]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ubifs/super.c
UBIFS: various comment improvements and fixes
[net-next-2.6.git] / fs / ubifs / super.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
1e51764a
AB
33#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
37#include "ubifs.h"
38
39ce81ce
AB
39/*
40 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
41 * allocating too much.
42 */
43#define UBIFS_KMALLOC_OK (128*1024)
44
1e51764a
AB
45/* Slab cache for UBIFS inodes */
46struct kmem_cache *ubifs_inode_slab;
47
48/* UBIFS TNC shrinker description */
49static struct shrinker ubifs_shrinker_info = {
50 .shrink = ubifs_shrinker,
51 .seeks = DEFAULT_SEEKS,
52};
53
54/**
55 * validate_inode - validate inode.
56 * @c: UBIFS file-system description object
57 * @inode: the inode to validate
58 *
59 * This is a helper function for 'ubifs_iget()' which validates various fields
60 * of a newly built inode to make sure they contain sane values and prevent
61 * possible vulnerabilities. Returns zero if the inode is all right and
62 * a non-zero error code if not.
63 */
64static int validate_inode(struct ubifs_info *c, const struct inode *inode)
65{
66 int err;
67 const struct ubifs_inode *ui = ubifs_inode(inode);
68
69 if (inode->i_size > c->max_inode_sz) {
70 ubifs_err("inode is too large (%lld)",
71 (long long)inode->i_size);
72 return 1;
73 }
74
75 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
76 ubifs_err("unknown compression type %d", ui->compr_type);
77 return 2;
78 }
79
80 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
81 return 3;
82
83 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
84 return 4;
85
86 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
87 return 5;
88
89 if (!ubifs_compr_present(ui->compr_type)) {
90 ubifs_warn("inode %lu uses '%s' compression, but it was not "
91 "compiled in", inode->i_ino,
92 ubifs_compr_name(ui->compr_type));
93 }
94
95 err = dbg_check_dir_size(c, inode);
96 return err;
97}
98
99struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
100{
101 int err;
102 union ubifs_key key;
103 struct ubifs_ino_node *ino;
104 struct ubifs_info *c = sb->s_fs_info;
105 struct inode *inode;
106 struct ubifs_inode *ui;
107
108 dbg_gen("inode %lu", inum);
109
110 inode = iget_locked(sb, inum);
111 if (!inode)
112 return ERR_PTR(-ENOMEM);
113 if (!(inode->i_state & I_NEW))
114 return inode;
115 ui = ubifs_inode(inode);
116
117 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
118 if (!ino) {
119 err = -ENOMEM;
120 goto out;
121 }
122
123 ino_key_init(c, &key, inode->i_ino);
124
125 err = ubifs_tnc_lookup(c, &key, ino);
126 if (err)
127 goto out_ino;
128
129 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
130 inode->i_nlink = le32_to_cpu(ino->nlink);
131 inode->i_uid = le32_to_cpu(ino->uid);
132 inode->i_gid = le32_to_cpu(ino->gid);
133 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
134 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
135 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
136 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
137 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
138 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
139 inode->i_mode = le32_to_cpu(ino->mode);
140 inode->i_size = le64_to_cpu(ino->size);
141
142 ui->data_len = le32_to_cpu(ino->data_len);
143 ui->flags = le32_to_cpu(ino->flags);
144 ui->compr_type = le16_to_cpu(ino->compr_type);
145 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
146 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
147 ui->xattr_size = le32_to_cpu(ino->xattr_size);
148 ui->xattr_names = le32_to_cpu(ino->xattr_names);
149 ui->synced_i_size = ui->ui_size = inode->i_size;
150
151 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
152
153 err = validate_inode(c, inode);
154 if (err)
155 goto out_invalid;
156
0a883a05 157 /* Disable read-ahead */
1e51764a
AB
158 inode->i_mapping->backing_dev_info = &c->bdi;
159
160 switch (inode->i_mode & S_IFMT) {
161 case S_IFREG:
162 inode->i_mapping->a_ops = &ubifs_file_address_operations;
163 inode->i_op = &ubifs_file_inode_operations;
164 inode->i_fop = &ubifs_file_operations;
165 if (ui->xattr) {
166 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
167 if (!ui->data) {
168 err = -ENOMEM;
169 goto out_ino;
170 }
171 memcpy(ui->data, ino->data, ui->data_len);
172 ((char *)ui->data)[ui->data_len] = '\0';
173 } else if (ui->data_len != 0) {
174 err = 10;
175 goto out_invalid;
176 }
177 break;
178 case S_IFDIR:
179 inode->i_op = &ubifs_dir_inode_operations;
180 inode->i_fop = &ubifs_dir_operations;
181 if (ui->data_len != 0) {
182 err = 11;
183 goto out_invalid;
184 }
185 break;
186 case S_IFLNK:
187 inode->i_op = &ubifs_symlink_inode_operations;
188 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
189 err = 12;
190 goto out_invalid;
191 }
192 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
193 if (!ui->data) {
194 err = -ENOMEM;
195 goto out_ino;
196 }
197 memcpy(ui->data, ino->data, ui->data_len);
198 ((char *)ui->data)[ui->data_len] = '\0';
199 break;
200 case S_IFBLK:
201 case S_IFCHR:
202 {
203 dev_t rdev;
204 union ubifs_dev_desc *dev;
205
206 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
207 if (!ui->data) {
208 err = -ENOMEM;
209 goto out_ino;
210 }
211
212 dev = (union ubifs_dev_desc *)ino->data;
213 if (ui->data_len == sizeof(dev->new))
214 rdev = new_decode_dev(le32_to_cpu(dev->new));
215 else if (ui->data_len == sizeof(dev->huge))
216 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
217 else {
218 err = 13;
219 goto out_invalid;
220 }
221 memcpy(ui->data, ino->data, ui->data_len);
222 inode->i_op = &ubifs_file_inode_operations;
223 init_special_inode(inode, inode->i_mode, rdev);
224 break;
225 }
226 case S_IFSOCK:
227 case S_IFIFO:
228 inode->i_op = &ubifs_file_inode_operations;
229 init_special_inode(inode, inode->i_mode, 0);
230 if (ui->data_len != 0) {
231 err = 14;
232 goto out_invalid;
233 }
234 break;
235 default:
236 err = 15;
237 goto out_invalid;
238 }
239
240 kfree(ino);
241 ubifs_set_inode_flags(inode);
242 unlock_new_inode(inode);
243 return inode;
244
245out_invalid:
246 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
247 dbg_dump_node(c, ino);
248 dbg_dump_inode(c, inode);
249 err = -EINVAL;
250out_ino:
251 kfree(ino);
252out:
253 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
254 iget_failed(inode);
255 return ERR_PTR(err);
256}
257
258static struct inode *ubifs_alloc_inode(struct super_block *sb)
259{
260 struct ubifs_inode *ui;
261
262 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
263 if (!ui)
264 return NULL;
265
266 memset((void *)ui + sizeof(struct inode), 0,
267 sizeof(struct ubifs_inode) - sizeof(struct inode));
268 mutex_init(&ui->ui_mutex);
269 spin_lock_init(&ui->ui_lock);
270 return &ui->vfs_inode;
271};
272
273static void ubifs_destroy_inode(struct inode *inode)
274{
275 struct ubifs_inode *ui = ubifs_inode(inode);
276
277 kfree(ui->data);
278 kmem_cache_free(ubifs_inode_slab, inode);
279}
280
281/*
282 * Note, Linux write-back code calls this without 'i_mutex'.
283 */
284static int ubifs_write_inode(struct inode *inode, int wait)
285{
fbfa6c88 286 int err = 0;
1e51764a
AB
287 struct ubifs_info *c = inode->i_sb->s_fs_info;
288 struct ubifs_inode *ui = ubifs_inode(inode);
289
290 ubifs_assert(!ui->xattr);
291 if (is_bad_inode(inode))
292 return 0;
293
294 mutex_lock(&ui->ui_mutex);
295 /*
296 * Due to races between write-back forced by budgeting
297 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
298 * have already been synchronized, do not do this again. This might
299 * also happen if it was synchronized in an VFS operation, e.g.
300 * 'ubifs_link()'.
301 */
302 if (!ui->dirty) {
303 mutex_unlock(&ui->ui_mutex);
304 return 0;
305 }
306
fbfa6c88
AB
307 /*
308 * As an optimization, do not write orphan inodes to the media just
309 * because this is not needed.
310 */
311 dbg_gen("inode %lu, mode %#x, nlink %u",
312 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
313 if (inode->i_nlink) {
1f28681a 314 err = ubifs_jnl_write_inode(c, inode);
fbfa6c88
AB
315 if (err)
316 ubifs_err("can't write inode %lu, error %d",
317 inode->i_ino, err);
318 }
1e51764a
AB
319
320 ui->dirty = 0;
321 mutex_unlock(&ui->ui_mutex);
322 ubifs_release_dirty_inode_budget(c, ui);
323 return err;
324}
325
326static void ubifs_delete_inode(struct inode *inode)
327{
328 int err;
329 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e0f358e 330 struct ubifs_inode *ui = ubifs_inode(inode);
1e51764a 331
1e0f358e 332 if (ui->xattr)
1e51764a
AB
333 /*
334 * Extended attribute inode deletions are fully handled in
335 * 'ubifs_removexattr()'. These inodes are special and have
336 * limited usage, so there is nothing to do here.
337 */
338 goto out;
339
7d32c2bb 340 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
1e51764a
AB
341 ubifs_assert(!atomic_read(&inode->i_count));
342 ubifs_assert(inode->i_nlink == 0);
343
344 truncate_inode_pages(&inode->i_data, 0);
345 if (is_bad_inode(inode))
346 goto out;
347
1e0f358e 348 ui->ui_size = inode->i_size = 0;
de94eb55 349 err = ubifs_jnl_delete_inode(c, inode);
1e51764a
AB
350 if (err)
351 /*
352 * Worst case we have a lost orphan inode wasting space, so a
0a883a05 353 * simple error message is OK here.
1e51764a 354 */
de94eb55
AB
355 ubifs_err("can't delete inode %lu, error %d",
356 inode->i_ino, err);
357
1e51764a 358out:
1e0f358e
AB
359 if (ui->dirty)
360 ubifs_release_dirty_inode_budget(c, ui);
1e51764a
AB
361 clear_inode(inode);
362}
363
364static void ubifs_dirty_inode(struct inode *inode)
365{
366 struct ubifs_inode *ui = ubifs_inode(inode);
367
368 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
369 if (!ui->dirty) {
370 ui->dirty = 1;
371 dbg_gen("inode %lu", inode->i_ino);
372 }
373}
374
375static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
376{
377 struct ubifs_info *c = dentry->d_sb->s_fs_info;
378 unsigned long long free;
7c7cbadf 379 __le32 *uuid = (__le32 *)c->uuid;
1e51764a 380
7dad181b 381 free = ubifs_get_free_space(c);
1e51764a
AB
382 dbg_gen("free space %lld bytes (%lld blocks)",
383 free, free >> UBIFS_BLOCK_SHIFT);
384
385 buf->f_type = UBIFS_SUPER_MAGIC;
386 buf->f_bsize = UBIFS_BLOCK_SIZE;
387 buf->f_blocks = c->block_cnt;
388 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
389 if (free > c->report_rp_size)
390 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
391 else
392 buf->f_bavail = 0;
393 buf->f_files = 0;
394 buf->f_ffree = 0;
395 buf->f_namelen = UBIFS_MAX_NLEN;
7c7cbadf
AB
396 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
397 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
1e51764a
AB
398 return 0;
399}
400
401static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
402{
403 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
404
405 if (c->mount_opts.unmount_mode == 2)
406 seq_printf(s, ",fast_unmount");
407 else if (c->mount_opts.unmount_mode == 1)
408 seq_printf(s, ",norm_unmount");
409
4793e7c5
AH
410 if (c->mount_opts.bulk_read == 2)
411 seq_printf(s, ",bulk_read");
412 else if (c->mount_opts.bulk_read == 1)
413 seq_printf(s, ",no_bulk_read");
414
2953e73f
AH
415 if (c->mount_opts.chk_data_crc == 2)
416 seq_printf(s, ",chk_data_crc");
417 else if (c->mount_opts.chk_data_crc == 1)
418 seq_printf(s, ",no_chk_data_crc");
419
553dea4d
AB
420 if (c->mount_opts.override_compr) {
421 seq_printf(s, ",compr=");
422 seq_printf(s, ubifs_compr_name(c->mount_opts.compr_type));
423 }
424
1e51764a
AB
425 return 0;
426}
427
428static int ubifs_sync_fs(struct super_block *sb, int wait)
429{
430 struct ubifs_info *c = sb->s_fs_info;
431 int i, ret = 0, err;
403e12ab 432 long long bud_bytes;
1e51764a 433
bed79935 434 if (c->jheads) {
1e51764a
AB
435 for (i = 0; i < c->jhead_cnt; i++) {
436 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
437 if (err && !ret)
438 ret = err;
439 }
403e12ab 440
bed79935
AH
441 /* Commit the journal unless it has too little data */
442 spin_lock(&c->buds_lock);
443 bud_bytes = c->bud_bytes;
444 spin_unlock(&c->buds_lock);
445 if (bud_bytes > c->leb_size) {
446 err = ubifs_run_commit(c);
447 if (err)
448 return err;
449 }
403e12ab
AB
450 }
451
1e51764a
AB
452 /*
453 * We ought to call sync for c->ubi but it does not have one. If it had
454 * it would in turn call mtd->sync, however mtd operations are
455 * synchronous anyway, so we don't lose any sleep here.
456 */
457 return ret;
458}
459
460/**
461 * init_constants_early - initialize UBIFS constants.
462 * @c: UBIFS file-system description object
463 *
464 * This function initialize UBIFS constants which do not need the superblock to
465 * be read. It also checks that the UBI volume satisfies basic UBIFS
466 * requirements. Returns zero in case of success and a negative error code in
467 * case of failure.
468 */
469static int init_constants_early(struct ubifs_info *c)
470{
471 if (c->vi.corrupted) {
472 ubifs_warn("UBI volume is corrupted - read-only mode");
473 c->ro_media = 1;
474 }
475
476 if (c->di.ro_mode) {
477 ubifs_msg("read-only UBI device");
478 c->ro_media = 1;
479 }
480
481 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
482 ubifs_msg("static UBI volume - read-only mode");
483 c->ro_media = 1;
484 }
485
486 c->leb_cnt = c->vi.size;
487 c->leb_size = c->vi.usable_leb_size;
488 c->half_leb_size = c->leb_size / 2;
489 c->min_io_size = c->di.min_io_size;
490 c->min_io_shift = fls(c->min_io_size) - 1;
491
492 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
493 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
494 c->leb_size, UBIFS_MIN_LEB_SZ);
495 return -EINVAL;
496 }
497
498 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
499 ubifs_err("too few LEBs (%d), min. is %d",
500 c->leb_cnt, UBIFS_MIN_LEB_CNT);
501 return -EINVAL;
502 }
503
504 if (!is_power_of_2(c->min_io_size)) {
505 ubifs_err("bad min. I/O size %d", c->min_io_size);
506 return -EINVAL;
507 }
508
509 /*
510 * UBIFS aligns all node to 8-byte boundary, so to make function in
511 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
512 * less than 8.
513 */
514 if (c->min_io_size < 8) {
515 c->min_io_size = 8;
516 c->min_io_shift = 3;
517 }
518
519 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
520 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
521
522 /*
523 * Initialize node length ranges which are mostly needed for node
524 * length validation.
525 */
526 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
527 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
528 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
529 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
530 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
531 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
532
533 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
534 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
535 c->ranges[UBIFS_ORPH_NODE].min_len =
536 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
537 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
538 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
539 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
540 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
541 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
542 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
543 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
544 /*
545 * Minimum indexing node size is amended later when superblock is
546 * read and the key length is known.
547 */
548 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
549 /*
550 * Maximum indexing node size is amended later when superblock is
551 * read and the fanout is known.
552 */
553 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
554
555 /*
556 * Initialize dead and dark LEB space watermarks.
557 *
558 * Dead space is the space which cannot be used. Its watermark is
559 * equivalent to min. I/O unit or minimum node size if it is greater
560 * then min. I/O unit.
561 *
562 * Dark space is the space which might be used, or might not, depending
563 * on which node should be written to the LEB. Its watermark is
564 * equivalent to maximum UBIFS node size.
565 */
566 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
567 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
568
9bbb5726
AB
569 /*
570 * Calculate how many bytes would be wasted at the end of LEB if it was
571 * fully filled with data nodes of maximum size. This is used in
572 * calculations when reporting free space.
573 */
574 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
39ce81ce 575
4793e7c5 576 /* Buffer size for bulk-reads */
6c0c42cd
AB
577 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
578 if (c->max_bu_buf_len > c->leb_size)
579 c->max_bu_buf_len = c->leb_size;
1e51764a
AB
580 return 0;
581}
582
583/**
584 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
585 * @c: UBIFS file-system description object
586 * @lnum: LEB the write-buffer was synchronized to
587 * @free: how many free bytes left in this LEB
588 * @pad: how many bytes were padded
589 *
590 * This is a callback function which is called by the I/O unit when the
591 * write-buffer is synchronized. We need this to correctly maintain space
592 * accounting in bud logical eraseblocks. This function returns zero in case of
593 * success and a negative error code in case of failure.
594 *
595 * This function actually belongs to the journal, but we keep it here because
596 * we want to keep it static.
597 */
598static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
599{
600 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
601}
602
603/*
604 * init_constants_late - initialize UBIFS constants.
605 * @c: UBIFS file-system description object
606 *
607 * This is a helper function which initializes various UBIFS constants after
608 * the superblock has been read. It also checks various UBIFS parameters and
609 * makes sure they are all right. Returns zero in case of success and a
610 * negative error code in case of failure.
611 */
612static int init_constants_late(struct ubifs_info *c)
613{
614 int tmp, err;
615 uint64_t tmp64;
616
617 c->main_bytes = (long long)c->main_lebs * c->leb_size;
618 c->max_znode_sz = sizeof(struct ubifs_znode) +
619 c->fanout * sizeof(struct ubifs_zbranch);
620
621 tmp = ubifs_idx_node_sz(c, 1);
622 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
623 c->min_idx_node_sz = ALIGN(tmp, 8);
624
625 tmp = ubifs_idx_node_sz(c, c->fanout);
626 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
627 c->max_idx_node_sz = ALIGN(tmp, 8);
628
629 /* Make sure LEB size is large enough to fit full commit */
630 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
631 tmp = ALIGN(tmp, c->min_io_size);
632 if (tmp > c->leb_size) {
633 dbg_err("too small LEB size %d, at least %d needed",
634 c->leb_size, tmp);
635 return -EINVAL;
636 }
637
638 /*
639 * Make sure that the log is large enough to fit reference nodes for
640 * all buds plus one reserved LEB.
641 */
642 tmp64 = c->max_bud_bytes;
643 tmp = do_div(tmp64, c->leb_size);
644 c->max_bud_cnt = tmp64 + !!tmp;
645 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
646 tmp /= c->leb_size;
647 tmp += 1;
648 if (c->log_lebs < tmp) {
649 dbg_err("too small log %d LEBs, required min. %d LEBs",
650 c->log_lebs, tmp);
651 return -EINVAL;
652 }
653
654 /*
655 * When budgeting we assume worst-case scenarios when the pages are not
656 * be compressed and direntries are of the maximum size.
657 *
658 * Note, data, which may be stored in inodes is budgeted separately, so
659 * it is not included into 'c->inode_budget'.
660 */
661 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
662 c->inode_budget = UBIFS_INO_NODE_SZ;
663 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
664
665 /*
666 * When the amount of flash space used by buds becomes
667 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
668 * The writers are unblocked when the commit is finished. To avoid
669 * writers to be blocked UBIFS initiates background commit in advance,
670 * when number of bud bytes becomes above the limit defined below.
671 */
672 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
673
674 /*
675 * Ensure minimum journal size. All the bytes in the journal heads are
676 * considered to be used, when calculating the current journal usage.
677 * Consequently, if the journal is too small, UBIFS will treat it as
678 * always full.
679 */
680 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
681 if (c->bg_bud_bytes < tmp64)
682 c->bg_bud_bytes = tmp64;
683 if (c->max_bud_bytes < tmp64 + c->leb_size)
684 c->max_bud_bytes = tmp64 + c->leb_size;
685
686 err = ubifs_calc_lpt_geom(c);
687 if (err)
688 return err;
689
690 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
691
692 /*
693 * Calculate total amount of FS blocks. This number is not used
694 * internally because it does not make much sense for UBIFS, but it is
695 * necessary to report something for the 'statfs()' call.
696 *
7dad181b
AB
697 * Subtract the LEB reserved for GC, the LEB which is reserved for
698 * deletions, and assume only one journal head is available.
1e51764a 699 */
7dad181b
AB
700 tmp64 = c->main_lebs - 2 - c->jhead_cnt + 1;
701 tmp64 *= (uint64_t)c->leb_size - c->leb_overhead;
1e51764a
AB
702 tmp64 = ubifs_reported_space(c, tmp64);
703 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
704
705 return 0;
706}
707
708/**
709 * take_gc_lnum - reserve GC LEB.
710 * @c: UBIFS file-system description object
711 *
712 * This function ensures that the LEB reserved for garbage collection is
713 * unmapped and is marked as "taken" in lprops. We also have to set free space
714 * to LEB size and dirty space to zero, because lprops may contain out-of-date
715 * information if the file-system was un-mounted before it has been committed.
716 * This function returns zero in case of success and a negative error code in
717 * case of failure.
718 */
719static int take_gc_lnum(struct ubifs_info *c)
720{
721 int err;
722
723 if (c->gc_lnum == -1) {
724 ubifs_err("no LEB for GC");
725 return -EINVAL;
726 }
727
728 err = ubifs_leb_unmap(c, c->gc_lnum);
729 if (err)
730 return err;
731
732 /* And we have to tell lprops that this LEB is taken */
733 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
734 LPROPS_TAKEN, 0, 0);
735 return err;
736}
737
738/**
739 * alloc_wbufs - allocate write-buffers.
740 * @c: UBIFS file-system description object
741 *
742 * This helper function allocates and initializes UBIFS write-buffers. Returns
743 * zero in case of success and %-ENOMEM in case of failure.
744 */
745static int alloc_wbufs(struct ubifs_info *c)
746{
747 int i, err;
748
749 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
750 GFP_KERNEL);
751 if (!c->jheads)
752 return -ENOMEM;
753
754 /* Initialize journal heads */
755 for (i = 0; i < c->jhead_cnt; i++) {
756 INIT_LIST_HEAD(&c->jheads[i].buds_list);
757 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
758 if (err)
759 return err;
760
761 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
762 c->jheads[i].wbuf.jhead = i;
763 }
764
765 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
766 /*
767 * Garbage Collector head likely contains long-term data and
768 * does not need to be synchronized by timer.
769 */
770 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
771 c->jheads[GCHD].wbuf.timeout = 0;
772
773 return 0;
774}
775
776/**
777 * free_wbufs - free write-buffers.
778 * @c: UBIFS file-system description object
779 */
780static void free_wbufs(struct ubifs_info *c)
781{
782 int i;
783
784 if (c->jheads) {
785 for (i = 0; i < c->jhead_cnt; i++) {
786 kfree(c->jheads[i].wbuf.buf);
787 kfree(c->jheads[i].wbuf.inodes);
788 }
789 kfree(c->jheads);
790 c->jheads = NULL;
791 }
792}
793
794/**
795 * free_orphans - free orphans.
796 * @c: UBIFS file-system description object
797 */
798static void free_orphans(struct ubifs_info *c)
799{
800 struct ubifs_orphan *orph;
801
802 while (c->orph_dnext) {
803 orph = c->orph_dnext;
804 c->orph_dnext = orph->dnext;
805 list_del(&orph->list);
806 kfree(orph);
807 }
808
809 while (!list_empty(&c->orph_list)) {
810 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
811 list_del(&orph->list);
812 kfree(orph);
813 dbg_err("orphan list not empty at unmount");
814 }
815
816 vfree(c->orph_buf);
817 c->orph_buf = NULL;
818}
819
820/**
821 * free_buds - free per-bud objects.
822 * @c: UBIFS file-system description object
823 */
824static void free_buds(struct ubifs_info *c)
825{
826 struct rb_node *this = c->buds.rb_node;
827 struct ubifs_bud *bud;
828
829 while (this) {
830 if (this->rb_left)
831 this = this->rb_left;
832 else if (this->rb_right)
833 this = this->rb_right;
834 else {
835 bud = rb_entry(this, struct ubifs_bud, rb);
836 this = rb_parent(this);
837 if (this) {
838 if (this->rb_left == &bud->rb)
839 this->rb_left = NULL;
840 else
841 this->rb_right = NULL;
842 }
843 kfree(bud);
844 }
845 }
846}
847
848/**
849 * check_volume_empty - check if the UBI volume is empty.
850 * @c: UBIFS file-system description object
851 *
852 * This function checks if the UBIFS volume is empty by looking if its LEBs are
853 * mapped or not. The result of checking is stored in the @c->empty variable.
854 * Returns zero in case of success and a negative error code in case of
855 * failure.
856 */
857static int check_volume_empty(struct ubifs_info *c)
858{
859 int lnum, err;
860
861 c->empty = 1;
862 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
863 err = ubi_is_mapped(c->ubi, lnum);
864 if (unlikely(err < 0))
865 return err;
866 if (err == 1) {
867 c->empty = 0;
868 break;
869 }
870
871 cond_resched();
872 }
873
874 return 0;
875}
876
877/*
878 * UBIFS mount options.
879 *
880 * Opt_fast_unmount: do not run a journal commit before un-mounting
881 * Opt_norm_unmount: run a journal commit before un-mounting
4793e7c5
AH
882 * Opt_bulk_read: enable bulk-reads
883 * Opt_no_bulk_read: disable bulk-reads
2953e73f
AH
884 * Opt_chk_data_crc: check CRCs when reading data nodes
885 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
553dea4d 886 * Opt_override_compr: override default compressor
1e51764a
AB
887 * Opt_err: just end of array marker
888 */
889enum {
890 Opt_fast_unmount,
891 Opt_norm_unmount,
4793e7c5
AH
892 Opt_bulk_read,
893 Opt_no_bulk_read,
2953e73f
AH
894 Opt_chk_data_crc,
895 Opt_no_chk_data_crc,
553dea4d 896 Opt_override_compr,
1e51764a
AB
897 Opt_err,
898};
899
a447c093 900static const match_table_t tokens = {
1e51764a
AB
901 {Opt_fast_unmount, "fast_unmount"},
902 {Opt_norm_unmount, "norm_unmount"},
4793e7c5
AH
903 {Opt_bulk_read, "bulk_read"},
904 {Opt_no_bulk_read, "no_bulk_read"},
2953e73f
AH
905 {Opt_chk_data_crc, "chk_data_crc"},
906 {Opt_no_chk_data_crc, "no_chk_data_crc"},
553dea4d 907 {Opt_override_compr, "compr=%s"},
1e51764a
AB
908 {Opt_err, NULL},
909};
910
911/**
912 * ubifs_parse_options - parse mount parameters.
913 * @c: UBIFS file-system description object
914 * @options: parameters to parse
915 * @is_remount: non-zero if this is FS re-mount
916 *
917 * This function parses UBIFS mount options and returns zero in case success
918 * and a negative error code in case of failure.
919 */
920static int ubifs_parse_options(struct ubifs_info *c, char *options,
921 int is_remount)
922{
923 char *p;
924 substring_t args[MAX_OPT_ARGS];
925
926 if (!options)
927 return 0;
928
929 while ((p = strsep(&options, ","))) {
930 int token;
931
932 if (!*p)
933 continue;
934
935 token = match_token(p, tokens, args);
936 switch (token) {
937 case Opt_fast_unmount:
938 c->mount_opts.unmount_mode = 2;
939 c->fast_unmount = 1;
940 break;
941 case Opt_norm_unmount:
942 c->mount_opts.unmount_mode = 1;
943 c->fast_unmount = 0;
944 break;
4793e7c5
AH
945 case Opt_bulk_read:
946 c->mount_opts.bulk_read = 2;
947 c->bulk_read = 1;
948 break;
949 case Opt_no_bulk_read:
950 c->mount_opts.bulk_read = 1;
951 c->bulk_read = 0;
952 break;
2953e73f
AH
953 case Opt_chk_data_crc:
954 c->mount_opts.chk_data_crc = 2;
955 c->no_chk_data_crc = 0;
956 break;
957 case Opt_no_chk_data_crc:
958 c->mount_opts.chk_data_crc = 1;
959 c->no_chk_data_crc = 1;
960 break;
553dea4d
AB
961 case Opt_override_compr:
962 {
963 char *name = match_strdup(&args[0]);
964
965 if (!name)
966 return -ENOMEM;
967 if (!strcmp(name, "none"))
968 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
969 else if (!strcmp(name, "lzo"))
970 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
971 else if (!strcmp(name, "zlib"))
972 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
973 else {
974 ubifs_err("unknown compressor \"%s\"", name);
975 kfree(name);
976 return -EINVAL;
977 }
978 kfree(name);
979 c->mount_opts.override_compr = 1;
980 c->default_compr = c->mount_opts.compr_type;
981 break;
982 }
1e51764a
AB
983 default:
984 ubifs_err("unrecognized mount option \"%s\" "
985 "or missing value", p);
986 return -EINVAL;
987 }
988 }
989
990 return 0;
991}
992
993/**
994 * destroy_journal - destroy journal data structures.
995 * @c: UBIFS file-system description object
996 *
997 * This function destroys journal data structures including those that may have
998 * been created by recovery functions.
999 */
1000static void destroy_journal(struct ubifs_info *c)
1001{
1002 while (!list_empty(&c->unclean_leb_list)) {
1003 struct ubifs_unclean_leb *ucleb;
1004
1005 ucleb = list_entry(c->unclean_leb_list.next,
1006 struct ubifs_unclean_leb, list);
1007 list_del(&ucleb->list);
1008 kfree(ucleb);
1009 }
1010 while (!list_empty(&c->old_buds)) {
1011 struct ubifs_bud *bud;
1012
1013 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1014 list_del(&bud->list);
1015 kfree(bud);
1016 }
1017 ubifs_destroy_idx_gc(c);
1018 ubifs_destroy_size_tree(c);
1019 ubifs_tnc_close(c);
1020 free_buds(c);
1021}
1022
3477d204
AB
1023/**
1024 * bu_init - initialize bulk-read information.
1025 * @c: UBIFS file-system description object
1026 */
1027static void bu_init(struct ubifs_info *c)
1028{
1029 ubifs_assert(c->bulk_read == 1);
1030
1031 if (c->bu.buf)
1032 return; /* Already initialized */
1033
1034again:
1035 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1036 if (!c->bu.buf) {
1037 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1038 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1039 goto again;
1040 }
1041
1042 /* Just disable bulk-read */
1043 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1044 "disabling it", c->max_bu_buf_len);
1045 c->mount_opts.bulk_read = 1;
1046 c->bulk_read = 0;
1047 return;
1048 }
1049}
1050
1e51764a
AB
1051/**
1052 * mount_ubifs - mount UBIFS file-system.
1053 * @c: UBIFS file-system description object
1054 *
1055 * This function mounts UBIFS file system. Returns zero in case of success and
1056 * a negative error code in case of failure.
1057 *
1058 * Note, the function does not de-allocate resources it it fails half way
1059 * through, and the caller has to do this instead.
1060 */
1061static int mount_ubifs(struct ubifs_info *c)
1062{
1063 struct super_block *sb = c->vfs_sb;
1064 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1065 long long x;
1066 size_t sz;
1067
1068 err = init_constants_early(c);
1069 if (err)
1070 return err;
1071
17c2f9f8
AB
1072 err = ubifs_debugging_init(c);
1073 if (err)
1074 return err;
1e51764a
AB
1075
1076 err = check_volume_empty(c);
1077 if (err)
1078 goto out_free;
1079
1080 if (c->empty && (mounted_read_only || c->ro_media)) {
1081 /*
1082 * This UBI volume is empty, and read-only, or the file system
1083 * is mounted read-only - we cannot format it.
1084 */
1085 ubifs_err("can't format empty UBI volume: read-only %s",
1086 c->ro_media ? "UBI volume" : "mount");
1087 err = -EROFS;
1088 goto out_free;
1089 }
1090
1091 if (c->ro_media && !mounted_read_only) {
1092 ubifs_err("cannot mount read-write - read-only media");
1093 err = -EROFS;
1094 goto out_free;
1095 }
1096
1097 /*
1098 * The requirement for the buffer is that it should fit indexing B-tree
1099 * height amount of integers. We assume the height if the TNC tree will
1100 * never exceed 64.
1101 */
1102 err = -ENOMEM;
1103 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1104 if (!c->bottom_up_buf)
1105 goto out_free;
1106
1107 c->sbuf = vmalloc(c->leb_size);
1108 if (!c->sbuf)
1109 goto out_free;
1110
1111 if (!mounted_read_only) {
1112 c->ileb_buf = vmalloc(c->leb_size);
1113 if (!c->ileb_buf)
1114 goto out_free;
1115 }
1116
3477d204
AB
1117 if (c->bulk_read == 1)
1118 bu_init(c);
1119
1120 /*
1121 * We have to check all CRCs, even for data nodes, when we mount the FS
1122 * (specifically, when we are replaying).
1123 */
2953e73f
AH
1124 c->always_chk_crc = 1;
1125
1e51764a
AB
1126 err = ubifs_read_superblock(c);
1127 if (err)
1128 goto out_free;
1129
1130 /*
553dea4d
AB
1131 * Make sure the compressor which is set as default in the superblock
1132 * or overriden by mount options is actually compiled in.
1e51764a
AB
1133 */
1134 if (!ubifs_compr_present(c->default_compr)) {
553dea4d
AB
1135 ubifs_err("'compressor \"%s\" is not compiled in",
1136 ubifs_compr_name(c->default_compr));
1137 goto out_free;
1e51764a
AB
1138 }
1139
1e51764a
AB
1140 err = init_constants_late(c);
1141 if (err)
17c2f9f8 1142 goto out_free;
1e51764a
AB
1143
1144 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1145 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1146 c->cbuf = kmalloc(sz, GFP_NOFS);
1147 if (!c->cbuf) {
1148 err = -ENOMEM;
17c2f9f8 1149 goto out_free;
1e51764a
AB
1150 }
1151
0855f310 1152 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1e51764a
AB
1153 if (!mounted_read_only) {
1154 err = alloc_wbufs(c);
1155 if (err)
1156 goto out_cbuf;
1157
1158 /* Create background thread */
1e51764a 1159 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1e51764a
AB
1160 if (IS_ERR(c->bgt)) {
1161 err = PTR_ERR(c->bgt);
1162 c->bgt = NULL;
1163 ubifs_err("cannot spawn \"%s\", error %d",
1164 c->bgt_name, err);
1165 goto out_wbufs;
1166 }
1167 wake_up_process(c->bgt);
1168 }
1169
1170 err = ubifs_read_master(c);
1171 if (err)
1172 goto out_master;
1173
1174 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1175 ubifs_msg("recovery needed");
1176 c->need_recovery = 1;
1177 if (!mounted_read_only) {
1178 err = ubifs_recover_inl_heads(c, c->sbuf);
1179 if (err)
1180 goto out_master;
1181 }
1182 } else if (!mounted_read_only) {
1183 /*
1184 * Set the "dirty" flag so that if we reboot uncleanly we
1185 * will notice this immediately on the next mount.
1186 */
1187 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1188 err = ubifs_write_master(c);
1189 if (err)
1190 goto out_master;
1191 }
1192
1193 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1194 if (err)
1195 goto out_lpt;
1196
1197 err = dbg_check_idx_size(c, c->old_idx_sz);
1198 if (err)
1199 goto out_lpt;
1200
1201 err = ubifs_replay_journal(c);
1202 if (err)
1203 goto out_journal;
1204
1205 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1206 if (err)
1207 goto out_orphans;
1208
1209 if (!mounted_read_only) {
1210 int lnum;
1211
1212 /* Check for enough free space */
1213 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1214 ubifs_err("insufficient available space");
1215 err = -EINVAL;
1216 goto out_orphans;
1217 }
1218
1219 /* Check for enough log space */
1220 lnum = c->lhead_lnum + 1;
1221 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1222 lnum = UBIFS_LOG_LNUM;
1223 if (lnum == c->ltail_lnum) {
1224 err = ubifs_consolidate_log(c);
1225 if (err)
1226 goto out_orphans;
1227 }
1228
1229 if (c->need_recovery) {
1230 err = ubifs_recover_size(c);
1231 if (err)
1232 goto out_orphans;
1233 err = ubifs_rcvry_gc_commit(c);
1234 } else
1235 err = take_gc_lnum(c);
1236 if (err)
1237 goto out_orphans;
1238
1239 err = dbg_check_lprops(c);
1240 if (err)
1241 goto out_orphans;
1242 } else if (c->need_recovery) {
1243 err = ubifs_recover_size(c);
1244 if (err)
1245 goto out_orphans;
1246 }
1247
1248 spin_lock(&ubifs_infos_lock);
1249 list_add_tail(&c->infos_list, &ubifs_infos);
1250 spin_unlock(&ubifs_infos_lock);
1251
1252 if (c->need_recovery) {
1253 if (mounted_read_only)
1254 ubifs_msg("recovery deferred");
1255 else {
1256 c->need_recovery = 0;
1257 ubifs_msg("recovery completed");
1258 }
1259 }
1260
552ff317
AB
1261 err = dbg_debugfs_init_fs(c);
1262 if (err)
1263 goto out_infos;
1264
1e51764a
AB
1265 err = dbg_check_filesystem(c);
1266 if (err)
1267 goto out_infos;
1268
2953e73f
AH
1269 c->always_chk_crc = 0;
1270
ce769caa
AB
1271 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1272 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1e51764a
AB
1273 if (mounted_read_only)
1274 ubifs_msg("mounted read-only");
1275 x = (long long)c->main_lebs * c->leb_size;
948cfb21
AB
1276 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1277 "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1e51764a 1278 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
948cfb21
AB
1279 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1280 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1281 ubifs_msg("media format: %d (latest is %d)",
1e51764a 1282 c->fmt_version, UBIFS_FORMAT_VERSION);
948cfb21 1283 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
fae7fb29 1284 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
948cfb21 1285 c->report_rp_size, c->report_rp_size >> 10);
1e51764a
AB
1286
1287 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1288 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1289 dbg_msg("LEB size: %d bytes (%d KiB)",
948cfb21 1290 c->leb_size, c->leb_size >> 10);
1e51764a
AB
1291 dbg_msg("data journal heads: %d",
1292 c->jhead_cnt - NONDATA_JHEADS_CNT);
1293 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1294 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1295 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1296 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1297 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1298 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1299 dbg_msg("fast unmount: %d", c->fast_unmount);
1300 dbg_msg("big_lpt %d", c->big_lpt);
1301 dbg_msg("log LEBs: %d (%d - %d)",
1302 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1303 dbg_msg("LPT area LEBs: %d (%d - %d)",
1304 c->lpt_lebs, c->lpt_first, c->lpt_last);
1305 dbg_msg("orphan area LEBs: %d (%d - %d)",
1306 c->orph_lebs, c->orph_first, c->orph_last);
1307 dbg_msg("main area LEBs: %d (%d - %d)",
1308 c->main_lebs, c->main_first, c->leb_cnt - 1);
1309 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1310 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1311 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1312 dbg_msg("key hash type: %d", c->key_hash_type);
1313 dbg_msg("tree fanout: %d", c->fanout);
1314 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1315 dbg_msg("first main LEB: %d", c->main_first);
1316 dbg_msg("dead watermark: %d", c->dead_wm);
1317 dbg_msg("dark watermark: %d", c->dark_wm);
1318 x = (long long)c->main_lebs * c->dark_wm;
1319 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1320 x, x >> 10, x >> 20);
1321 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1322 c->max_bud_bytes, c->max_bud_bytes >> 10,
1323 c->max_bud_bytes >> 20);
1324 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1325 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1326 c->bg_bud_bytes >> 20);
1327 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1328 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1329 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1330 dbg_msg("commit number: %llu", c->cmt_no);
1331
1332 return 0;
1333
1334out_infos:
1335 spin_lock(&ubifs_infos_lock);
1336 list_del(&c->infos_list);
1337 spin_unlock(&ubifs_infos_lock);
1338out_orphans:
1339 free_orphans(c);
1340out_journal:
1341 destroy_journal(c);
1342out_lpt:
1343 ubifs_lpt_free(c, 0);
1344out_master:
1345 kfree(c->mst_node);
1346 kfree(c->rcvrd_mst_node);
1347 if (c->bgt)
1348 kthread_stop(c->bgt);
1349out_wbufs:
1350 free_wbufs(c);
1351out_cbuf:
1352 kfree(c->cbuf);
1e51764a 1353out_free:
3477d204 1354 kfree(c->bu.buf);
1e51764a
AB
1355 vfree(c->ileb_buf);
1356 vfree(c->sbuf);
1357 kfree(c->bottom_up_buf);
17c2f9f8 1358 ubifs_debugging_exit(c);
1e51764a
AB
1359 return err;
1360}
1361
1362/**
1363 * ubifs_umount - un-mount UBIFS file-system.
1364 * @c: UBIFS file-system description object
1365 *
1366 * Note, this function is called to free allocated resourced when un-mounting,
1367 * as well as free resources when an error occurred while we were half way
1368 * through mounting (error path cleanup function). So it has to make sure the
1369 * resource was actually allocated before freeing it.
1370 */
1371static void ubifs_umount(struct ubifs_info *c)
1372{
1373 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1374 c->vi.vol_id);
1375
552ff317 1376 dbg_debugfs_exit_fs(c);
1e51764a
AB
1377 spin_lock(&ubifs_infos_lock);
1378 list_del(&c->infos_list);
1379 spin_unlock(&ubifs_infos_lock);
1380
1381 if (c->bgt)
1382 kthread_stop(c->bgt);
1383
1384 destroy_journal(c);
1385 free_wbufs(c);
1386 free_orphans(c);
1387 ubifs_lpt_free(c, 0);
1388
1389 kfree(c->cbuf);
1390 kfree(c->rcvrd_mst_node);
1391 kfree(c->mst_node);
3477d204
AB
1392 kfree(c->bu.buf);
1393 vfree(c->ileb_buf);
1e51764a
AB
1394 vfree(c->sbuf);
1395 kfree(c->bottom_up_buf);
17c2f9f8 1396 ubifs_debugging_exit(c);
1e51764a
AB
1397}
1398
1399/**
1400 * ubifs_remount_rw - re-mount in read-write mode.
1401 * @c: UBIFS file-system description object
1402 *
1403 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1404 * mode. This function allocates the needed resources and re-mounts UBIFS in
1405 * read-write mode.
1406 */
1407static int ubifs_remount_rw(struct ubifs_info *c)
1408{
1409 int err, lnum;
1410
1411 if (c->ro_media)
1412 return -EINVAL;
1413
1414 mutex_lock(&c->umount_mutex);
1415 c->remounting_rw = 1;
2953e73f 1416 c->always_chk_crc = 1;
1e51764a
AB
1417
1418 /* Check for enough free space */
1419 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1420 ubifs_err("insufficient available space");
1421 err = -EINVAL;
1422 goto out;
1423 }
1424
1425 if (c->old_leb_cnt != c->leb_cnt) {
1426 struct ubifs_sb_node *sup;
1427
1428 sup = ubifs_read_sb_node(c);
1429 if (IS_ERR(sup)) {
1430 err = PTR_ERR(sup);
1431 goto out;
1432 }
1433 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1434 err = ubifs_write_sb_node(c, sup);
1435 if (err)
1436 goto out;
1437 }
1438
1439 if (c->need_recovery) {
1440 ubifs_msg("completing deferred recovery");
1441 err = ubifs_write_rcvrd_mst_node(c);
1442 if (err)
1443 goto out;
1444 err = ubifs_recover_size(c);
1445 if (err)
1446 goto out;
1447 err = ubifs_clean_lebs(c, c->sbuf);
1448 if (err)
1449 goto out;
1450 err = ubifs_recover_inl_heads(c, c->sbuf);
1451 if (err)
1452 goto out;
1453 }
1454
1455 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1456 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1457 err = ubifs_write_master(c);
1458 if (err)
1459 goto out;
1460 }
1461
1462 c->ileb_buf = vmalloc(c->leb_size);
1463 if (!c->ileb_buf) {
1464 err = -ENOMEM;
1465 goto out;
1466 }
1467
1468 err = ubifs_lpt_init(c, 0, 1);
1469 if (err)
1470 goto out;
1471
1472 err = alloc_wbufs(c);
1473 if (err)
1474 goto out;
1475
1476 ubifs_create_buds_lists(c);
1477
1478 /* Create background thread */
1479 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1e51764a
AB
1480 if (IS_ERR(c->bgt)) {
1481 err = PTR_ERR(c->bgt);
1482 c->bgt = NULL;
1483 ubifs_err("cannot spawn \"%s\", error %d",
1484 c->bgt_name, err);
2953e73f 1485 goto out;
1e51764a
AB
1486 }
1487 wake_up_process(c->bgt);
1488
1489 c->orph_buf = vmalloc(c->leb_size);
2953e73f
AH
1490 if (!c->orph_buf) {
1491 err = -ENOMEM;
1492 goto out;
1493 }
1e51764a
AB
1494
1495 /* Check for enough log space */
1496 lnum = c->lhead_lnum + 1;
1497 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1498 lnum = UBIFS_LOG_LNUM;
1499 if (lnum == c->ltail_lnum) {
1500 err = ubifs_consolidate_log(c);
1501 if (err)
1502 goto out;
1503 }
1504
1505 if (c->need_recovery)
1506 err = ubifs_rcvry_gc_commit(c);
1507 else
1508 err = take_gc_lnum(c);
1509 if (err)
1510 goto out;
1511
1512 if (c->need_recovery) {
1513 c->need_recovery = 0;
1514 ubifs_msg("deferred recovery completed");
1515 }
1516
1517 dbg_gen("re-mounted read-write");
1518 c->vfs_sb->s_flags &= ~MS_RDONLY;
1519 c->remounting_rw = 0;
2953e73f 1520 c->always_chk_crc = 0;
1e51764a
AB
1521 mutex_unlock(&c->umount_mutex);
1522 return 0;
1523
1524out:
1525 vfree(c->orph_buf);
1526 c->orph_buf = NULL;
1527 if (c->bgt) {
1528 kthread_stop(c->bgt);
1529 c->bgt = NULL;
1530 }
1531 free_wbufs(c);
1532 vfree(c->ileb_buf);
1533 c->ileb_buf = NULL;
1534 ubifs_lpt_free(c, 1);
1535 c->remounting_rw = 0;
2953e73f 1536 c->always_chk_crc = 0;
1e51764a
AB
1537 mutex_unlock(&c->umount_mutex);
1538 return err;
1539}
1540
1541/**
1542 * commit_on_unmount - commit the journal when un-mounting.
1543 * @c: UBIFS file-system description object
1544 *
af2eb563
AB
1545 * This function is called during un-mounting and re-mounting, and it commits
1546 * the journal unless the "fast unmount" mode is enabled. It also avoids
1547 * committing the journal if it contains too few data.
1e51764a
AB
1548 */
1549static void commit_on_unmount(struct ubifs_info *c)
1550{
1551 if (!c->fast_unmount) {
1552 long long bud_bytes;
1553
1554 spin_lock(&c->buds_lock);
1555 bud_bytes = c->bud_bytes;
1556 spin_unlock(&c->buds_lock);
1557 if (bud_bytes > c->leb_size)
1558 ubifs_run_commit(c);
1559 }
1560}
1561
1562/**
1563 * ubifs_remount_ro - re-mount in read-only mode.
1564 * @c: UBIFS file-system description object
1565 *
1566 * We rely on VFS to have stopped writing. Possibly the background thread could
1567 * be running a commit, however kthread_stop will wait in that case.
1568 */
1569static void ubifs_remount_ro(struct ubifs_info *c)
1570{
1571 int i, err;
1572
1573 ubifs_assert(!c->need_recovery);
1574 commit_on_unmount(c);
1575
1576 mutex_lock(&c->umount_mutex);
1577 if (c->bgt) {
1578 kthread_stop(c->bgt);
1579 c->bgt = NULL;
1580 }
1581
1582 for (i = 0; i < c->jhead_cnt; i++) {
1583 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1584 del_timer_sync(&c->jheads[i].wbuf.timer);
1585 }
1586
1587 if (!c->ro_media) {
1588 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1589 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1590 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1591 err = ubifs_write_master(c);
1592 if (err)
1593 ubifs_ro_mode(c, err);
1594 }
1595
1596 ubifs_destroy_idx_gc(c);
1597 free_wbufs(c);
1598 vfree(c->orph_buf);
1599 c->orph_buf = NULL;
1600 vfree(c->ileb_buf);
1601 c->ileb_buf = NULL;
1602 ubifs_lpt_free(c, 1);
1603 mutex_unlock(&c->umount_mutex);
1604}
1605
1606static void ubifs_put_super(struct super_block *sb)
1607{
1608 int i;
1609 struct ubifs_info *c = sb->s_fs_info;
1610
1611 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1612 c->vi.vol_id);
1613 /*
1614 * The following asserts are only valid if there has not been a failure
1615 * of the media. For example, there will be dirty inodes if we failed
1616 * to write them back because of I/O errors.
1617 */
1618 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1619 ubifs_assert(c->budg_idx_growth == 0);
7d32c2bb 1620 ubifs_assert(c->budg_dd_growth == 0);
1e51764a
AB
1621 ubifs_assert(c->budg_data_growth == 0);
1622
1623 /*
1624 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1625 * and file system un-mount. Namely, it prevents the shrinker from
1626 * picking this superblock for shrinking - it will be just skipped if
1627 * the mutex is locked.
1628 */
1629 mutex_lock(&c->umount_mutex);
1630 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1631 /*
1632 * First of all kill the background thread to make sure it does
1633 * not interfere with un-mounting and freeing resources.
1634 */
1635 if (c->bgt) {
1636 kthread_stop(c->bgt);
1637 c->bgt = NULL;
1638 }
1639
1640 /* Synchronize write-buffers */
1641 if (c->jheads)
1642 for (i = 0; i < c->jhead_cnt; i++) {
1643 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1644 del_timer_sync(&c->jheads[i].wbuf.timer);
1645 }
1646
1647 /*
1648 * On fatal errors c->ro_media is set to 1, in which case we do
1649 * not write the master node.
1650 */
1651 if (!c->ro_media) {
1652 /*
1653 * We are being cleanly unmounted which means the
1654 * orphans were killed - indicate this in the master
1655 * node. Also save the reserved GC LEB number.
1656 */
1657 int err;
1658
1659 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1660 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1661 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1662 err = ubifs_write_master(c);
1663 if (err)
1664 /*
1665 * Recovery will attempt to fix the master area
1666 * next mount, so we just print a message and
1667 * continue to unmount normally.
1668 */
1669 ubifs_err("failed to write master node, "
1670 "error %d", err);
1671 }
1672 }
1673
1674 ubifs_umount(c);
1675 bdi_destroy(&c->bdi);
1676 ubi_close_volume(c->ubi);
1677 mutex_unlock(&c->umount_mutex);
1678 kfree(c);
1679}
1680
1681static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1682{
1683 int err;
1684 struct ubifs_info *c = sb->s_fs_info;
1685
1686 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1687
1688 err = ubifs_parse_options(c, data, 1);
1689 if (err) {
1690 ubifs_err("invalid or unknown remount parameter");
1691 return err;
1692 }
3477d204 1693
1e51764a
AB
1694 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1695 err = ubifs_remount_rw(c);
1696 if (err)
1697 return err;
1698 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1699 ubifs_remount_ro(c);
1700
3477d204
AB
1701 if (c->bulk_read == 1)
1702 bu_init(c);
1703 else {
1704 dbg_gen("disable bulk-read");
1705 kfree(c->bu.buf);
1706 c->bu.buf = NULL;
1707 }
1708
1e51764a
AB
1709 return 0;
1710}
1711
1712struct super_operations ubifs_super_operations = {
1713 .alloc_inode = ubifs_alloc_inode,
1714 .destroy_inode = ubifs_destroy_inode,
1715 .put_super = ubifs_put_super,
1716 .write_inode = ubifs_write_inode,
1717 .delete_inode = ubifs_delete_inode,
1718 .statfs = ubifs_statfs,
1719 .dirty_inode = ubifs_dirty_inode,
1720 .remount_fs = ubifs_remount_fs,
1721 .show_options = ubifs_show_options,
1722 .sync_fs = ubifs_sync_fs,
1723};
1724
1725/**
1726 * open_ubi - parse UBI device name string and open the UBI device.
1727 * @name: UBI volume name
1728 * @mode: UBI volume open mode
1729 *
1730 * There are several ways to specify UBI volumes when mounting UBIFS:
1731 * o ubiX_Y - UBI device number X, volume Y;
1732 * o ubiY - UBI device number 0, volume Y;
1733 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1734 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1735 *
1736 * Alternative '!' separator may be used instead of ':' (because some shells
1737 * like busybox may interpret ':' as an NFS host name separator). This function
1738 * returns ubi volume object in case of success and a negative error code in
1739 * case of failure.
1740 */
1741static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1742{
1743 int dev, vol;
1744 char *endptr;
1745
1746 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1747 return ERR_PTR(-EINVAL);
1748
1749 /* ubi:NAME method */
1750 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1751 return ubi_open_volume_nm(0, name + 4, mode);
1752
1753 if (!isdigit(name[3]))
1754 return ERR_PTR(-EINVAL);
1755
1756 dev = simple_strtoul(name + 3, &endptr, 0);
1757
1758 /* ubiY method */
1759 if (*endptr == '\0')
1760 return ubi_open_volume(0, dev, mode);
1761
1762 /* ubiX_Y method */
1763 if (*endptr == '_' && isdigit(endptr[1])) {
1764 vol = simple_strtoul(endptr + 1, &endptr, 0);
1765 if (*endptr != '\0')
1766 return ERR_PTR(-EINVAL);
1767 return ubi_open_volume(dev, vol, mode);
1768 }
1769
1770 /* ubiX:NAME method */
1771 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1772 return ubi_open_volume_nm(dev, ++endptr, mode);
1773
1774 return ERR_PTR(-EINVAL);
1775}
1776
1777static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1778{
1779 struct ubi_volume_desc *ubi = sb->s_fs_info;
1780 struct ubifs_info *c;
1781 struct inode *root;
1782 int err;
1783
1784 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1785 if (!c)
1786 return -ENOMEM;
1787
1788 spin_lock_init(&c->cnt_lock);
1789 spin_lock_init(&c->cs_lock);
1790 spin_lock_init(&c->buds_lock);
1791 spin_lock_init(&c->space_lock);
1792 spin_lock_init(&c->orphan_lock);
1793 init_rwsem(&c->commit_sem);
1794 mutex_init(&c->lp_mutex);
1795 mutex_init(&c->tnc_mutex);
1796 mutex_init(&c->log_mutex);
1797 mutex_init(&c->mst_mutex);
1798 mutex_init(&c->umount_mutex);
3477d204 1799 mutex_init(&c->bu_mutex);
1e51764a
AB
1800 init_waitqueue_head(&c->cmt_wq);
1801 c->buds = RB_ROOT;
1802 c->old_idx = RB_ROOT;
1803 c->size_tree = RB_ROOT;
1804 c->orph_tree = RB_ROOT;
1805 INIT_LIST_HEAD(&c->infos_list);
1806 INIT_LIST_HEAD(&c->idx_gc);
1807 INIT_LIST_HEAD(&c->replay_list);
1808 INIT_LIST_HEAD(&c->replay_buds);
1809 INIT_LIST_HEAD(&c->uncat_list);
1810 INIT_LIST_HEAD(&c->empty_list);
1811 INIT_LIST_HEAD(&c->freeable_list);
1812 INIT_LIST_HEAD(&c->frdi_idx_list);
1813 INIT_LIST_HEAD(&c->unclean_leb_list);
1814 INIT_LIST_HEAD(&c->old_buds);
1815 INIT_LIST_HEAD(&c->orph_list);
1816 INIT_LIST_HEAD(&c->orph_new);
1817
1818 c->highest_inum = UBIFS_FIRST_INO;
1e51764a
AB
1819 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1820
1821 ubi_get_volume_info(ubi, &c->vi);
1822 ubi_get_device_info(c->vi.ubi_num, &c->di);
1823
1824 /* Re-open the UBI device in read-write mode */
1825 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1826 if (IS_ERR(c->ubi)) {
1827 err = PTR_ERR(c->ubi);
1828 goto out_free;
1829 }
1830
1831 /*
0a883a05 1832 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1e51764a
AB
1833 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1834 * which means the user would have to wait not just for their own I/O
0a883a05 1835 * but the read-ahead I/O as well i.e. completely pointless.
1e51764a
AB
1836 *
1837 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1838 */
1839 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1840 c->bdi.unplug_io_fn = default_unplug_io_fn;
1841 err = bdi_init(&c->bdi);
1842 if (err)
1843 goto out_close;
1844
1845 err = ubifs_parse_options(c, data, 0);
1846 if (err)
1847 goto out_bdi;
1848
1849 c->vfs_sb = sb;
1850
1851 sb->s_fs_info = c;
1852 sb->s_magic = UBIFS_SUPER_MAGIC;
1853 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1854 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1855 sb->s_dev = c->vi.cdev;
1856 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1857 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1858 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1859 sb->s_op = &ubifs_super_operations;
1860
1861 mutex_lock(&c->umount_mutex);
1862 err = mount_ubifs(c);
1863 if (err) {
1864 ubifs_assert(err < 0);
1865 goto out_unlock;
1866 }
1867
1868 /* Read the root inode */
1869 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1870 if (IS_ERR(root)) {
1871 err = PTR_ERR(root);
1872 goto out_umount;
1873 }
1874
1875 sb->s_root = d_alloc_root(root);
1876 if (!sb->s_root)
1877 goto out_iput;
1878
1879 mutex_unlock(&c->umount_mutex);
1e51764a
AB
1880 return 0;
1881
1882out_iput:
1883 iput(root);
1884out_umount:
1885 ubifs_umount(c);
1886out_unlock:
1887 mutex_unlock(&c->umount_mutex);
1888out_bdi:
1889 bdi_destroy(&c->bdi);
1890out_close:
1891 ubi_close_volume(c->ubi);
1892out_free:
1893 kfree(c);
1894 return err;
1895}
1896
1897static int sb_test(struct super_block *sb, void *data)
1898{
1899 dev_t *dev = data;
1900
1901 return sb->s_dev == *dev;
1902}
1903
1904static int sb_set(struct super_block *sb, void *data)
1905{
1906 dev_t *dev = data;
1907
1908 sb->s_dev = *dev;
1909 return 0;
1910}
1911
1912static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1913 const char *name, void *data, struct vfsmount *mnt)
1914{
1915 struct ubi_volume_desc *ubi;
1916 struct ubi_volume_info vi;
1917 struct super_block *sb;
1918 int err;
1919
1920 dbg_gen("name %s, flags %#x", name, flags);
1921
1922 /*
1923 * Get UBI device number and volume ID. Mount it read-only so far
1924 * because this might be a new mount point, and UBI allows only one
1925 * read-write user at a time.
1926 */
1927 ubi = open_ubi(name, UBI_READONLY);
1928 if (IS_ERR(ubi)) {
1929 ubifs_err("cannot open \"%s\", error %d",
1930 name, (int)PTR_ERR(ubi));
1931 return PTR_ERR(ubi);
1932 }
1933 ubi_get_volume_info(ubi, &vi);
1934
1935 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1936
1937 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1938 if (IS_ERR(sb)) {
1939 err = PTR_ERR(sb);
1940 goto out_close;
1941 }
1942
1943 if (sb->s_root) {
1944 /* A new mount point for already mounted UBIFS */
1945 dbg_gen("this ubi volume is already mounted");
1946 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1947 err = -EBUSY;
1948 goto out_deact;
1949 }
1950 } else {
1951 sb->s_flags = flags;
1952 /*
1953 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1954 * replaced by 'c'.
1955 */
1956 sb->s_fs_info = ubi;
1957 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1958 if (err)
1959 goto out_deact;
1960 /* We do not support atime */
1961 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1962 }
1963
1964 /* 'fill_super()' opens ubi again so we must close it here */
1965 ubi_close_volume(ubi);
1966
1967 return simple_set_mnt(mnt, sb);
1968
1969out_deact:
1970 up_write(&sb->s_umount);
1971 deactivate_super(sb);
1972out_close:
1973 ubi_close_volume(ubi);
1974 return err;
1975}
1976
1977static void ubifs_kill_sb(struct super_block *sb)
1978{
1979 struct ubifs_info *c = sb->s_fs_info;
1980
1981 /*
1982 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1983 * in order to be outside BKL.
1984 */
1985 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1986 commit_on_unmount(c);
1987 /* The un-mount routine is actually done in put_super() */
1988 generic_shutdown_super(sb);
1989}
1990
1991static struct file_system_type ubifs_fs_type = {
1992 .name = "ubifs",
1993 .owner = THIS_MODULE,
1994 .get_sb = ubifs_get_sb,
1995 .kill_sb = ubifs_kill_sb
1996};
1997
1998/*
1999 * Inode slab cache constructor.
2000 */
51cc5068 2001static void inode_slab_ctor(void *obj)
1e51764a
AB
2002{
2003 struct ubifs_inode *ui = obj;
2004 inode_init_once(&ui->vfs_inode);
2005}
2006
2007static int __init ubifs_init(void)
2008{
2009 int err;
2010
2011 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2012
2013 /* Make sure node sizes are 8-byte aligned */
2014 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2015 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2016 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2017 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2018 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2019 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2020 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2021 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2022 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2023 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2024 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2025
2026 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2027 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2028 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2029 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2030 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2031 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2032
2033 /* Check min. node size */
2034 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2035 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2036 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2037 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2038
2039 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2040 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2041 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2042 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2043
2044 /* Defined node sizes */
2045 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2046 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2047 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2048 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2049
a1dc080c
AB
2050 /*
2051 * We use 2 bit wide bit-fields to store compression type, which should
2052 * be amended if more compressors are added. The bit-fields are:
553dea4d
AB
2053 * @compr_type in 'struct ubifs_inode', @default_compr in
2054 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
a1dc080c
AB
2055 */
2056 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2057
1e51764a
AB
2058 /*
2059 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2060 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2061 */
2062 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2063 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2064 " at least 4096 bytes",
2065 (unsigned int)PAGE_CACHE_SIZE);
2066 return -EINVAL;
2067 }
2068
2069 err = register_filesystem(&ubifs_fs_type);
2070 if (err) {
2071 ubifs_err("cannot register file system, error %d", err);
2072 return err;
2073 }
2074
2075 err = -ENOMEM;
2076 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2077 sizeof(struct ubifs_inode), 0,
2078 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2079 &inode_slab_ctor);
2080 if (!ubifs_inode_slab)
2081 goto out_reg;
2082
2083 register_shrinker(&ubifs_shrinker_info);
2084
2085 err = ubifs_compressors_init();
552ff317
AB
2086 if (err)
2087 goto out_shrinker;
2088
2089 err = dbg_debugfs_init();
1e51764a
AB
2090 if (err)
2091 goto out_compr;
2092
2093 return 0;
2094
2095out_compr:
552ff317
AB
2096 ubifs_compressors_exit();
2097out_shrinker:
1e51764a
AB
2098 unregister_shrinker(&ubifs_shrinker_info);
2099 kmem_cache_destroy(ubifs_inode_slab);
2100out_reg:
2101 unregister_filesystem(&ubifs_fs_type);
2102 return err;
2103}
2104/* late_initcall to let compressors initialize first */
2105late_initcall(ubifs_init);
2106
2107static void __exit ubifs_exit(void)
2108{
2109 ubifs_assert(list_empty(&ubifs_infos));
2110 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2111
552ff317 2112 dbg_debugfs_exit();
1e51764a
AB
2113 ubifs_compressors_exit();
2114 unregister_shrinker(&ubifs_shrinker_info);
2115 kmem_cache_destroy(ubifs_inode_slab);
2116 unregister_filesystem(&ubifs_fs_type);
2117}
2118module_exit(ubifs_exit);
2119
2120MODULE_LICENSE("GPL");
2121MODULE_VERSION(__stringify(UBIFS_VERSION));
2122MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2123MODULE_DESCRIPTION("UBIFS - UBI File System");