlock_buffer(bh);
400 } while ((bh = next_bh) != NULL);
401
402 vn_iowake(ioend->io_vnode);
403 mempool_free(ioend, xfs_ioend_pool);
404 } while ((ioend = next) != NULL);
405}
406
407/*
408 * Test to see if we've been building up a completion structure for
409 * earlier buffers -- if so, we try to append to this ioend if we
410 * can, otherwise we finish off any current ioend and start another.
411 * Return true if we've finished the given ioend.
412 */
413STATIC void
414xfs_add_to_ioend(
415 struct inode *inode,
416 struct buffer_head *bh,
7336cea8 417 xfs_off_t offset,
f6d6d4fc
CH
418 unsigned int type,
419 xfs_ioend_t **result,
420 int need_ioend)
421{
422 xfs_ioend_t *ioend = *result;
423
424 if (!ioend || need_ioend || type != ioend->io_type) {
425 xfs_ioend_t *previous = *result;
f6d6d4fc 426
f6d6d4fc
CH
427 ioend = xfs_alloc_ioend(inode, type);
428 ioend->io_offset = offset;
429 ioend->io_buffer_head = bh;
430 ioend->io_buffer_tail = bh;
431 if (previous)
432 previous->io_list = ioend;
433 *result = ioend;
434 } else {
435 ioend->io_buffer_tail->b_private = bh;
436 ioend->io_buffer_tail = bh;
437 }
438
439 bh->b_private = NULL;
440 ioend->io_size += bh->b_size;
441}
442
1da177e4
LT
443STATIC void
444xfs_map_at_offset(
1da177e4 445 struct buffer_head *bh,
1defeac9 446 loff_t offset,
1da177e4 447 int block_bits,
1defeac9 448 xfs_iomap_t *iomapp)
1da177e4
LT
449{
450 xfs_daddr_t bn;
1da177e4
LT
451 int sector_shift;
452
453 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
454 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
455 ASSERT(iomapp->iomap_bn != IOMAP_DADDR_NULL);
456
1da177e4 457 sector_shift = block_bits - BBSHIFT;
1defeac9
CH
458 bn = (iomapp->iomap_bn >> sector_shift) +
459 ((offset - iomapp->iomap_offset) >> block_bits);
460
461 ASSERT(bn || (iomapp->iomap_flags & IOMAP_REALTIME));
1da177e4
LT
462 ASSERT((bn << sector_shift) >= iomapp->iomap_bn);
463
464 lock_buffer(bh);
465 bh->b_blocknr = bn;
ce8e922c 466 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
467 set_buffer_mapped(bh);
468 clear_buffer_delay(bh);
f6d6d4fc 469 clear_buffer_unwritten(bh);
1da177e4
LT
470}
471
472/*
473 * Look for a page at index which is unlocked and not mapped
474 * yet - clustering for mmap write case.
475 */
476STATIC unsigned int
477xfs_probe_unmapped_page(
10ce4444 478 struct page *page,
1da177e4
LT
479 unsigned int pg_offset)
480{
1da177e4
LT
481 int ret = 0;
482
1da177e4 483 if (PageWriteback(page))
10ce4444 484 return 0;
1da177e4
LT
485
486 if (page->mapping && PageDirty(page)) {
487 if (page_has_buffers(page)) {
488 struct buffer_head *bh, *head;
489
490 bh = head = page_buffers(page);
491 do {
492 if (buffer_mapped(bh) || !buffer_uptodate(bh))
493 break;
494 ret += bh->b_size;
495 if (ret >= pg_offset)
496 break;
497 } while ((bh = bh->b_this_page) != head);
498 } else
499 ret = PAGE_CACHE_SIZE;
500 }
501
1da177e4
LT
502 return ret;
503}
504
f6d6d4fc 505STATIC size_t
1da177e4
LT
506xfs_probe_unmapped_cluster(
507 struct inode *inode,
508 struct page *startpage,
509 struct buffer_head *bh,
510 struct buffer_head *head)
511{
10ce4444 512 struct pagevec pvec;
1da177e4 513 pgoff_t tindex, tlast, tloff;
10ce4444
CH
514 size_t total = 0;
515 int done = 0, i;
1da177e4
LT
516
517 /* First sum forwards in this page */
518 do {
519 if (buffer_mapped(bh))
10ce4444 520 return total;
1da177e4
LT
521 total += bh->b_size;
522 } while ((bh = bh->b_this_page) != head);
523
10ce4444
CH
524 /* if we reached the end of the page, sum forwards in following pages */
525 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
526 tindex = startpage->index + 1;
527
528 /* Prune this back to avoid pathological behavior */
529 tloff = min(tlast, startpage->index + 64);
530
531 pagevec_init(&pvec, 0);
532 while (!done && tindex <= tloff) {
533 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
534
535 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
536 break;
537
538 for (i = 0; i < pagevec_count(&pvec); i++) {
539 struct page *page = pvec.pages[i];
540 size_t pg_offset, len = 0;
541
542 if (tindex == tlast) {
543 pg_offset =
544 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
545 if (!pg_offset) {
546 done = 1;
10ce4444 547 break;
1defeac9 548 }
10ce4444
CH
549 } else
550 pg_offset = PAGE_CACHE_SIZE;
551
552 if (page->index == tindex && !TestSetPageLocked(page)) {
553 len = xfs_probe_unmapped_page(page, pg_offset);
554 unlock_page(page);
555 }
556
557 if (!len) {
558 done = 1;
559 break;
560 }
561
1da177e4 562 total += len;
1defeac9 563 tindex++;
1da177e4 564 }
10ce4444
CH
565
566 pagevec_release(&pvec);
567 cond_resched();
1da177e4 568 }
10ce4444 569
1da177e4
LT
570 return total;
571}
572
573/*
10ce4444
CH
574 * Test if a given page is suitable for writing as part of an unwritten
575 * or delayed allocate extent.
1da177e4 576 */
10ce4444
CH
577STATIC int
578xfs_is_delayed_page(
579 struct page *page,
f6d6d4fc 580 unsigned int type)
1da177e4 581{
1da177e4 582 if (PageWriteback(page))
10ce4444 583 return 0;
1da177e4
LT
584
585 if (page->mapping && page_has_buffers(page)) {
586 struct buffer_head *bh, *head;
587 int acceptable = 0;
588
589 bh = head = page_buffers(page);
590 do {
f6d6d4fc
CH
591 if (buffer_unwritten(bh))
592 acceptable = (type == IOMAP_UNWRITTEN);
593 else if (buffer_delay(bh))
594 acceptable = (type == IOMAP_DELAY);
595 else
1da177e4 596 break;
1da177e4
LT
597 } while ((bh = bh->b_this_page) != head);
598
599 if (acceptable)
10ce4444 600 return 1;
1da177e4
LT
601 }
602
10ce4444 603 return 0;
1da177e4
LT
604}
605
1da177e4
LT
606/*
607 * Allocate & map buffers for page given the extent map. Write it out.
608 * except for the original page of a writepage, this is called on
609 * delalloc/unwritten pages only, for the original page it is possible
610 * that the page has no mapping at all.
611 */
f6d6d4fc 612STATIC int
1da177e4
LT
613xfs_convert_page(
614 struct inode *inode,
615 struct page *page,
10ce4444 616 loff_t tindex,
1defeac9 617 xfs_iomap_t *mp,
f6d6d4fc 618 xfs_ioend_t **ioendp,
1da177e4 619 struct writeback_control *wbc,
1da177e4
LT
620 int startio,
621 int all_bh)
622{
f6d6d4fc 623 struct buffer_head *bh, *head;
9260dc6b
CH
624 xfs_off_t end_offset;
625 unsigned long p_offset;
f6d6d4fc 626 unsigned int type;
1da177e4 627 int bbits = inode->i_blkbits;
24e17b5f 628 int len, page_dirty;
f6d6d4fc 629 int count = 0, done = 0, uptodate = 1;
9260dc6b 630 xfs_off_t offset = page_offset(page);
1da177e4 631
10ce4444
CH
632 if (page->index != tindex)
633 goto fail;
634 if (TestSetPageLocked(page))
635 goto fail;
636 if (PageWriteback(page))
637 goto fail_unlock_page;
638 if (page->mapping != inode->i_mapping)
639 goto fail_unlock_page;
640 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
641 goto fail_unlock_page;
642
24e17b5f
NS
643 /*
644 * page_dirty is initially a count of buffers on the page before
645 * EOF and is decrememted as we move each into a cleanable state.
9260dc6b
CH
646 *
647 * Derivation:
648 *
649 * End offset is the highest offset that this page should represent.
650 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
651 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
652 * hence give us the correct page_dirty count. On any other page,
653 * it will be zero and in that case we need page_dirty to be the
654 * count of buffers on the page.
24e17b5f 655 */
9260dc6b
CH
656 end_offset = min_t(unsigned long long,
657 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
658 i_size_read(inode));
659
24e17b5f 660 len = 1 << inode->i_blkbits;
9260dc6b
CH
661 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
662 PAGE_CACHE_SIZE);
663 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
664 page_dirty = p_offset / len;
24e17b5f 665
1da177e4
LT
666 bh = head = page_buffers(page);
667 do {
9260dc6b 668 if (offset >= end_offset)
1da177e4 669 break;
f6d6d4fc
CH
670 if (!buffer_uptodate(bh))
671 uptodate = 0;
672 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
673 done = 1;
1da177e4 674 continue;
f6d6d4fc
CH
675 }
676
9260dc6b
CH
677 if (buffer_unwritten(bh) || buffer_delay(bh)) {
678 if (buffer_unwritten(bh))
679 type = IOMAP_UNWRITTEN;
680 else
681 type = IOMAP_DELAY;
682
683 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 684 done = 1;
9260dc6b
CH
685 continue;
686 }
687
688 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
689 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
690
691 xfs_map_at_offset(bh, offset, bbits, mp);
692 if (startio) {
7336cea8 693 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
694 type, ioendp, done);
695 } else {
696 set_buffer_dirty(bh);
697 unlock_buffer(bh);
698 mark_buffer_dirty(bh);
699 }
700 page_dirty--;
701 count++;
702 } else {
703 type = 0;
704 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 705 lock_buffer(bh);
7336cea8 706 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
707 type, ioendp, done);
708 count++;
24e17b5f 709 page_dirty--;
9260dc6b
CH
710 } else {
711 done = 1;
1da177e4 712 }
1da177e4 713 }
7336cea8 714 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 715
f6d6d4fc
CH
716 if (uptodate && bh == head)
717 SetPageUptodate(page);
718
719 if (startio) {
720 if (count)
721 wbc->nr_to_write--;
722 xfs_start_page_writeback(page, wbc, !page_dirty, count);
1da177e4 723 }
f6d6d4fc
CH
724
725 return done;
10ce4444
CH
726 fail_unlock_page:
727 unlock_page(page);
728 fail:
729 return 1;
1da177e4
LT
730}
731
732/*
733 * Convert & write out a cluster of pages in the same extent as defined
734 * by mp and following the start page.
735 */
736STATIC void
737xfs_cluster_write(
738 struct inode *inode,
739 pgoff_t tindex,
740 xfs_iomap_t *iomapp,
f6d6d4fc 741 xfs_ioend_t **ioendp,
1da177e4
LT
742 struct writeback_control *wbc,
743 int startio,
744 int all_bh,
745 pgoff_t tlast)
746{
10ce4444
CH
747 struct pagevec pvec;
748 int done = 0, i;
1da177e4 749
10ce4444
CH
750 pagevec_init(&pvec, 0);
751 while (!done && tindex <= tlast) {
752 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
753
754 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 755 break;
10ce4444
CH
756
757 for (i = 0; i < pagevec_count(&pvec); i++) {
758 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
759 iomapp, ioendp, wbc, startio, all_bh);
760 if (done)
761 break;
762 }
763
764 pagevec_release(&pvec);
765 cond_resched();
1da177e4
LT
766 }
767}
768
769/*
770 * Calling this without startio set means we are being asked to make a dirty
771 * page ready for freeing it's buffers. When called with startio set then
772 * we are coming from writepage.
773 *
774 * When called with startio set it is important that we write the WHOLE
775 * page if possible.
776 * The bh->b_state's cannot know if any of the blocks or which block for
777 * that matter are dirty due to mmap writes, and therefore bh uptodate is
778 * only vaild if the page itself isn't completely uptodate. Some layers
779 * may clear the page dirty flag prior to calling write page, under the
780 * assumption the entire page will be written out; by not writing out the
781 * whole page the page can be reused before all valid dirty data is
782 * written out. Note: in the case of a page that has been dirty'd by
783 * mapwrite and but partially setup by block_prepare_write the
784 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
785 * valid state, thus the whole page must be written out thing.
786 */
787
788STATIC int
789xfs_page_state_convert(
790 struct inode *inode,
791 struct page *page,
792 struct writeback_control *wbc,
793 int startio,
794 int unmapped) /* also implies page uptodate */
795{
f6d6d4fc 796 struct buffer_head *bh, *head;
1defeac9 797 xfs_iomap_t iomap;
f6d6d4fc 798 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
799 loff_t offset;
800 unsigned long p_offset = 0;
f6d6d4fc 801 unsigned int type;
1da177e4
LT
802 __uint64_t end_offset;
803 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
804 ssize_t size, len;
805 int flags, err, iomap_valid = 0, uptodate = 1;
f6d6d4fc 806 int page_dirty, count = 0, trylock_flag = 0;
1da177e4 807
3ba0815a 808 /* wait for other IO threads? */
f6d6d4fc
CH
809 if (startio && wbc->sync_mode != WB_SYNC_NONE)
810 trylock_flag |= BMAPI_TRYLOCK;
3ba0815a 811
1da177e4
LT
812 /* Is this page beyond the end of the file? */
813 offset = i_size_read(inode);
814 end_index = offset >> PAGE_CACHE_SHIFT;
815 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
816 if (page->index >= end_index) {
817 if ((page->index >= end_index + 1) ||
818 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
819 if (startio)
820 unlock_page(page);
821 return 0;
1da177e4
LT
822 }
823 }
824
1da177e4 825 /*
24e17b5f
NS
826 * page_dirty is initially a count of buffers on the page before
827 * EOF and is decrememted as we move each into a cleanable state.
f6d6d4fc
CH
828 *
829 * Derivation:
830 *
831 * End offset is the highest offset that this page should represent.
832 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
833 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
834 * hence give us the correct page_dirty count. On any other page,
835 * it will be zero and in that case we need page_dirty to be the
836 * count of buffers on the page.
837 */
838 end_offset = min_t(unsigned long long,
839 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 840 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
841 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
842 PAGE_CACHE_SIZE);
843 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
844 page_dirty = p_offset / len;
845
24e17b5f 846 bh = head = page_buffers(page);
f6d6d4fc
CH
847 offset = page_offset(page);
848
f6d6d4fc 849 /* TODO: cleanup count and page_dirty */
1da177e4
LT
850
851 do {
852 if (offset >= end_offset)
853 break;
854 if (!buffer_uptodate(bh))
855 uptodate = 0;
f6d6d4fc 856 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
857 /*
858 * the iomap is actually still valid, but the ioend
859 * isn't. shouldn't happen too often.
860 */
861 iomap_valid = 0;
1da177e4 862 continue;
f6d6d4fc 863 }
1da177e4 864
1defeac9
CH
865 if (iomap_valid)
866 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
867
868 /*
869 * First case, map an unwritten extent and prepare for
870 * extent state conversion transaction on completion.
f6d6d4fc 871 *
1da177e4
LT
872 * Second case, allocate space for a delalloc buffer.
873 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
874 *
875 * Third case, an unmapped buffer was found, and we are
876 * in a path where we need to write the whole page out.
877 */
878 if (buffer_unwritten(bh) || buffer_delay(bh) ||
879 ((buffer_uptodate(bh) || PageUptodate(page)) &&
880 !buffer_mapped(bh) && (unmapped || startio))) {
f6d6d4fc
CH
881 if (buffer_unwritten(bh)) {
882 type = IOMAP_UNWRITTEN;
883 flags = BMAPI_WRITE|BMAPI_IGNSTATE;
d5cb48aa 884 } else if (buffer_delay(bh)) {
f6d6d4fc
CH
885 type = IOMAP_DELAY;
886 flags = BMAPI_ALLOCATE;
887 if (!startio)
888 flags |= trylock_flag;
d5cb48aa
CH
889 } else {
890 type = 0;
891 flags = BMAPI_WRITE|BMAPI_MMAP;
f6d6d4fc
CH
892 }
893
1defeac9 894 if (!iomap_valid) {
d5cb48aa
CH
895 if (type == 0) {
896 size = xfs_probe_unmapped_cluster(inode,
897 page, bh, head);
898 } else {
899 size = len;
900 }
901
902 err = xfs_map_blocks(inode, offset, size,
903 &iomap, flags);
f6d6d4fc 904 if (err)
1da177e4 905 goto error;
1defeac9 906 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 907 }
1defeac9
CH
908 if (iomap_valid) {
909 xfs_map_at_offset(bh, offset,
910 inode->i_blkbits, &iomap);
1da177e4 911 if (startio) {
7336cea8 912 xfs_add_to_ioend(inode, bh, offset,
1defeac9
CH
913 type, &ioend,
914 !iomap_valid);
1da177e4
LT
915 } else {
916 set_buffer_dirty(bh);
917 unlock_buffer(bh);
918 mark_buffer_dirty(bh);
919 }
920 page_dirty--;
f6d6d4fc 921 count++;
1da177e4 922 }
d5cb48aa 923 } else if (buffer_uptodate(bh) && startio) {
f6d6d4fc 924 type = 0;
d5cb48aa
CH
925
926 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
927 ASSERT(buffer_mapped(bh));
7336cea8 928 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
929 &ioend, !iomap_valid);
930 page_dirty--;
931 count++;
f6d6d4fc 932 } else {
1defeac9 933 iomap_valid = 0;
1da177e4 934 }
d5cb48aa
CH
935 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
936 (unmapped || startio)) {
937 iomap_valid = 0;
1da177e4 938 }
f6d6d4fc
CH
939
940 if (!iohead)
941 iohead = ioend;
942
943 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
944
945 if (uptodate && bh == head)
946 SetPageUptodate(page);
947
f6d6d4fc
CH
948 if (startio)
949 xfs_start_page_writeback(page, wbc, 1, count);
1da177e4 950
1defeac9
CH
951 if (ioend && iomap_valid) {
952 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 953 PAGE_CACHE_SHIFT;
775bf6c9 954 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 955 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
f6d6d4fc 956 wbc, startio, unmapped, tlast);
1da177e4
LT
957 }
958
f6d6d4fc
CH
959 if (iohead)
960 xfs_submit_ioend(iohead);
961
1da177e4
LT
962 return page_dirty;
963
964error:
f6d6d4fc
CH
965 if (iohead)
966 xfs_cancel_ioend(iohead);
1da177e4
LT
967
968 /*
969 * If it's delalloc and we have nowhere to put it,
970 * throw it away, unless the lower layers told
971 * us to try again.
972 */
973 if (err != -EAGAIN) {
f6d6d4fc 974 if (!unmapped)
1da177e4 975 block_invalidatepage(page, 0);
1da177e4
LT
976 ClearPageUptodate(page);
977 }
978 return err;
979}
980
981STATIC int
982__linvfs_get_block(
983 struct inode *inode,
984 sector_t iblock,
985 unsigned long blocks,
986 struct buffer_head *bh_result,
987 int create,
988 int direct,
989 bmapi_flags_t flags)
990{
991 vnode_t *vp = LINVFS_GET_VP(inode);
992 xfs_iomap_t iomap;
fdc7ed75
NS
993 xfs_off_t offset;
994 ssize_t size;
1da177e4
LT
995 int retpbbm = 1;
996 int error;
1da177e4 997
fdc7ed75 998 offset = (xfs_off_t)iblock << inode->i_blkbits;
a4656391
NS
999 if (blocks)
1000 size = (ssize_t) min_t(xfs_off_t, LONG_MAX,
1001 (xfs_off_t)blocks << inode->i_blkbits);
1002 else
1003 size = 1 << inode->i_blkbits;
1da177e4
LT
1004
1005 VOP_BMAP(vp, offset, size,
1006 create ? flags : BMAPI_READ, &iomap, &retpbbm, error);
1007 if (error)
1008 return -error;
1009
1010 if (retpbbm == 0)
1011 return 0;
1012
1013 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
fdc7ed75
NS
1014 xfs_daddr_t bn;
1015 xfs_off_t delta;
1da177e4
LT
1016
1017 /* For unwritten extents do not report a disk address on
1018 * the read case (treat as if we're reading into a hole).
1019 */
1020 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1021 delta = offset - iomap.iomap_offset;
1022 delta >>= inode->i_blkbits;
1023
1024 bn = iomap.iomap_bn >> (inode->i_blkbits - BBSHIFT);
1025 bn += delta;
1026 BUG_ON(!bn && !(iomap.iomap_flags & IOMAP_REALTIME));
1027 bh_result->b_blocknr = bn;
1028 set_buffer_mapped(bh_result);
1029 }
1030 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1031 if (direct)
1032 bh_result->b_private = inode;
1033 set_buffer_unwritten(bh_result);
1034 set_buffer_delay(bh_result);
1035 }
1036 }
1037
1038 /* If this is a realtime file, data might be on a new device */
ce8e922c 1039 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4
LT
1040
1041 /* If we previously allocated a block out beyond eof and
1042 * we are now coming back to use it then we will need to
1043 * flag it as new even if it has a disk address.
1044 */
1045 if (create &&
1046 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
fdc7ed75 1047 (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW)))
1da177e4 1048 set_buffer_new(bh_result);
1da177e4
LT
1049
1050 if (iomap.iomap_flags & IOMAP_DELAY) {
1051 BUG_ON(direct);
1052 if (create) {
1053 set_buffer_uptodate(bh_result);
1054 set_buffer_mapped(bh_result);
1055 set_buffer_delay(bh_result);
1056 }
1057 }
1058
1059 if (blocks) {
fdc7ed75
NS
1060 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1061 offset = min_t(xfs_off_t,
1062 iomap.iomap_bsize - iomap.iomap_delta,
a4656391 1063 (xfs_off_t)blocks << inode->i_blkbits);
fdc7ed75 1064 bh_result->b_size = (u32) min_t(xfs_off_t, UINT_MAX, offset);
1da177e4
LT
1065 }
1066
1067 return 0;
1068}
1069
1070int
1071linvfs_get_block(
1072 struct inode *inode,
1073 sector_t iblock,
1074 struct buffer_head *bh_result,
1075 int create)
1076{
1077 return __linvfs_get_block(inode, iblock, 0, bh_result,
1078 create, 0, BMAPI_WRITE);
1079}
1080
1081STATIC int
1082linvfs_get_blocks_direct(
1083 struct inode *inode,
1084 sector_t iblock,
1085 unsigned long max_blocks,
1086 struct buffer_head *bh_result,
1087 int create)
1088{
1089 return __linvfs_get_block(inode, iblock, max_blocks, bh_result,
1090 create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1091}
1092
f0973863
CH
1093STATIC void
1094linvfs_end_io_direct(
1095 struct kiocb *iocb,
1096 loff_t offset,
1097 ssize_t size,
1098 void *private)
1099{
1100 xfs_ioend_t *ioend = iocb->private;
1101
1102 /*
1103 * Non-NULL private data means we need to issue a transaction to
1104 * convert a range from unwritten to written extents. This needs
1105 * to happen from process contect but aio+dio I/O completion
1106 * happens from irq context so we need to defer it to a workqueue.
1107 * This is not nessecary for synchronous direct I/O, but we do
1108 * it anyway to keep the code uniform and simpler.
1109 *
1110 * The core direct I/O code might be changed to always call the
1111 * completion handler in the future, in which case all this can
1112 * go away.
1113 */
1114 if (private && size > 0) {
1115 ioend->io_offset = offset;
1116 ioend->io_size = size;
1117 xfs_finish_ioend(ioend);
1118 } else {
1119 ASSERT(size >= 0);
1120 xfs_destroy_ioend(ioend);
1121 }
1122
1123 /*
1124 * blockdev_direct_IO can return an error even afer the I/O
1125 * completion handler was called. Thus we need to protect
1126 * against double-freeing.
1127 */
1128 iocb->private = NULL;
1129}
1130
1da177e4
LT
1131STATIC ssize_t
1132linvfs_direct_IO(
1133 int rw,
1134 struct kiocb *iocb,
1135 const struct iovec *iov,
1136 loff_t offset,
1137 unsigned long nr_segs)
1138{
1139 struct file *file = iocb->ki_filp;
1140 struct inode *inode = file->f_mapping->host;
1141 vnode_t *vp = LINVFS_GET_VP(inode);
1142 xfs_iomap_t iomap;
1143 int maps = 1;
1144 int error;
f0973863 1145 ssize_t ret;
1da177e4
LT
1146
1147 VOP_BMAP(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps, error);
1148 if (error)
1149 return -error;
1150
f6d6d4fc 1151 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
f0973863
CH
1152
1153 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
ce8e922c 1154 iomap.iomap_target->bt_bdev,
1da177e4
LT
1155 iov, offset, nr_segs,
1156 linvfs_get_blocks_direct,
f0973863
CH
1157 linvfs_end_io_direct);
1158
1159 if (unlikely(ret <= 0 && iocb->private))
1160 xfs_destroy_ioend(iocb->private);
1161 return ret;
1da177e4
LT
1162}
1163
1164
1165STATIC sector_t
1166linvfs_bmap(
1167 struct address_space *mapping,
1168 sector_t block)
1169{
1170 struct inode *inode = (struct inode *)mapping->host;
1171 vnode_t *vp = LINVFS_GET_VP(inode);
1172 int error;
1173
1174 vn_trace_entry(vp, "linvfs_bmap", (inst_t *)__return_address);
1175
1176 VOP_RWLOCK(vp, VRWLOCK_READ);
1177 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error);
1178 VOP_RWUNLOCK(vp, VRWLOCK_READ);
1179 return generic_block_bmap(mapping, block, linvfs_get_block);
1180}
1181
1182STATIC int
1183linvfs_readpage(
1184 struct file *unused,
1185 struct page *page)
1186{
1187 return mpage_readpage(page, linvfs_get_block);
1188}
1189
1190STATIC int
1191linvfs_readpages(
1192 struct file *unused,
1193 struct address_space *mapping,
1194 struct list_head *pages,
1195 unsigned nr_pages)
1196{
1197 return mpage_readpages(mapping, pages, nr_pages, linvfs_get_block);
1198}
1199
1200STATIC void
1201xfs_count_page_state(
1202 struct page *page,
1203 int *delalloc,
1204 int *unmapped,
1205 int *unwritten)
1206{
1207 struct buffer_head *bh, *head;
1208
1209 *delalloc = *unmapped = *unwritten = 0;
1210
1211 bh = head = page_buffers(page);
1212 do {
1213 if (buffer_uptodate(bh) && !buffer_mapped(bh))
1214 (*unmapped) = 1;
1215 else if (buffer_unwritten(bh) && !buffer_delay(bh))
1216 clear_buffer_unwritten(bh);
1217 else if (buffer_unwritten(bh))
1218 (*unwritten) = 1;
1219 else if (buffer_delay(bh))
1220 (*delalloc) = 1;
1221 } while ((bh = bh->b_this_page) != head);
1222}
1223
1224
1225/*
1226 * writepage: Called from one of two places:
1227 *
1228 * 1. we are flushing a delalloc buffer head.
1229 *
1230 * 2. we are writing out a dirty page. Typically the page dirty
1231 * state is cleared before we get here. In this case is it
1232 * conceivable we have no buffer heads.
1233 *
1234 * For delalloc space on the page we need to allocate space and
1235 * flush it. For unmapped buffer heads on the page we should
1236 * allocate space if the page is uptodate. For any other dirty
1237 * buffer heads on the page we should flush them.
1238 *
1239 * If we detect that a transaction would be required to flush
1240 * the page, we have to check the process flags first, if we
1241 * are already in a transaction or disk I/O during allocations
1242 * is off, we need to fail the writepage and redirty the page.
1243 */
1244
1245STATIC int
1246linvfs_writepage(
1247 struct page *page,
1248 struct writeback_control *wbc)
1249{
1250 int error;
1251 int need_trans;
1252 int delalloc, unmapped, unwritten;
1253 struct inode *inode = page->mapping->host;
1254
1255 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1256
1257 /*
1258 * We need a transaction if:
1259 * 1. There are delalloc buffers on the page
1260 * 2. The page is uptodate and we have unmapped buffers
1261 * 3. The page is uptodate and we have no buffers
1262 * 4. There are unwritten buffers on the page
1263 */
1264
1265 if (!page_has_buffers(page)) {
1266 unmapped = 1;
1267 need_trans = 1;
1268 } else {
1269 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1270 if (!PageUptodate(page))
1271 unmapped = 0;
1272 need_trans = delalloc + unmapped + unwritten;
1273 }
1274
1275 /*
1276 * If we need a transaction and the process flags say
1277 * we are already in a transaction, or no IO is allowed
1278 * then mark the page dirty again and leave the page
1279 * as is.
1280 */
1281 if (PFLAGS_TEST_FSTRANS() && need_trans)
1282 goto out_fail;
1283
1284 /*
1285 * Delay hooking up buffer heads until we have
1286 * made our go/no-go decision.
1287 */
1288 if (!page_has_buffers(page))
1289 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1290
1291 /*
1292 * Convert delayed allocate, unwritten or unmapped space
1293 * to real space and flush out to disk.
1294 */
1295 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1296 if (error == -EAGAIN)
1297 goto out_fail;
1298 if (unlikely(error < 0))
1299 goto out_unlock;
1300
1301 return 0;
1302
1303out_fail:
1304 redirty_page_for_writepage(wbc, page);
1305 unlock_page(page);
1306 return 0;
1307out_unlock:
1308 unlock_page(page);
1309 return error;
1310}
1311
bcec2b7f
NS
1312STATIC int
1313linvfs_invalidate_page(
1314 struct page *page,
1315 unsigned long offset)
1316{
1317 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1318 page->mapping->host, page, offset);
1319 return block_invalidatepage(page, offset);
1320}
1321
1da177e4
LT
1322/*
1323 * Called to move a page into cleanable state - and from there
1324 * to be released. Possibly the page is already clean. We always
1325 * have buffer heads in this call.
1326 *
1327 * Returns 0 if the page is ok to release, 1 otherwise.
1328 *
1329 * Possible scenarios are:
1330 *
1331 * 1. We are being called to release a page which has been written
1332 * to via regular I/O. buffer heads will be dirty and possibly
1333 * delalloc. If no delalloc buffer heads in this case then we
1334 * can just return zero.
1335 *
1336 * 2. We are called to release a page which has been written via
1337 * mmap, all we need to do is ensure there is no delalloc
1338 * state in the buffer heads, if not we can let the caller
1339 * free them and we should come back later via writepage.
1340 */
1341STATIC int
1342linvfs_release_page(
1343 struct page *page,
27496a8c 1344 gfp_t gfp_mask)
1da177e4
LT
1345{
1346 struct inode *inode = page->mapping->host;
1347 int dirty, delalloc, unmapped, unwritten;
1348 struct writeback_control wbc = {
1349 .sync_mode = WB_SYNC_ALL,
1350 .nr_to_write = 1,
1351 };
1352
1353 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1354
1355 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1356 if (!delalloc && !unwritten)
1357 goto free_buffers;
1358
1359 if (!(gfp_mask & __GFP_FS))
1360 return 0;
1361
1362 /* If we are already inside a transaction or the thread cannot
1363 * do I/O, we cannot release this page.
1364 */
1365 if (PFLAGS_TEST_FSTRANS())
1366 return 0;
1367
1368 /*
1369 * Convert delalloc space to real space, do not flush the
1370 * data out to disk, that will be done by the caller.
1371 * Never need to allocate space here - we will always
1372 * come back to writepage in that case.
1373 */
1374 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1375 if (dirty == 0 && !unwritten)
1376 goto free_buffers;
1377 return 0;
1378
1379free_buffers:
1380 return try_to_free_buffers(page);
1381}
1382
1383STATIC int
1384linvfs_prepare_write(
1385 struct file *file,
1386 struct page *page,
1387 unsigned int from,
1388 unsigned int to)
1389{
1390 return block_prepare_write(page, from, to, linvfs_get_block);
1391}
1392
1393struct address_space_operations linvfs_aops = {
1394 .readpage = linvfs_readpage,
1395 .readpages = linvfs_readpages,
1396 .writepage = linvfs_writepage,
1397 .sync_page = block_sync_page,
1398 .releasepage = linvfs_release_page,
bcec2b7f 1399 .invalidatepage = linvfs_invalidate_page,
1da177e4
LT
1400 .prepare_write = linvfs_prepare_write,
1401 .commit_write = generic_commit_write,
1402 .bmap = linvfs_bmap,
1403 .direct_IO = linvfs_direct_IO,
1404};