]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ubifs/super.c
UBIFS: correct comment for commit_on_unmount
[net-next-2.6.git] / fs / ubifs / super.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
1e51764a
AB
33#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
37#include "ubifs.h"
38
39/* Slab cache for UBIFS inodes */
40struct kmem_cache *ubifs_inode_slab;
41
42/* UBIFS TNC shrinker description */
43static struct shrinker ubifs_shrinker_info = {
44 .shrink = ubifs_shrinker,
45 .seeks = DEFAULT_SEEKS,
46};
47
48/**
49 * validate_inode - validate inode.
50 * @c: UBIFS file-system description object
51 * @inode: the inode to validate
52 *
53 * This is a helper function for 'ubifs_iget()' which validates various fields
54 * of a newly built inode to make sure they contain sane values and prevent
55 * possible vulnerabilities. Returns zero if the inode is all right and
56 * a non-zero error code if not.
57 */
58static int validate_inode(struct ubifs_info *c, const struct inode *inode)
59{
60 int err;
61 const struct ubifs_inode *ui = ubifs_inode(inode);
62
63 if (inode->i_size > c->max_inode_sz) {
64 ubifs_err("inode is too large (%lld)",
65 (long long)inode->i_size);
66 return 1;
67 }
68
69 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
70 ubifs_err("unknown compression type %d", ui->compr_type);
71 return 2;
72 }
73
74 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
75 return 3;
76
77 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
78 return 4;
79
80 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
81 return 5;
82
83 if (!ubifs_compr_present(ui->compr_type)) {
84 ubifs_warn("inode %lu uses '%s' compression, but it was not "
85 "compiled in", inode->i_ino,
86 ubifs_compr_name(ui->compr_type));
87 }
88
89 err = dbg_check_dir_size(c, inode);
90 return err;
91}
92
93struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
94{
95 int err;
96 union ubifs_key key;
97 struct ubifs_ino_node *ino;
98 struct ubifs_info *c = sb->s_fs_info;
99 struct inode *inode;
100 struct ubifs_inode *ui;
101
102 dbg_gen("inode %lu", inum);
103
104 inode = iget_locked(sb, inum);
105 if (!inode)
106 return ERR_PTR(-ENOMEM);
107 if (!(inode->i_state & I_NEW))
108 return inode;
109 ui = ubifs_inode(inode);
110
111 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
112 if (!ino) {
113 err = -ENOMEM;
114 goto out;
115 }
116
117 ino_key_init(c, &key, inode->i_ino);
118
119 err = ubifs_tnc_lookup(c, &key, ino);
120 if (err)
121 goto out_ino;
122
123 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
124 inode->i_nlink = le32_to_cpu(ino->nlink);
125 inode->i_uid = le32_to_cpu(ino->uid);
126 inode->i_gid = le32_to_cpu(ino->gid);
127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 inode->i_mode = le32_to_cpu(ino->mode);
134 inode->i_size = le64_to_cpu(ino->size);
135
136 ui->data_len = le32_to_cpu(ino->data_len);
137 ui->flags = le32_to_cpu(ino->flags);
138 ui->compr_type = le16_to_cpu(ino->compr_type);
139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
141 ui->xattr_size = le32_to_cpu(ino->xattr_size);
142 ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 ui->synced_i_size = ui->ui_size = inode->i_size;
144
145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146
147 err = validate_inode(c, inode);
148 if (err)
149 goto out_invalid;
150
0a883a05 151 /* Disable read-ahead */
1e51764a
AB
152 inode->i_mapping->backing_dev_info = &c->bdi;
153
154 switch (inode->i_mode & S_IFMT) {
155 case S_IFREG:
156 inode->i_mapping->a_ops = &ubifs_file_address_operations;
157 inode->i_op = &ubifs_file_inode_operations;
158 inode->i_fop = &ubifs_file_operations;
159 if (ui->xattr) {
160 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
161 if (!ui->data) {
162 err = -ENOMEM;
163 goto out_ino;
164 }
165 memcpy(ui->data, ino->data, ui->data_len);
166 ((char *)ui->data)[ui->data_len] = '\0';
167 } else if (ui->data_len != 0) {
168 err = 10;
169 goto out_invalid;
170 }
171 break;
172 case S_IFDIR:
173 inode->i_op = &ubifs_dir_inode_operations;
174 inode->i_fop = &ubifs_dir_operations;
175 if (ui->data_len != 0) {
176 err = 11;
177 goto out_invalid;
178 }
179 break;
180 case S_IFLNK:
181 inode->i_op = &ubifs_symlink_inode_operations;
182 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
183 err = 12;
184 goto out_invalid;
185 }
186 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
187 if (!ui->data) {
188 err = -ENOMEM;
189 goto out_ino;
190 }
191 memcpy(ui->data, ino->data, ui->data_len);
192 ((char *)ui->data)[ui->data_len] = '\0';
193 break;
194 case S_IFBLK:
195 case S_IFCHR:
196 {
197 dev_t rdev;
198 union ubifs_dev_desc *dev;
199
200 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
201 if (!ui->data) {
202 err = -ENOMEM;
203 goto out_ino;
204 }
205
206 dev = (union ubifs_dev_desc *)ino->data;
207 if (ui->data_len == sizeof(dev->new))
208 rdev = new_decode_dev(le32_to_cpu(dev->new));
209 else if (ui->data_len == sizeof(dev->huge))
210 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
211 else {
212 err = 13;
213 goto out_invalid;
214 }
215 memcpy(ui->data, ino->data, ui->data_len);
216 inode->i_op = &ubifs_file_inode_operations;
217 init_special_inode(inode, inode->i_mode, rdev);
218 break;
219 }
220 case S_IFSOCK:
221 case S_IFIFO:
222 inode->i_op = &ubifs_file_inode_operations;
223 init_special_inode(inode, inode->i_mode, 0);
224 if (ui->data_len != 0) {
225 err = 14;
226 goto out_invalid;
227 }
228 break;
229 default:
230 err = 15;
231 goto out_invalid;
232 }
233
234 kfree(ino);
235 ubifs_set_inode_flags(inode);
236 unlock_new_inode(inode);
237 return inode;
238
239out_invalid:
240 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
241 dbg_dump_node(c, ino);
242 dbg_dump_inode(c, inode);
243 err = -EINVAL;
244out_ino:
245 kfree(ino);
246out:
247 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
248 iget_failed(inode);
249 return ERR_PTR(err);
250}
251
252static struct inode *ubifs_alloc_inode(struct super_block *sb)
253{
254 struct ubifs_inode *ui;
255
256 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
257 if (!ui)
258 return NULL;
259
260 memset((void *)ui + sizeof(struct inode), 0,
261 sizeof(struct ubifs_inode) - sizeof(struct inode));
262 mutex_init(&ui->ui_mutex);
263 spin_lock_init(&ui->ui_lock);
264 return &ui->vfs_inode;
265};
266
267static void ubifs_destroy_inode(struct inode *inode)
268{
269 struct ubifs_inode *ui = ubifs_inode(inode);
270
271 kfree(ui->data);
272 kmem_cache_free(ubifs_inode_slab, inode);
273}
274
275/*
276 * Note, Linux write-back code calls this without 'i_mutex'.
277 */
278static int ubifs_write_inode(struct inode *inode, int wait)
279{
fbfa6c88 280 int err = 0;
1e51764a
AB
281 struct ubifs_info *c = inode->i_sb->s_fs_info;
282 struct ubifs_inode *ui = ubifs_inode(inode);
283
284 ubifs_assert(!ui->xattr);
285 if (is_bad_inode(inode))
286 return 0;
287
288 mutex_lock(&ui->ui_mutex);
289 /*
290 * Due to races between write-back forced by budgeting
291 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
292 * have already been synchronized, do not do this again. This might
293 * also happen if it was synchronized in an VFS operation, e.g.
294 * 'ubifs_link()'.
295 */
296 if (!ui->dirty) {
297 mutex_unlock(&ui->ui_mutex);
298 return 0;
299 }
300
fbfa6c88
AB
301 /*
302 * As an optimization, do not write orphan inodes to the media just
303 * because this is not needed.
304 */
305 dbg_gen("inode %lu, mode %#x, nlink %u",
306 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
307 if (inode->i_nlink) {
1f28681a 308 err = ubifs_jnl_write_inode(c, inode);
fbfa6c88
AB
309 if (err)
310 ubifs_err("can't write inode %lu, error %d",
311 inode->i_ino, err);
312 }
1e51764a
AB
313
314 ui->dirty = 0;
315 mutex_unlock(&ui->ui_mutex);
316 ubifs_release_dirty_inode_budget(c, ui);
317 return err;
318}
319
320static void ubifs_delete_inode(struct inode *inode)
321{
322 int err;
323 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e0f358e 324 struct ubifs_inode *ui = ubifs_inode(inode);
1e51764a 325
1e0f358e 326 if (ui->xattr)
1e51764a
AB
327 /*
328 * Extended attribute inode deletions are fully handled in
329 * 'ubifs_removexattr()'. These inodes are special and have
330 * limited usage, so there is nothing to do here.
331 */
332 goto out;
333
7d32c2bb 334 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
1e51764a
AB
335 ubifs_assert(!atomic_read(&inode->i_count));
336 ubifs_assert(inode->i_nlink == 0);
337
338 truncate_inode_pages(&inode->i_data, 0);
339 if (is_bad_inode(inode))
340 goto out;
341
1e0f358e 342 ui->ui_size = inode->i_size = 0;
de94eb55 343 err = ubifs_jnl_delete_inode(c, inode);
1e51764a
AB
344 if (err)
345 /*
346 * Worst case we have a lost orphan inode wasting space, so a
0a883a05 347 * simple error message is OK here.
1e51764a 348 */
de94eb55
AB
349 ubifs_err("can't delete inode %lu, error %d",
350 inode->i_ino, err);
351
1e51764a 352out:
1e0f358e
AB
353 if (ui->dirty)
354 ubifs_release_dirty_inode_budget(c, ui);
1e51764a
AB
355 clear_inode(inode);
356}
357
358static void ubifs_dirty_inode(struct inode *inode)
359{
360 struct ubifs_inode *ui = ubifs_inode(inode);
361
362 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
363 if (!ui->dirty) {
364 ui->dirty = 1;
365 dbg_gen("inode %lu", inode->i_ino);
366 }
367}
368
369static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
370{
371 struct ubifs_info *c = dentry->d_sb->s_fs_info;
372 unsigned long long free;
7c7cbadf 373 __le32 *uuid = (__le32 *)c->uuid;
1e51764a 374
7dad181b 375 free = ubifs_get_free_space(c);
1e51764a
AB
376 dbg_gen("free space %lld bytes (%lld blocks)",
377 free, free >> UBIFS_BLOCK_SHIFT);
378
379 buf->f_type = UBIFS_SUPER_MAGIC;
380 buf->f_bsize = UBIFS_BLOCK_SIZE;
381 buf->f_blocks = c->block_cnt;
382 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
383 if (free > c->report_rp_size)
384 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
385 else
386 buf->f_bavail = 0;
387 buf->f_files = 0;
388 buf->f_ffree = 0;
389 buf->f_namelen = UBIFS_MAX_NLEN;
7c7cbadf
AB
390 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
391 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
1e51764a
AB
392 return 0;
393}
394
395static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
396{
397 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
398
399 if (c->mount_opts.unmount_mode == 2)
400 seq_printf(s, ",fast_unmount");
401 else if (c->mount_opts.unmount_mode == 1)
402 seq_printf(s, ",norm_unmount");
403
4793e7c5
AH
404 if (c->mount_opts.bulk_read == 2)
405 seq_printf(s, ",bulk_read");
406 else if (c->mount_opts.bulk_read == 1)
407 seq_printf(s, ",no_bulk_read");
408
2953e73f
AH
409 if (c->mount_opts.chk_data_crc == 2)
410 seq_printf(s, ",chk_data_crc");
411 else if (c->mount_opts.chk_data_crc == 1)
412 seq_printf(s, ",no_chk_data_crc");
413
1e51764a
AB
414 return 0;
415}
416
417static int ubifs_sync_fs(struct super_block *sb, int wait)
418{
419 struct ubifs_info *c = sb->s_fs_info;
420 int i, ret = 0, err;
421
422 if (c->jheads)
423 for (i = 0; i < c->jhead_cnt; i++) {
424 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
425 if (err && !ret)
426 ret = err;
427 }
428 /*
429 * We ought to call sync for c->ubi but it does not have one. If it had
430 * it would in turn call mtd->sync, however mtd operations are
431 * synchronous anyway, so we don't lose any sleep here.
432 */
433 return ret;
434}
435
436/**
437 * init_constants_early - initialize UBIFS constants.
438 * @c: UBIFS file-system description object
439 *
440 * This function initialize UBIFS constants which do not need the superblock to
441 * be read. It also checks that the UBI volume satisfies basic UBIFS
442 * requirements. Returns zero in case of success and a negative error code in
443 * case of failure.
444 */
445static int init_constants_early(struct ubifs_info *c)
446{
447 if (c->vi.corrupted) {
448 ubifs_warn("UBI volume is corrupted - read-only mode");
449 c->ro_media = 1;
450 }
451
452 if (c->di.ro_mode) {
453 ubifs_msg("read-only UBI device");
454 c->ro_media = 1;
455 }
456
457 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
458 ubifs_msg("static UBI volume - read-only mode");
459 c->ro_media = 1;
460 }
461
462 c->leb_cnt = c->vi.size;
463 c->leb_size = c->vi.usable_leb_size;
464 c->half_leb_size = c->leb_size / 2;
465 c->min_io_size = c->di.min_io_size;
466 c->min_io_shift = fls(c->min_io_size) - 1;
467
468 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
469 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
470 c->leb_size, UBIFS_MIN_LEB_SZ);
471 return -EINVAL;
472 }
473
474 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
475 ubifs_err("too few LEBs (%d), min. is %d",
476 c->leb_cnt, UBIFS_MIN_LEB_CNT);
477 return -EINVAL;
478 }
479
480 if (!is_power_of_2(c->min_io_size)) {
481 ubifs_err("bad min. I/O size %d", c->min_io_size);
482 return -EINVAL;
483 }
484
485 /*
486 * UBIFS aligns all node to 8-byte boundary, so to make function in
487 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
488 * less than 8.
489 */
490 if (c->min_io_size < 8) {
491 c->min_io_size = 8;
492 c->min_io_shift = 3;
493 }
494
495 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
496 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
497
498 /*
499 * Initialize node length ranges which are mostly needed for node
500 * length validation.
501 */
502 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
503 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
504 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
505 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
506 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
507 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
508
509 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
510 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
511 c->ranges[UBIFS_ORPH_NODE].min_len =
512 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
513 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
514 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
515 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
516 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
517 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
518 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
519 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
520 /*
521 * Minimum indexing node size is amended later when superblock is
522 * read and the key length is known.
523 */
524 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
525 /*
526 * Maximum indexing node size is amended later when superblock is
527 * read and the fanout is known.
528 */
529 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
530
531 /*
532 * Initialize dead and dark LEB space watermarks.
533 *
534 * Dead space is the space which cannot be used. Its watermark is
535 * equivalent to min. I/O unit or minimum node size if it is greater
536 * then min. I/O unit.
537 *
538 * Dark space is the space which might be used, or might not, depending
539 * on which node should be written to the LEB. Its watermark is
540 * equivalent to maximum UBIFS node size.
541 */
542 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
543 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
544
9bbb5726
AB
545 /*
546 * Calculate how many bytes would be wasted at the end of LEB if it was
547 * fully filled with data nodes of maximum size. This is used in
548 * calculations when reporting free space.
549 */
550 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
4793e7c5
AH
551 /* Buffer size for bulk-reads */
552 c->bulk_read_buf_size = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
553 if (c->bulk_read_buf_size > c->leb_size)
554 c->bulk_read_buf_size = c->leb_size;
555 if (c->bulk_read_buf_size > 128 * 1024) {
556 /* Check if we can kmalloc more than 128KiB */
557 void *try = kmalloc(c->bulk_read_buf_size, GFP_KERNEL);
558
559 kfree(try);
560 if (!try)
561 c->bulk_read_buf_size = 128 * 1024;
562 }
1e51764a
AB
563 return 0;
564}
565
566/**
567 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
568 * @c: UBIFS file-system description object
569 * @lnum: LEB the write-buffer was synchronized to
570 * @free: how many free bytes left in this LEB
571 * @pad: how many bytes were padded
572 *
573 * This is a callback function which is called by the I/O unit when the
574 * write-buffer is synchronized. We need this to correctly maintain space
575 * accounting in bud logical eraseblocks. This function returns zero in case of
576 * success and a negative error code in case of failure.
577 *
578 * This function actually belongs to the journal, but we keep it here because
579 * we want to keep it static.
580 */
581static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
582{
583 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
584}
585
586/*
587 * init_constants_late - initialize UBIFS constants.
588 * @c: UBIFS file-system description object
589 *
590 * This is a helper function which initializes various UBIFS constants after
591 * the superblock has been read. It also checks various UBIFS parameters and
592 * makes sure they are all right. Returns zero in case of success and a
593 * negative error code in case of failure.
594 */
595static int init_constants_late(struct ubifs_info *c)
596{
597 int tmp, err;
598 uint64_t tmp64;
599
600 c->main_bytes = (long long)c->main_lebs * c->leb_size;
601 c->max_znode_sz = sizeof(struct ubifs_znode) +
602 c->fanout * sizeof(struct ubifs_zbranch);
603
604 tmp = ubifs_idx_node_sz(c, 1);
605 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
606 c->min_idx_node_sz = ALIGN(tmp, 8);
607
608 tmp = ubifs_idx_node_sz(c, c->fanout);
609 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
610 c->max_idx_node_sz = ALIGN(tmp, 8);
611
612 /* Make sure LEB size is large enough to fit full commit */
613 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
614 tmp = ALIGN(tmp, c->min_io_size);
615 if (tmp > c->leb_size) {
616 dbg_err("too small LEB size %d, at least %d needed",
617 c->leb_size, tmp);
618 return -EINVAL;
619 }
620
621 /*
622 * Make sure that the log is large enough to fit reference nodes for
623 * all buds plus one reserved LEB.
624 */
625 tmp64 = c->max_bud_bytes;
626 tmp = do_div(tmp64, c->leb_size);
627 c->max_bud_cnt = tmp64 + !!tmp;
628 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
629 tmp /= c->leb_size;
630 tmp += 1;
631 if (c->log_lebs < tmp) {
632 dbg_err("too small log %d LEBs, required min. %d LEBs",
633 c->log_lebs, tmp);
634 return -EINVAL;
635 }
636
637 /*
638 * When budgeting we assume worst-case scenarios when the pages are not
639 * be compressed and direntries are of the maximum size.
640 *
641 * Note, data, which may be stored in inodes is budgeted separately, so
642 * it is not included into 'c->inode_budget'.
643 */
644 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
645 c->inode_budget = UBIFS_INO_NODE_SZ;
646 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
647
648 /*
649 * When the amount of flash space used by buds becomes
650 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
651 * The writers are unblocked when the commit is finished. To avoid
652 * writers to be blocked UBIFS initiates background commit in advance,
653 * when number of bud bytes becomes above the limit defined below.
654 */
655 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
656
657 /*
658 * Ensure minimum journal size. All the bytes in the journal heads are
659 * considered to be used, when calculating the current journal usage.
660 * Consequently, if the journal is too small, UBIFS will treat it as
661 * always full.
662 */
663 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
664 if (c->bg_bud_bytes < tmp64)
665 c->bg_bud_bytes = tmp64;
666 if (c->max_bud_bytes < tmp64 + c->leb_size)
667 c->max_bud_bytes = tmp64 + c->leb_size;
668
669 err = ubifs_calc_lpt_geom(c);
670 if (err)
671 return err;
672
673 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
674
675 /*
676 * Calculate total amount of FS blocks. This number is not used
677 * internally because it does not make much sense for UBIFS, but it is
678 * necessary to report something for the 'statfs()' call.
679 *
7dad181b
AB
680 * Subtract the LEB reserved for GC, the LEB which is reserved for
681 * deletions, and assume only one journal head is available.
1e51764a 682 */
7dad181b
AB
683 tmp64 = c->main_lebs - 2 - c->jhead_cnt + 1;
684 tmp64 *= (uint64_t)c->leb_size - c->leb_overhead;
1e51764a
AB
685 tmp64 = ubifs_reported_space(c, tmp64);
686 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
687
688 return 0;
689}
690
691/**
692 * take_gc_lnum - reserve GC LEB.
693 * @c: UBIFS file-system description object
694 *
695 * This function ensures that the LEB reserved for garbage collection is
696 * unmapped and is marked as "taken" in lprops. We also have to set free space
697 * to LEB size and dirty space to zero, because lprops may contain out-of-date
698 * information if the file-system was un-mounted before it has been committed.
699 * This function returns zero in case of success and a negative error code in
700 * case of failure.
701 */
702static int take_gc_lnum(struct ubifs_info *c)
703{
704 int err;
705
706 if (c->gc_lnum == -1) {
707 ubifs_err("no LEB for GC");
708 return -EINVAL;
709 }
710
711 err = ubifs_leb_unmap(c, c->gc_lnum);
712 if (err)
713 return err;
714
715 /* And we have to tell lprops that this LEB is taken */
716 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
717 LPROPS_TAKEN, 0, 0);
718 return err;
719}
720
721/**
722 * alloc_wbufs - allocate write-buffers.
723 * @c: UBIFS file-system description object
724 *
725 * This helper function allocates and initializes UBIFS write-buffers. Returns
726 * zero in case of success and %-ENOMEM in case of failure.
727 */
728static int alloc_wbufs(struct ubifs_info *c)
729{
730 int i, err;
731
732 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
733 GFP_KERNEL);
734 if (!c->jheads)
735 return -ENOMEM;
736
737 /* Initialize journal heads */
738 for (i = 0; i < c->jhead_cnt; i++) {
739 INIT_LIST_HEAD(&c->jheads[i].buds_list);
740 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
741 if (err)
742 return err;
743
744 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
745 c->jheads[i].wbuf.jhead = i;
746 }
747
748 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
749 /*
750 * Garbage Collector head likely contains long-term data and
751 * does not need to be synchronized by timer.
752 */
753 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
754 c->jheads[GCHD].wbuf.timeout = 0;
755
756 return 0;
757}
758
759/**
760 * free_wbufs - free write-buffers.
761 * @c: UBIFS file-system description object
762 */
763static void free_wbufs(struct ubifs_info *c)
764{
765 int i;
766
767 if (c->jheads) {
768 for (i = 0; i < c->jhead_cnt; i++) {
769 kfree(c->jheads[i].wbuf.buf);
770 kfree(c->jheads[i].wbuf.inodes);
771 }
772 kfree(c->jheads);
773 c->jheads = NULL;
774 }
775}
776
777/**
778 * free_orphans - free orphans.
779 * @c: UBIFS file-system description object
780 */
781static void free_orphans(struct ubifs_info *c)
782{
783 struct ubifs_orphan *orph;
784
785 while (c->orph_dnext) {
786 orph = c->orph_dnext;
787 c->orph_dnext = orph->dnext;
788 list_del(&orph->list);
789 kfree(orph);
790 }
791
792 while (!list_empty(&c->orph_list)) {
793 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
794 list_del(&orph->list);
795 kfree(orph);
796 dbg_err("orphan list not empty at unmount");
797 }
798
799 vfree(c->orph_buf);
800 c->orph_buf = NULL;
801}
802
803/**
804 * free_buds - free per-bud objects.
805 * @c: UBIFS file-system description object
806 */
807static void free_buds(struct ubifs_info *c)
808{
809 struct rb_node *this = c->buds.rb_node;
810 struct ubifs_bud *bud;
811
812 while (this) {
813 if (this->rb_left)
814 this = this->rb_left;
815 else if (this->rb_right)
816 this = this->rb_right;
817 else {
818 bud = rb_entry(this, struct ubifs_bud, rb);
819 this = rb_parent(this);
820 if (this) {
821 if (this->rb_left == &bud->rb)
822 this->rb_left = NULL;
823 else
824 this->rb_right = NULL;
825 }
826 kfree(bud);
827 }
828 }
829}
830
831/**
832 * check_volume_empty - check if the UBI volume is empty.
833 * @c: UBIFS file-system description object
834 *
835 * This function checks if the UBIFS volume is empty by looking if its LEBs are
836 * mapped or not. The result of checking is stored in the @c->empty variable.
837 * Returns zero in case of success and a negative error code in case of
838 * failure.
839 */
840static int check_volume_empty(struct ubifs_info *c)
841{
842 int lnum, err;
843
844 c->empty = 1;
845 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
846 err = ubi_is_mapped(c->ubi, lnum);
847 if (unlikely(err < 0))
848 return err;
849 if (err == 1) {
850 c->empty = 0;
851 break;
852 }
853
854 cond_resched();
855 }
856
857 return 0;
858}
859
860/*
861 * UBIFS mount options.
862 *
863 * Opt_fast_unmount: do not run a journal commit before un-mounting
864 * Opt_norm_unmount: run a journal commit before un-mounting
4793e7c5
AH
865 * Opt_bulk_read: enable bulk-reads
866 * Opt_no_bulk_read: disable bulk-reads
2953e73f
AH
867 * Opt_chk_data_crc: check CRCs when reading data nodes
868 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1e51764a
AB
869 * Opt_err: just end of array marker
870 */
871enum {
872 Opt_fast_unmount,
873 Opt_norm_unmount,
4793e7c5
AH
874 Opt_bulk_read,
875 Opt_no_bulk_read,
2953e73f
AH
876 Opt_chk_data_crc,
877 Opt_no_chk_data_crc,
1e51764a
AB
878 Opt_err,
879};
880
881static match_table_t tokens = {
882 {Opt_fast_unmount, "fast_unmount"},
883 {Opt_norm_unmount, "norm_unmount"},
4793e7c5
AH
884 {Opt_bulk_read, "bulk_read"},
885 {Opt_no_bulk_read, "no_bulk_read"},
2953e73f
AH
886 {Opt_chk_data_crc, "chk_data_crc"},
887 {Opt_no_chk_data_crc, "no_chk_data_crc"},
1e51764a
AB
888 {Opt_err, NULL},
889};
890
891/**
892 * ubifs_parse_options - parse mount parameters.
893 * @c: UBIFS file-system description object
894 * @options: parameters to parse
895 * @is_remount: non-zero if this is FS re-mount
896 *
897 * This function parses UBIFS mount options and returns zero in case success
898 * and a negative error code in case of failure.
899 */
900static int ubifs_parse_options(struct ubifs_info *c, char *options,
901 int is_remount)
902{
903 char *p;
904 substring_t args[MAX_OPT_ARGS];
905
906 if (!options)
907 return 0;
908
909 while ((p = strsep(&options, ","))) {
910 int token;
911
912 if (!*p)
913 continue;
914
915 token = match_token(p, tokens, args);
916 switch (token) {
917 case Opt_fast_unmount:
918 c->mount_opts.unmount_mode = 2;
919 c->fast_unmount = 1;
920 break;
921 case Opt_norm_unmount:
922 c->mount_opts.unmount_mode = 1;
923 c->fast_unmount = 0;
924 break;
4793e7c5
AH
925 case Opt_bulk_read:
926 c->mount_opts.bulk_read = 2;
927 c->bulk_read = 1;
928 break;
929 case Opt_no_bulk_read:
930 c->mount_opts.bulk_read = 1;
931 c->bulk_read = 0;
932 break;
2953e73f
AH
933 case Opt_chk_data_crc:
934 c->mount_opts.chk_data_crc = 2;
935 c->no_chk_data_crc = 0;
936 break;
937 case Opt_no_chk_data_crc:
938 c->mount_opts.chk_data_crc = 1;
939 c->no_chk_data_crc = 1;
940 break;
1e51764a
AB
941 default:
942 ubifs_err("unrecognized mount option \"%s\" "
943 "or missing value", p);
944 return -EINVAL;
945 }
946 }
947
948 return 0;
949}
950
951/**
952 * destroy_journal - destroy journal data structures.
953 * @c: UBIFS file-system description object
954 *
955 * This function destroys journal data structures including those that may have
956 * been created by recovery functions.
957 */
958static void destroy_journal(struct ubifs_info *c)
959{
960 while (!list_empty(&c->unclean_leb_list)) {
961 struct ubifs_unclean_leb *ucleb;
962
963 ucleb = list_entry(c->unclean_leb_list.next,
964 struct ubifs_unclean_leb, list);
965 list_del(&ucleb->list);
966 kfree(ucleb);
967 }
968 while (!list_empty(&c->old_buds)) {
969 struct ubifs_bud *bud;
970
971 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
972 list_del(&bud->list);
973 kfree(bud);
974 }
975 ubifs_destroy_idx_gc(c);
976 ubifs_destroy_size_tree(c);
977 ubifs_tnc_close(c);
978 free_buds(c);
979}
980
981/**
982 * mount_ubifs - mount UBIFS file-system.
983 * @c: UBIFS file-system description object
984 *
985 * This function mounts UBIFS file system. Returns zero in case of success and
986 * a negative error code in case of failure.
987 *
988 * Note, the function does not de-allocate resources it it fails half way
989 * through, and the caller has to do this instead.
990 */
991static int mount_ubifs(struct ubifs_info *c)
992{
993 struct super_block *sb = c->vfs_sb;
994 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
995 long long x;
996 size_t sz;
997
998 err = init_constants_early(c);
999 if (err)
1000 return err;
1001
1002#ifdef CONFIG_UBIFS_FS_DEBUG
1003 c->dbg_buf = vmalloc(c->leb_size);
1004 if (!c->dbg_buf)
1005 return -ENOMEM;
1006#endif
1007
1008 err = check_volume_empty(c);
1009 if (err)
1010 goto out_free;
1011
1012 if (c->empty && (mounted_read_only || c->ro_media)) {
1013 /*
1014 * This UBI volume is empty, and read-only, or the file system
1015 * is mounted read-only - we cannot format it.
1016 */
1017 ubifs_err("can't format empty UBI volume: read-only %s",
1018 c->ro_media ? "UBI volume" : "mount");
1019 err = -EROFS;
1020 goto out_free;
1021 }
1022
1023 if (c->ro_media && !mounted_read_only) {
1024 ubifs_err("cannot mount read-write - read-only media");
1025 err = -EROFS;
1026 goto out_free;
1027 }
1028
1029 /*
1030 * The requirement for the buffer is that it should fit indexing B-tree
1031 * height amount of integers. We assume the height if the TNC tree will
1032 * never exceed 64.
1033 */
1034 err = -ENOMEM;
1035 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1036 if (!c->bottom_up_buf)
1037 goto out_free;
1038
1039 c->sbuf = vmalloc(c->leb_size);
1040 if (!c->sbuf)
1041 goto out_free;
1042
1043 if (!mounted_read_only) {
1044 c->ileb_buf = vmalloc(c->leb_size);
1045 if (!c->ileb_buf)
1046 goto out_free;
1047 }
1048
2953e73f
AH
1049 c->always_chk_crc = 1;
1050
1e51764a
AB
1051 err = ubifs_read_superblock(c);
1052 if (err)
1053 goto out_free;
1054
1055 /*
1056 * Make sure the compressor which is set as the default on in the
1057 * superblock was actually compiled in.
1058 */
1059 if (!ubifs_compr_present(c->default_compr)) {
1060 ubifs_warn("'%s' compressor is set by superblock, but not "
1061 "compiled in", ubifs_compr_name(c->default_compr));
1062 c->default_compr = UBIFS_COMPR_NONE;
1063 }
1064
1065 dbg_failure_mode_registration(c);
1066
1067 err = init_constants_late(c);
1068 if (err)
1069 goto out_dereg;
1070
1071 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1072 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1073 c->cbuf = kmalloc(sz, GFP_NOFS);
1074 if (!c->cbuf) {
1075 err = -ENOMEM;
1076 goto out_dereg;
1077 }
1078
0855f310 1079 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1e51764a
AB
1080 if (!mounted_read_only) {
1081 err = alloc_wbufs(c);
1082 if (err)
1083 goto out_cbuf;
1084
1085 /* Create background thread */
1e51764a 1086 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1e51764a
AB
1087 if (IS_ERR(c->bgt)) {
1088 err = PTR_ERR(c->bgt);
1089 c->bgt = NULL;
1090 ubifs_err("cannot spawn \"%s\", error %d",
1091 c->bgt_name, err);
1092 goto out_wbufs;
1093 }
1094 wake_up_process(c->bgt);
1095 }
1096
1097 err = ubifs_read_master(c);
1098 if (err)
1099 goto out_master;
1100
1101 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1102 ubifs_msg("recovery needed");
1103 c->need_recovery = 1;
1104 if (!mounted_read_only) {
1105 err = ubifs_recover_inl_heads(c, c->sbuf);
1106 if (err)
1107 goto out_master;
1108 }
1109 } else if (!mounted_read_only) {
1110 /*
1111 * Set the "dirty" flag so that if we reboot uncleanly we
1112 * will notice this immediately on the next mount.
1113 */
1114 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1115 err = ubifs_write_master(c);
1116 if (err)
1117 goto out_master;
1118 }
1119
1120 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1121 if (err)
1122 goto out_lpt;
1123
1124 err = dbg_check_idx_size(c, c->old_idx_sz);
1125 if (err)
1126 goto out_lpt;
1127
1128 err = ubifs_replay_journal(c);
1129 if (err)
1130 goto out_journal;
1131
1132 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1133 if (err)
1134 goto out_orphans;
1135
1136 if (!mounted_read_only) {
1137 int lnum;
1138
1139 /* Check for enough free space */
1140 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1141 ubifs_err("insufficient available space");
1142 err = -EINVAL;
1143 goto out_orphans;
1144 }
1145
1146 /* Check for enough log space */
1147 lnum = c->lhead_lnum + 1;
1148 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1149 lnum = UBIFS_LOG_LNUM;
1150 if (lnum == c->ltail_lnum) {
1151 err = ubifs_consolidate_log(c);
1152 if (err)
1153 goto out_orphans;
1154 }
1155
1156 if (c->need_recovery) {
1157 err = ubifs_recover_size(c);
1158 if (err)
1159 goto out_orphans;
1160 err = ubifs_rcvry_gc_commit(c);
1161 } else
1162 err = take_gc_lnum(c);
1163 if (err)
1164 goto out_orphans;
1165
1166 err = dbg_check_lprops(c);
1167 if (err)
1168 goto out_orphans;
1169 } else if (c->need_recovery) {
1170 err = ubifs_recover_size(c);
1171 if (err)
1172 goto out_orphans;
1173 }
1174
1175 spin_lock(&ubifs_infos_lock);
1176 list_add_tail(&c->infos_list, &ubifs_infos);
1177 spin_unlock(&ubifs_infos_lock);
1178
1179 if (c->need_recovery) {
1180 if (mounted_read_only)
1181 ubifs_msg("recovery deferred");
1182 else {
1183 c->need_recovery = 0;
1184 ubifs_msg("recovery completed");
1185 }
1186 }
1187
1188 err = dbg_check_filesystem(c);
1189 if (err)
1190 goto out_infos;
1191
2953e73f
AH
1192 c->always_chk_crc = 0;
1193
ce769caa
AB
1194 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1195 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1e51764a
AB
1196 if (mounted_read_only)
1197 ubifs_msg("mounted read-only");
1198 x = (long long)c->main_lebs * c->leb_size;
948cfb21
AB
1199 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1200 "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1e51764a 1201 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
948cfb21
AB
1202 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1203 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1204 ubifs_msg("media format: %d (latest is %d)",
1e51764a 1205 c->fmt_version, UBIFS_FORMAT_VERSION);
948cfb21
AB
1206 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1207 ubifs_msg("reserved pool size: %llu bytes (%llu KiB)",
1208 c->report_rp_size, c->report_rp_size >> 10);
1e51764a
AB
1209
1210 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1211 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1212 dbg_msg("LEB size: %d bytes (%d KiB)",
948cfb21 1213 c->leb_size, c->leb_size >> 10);
1e51764a
AB
1214 dbg_msg("data journal heads: %d",
1215 c->jhead_cnt - NONDATA_JHEADS_CNT);
1216 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1217 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1218 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1219 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1220 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1221 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1222 dbg_msg("fast unmount: %d", c->fast_unmount);
1223 dbg_msg("big_lpt %d", c->big_lpt);
1224 dbg_msg("log LEBs: %d (%d - %d)",
1225 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1226 dbg_msg("LPT area LEBs: %d (%d - %d)",
1227 c->lpt_lebs, c->lpt_first, c->lpt_last);
1228 dbg_msg("orphan area LEBs: %d (%d - %d)",
1229 c->orph_lebs, c->orph_first, c->orph_last);
1230 dbg_msg("main area LEBs: %d (%d - %d)",
1231 c->main_lebs, c->main_first, c->leb_cnt - 1);
1232 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1233 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1234 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1235 dbg_msg("key hash type: %d", c->key_hash_type);
1236 dbg_msg("tree fanout: %d", c->fanout);
1237 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1238 dbg_msg("first main LEB: %d", c->main_first);
1239 dbg_msg("dead watermark: %d", c->dead_wm);
1240 dbg_msg("dark watermark: %d", c->dark_wm);
1241 x = (long long)c->main_lebs * c->dark_wm;
1242 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1243 x, x >> 10, x >> 20);
1244 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1245 c->max_bud_bytes, c->max_bud_bytes >> 10,
1246 c->max_bud_bytes >> 20);
1247 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1248 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1249 c->bg_bud_bytes >> 20);
1250 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1251 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1252 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1253 dbg_msg("commit number: %llu", c->cmt_no);
1254
1255 return 0;
1256
1257out_infos:
1258 spin_lock(&ubifs_infos_lock);
1259 list_del(&c->infos_list);
1260 spin_unlock(&ubifs_infos_lock);
1261out_orphans:
1262 free_orphans(c);
1263out_journal:
1264 destroy_journal(c);
1265out_lpt:
1266 ubifs_lpt_free(c, 0);
1267out_master:
1268 kfree(c->mst_node);
1269 kfree(c->rcvrd_mst_node);
1270 if (c->bgt)
1271 kthread_stop(c->bgt);
1272out_wbufs:
1273 free_wbufs(c);
1274out_cbuf:
1275 kfree(c->cbuf);
1276out_dereg:
1277 dbg_failure_mode_deregistration(c);
1278out_free:
1279 vfree(c->ileb_buf);
1280 vfree(c->sbuf);
1281 kfree(c->bottom_up_buf);
1282 UBIFS_DBG(vfree(c->dbg_buf));
1283 return err;
1284}
1285
1286/**
1287 * ubifs_umount - un-mount UBIFS file-system.
1288 * @c: UBIFS file-system description object
1289 *
1290 * Note, this function is called to free allocated resourced when un-mounting,
1291 * as well as free resources when an error occurred while we were half way
1292 * through mounting (error path cleanup function). So it has to make sure the
1293 * resource was actually allocated before freeing it.
1294 */
1295static void ubifs_umount(struct ubifs_info *c)
1296{
1297 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1298 c->vi.vol_id);
1299
1300 spin_lock(&ubifs_infos_lock);
1301 list_del(&c->infos_list);
1302 spin_unlock(&ubifs_infos_lock);
1303
1304 if (c->bgt)
1305 kthread_stop(c->bgt);
1306
1307 destroy_journal(c);
1308 free_wbufs(c);
1309 free_orphans(c);
1310 ubifs_lpt_free(c, 0);
1311
1312 kfree(c->cbuf);
1313 kfree(c->rcvrd_mst_node);
1314 kfree(c->mst_node);
1315 vfree(c->sbuf);
1316 kfree(c->bottom_up_buf);
1317 UBIFS_DBG(vfree(c->dbg_buf));
1318 vfree(c->ileb_buf);
1319 dbg_failure_mode_deregistration(c);
1320}
1321
1322/**
1323 * ubifs_remount_rw - re-mount in read-write mode.
1324 * @c: UBIFS file-system description object
1325 *
1326 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1327 * mode. This function allocates the needed resources and re-mounts UBIFS in
1328 * read-write mode.
1329 */
1330static int ubifs_remount_rw(struct ubifs_info *c)
1331{
1332 int err, lnum;
1333
1334 if (c->ro_media)
1335 return -EINVAL;
1336
1337 mutex_lock(&c->umount_mutex);
1338 c->remounting_rw = 1;
2953e73f 1339 c->always_chk_crc = 1;
1e51764a
AB
1340
1341 /* Check for enough free space */
1342 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1343 ubifs_err("insufficient available space");
1344 err = -EINVAL;
1345 goto out;
1346 }
1347
1348 if (c->old_leb_cnt != c->leb_cnt) {
1349 struct ubifs_sb_node *sup;
1350
1351 sup = ubifs_read_sb_node(c);
1352 if (IS_ERR(sup)) {
1353 err = PTR_ERR(sup);
1354 goto out;
1355 }
1356 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1357 err = ubifs_write_sb_node(c, sup);
1358 if (err)
1359 goto out;
1360 }
1361
1362 if (c->need_recovery) {
1363 ubifs_msg("completing deferred recovery");
1364 err = ubifs_write_rcvrd_mst_node(c);
1365 if (err)
1366 goto out;
1367 err = ubifs_recover_size(c);
1368 if (err)
1369 goto out;
1370 err = ubifs_clean_lebs(c, c->sbuf);
1371 if (err)
1372 goto out;
1373 err = ubifs_recover_inl_heads(c, c->sbuf);
1374 if (err)
1375 goto out;
1376 }
1377
1378 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1379 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1380 err = ubifs_write_master(c);
1381 if (err)
1382 goto out;
1383 }
1384
1385 c->ileb_buf = vmalloc(c->leb_size);
1386 if (!c->ileb_buf) {
1387 err = -ENOMEM;
1388 goto out;
1389 }
1390
1391 err = ubifs_lpt_init(c, 0, 1);
1392 if (err)
1393 goto out;
1394
1395 err = alloc_wbufs(c);
1396 if (err)
1397 goto out;
1398
1399 ubifs_create_buds_lists(c);
1400
1401 /* Create background thread */
1402 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1e51764a
AB
1403 if (IS_ERR(c->bgt)) {
1404 err = PTR_ERR(c->bgt);
1405 c->bgt = NULL;
1406 ubifs_err("cannot spawn \"%s\", error %d",
1407 c->bgt_name, err);
2953e73f 1408 goto out;
1e51764a
AB
1409 }
1410 wake_up_process(c->bgt);
1411
1412 c->orph_buf = vmalloc(c->leb_size);
2953e73f
AH
1413 if (!c->orph_buf) {
1414 err = -ENOMEM;
1415 goto out;
1416 }
1e51764a
AB
1417
1418 /* Check for enough log space */
1419 lnum = c->lhead_lnum + 1;
1420 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1421 lnum = UBIFS_LOG_LNUM;
1422 if (lnum == c->ltail_lnum) {
1423 err = ubifs_consolidate_log(c);
1424 if (err)
1425 goto out;
1426 }
1427
1428 if (c->need_recovery)
1429 err = ubifs_rcvry_gc_commit(c);
1430 else
1431 err = take_gc_lnum(c);
1432 if (err)
1433 goto out;
1434
1435 if (c->need_recovery) {
1436 c->need_recovery = 0;
1437 ubifs_msg("deferred recovery completed");
1438 }
1439
1440 dbg_gen("re-mounted read-write");
1441 c->vfs_sb->s_flags &= ~MS_RDONLY;
1442 c->remounting_rw = 0;
2953e73f 1443 c->always_chk_crc = 0;
1e51764a
AB
1444 mutex_unlock(&c->umount_mutex);
1445 return 0;
1446
1447out:
1448 vfree(c->orph_buf);
1449 c->orph_buf = NULL;
1450 if (c->bgt) {
1451 kthread_stop(c->bgt);
1452 c->bgt = NULL;
1453 }
1454 free_wbufs(c);
1455 vfree(c->ileb_buf);
1456 c->ileb_buf = NULL;
1457 ubifs_lpt_free(c, 1);
1458 c->remounting_rw = 0;
2953e73f 1459 c->always_chk_crc = 0;
1e51764a
AB
1460 mutex_unlock(&c->umount_mutex);
1461 return err;
1462}
1463
1464/**
1465 * commit_on_unmount - commit the journal when un-mounting.
1466 * @c: UBIFS file-system description object
1467 *
af2eb563
AB
1468 * This function is called during un-mounting and re-mounting, and it commits
1469 * the journal unless the "fast unmount" mode is enabled. It also avoids
1470 * committing the journal if it contains too few data.
1e51764a
AB
1471 */
1472static void commit_on_unmount(struct ubifs_info *c)
1473{
1474 if (!c->fast_unmount) {
1475 long long bud_bytes;
1476
1477 spin_lock(&c->buds_lock);
1478 bud_bytes = c->bud_bytes;
1479 spin_unlock(&c->buds_lock);
1480 if (bud_bytes > c->leb_size)
1481 ubifs_run_commit(c);
1482 }
1483}
1484
1485/**
1486 * ubifs_remount_ro - re-mount in read-only mode.
1487 * @c: UBIFS file-system description object
1488 *
1489 * We rely on VFS to have stopped writing. Possibly the background thread could
1490 * be running a commit, however kthread_stop will wait in that case.
1491 */
1492static void ubifs_remount_ro(struct ubifs_info *c)
1493{
1494 int i, err;
1495
1496 ubifs_assert(!c->need_recovery);
1497 commit_on_unmount(c);
1498
1499 mutex_lock(&c->umount_mutex);
1500 if (c->bgt) {
1501 kthread_stop(c->bgt);
1502 c->bgt = NULL;
1503 }
1504
1505 for (i = 0; i < c->jhead_cnt; i++) {
1506 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1507 del_timer_sync(&c->jheads[i].wbuf.timer);
1508 }
1509
1510 if (!c->ro_media) {
1511 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1512 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1513 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1514 err = ubifs_write_master(c);
1515 if (err)
1516 ubifs_ro_mode(c, err);
1517 }
1518
1519 ubifs_destroy_idx_gc(c);
1520 free_wbufs(c);
1521 vfree(c->orph_buf);
1522 c->orph_buf = NULL;
1523 vfree(c->ileb_buf);
1524 c->ileb_buf = NULL;
1525 ubifs_lpt_free(c, 1);
1526 mutex_unlock(&c->umount_mutex);
1527}
1528
1529static void ubifs_put_super(struct super_block *sb)
1530{
1531 int i;
1532 struct ubifs_info *c = sb->s_fs_info;
1533
1534 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1535 c->vi.vol_id);
1536 /*
1537 * The following asserts are only valid if there has not been a failure
1538 * of the media. For example, there will be dirty inodes if we failed
1539 * to write them back because of I/O errors.
1540 */
1541 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1542 ubifs_assert(c->budg_idx_growth == 0);
7d32c2bb 1543 ubifs_assert(c->budg_dd_growth == 0);
1e51764a
AB
1544 ubifs_assert(c->budg_data_growth == 0);
1545
1546 /*
1547 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1548 * and file system un-mount. Namely, it prevents the shrinker from
1549 * picking this superblock for shrinking - it will be just skipped if
1550 * the mutex is locked.
1551 */
1552 mutex_lock(&c->umount_mutex);
1553 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1554 /*
1555 * First of all kill the background thread to make sure it does
1556 * not interfere with un-mounting and freeing resources.
1557 */
1558 if (c->bgt) {
1559 kthread_stop(c->bgt);
1560 c->bgt = NULL;
1561 }
1562
1563 /* Synchronize write-buffers */
1564 if (c->jheads)
1565 for (i = 0; i < c->jhead_cnt; i++) {
1566 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1567 del_timer_sync(&c->jheads[i].wbuf.timer);
1568 }
1569
1570 /*
1571 * On fatal errors c->ro_media is set to 1, in which case we do
1572 * not write the master node.
1573 */
1574 if (!c->ro_media) {
1575 /*
1576 * We are being cleanly unmounted which means the
1577 * orphans were killed - indicate this in the master
1578 * node. Also save the reserved GC LEB number.
1579 */
1580 int err;
1581
1582 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1583 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1584 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1585 err = ubifs_write_master(c);
1586 if (err)
1587 /*
1588 * Recovery will attempt to fix the master area
1589 * next mount, so we just print a message and
1590 * continue to unmount normally.
1591 */
1592 ubifs_err("failed to write master node, "
1593 "error %d", err);
1594 }
1595 }
1596
1597 ubifs_umount(c);
1598 bdi_destroy(&c->bdi);
1599 ubi_close_volume(c->ubi);
1600 mutex_unlock(&c->umount_mutex);
1601 kfree(c);
1602}
1603
1604static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1605{
1606 int err;
1607 struct ubifs_info *c = sb->s_fs_info;
1608
1609 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1610
1611 err = ubifs_parse_options(c, data, 1);
1612 if (err) {
1613 ubifs_err("invalid or unknown remount parameter");
1614 return err;
1615 }
1616 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1617 err = ubifs_remount_rw(c);
1618 if (err)
1619 return err;
1620 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1621 ubifs_remount_ro(c);
1622
1623 return 0;
1624}
1625
1626struct super_operations ubifs_super_operations = {
1627 .alloc_inode = ubifs_alloc_inode,
1628 .destroy_inode = ubifs_destroy_inode,
1629 .put_super = ubifs_put_super,
1630 .write_inode = ubifs_write_inode,
1631 .delete_inode = ubifs_delete_inode,
1632 .statfs = ubifs_statfs,
1633 .dirty_inode = ubifs_dirty_inode,
1634 .remount_fs = ubifs_remount_fs,
1635 .show_options = ubifs_show_options,
1636 .sync_fs = ubifs_sync_fs,
1637};
1638
1639/**
1640 * open_ubi - parse UBI device name string and open the UBI device.
1641 * @name: UBI volume name
1642 * @mode: UBI volume open mode
1643 *
1644 * There are several ways to specify UBI volumes when mounting UBIFS:
1645 * o ubiX_Y - UBI device number X, volume Y;
1646 * o ubiY - UBI device number 0, volume Y;
1647 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1648 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1649 *
1650 * Alternative '!' separator may be used instead of ':' (because some shells
1651 * like busybox may interpret ':' as an NFS host name separator). This function
1652 * returns ubi volume object in case of success and a negative error code in
1653 * case of failure.
1654 */
1655static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1656{
1657 int dev, vol;
1658 char *endptr;
1659
1660 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1661 return ERR_PTR(-EINVAL);
1662
1663 /* ubi:NAME method */
1664 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1665 return ubi_open_volume_nm(0, name + 4, mode);
1666
1667 if (!isdigit(name[3]))
1668 return ERR_PTR(-EINVAL);
1669
1670 dev = simple_strtoul(name + 3, &endptr, 0);
1671
1672 /* ubiY method */
1673 if (*endptr == '\0')
1674 return ubi_open_volume(0, dev, mode);
1675
1676 /* ubiX_Y method */
1677 if (*endptr == '_' && isdigit(endptr[1])) {
1678 vol = simple_strtoul(endptr + 1, &endptr, 0);
1679 if (*endptr != '\0')
1680 return ERR_PTR(-EINVAL);
1681 return ubi_open_volume(dev, vol, mode);
1682 }
1683
1684 /* ubiX:NAME method */
1685 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1686 return ubi_open_volume_nm(dev, ++endptr, mode);
1687
1688 return ERR_PTR(-EINVAL);
1689}
1690
1691static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1692{
1693 struct ubi_volume_desc *ubi = sb->s_fs_info;
1694 struct ubifs_info *c;
1695 struct inode *root;
1696 int err;
1697
1698 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1699 if (!c)
1700 return -ENOMEM;
1701
1702 spin_lock_init(&c->cnt_lock);
1703 spin_lock_init(&c->cs_lock);
1704 spin_lock_init(&c->buds_lock);
1705 spin_lock_init(&c->space_lock);
1706 spin_lock_init(&c->orphan_lock);
1707 init_rwsem(&c->commit_sem);
1708 mutex_init(&c->lp_mutex);
1709 mutex_init(&c->tnc_mutex);
1710 mutex_init(&c->log_mutex);
1711 mutex_init(&c->mst_mutex);
1712 mutex_init(&c->umount_mutex);
1713 init_waitqueue_head(&c->cmt_wq);
1714 c->buds = RB_ROOT;
1715 c->old_idx = RB_ROOT;
1716 c->size_tree = RB_ROOT;
1717 c->orph_tree = RB_ROOT;
1718 INIT_LIST_HEAD(&c->infos_list);
1719 INIT_LIST_HEAD(&c->idx_gc);
1720 INIT_LIST_HEAD(&c->replay_list);
1721 INIT_LIST_HEAD(&c->replay_buds);
1722 INIT_LIST_HEAD(&c->uncat_list);
1723 INIT_LIST_HEAD(&c->empty_list);
1724 INIT_LIST_HEAD(&c->freeable_list);
1725 INIT_LIST_HEAD(&c->frdi_idx_list);
1726 INIT_LIST_HEAD(&c->unclean_leb_list);
1727 INIT_LIST_HEAD(&c->old_buds);
1728 INIT_LIST_HEAD(&c->orph_list);
1729 INIT_LIST_HEAD(&c->orph_new);
1730
1731 c->highest_inum = UBIFS_FIRST_INO;
1e51764a
AB
1732 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1733
1734 ubi_get_volume_info(ubi, &c->vi);
1735 ubi_get_device_info(c->vi.ubi_num, &c->di);
1736
1737 /* Re-open the UBI device in read-write mode */
1738 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1739 if (IS_ERR(c->ubi)) {
1740 err = PTR_ERR(c->ubi);
1741 goto out_free;
1742 }
1743
1744 /*
0a883a05 1745 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1e51764a
AB
1746 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1747 * which means the user would have to wait not just for their own I/O
0a883a05 1748 * but the read-ahead I/O as well i.e. completely pointless.
1e51764a
AB
1749 *
1750 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1751 */
1752 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1753 c->bdi.unplug_io_fn = default_unplug_io_fn;
1754 err = bdi_init(&c->bdi);
1755 if (err)
1756 goto out_close;
1757
1758 err = ubifs_parse_options(c, data, 0);
1759 if (err)
1760 goto out_bdi;
1761
1762 c->vfs_sb = sb;
1763
1764 sb->s_fs_info = c;
1765 sb->s_magic = UBIFS_SUPER_MAGIC;
1766 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1767 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1768 sb->s_dev = c->vi.cdev;
1769 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1770 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1771 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1772 sb->s_op = &ubifs_super_operations;
1773
1774 mutex_lock(&c->umount_mutex);
1775 err = mount_ubifs(c);
1776 if (err) {
1777 ubifs_assert(err < 0);
1778 goto out_unlock;
1779 }
1780
1781 /* Read the root inode */
1782 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1783 if (IS_ERR(root)) {
1784 err = PTR_ERR(root);
1785 goto out_umount;
1786 }
1787
1788 sb->s_root = d_alloc_root(root);
1789 if (!sb->s_root)
1790 goto out_iput;
1791
1792 mutex_unlock(&c->umount_mutex);
1793
1794 return 0;
1795
1796out_iput:
1797 iput(root);
1798out_umount:
1799 ubifs_umount(c);
1800out_unlock:
1801 mutex_unlock(&c->umount_mutex);
1802out_bdi:
1803 bdi_destroy(&c->bdi);
1804out_close:
1805 ubi_close_volume(c->ubi);
1806out_free:
1807 kfree(c);
1808 return err;
1809}
1810
1811static int sb_test(struct super_block *sb, void *data)
1812{
1813 dev_t *dev = data;
1814
1815 return sb->s_dev == *dev;
1816}
1817
1818static int sb_set(struct super_block *sb, void *data)
1819{
1820 dev_t *dev = data;
1821
1822 sb->s_dev = *dev;
1823 return 0;
1824}
1825
1826static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1827 const char *name, void *data, struct vfsmount *mnt)
1828{
1829 struct ubi_volume_desc *ubi;
1830 struct ubi_volume_info vi;
1831 struct super_block *sb;
1832 int err;
1833
1834 dbg_gen("name %s, flags %#x", name, flags);
1835
1836 /*
1837 * Get UBI device number and volume ID. Mount it read-only so far
1838 * because this might be a new mount point, and UBI allows only one
1839 * read-write user at a time.
1840 */
1841 ubi = open_ubi(name, UBI_READONLY);
1842 if (IS_ERR(ubi)) {
1843 ubifs_err("cannot open \"%s\", error %d",
1844 name, (int)PTR_ERR(ubi));
1845 return PTR_ERR(ubi);
1846 }
1847 ubi_get_volume_info(ubi, &vi);
1848
1849 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1850
1851 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1852 if (IS_ERR(sb)) {
1853 err = PTR_ERR(sb);
1854 goto out_close;
1855 }
1856
1857 if (sb->s_root) {
1858 /* A new mount point for already mounted UBIFS */
1859 dbg_gen("this ubi volume is already mounted");
1860 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1861 err = -EBUSY;
1862 goto out_deact;
1863 }
1864 } else {
1865 sb->s_flags = flags;
1866 /*
1867 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1868 * replaced by 'c'.
1869 */
1870 sb->s_fs_info = ubi;
1871 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1872 if (err)
1873 goto out_deact;
1874 /* We do not support atime */
1875 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1876 }
1877
1878 /* 'fill_super()' opens ubi again so we must close it here */
1879 ubi_close_volume(ubi);
1880
1881 return simple_set_mnt(mnt, sb);
1882
1883out_deact:
1884 up_write(&sb->s_umount);
1885 deactivate_super(sb);
1886out_close:
1887 ubi_close_volume(ubi);
1888 return err;
1889}
1890
1891static void ubifs_kill_sb(struct super_block *sb)
1892{
1893 struct ubifs_info *c = sb->s_fs_info;
1894
1895 /*
1896 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1897 * in order to be outside BKL.
1898 */
1899 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1900 commit_on_unmount(c);
1901 /* The un-mount routine is actually done in put_super() */
1902 generic_shutdown_super(sb);
1903}
1904
1905static struct file_system_type ubifs_fs_type = {
1906 .name = "ubifs",
1907 .owner = THIS_MODULE,
1908 .get_sb = ubifs_get_sb,
1909 .kill_sb = ubifs_kill_sb
1910};
1911
1912/*
1913 * Inode slab cache constructor.
1914 */
51cc5068 1915static void inode_slab_ctor(void *obj)
1e51764a
AB
1916{
1917 struct ubifs_inode *ui = obj;
1918 inode_init_once(&ui->vfs_inode);
1919}
1920
1921static int __init ubifs_init(void)
1922{
1923 int err;
1924
1925 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
1926
1927 /* Make sure node sizes are 8-byte aligned */
1928 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
1929 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
1930 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
1931 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
1932 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
1933 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
1934 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
1935 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
1936 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
1937 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
1938 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
1939
1940 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
1941 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
1942 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
1943 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
1944 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
1945 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
1946
1947 /* Check min. node size */
1948 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
1949 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
1950 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
1951 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
1952
1953 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1954 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1955 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
1956 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
1957
1958 /* Defined node sizes */
1959 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
1960 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
1961 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
1962 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
1963
1964 /*
1965 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1966 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1967 */
1968 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
1969 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1970 " at least 4096 bytes",
1971 (unsigned int)PAGE_CACHE_SIZE);
1972 return -EINVAL;
1973 }
1974
1975 err = register_filesystem(&ubifs_fs_type);
1976 if (err) {
1977 ubifs_err("cannot register file system, error %d", err);
1978 return err;
1979 }
1980
1981 err = -ENOMEM;
1982 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
1983 sizeof(struct ubifs_inode), 0,
1984 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
1985 &inode_slab_ctor);
1986 if (!ubifs_inode_slab)
1987 goto out_reg;
1988
1989 register_shrinker(&ubifs_shrinker_info);
1990
1991 err = ubifs_compressors_init();
1992 if (err)
1993 goto out_compr;
1994
1995 return 0;
1996
1997out_compr:
1998 unregister_shrinker(&ubifs_shrinker_info);
1999 kmem_cache_destroy(ubifs_inode_slab);
2000out_reg:
2001 unregister_filesystem(&ubifs_fs_type);
2002 return err;
2003}
2004/* late_initcall to let compressors initialize first */
2005late_initcall(ubifs_init);
2006
2007static void __exit ubifs_exit(void)
2008{
2009 ubifs_assert(list_empty(&ubifs_infos));
2010 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2011
2012 ubifs_compressors_exit();
2013 unregister_shrinker(&ubifs_shrinker_info);
2014 kmem_cache_destroy(ubifs_inode_slab);
2015 unregister_filesystem(&ubifs_fs_type);
2016}
2017module_exit(ubifs_exit);
2018
2019MODULE_LICENSE("GPL");
2020MODULE_VERSION(__stringify(UBIFS_VERSION));
2021MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2022MODULE_DESCRIPTION("UBIFS - UBI File System");