]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ubifs/super.c
UBIFS: add re-mount debugging checks
[net-next-2.6.git] / fs / ubifs / super.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
1e51764a
AB
33#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
4d61db4f 37#include <linux/math64.h>
304d427c 38#include <linux/writeback.h>
1e51764a
AB
39#include "ubifs.h"
40
39ce81ce
AB
41/*
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
44 */
45#define UBIFS_KMALLOC_OK (128*1024)
46
1e51764a
AB
47/* Slab cache for UBIFS inodes */
48struct kmem_cache *ubifs_inode_slab;
49
50/* UBIFS TNC shrinker description */
51static struct shrinker ubifs_shrinker_info = {
52 .shrink = ubifs_shrinker,
53 .seeks = DEFAULT_SEEKS,
54};
55
56/**
57 * validate_inode - validate inode.
58 * @c: UBIFS file-system description object
59 * @inode: the inode to validate
60 *
61 * This is a helper function for 'ubifs_iget()' which validates various fields
62 * of a newly built inode to make sure they contain sane values and prevent
63 * possible vulnerabilities. Returns zero if the inode is all right and
64 * a non-zero error code if not.
65 */
66static int validate_inode(struct ubifs_info *c, const struct inode *inode)
67{
68 int err;
69 const struct ubifs_inode *ui = ubifs_inode(inode);
70
71 if (inode->i_size > c->max_inode_sz) {
72 ubifs_err("inode is too large (%lld)",
73 (long long)inode->i_size);
74 return 1;
75 }
76
77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 ubifs_err("unknown compression type %d", ui->compr_type);
79 return 2;
80 }
81
82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
83 return 3;
84
85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
86 return 4;
87
88 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
89 return 5;
90
91 if (!ubifs_compr_present(ui->compr_type)) {
92 ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 "compiled in", inode->i_ino,
94 ubifs_compr_name(ui->compr_type));
95 }
96
97 err = dbg_check_dir_size(c, inode);
98 return err;
99}
100
101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102{
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
109
110 dbg_gen("inode %lu", inum);
111
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
118
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
123 }
124
125 ino_key_init(c, &key, inode->i_ino);
126
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
130
131 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 inode->i_nlink = le32_to_cpu(ino->nlink);
133 inode->i_uid = le32_to_cpu(ino->uid);
134 inode->i_gid = le32_to_cpu(ino->gid);
135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 inode->i_mode = le32_to_cpu(ino->mode);
142 inode->i_size = le64_to_cpu(ino->size);
143
144 ui->data_len = le32_to_cpu(ino->data_len);
145 ui->flags = le32_to_cpu(ino->flags);
146 ui->compr_type = le16_to_cpu(ino->compr_type);
147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
149 ui->xattr_size = le32_to_cpu(ino->xattr_size);
150 ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 ui->synced_i_size = ui->ui_size = inode->i_size;
152
153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154
155 err = validate_inode(c, inode);
156 if (err)
157 goto out_invalid;
158
0a883a05 159 /* Disable read-ahead */
1e51764a
AB
160 inode->i_mapping->backing_dev_info = &c->bdi;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFREG:
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
167 if (ui->xattr) {
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 if (!ui->data) {
170 err = -ENOMEM;
171 goto out_ino;
172 }
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
176 err = 10;
177 goto out_invalid;
178 }
179 break;
180 case S_IFDIR:
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
184 err = 11;
185 goto out_invalid;
186 }
187 break;
188 case S_IFLNK:
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 err = 12;
192 goto out_invalid;
193 }
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 if (!ui->data) {
196 err = -ENOMEM;
197 goto out_ino;
198 }
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
201 break;
202 case S_IFBLK:
203 case S_IFCHR:
204 {
205 dev_t rdev;
206 union ubifs_dev_desc *dev;
207
208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
209 if (!ui->data) {
210 err = -ENOMEM;
211 goto out_ino;
212 }
213
214 dev = (union ubifs_dev_desc *)ino->data;
215 if (ui->data_len == sizeof(dev->new))
216 rdev = new_decode_dev(le32_to_cpu(dev->new));
217 else if (ui->data_len == sizeof(dev->huge))
218 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
219 else {
220 err = 13;
221 goto out_invalid;
222 }
223 memcpy(ui->data, ino->data, ui->data_len);
224 inode->i_op = &ubifs_file_inode_operations;
225 init_special_inode(inode, inode->i_mode, rdev);
226 break;
227 }
228 case S_IFSOCK:
229 case S_IFIFO:
230 inode->i_op = &ubifs_file_inode_operations;
231 init_special_inode(inode, inode->i_mode, 0);
232 if (ui->data_len != 0) {
233 err = 14;
234 goto out_invalid;
235 }
236 break;
237 default:
238 err = 15;
239 goto out_invalid;
240 }
241
242 kfree(ino);
243 ubifs_set_inode_flags(inode);
244 unlock_new_inode(inode);
245 return inode;
246
247out_invalid:
248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 dbg_dump_node(c, ino);
250 dbg_dump_inode(c, inode);
251 err = -EINVAL;
252out_ino:
253 kfree(ino);
254out:
255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
256 iget_failed(inode);
257 return ERR_PTR(err);
258}
259
260static struct inode *ubifs_alloc_inode(struct super_block *sb)
261{
262 struct ubifs_inode *ui;
263
264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
265 if (!ui)
266 return NULL;
267
268 memset((void *)ui + sizeof(struct inode), 0,
269 sizeof(struct ubifs_inode) - sizeof(struct inode));
270 mutex_init(&ui->ui_mutex);
271 spin_lock_init(&ui->ui_lock);
272 return &ui->vfs_inode;
273};
274
275static void ubifs_destroy_inode(struct inode *inode)
276{
277 struct ubifs_inode *ui = ubifs_inode(inode);
278
279 kfree(ui->data);
280 kmem_cache_free(ubifs_inode_slab, inode);
281}
282
283/*
284 * Note, Linux write-back code calls this without 'i_mutex'.
285 */
286static int ubifs_write_inode(struct inode *inode, int wait)
287{
fbfa6c88 288 int err = 0;
1e51764a
AB
289 struct ubifs_info *c = inode->i_sb->s_fs_info;
290 struct ubifs_inode *ui = ubifs_inode(inode);
291
292 ubifs_assert(!ui->xattr);
293 if (is_bad_inode(inode))
294 return 0;
295
296 mutex_lock(&ui->ui_mutex);
297 /*
298 * Due to races between write-back forced by budgeting
299 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
300 * have already been synchronized, do not do this again. This might
301 * also happen if it was synchronized in an VFS operation, e.g.
302 * 'ubifs_link()'.
303 */
304 if (!ui->dirty) {
305 mutex_unlock(&ui->ui_mutex);
306 return 0;
307 }
308
fbfa6c88
AB
309 /*
310 * As an optimization, do not write orphan inodes to the media just
311 * because this is not needed.
312 */
313 dbg_gen("inode %lu, mode %#x, nlink %u",
314 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
315 if (inode->i_nlink) {
1f28681a 316 err = ubifs_jnl_write_inode(c, inode);
fbfa6c88
AB
317 if (err)
318 ubifs_err("can't write inode %lu, error %d",
319 inode->i_ino, err);
320 }
1e51764a
AB
321
322 ui->dirty = 0;
323 mutex_unlock(&ui->ui_mutex);
324 ubifs_release_dirty_inode_budget(c, ui);
325 return err;
326}
327
328static void ubifs_delete_inode(struct inode *inode)
329{
330 int err;
331 struct ubifs_info *c = inode->i_sb->s_fs_info;
1e0f358e 332 struct ubifs_inode *ui = ubifs_inode(inode);
1e51764a 333
1e0f358e 334 if (ui->xattr)
1e51764a
AB
335 /*
336 * Extended attribute inode deletions are fully handled in
337 * 'ubifs_removexattr()'. These inodes are special and have
338 * limited usage, so there is nothing to do here.
339 */
340 goto out;
341
7d32c2bb 342 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
1e51764a
AB
343 ubifs_assert(!atomic_read(&inode->i_count));
344 ubifs_assert(inode->i_nlink == 0);
345
346 truncate_inode_pages(&inode->i_data, 0);
347 if (is_bad_inode(inode))
348 goto out;
349
1e0f358e 350 ui->ui_size = inode->i_size = 0;
de94eb55 351 err = ubifs_jnl_delete_inode(c, inode);
1e51764a
AB
352 if (err)
353 /*
354 * Worst case we have a lost orphan inode wasting space, so a
0a883a05 355 * simple error message is OK here.
1e51764a 356 */
de94eb55
AB
357 ubifs_err("can't delete inode %lu, error %d",
358 inode->i_ino, err);
359
1e51764a 360out:
1e0f358e
AB
361 if (ui->dirty)
362 ubifs_release_dirty_inode_budget(c, ui);
1e51764a
AB
363 clear_inode(inode);
364}
365
366static void ubifs_dirty_inode(struct inode *inode)
367{
368 struct ubifs_inode *ui = ubifs_inode(inode);
369
370 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
371 if (!ui->dirty) {
372 ui->dirty = 1;
373 dbg_gen("inode %lu", inode->i_ino);
374 }
375}
376
377static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
378{
379 struct ubifs_info *c = dentry->d_sb->s_fs_info;
380 unsigned long long free;
7c7cbadf 381 __le32 *uuid = (__le32 *)c->uuid;
1e51764a 382
7dad181b 383 free = ubifs_get_free_space(c);
1e51764a
AB
384 dbg_gen("free space %lld bytes (%lld blocks)",
385 free, free >> UBIFS_BLOCK_SHIFT);
386
387 buf->f_type = UBIFS_SUPER_MAGIC;
388 buf->f_bsize = UBIFS_BLOCK_SIZE;
389 buf->f_blocks = c->block_cnt;
390 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
391 if (free > c->report_rp_size)
392 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
393 else
394 buf->f_bavail = 0;
395 buf->f_files = 0;
396 buf->f_ffree = 0;
397 buf->f_namelen = UBIFS_MAX_NLEN;
7c7cbadf
AB
398 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
399 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
1e51764a
AB
400 return 0;
401}
402
403static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
404{
405 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
406
407 if (c->mount_opts.unmount_mode == 2)
408 seq_printf(s, ",fast_unmount");
409 else if (c->mount_opts.unmount_mode == 1)
410 seq_printf(s, ",norm_unmount");
411
4793e7c5
AH
412 if (c->mount_opts.bulk_read == 2)
413 seq_printf(s, ",bulk_read");
414 else if (c->mount_opts.bulk_read == 1)
415 seq_printf(s, ",no_bulk_read");
416
2953e73f
AH
417 if (c->mount_opts.chk_data_crc == 2)
418 seq_printf(s, ",chk_data_crc");
419 else if (c->mount_opts.chk_data_crc == 1)
420 seq_printf(s, ",no_chk_data_crc");
421
553dea4d
AB
422 if (c->mount_opts.override_compr) {
423 seq_printf(s, ",compr=");
424 seq_printf(s, ubifs_compr_name(c->mount_opts.compr_type));
425 }
426
1e51764a
AB
427 return 0;
428}
429
430static int ubifs_sync_fs(struct super_block *sb, int wait)
431{
f1038300 432 int i, err;
1e51764a 433 struct ubifs_info *c = sb->s_fs_info;
304d427c 434 struct writeback_control wbc = {
dedb0d48 435 .sync_mode = WB_SYNC_ALL,
304d427c
AB
436 .range_start = 0,
437 .range_end = LLONG_MAX,
438 .nr_to_write = LONG_MAX,
439 };
440
e8ea1759 441 /*
dedb0d48
AB
442 * Zero @wait is just an advisory thing to help the file system shove
443 * lots of data into the queues, and there will be the second
e8ea1759
AB
444 * '->sync_fs()' call, with non-zero @wait.
445 */
dedb0d48
AB
446 if (!wait)
447 return 0;
e8ea1759 448
f1038300
AB
449 if (sb->s_flags & MS_RDONLY)
450 return 0;
451
452 /*
453 * Synchronize write buffers, because 'ubifs_run_commit()' does not
454 * do this if it waits for an already running commit.
455 */
456 for (i = 0; i < c->jhead_cnt; i++) {
457 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
458 if (err)
459 return err;
460 }
461
304d427c
AB
462 /*
463 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and
464 * pages, so synchronize them first, then commit the journal. Strictly
465 * speaking, it is not necessary to commit the journal here,
466 * synchronizing write-buffers would be enough. But committing makes
467 * UBIFS free space predictions much more accurate, so we want to let
468 * the user be able to get more accurate results of 'statfs()' after
469 * they synchronize the file system.
470 */
471 generic_sync_sb_inodes(sb, &wbc);
1e51764a 472
f1038300
AB
473 err = ubifs_run_commit(c);
474 if (err)
475 return err;
403e12ab 476
cb5c6a2b 477 return ubi_sync(c->vi.ubi_num);
1e51764a
AB
478}
479
480/**
481 * init_constants_early - initialize UBIFS constants.
482 * @c: UBIFS file-system description object
483 *
484 * This function initialize UBIFS constants which do not need the superblock to
485 * be read. It also checks that the UBI volume satisfies basic UBIFS
486 * requirements. Returns zero in case of success and a negative error code in
487 * case of failure.
488 */
489static int init_constants_early(struct ubifs_info *c)
490{
491 if (c->vi.corrupted) {
492 ubifs_warn("UBI volume is corrupted - read-only mode");
493 c->ro_media = 1;
494 }
495
496 if (c->di.ro_mode) {
497 ubifs_msg("read-only UBI device");
498 c->ro_media = 1;
499 }
500
501 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
502 ubifs_msg("static UBI volume - read-only mode");
503 c->ro_media = 1;
504 }
505
506 c->leb_cnt = c->vi.size;
507 c->leb_size = c->vi.usable_leb_size;
508 c->half_leb_size = c->leb_size / 2;
509 c->min_io_size = c->di.min_io_size;
510 c->min_io_shift = fls(c->min_io_size) - 1;
511
512 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
513 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
514 c->leb_size, UBIFS_MIN_LEB_SZ);
515 return -EINVAL;
516 }
517
518 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
519 ubifs_err("too few LEBs (%d), min. is %d",
520 c->leb_cnt, UBIFS_MIN_LEB_CNT);
521 return -EINVAL;
522 }
523
524 if (!is_power_of_2(c->min_io_size)) {
525 ubifs_err("bad min. I/O size %d", c->min_io_size);
526 return -EINVAL;
527 }
528
529 /*
530 * UBIFS aligns all node to 8-byte boundary, so to make function in
531 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
532 * less than 8.
533 */
534 if (c->min_io_size < 8) {
535 c->min_io_size = 8;
536 c->min_io_shift = 3;
537 }
538
539 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
540 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
541
542 /*
543 * Initialize node length ranges which are mostly needed for node
544 * length validation.
545 */
546 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
547 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
548 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
549 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
550 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
551 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
552
553 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
554 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
555 c->ranges[UBIFS_ORPH_NODE].min_len =
556 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
557 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
558 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
559 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
560 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
561 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
562 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
563 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
564 /*
565 * Minimum indexing node size is amended later when superblock is
566 * read and the key length is known.
567 */
568 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
569 /*
570 * Maximum indexing node size is amended later when superblock is
571 * read and the fanout is known.
572 */
573 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
574
575 /*
7078202e
AB
576 * Initialize dead and dark LEB space watermarks. See gc.c for comments
577 * about these values.
1e51764a
AB
578 */
579 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
580 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
581
9bbb5726
AB
582 /*
583 * Calculate how many bytes would be wasted at the end of LEB if it was
584 * fully filled with data nodes of maximum size. This is used in
585 * calculations when reporting free space.
586 */
587 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
39ce81ce 588
4793e7c5 589 /* Buffer size for bulk-reads */
6c0c42cd
AB
590 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
591 if (c->max_bu_buf_len > c->leb_size)
592 c->max_bu_buf_len = c->leb_size;
1e51764a
AB
593 return 0;
594}
595
596/**
597 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
598 * @c: UBIFS file-system description object
599 * @lnum: LEB the write-buffer was synchronized to
600 * @free: how many free bytes left in this LEB
601 * @pad: how many bytes were padded
602 *
603 * This is a callback function which is called by the I/O unit when the
604 * write-buffer is synchronized. We need this to correctly maintain space
605 * accounting in bud logical eraseblocks. This function returns zero in case of
606 * success and a negative error code in case of failure.
607 *
608 * This function actually belongs to the journal, but we keep it here because
609 * we want to keep it static.
610 */
611static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
612{
613 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
614}
615
616/*
79807d07 617 * init_constants_sb - initialize UBIFS constants.
1e51764a
AB
618 * @c: UBIFS file-system description object
619 *
620 * This is a helper function which initializes various UBIFS constants after
621 * the superblock has been read. It also checks various UBIFS parameters and
622 * makes sure they are all right. Returns zero in case of success and a
623 * negative error code in case of failure.
624 */
79807d07 625static int init_constants_sb(struct ubifs_info *c)
1e51764a
AB
626{
627 int tmp, err;
4d61db4f 628 long long tmp64;
1e51764a
AB
629
630 c->main_bytes = (long long)c->main_lebs * c->leb_size;
631 c->max_znode_sz = sizeof(struct ubifs_znode) +
632 c->fanout * sizeof(struct ubifs_zbranch);
633
634 tmp = ubifs_idx_node_sz(c, 1);
635 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
636 c->min_idx_node_sz = ALIGN(tmp, 8);
637
638 tmp = ubifs_idx_node_sz(c, c->fanout);
639 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
640 c->max_idx_node_sz = ALIGN(tmp, 8);
641
642 /* Make sure LEB size is large enough to fit full commit */
643 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
644 tmp = ALIGN(tmp, c->min_io_size);
645 if (tmp > c->leb_size) {
646 dbg_err("too small LEB size %d, at least %d needed",
647 c->leb_size, tmp);
648 return -EINVAL;
649 }
650
651 /*
652 * Make sure that the log is large enough to fit reference nodes for
653 * all buds plus one reserved LEB.
654 */
4d61db4f
AB
655 tmp64 = c->max_bud_bytes + c->leb_size - 1;
656 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
1e51764a
AB
657 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
658 tmp /= c->leb_size;
659 tmp += 1;
660 if (c->log_lebs < tmp) {
661 dbg_err("too small log %d LEBs, required min. %d LEBs",
662 c->log_lebs, tmp);
663 return -EINVAL;
664 }
665
666 /*
667 * When budgeting we assume worst-case scenarios when the pages are not
668 * be compressed and direntries are of the maximum size.
669 *
670 * Note, data, which may be stored in inodes is budgeted separately, so
671 * it is not included into 'c->inode_budget'.
672 */
673 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
674 c->inode_budget = UBIFS_INO_NODE_SZ;
675 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
676
677 /*
678 * When the amount of flash space used by buds becomes
679 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
680 * The writers are unblocked when the commit is finished. To avoid
681 * writers to be blocked UBIFS initiates background commit in advance,
682 * when number of bud bytes becomes above the limit defined below.
683 */
684 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
685
686 /*
687 * Ensure minimum journal size. All the bytes in the journal heads are
688 * considered to be used, when calculating the current journal usage.
689 * Consequently, if the journal is too small, UBIFS will treat it as
690 * always full.
691 */
4d61db4f 692 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
1e51764a
AB
693 if (c->bg_bud_bytes < tmp64)
694 c->bg_bud_bytes = tmp64;
695 if (c->max_bud_bytes < tmp64 + c->leb_size)
696 c->max_bud_bytes = tmp64 + c->leb_size;
697
698 err = ubifs_calc_lpt_geom(c);
699 if (err)
700 return err;
701
79807d07
AB
702 return 0;
703}
704
705/*
706 * init_constants_master - initialize UBIFS constants.
707 * @c: UBIFS file-system description object
708 *
709 * This is a helper function which initializes various UBIFS constants after
710 * the master node has been read. It also checks various UBIFS parameters and
711 * makes sure they are all right.
712 */
713static void init_constants_master(struct ubifs_info *c)
714{
715 long long tmp64;
716
1e51764a
AB
717 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
718
719 /*
720 * Calculate total amount of FS blocks. This number is not used
721 * internally because it does not make much sense for UBIFS, but it is
722 * necessary to report something for the 'statfs()' call.
723 *
7dad181b 724 * Subtract the LEB reserved for GC, the LEB which is reserved for
af14a1ad
AB
725 * deletions, minimum LEBs for the index, and assume only one journal
726 * head is available.
1e51764a 727 */
af14a1ad 728 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
4d61db4f 729 tmp64 *= (long long)c->leb_size - c->leb_overhead;
1e51764a
AB
730 tmp64 = ubifs_reported_space(c, tmp64);
731 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
1e51764a
AB
732}
733
734/**
735 * take_gc_lnum - reserve GC LEB.
736 * @c: UBIFS file-system description object
737 *
738 * This function ensures that the LEB reserved for garbage collection is
739 * unmapped and is marked as "taken" in lprops. We also have to set free space
740 * to LEB size and dirty space to zero, because lprops may contain out-of-date
741 * information if the file-system was un-mounted before it has been committed.
742 * This function returns zero in case of success and a negative error code in
743 * case of failure.
744 */
745static int take_gc_lnum(struct ubifs_info *c)
746{
747 int err;
748
749 if (c->gc_lnum == -1) {
750 ubifs_err("no LEB for GC");
751 return -EINVAL;
752 }
753
754 err = ubifs_leb_unmap(c, c->gc_lnum);
755 if (err)
756 return err;
757
758 /* And we have to tell lprops that this LEB is taken */
759 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
760 LPROPS_TAKEN, 0, 0);
761 return err;
762}
763
764/**
765 * alloc_wbufs - allocate write-buffers.
766 * @c: UBIFS file-system description object
767 *
768 * This helper function allocates and initializes UBIFS write-buffers. Returns
769 * zero in case of success and %-ENOMEM in case of failure.
770 */
771static int alloc_wbufs(struct ubifs_info *c)
772{
773 int i, err;
774
775 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
776 GFP_KERNEL);
777 if (!c->jheads)
778 return -ENOMEM;
779
780 /* Initialize journal heads */
781 for (i = 0; i < c->jhead_cnt; i++) {
782 INIT_LIST_HEAD(&c->jheads[i].buds_list);
783 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
784 if (err)
785 return err;
786
787 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
788 c->jheads[i].wbuf.jhead = i;
789 }
790
791 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
792 /*
793 * Garbage Collector head likely contains long-term data and
794 * does not need to be synchronized by timer.
795 */
796 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
797 c->jheads[GCHD].wbuf.timeout = 0;
798
799 return 0;
800}
801
802/**
803 * free_wbufs - free write-buffers.
804 * @c: UBIFS file-system description object
805 */
806static void free_wbufs(struct ubifs_info *c)
807{
808 int i;
809
810 if (c->jheads) {
811 for (i = 0; i < c->jhead_cnt; i++) {
812 kfree(c->jheads[i].wbuf.buf);
813 kfree(c->jheads[i].wbuf.inodes);
814 }
815 kfree(c->jheads);
816 c->jheads = NULL;
817 }
818}
819
820/**
821 * free_orphans - free orphans.
822 * @c: UBIFS file-system description object
823 */
824static void free_orphans(struct ubifs_info *c)
825{
826 struct ubifs_orphan *orph;
827
828 while (c->orph_dnext) {
829 orph = c->orph_dnext;
830 c->orph_dnext = orph->dnext;
831 list_del(&orph->list);
832 kfree(orph);
833 }
834
835 while (!list_empty(&c->orph_list)) {
836 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
837 list_del(&orph->list);
838 kfree(orph);
839 dbg_err("orphan list not empty at unmount");
840 }
841
842 vfree(c->orph_buf);
843 c->orph_buf = NULL;
844}
845
846/**
847 * free_buds - free per-bud objects.
848 * @c: UBIFS file-system description object
849 */
850static void free_buds(struct ubifs_info *c)
851{
852 struct rb_node *this = c->buds.rb_node;
853 struct ubifs_bud *bud;
854
855 while (this) {
856 if (this->rb_left)
857 this = this->rb_left;
858 else if (this->rb_right)
859 this = this->rb_right;
860 else {
861 bud = rb_entry(this, struct ubifs_bud, rb);
862 this = rb_parent(this);
863 if (this) {
864 if (this->rb_left == &bud->rb)
865 this->rb_left = NULL;
866 else
867 this->rb_right = NULL;
868 }
869 kfree(bud);
870 }
871 }
872}
873
874/**
875 * check_volume_empty - check if the UBI volume is empty.
876 * @c: UBIFS file-system description object
877 *
878 * This function checks if the UBIFS volume is empty by looking if its LEBs are
879 * mapped or not. The result of checking is stored in the @c->empty variable.
880 * Returns zero in case of success and a negative error code in case of
881 * failure.
882 */
883static int check_volume_empty(struct ubifs_info *c)
884{
885 int lnum, err;
886
887 c->empty = 1;
888 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
889 err = ubi_is_mapped(c->ubi, lnum);
890 if (unlikely(err < 0))
891 return err;
892 if (err == 1) {
893 c->empty = 0;
894 break;
895 }
896
897 cond_resched();
898 }
899
900 return 0;
901}
902
903/*
904 * UBIFS mount options.
905 *
906 * Opt_fast_unmount: do not run a journal commit before un-mounting
907 * Opt_norm_unmount: run a journal commit before un-mounting
4793e7c5
AH
908 * Opt_bulk_read: enable bulk-reads
909 * Opt_no_bulk_read: disable bulk-reads
2953e73f
AH
910 * Opt_chk_data_crc: check CRCs when reading data nodes
911 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
553dea4d 912 * Opt_override_compr: override default compressor
1e51764a
AB
913 * Opt_err: just end of array marker
914 */
915enum {
916 Opt_fast_unmount,
917 Opt_norm_unmount,
4793e7c5
AH
918 Opt_bulk_read,
919 Opt_no_bulk_read,
2953e73f
AH
920 Opt_chk_data_crc,
921 Opt_no_chk_data_crc,
553dea4d 922 Opt_override_compr,
1e51764a
AB
923 Opt_err,
924};
925
a447c093 926static const match_table_t tokens = {
1e51764a
AB
927 {Opt_fast_unmount, "fast_unmount"},
928 {Opt_norm_unmount, "norm_unmount"},
4793e7c5
AH
929 {Opt_bulk_read, "bulk_read"},
930 {Opt_no_bulk_read, "no_bulk_read"},
2953e73f
AH
931 {Opt_chk_data_crc, "chk_data_crc"},
932 {Opt_no_chk_data_crc, "no_chk_data_crc"},
553dea4d 933 {Opt_override_compr, "compr=%s"},
1e51764a
AB
934 {Opt_err, NULL},
935};
936
937/**
938 * ubifs_parse_options - parse mount parameters.
939 * @c: UBIFS file-system description object
940 * @options: parameters to parse
941 * @is_remount: non-zero if this is FS re-mount
942 *
943 * This function parses UBIFS mount options and returns zero in case success
944 * and a negative error code in case of failure.
945 */
946static int ubifs_parse_options(struct ubifs_info *c, char *options,
947 int is_remount)
948{
949 char *p;
950 substring_t args[MAX_OPT_ARGS];
951
952 if (!options)
953 return 0;
954
955 while ((p = strsep(&options, ","))) {
956 int token;
957
958 if (!*p)
959 continue;
960
961 token = match_token(p, tokens, args);
962 switch (token) {
963 case Opt_fast_unmount:
964 c->mount_opts.unmount_mode = 2;
965 c->fast_unmount = 1;
966 break;
967 case Opt_norm_unmount:
968 c->mount_opts.unmount_mode = 1;
969 c->fast_unmount = 0;
970 break;
4793e7c5
AH
971 case Opt_bulk_read:
972 c->mount_opts.bulk_read = 2;
973 c->bulk_read = 1;
974 break;
975 case Opt_no_bulk_read:
976 c->mount_opts.bulk_read = 1;
977 c->bulk_read = 0;
978 break;
2953e73f
AH
979 case Opt_chk_data_crc:
980 c->mount_opts.chk_data_crc = 2;
981 c->no_chk_data_crc = 0;
982 break;
983 case Opt_no_chk_data_crc:
984 c->mount_opts.chk_data_crc = 1;
985 c->no_chk_data_crc = 1;
986 break;
553dea4d
AB
987 case Opt_override_compr:
988 {
989 char *name = match_strdup(&args[0]);
990
991 if (!name)
992 return -ENOMEM;
993 if (!strcmp(name, "none"))
994 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
995 else if (!strcmp(name, "lzo"))
996 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
997 else if (!strcmp(name, "zlib"))
998 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
999 else {
1000 ubifs_err("unknown compressor \"%s\"", name);
1001 kfree(name);
1002 return -EINVAL;
1003 }
1004 kfree(name);
1005 c->mount_opts.override_compr = 1;
1006 c->default_compr = c->mount_opts.compr_type;
1007 break;
1008 }
1e51764a
AB
1009 default:
1010 ubifs_err("unrecognized mount option \"%s\" "
1011 "or missing value", p);
1012 return -EINVAL;
1013 }
1014 }
1015
1016 return 0;
1017}
1018
1019/**
1020 * destroy_journal - destroy journal data structures.
1021 * @c: UBIFS file-system description object
1022 *
1023 * This function destroys journal data structures including those that may have
1024 * been created by recovery functions.
1025 */
1026static void destroy_journal(struct ubifs_info *c)
1027{
1028 while (!list_empty(&c->unclean_leb_list)) {
1029 struct ubifs_unclean_leb *ucleb;
1030
1031 ucleb = list_entry(c->unclean_leb_list.next,
1032 struct ubifs_unclean_leb, list);
1033 list_del(&ucleb->list);
1034 kfree(ucleb);
1035 }
1036 while (!list_empty(&c->old_buds)) {
1037 struct ubifs_bud *bud;
1038
1039 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1040 list_del(&bud->list);
1041 kfree(bud);
1042 }
1043 ubifs_destroy_idx_gc(c);
1044 ubifs_destroy_size_tree(c);
1045 ubifs_tnc_close(c);
1046 free_buds(c);
1047}
1048
3477d204
AB
1049/**
1050 * bu_init - initialize bulk-read information.
1051 * @c: UBIFS file-system description object
1052 */
1053static void bu_init(struct ubifs_info *c)
1054{
1055 ubifs_assert(c->bulk_read == 1);
1056
1057 if (c->bu.buf)
1058 return; /* Already initialized */
1059
1060again:
1061 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1062 if (!c->bu.buf) {
1063 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1064 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1065 goto again;
1066 }
1067
1068 /* Just disable bulk-read */
1069 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1070 "disabling it", c->max_bu_buf_len);
1071 c->mount_opts.bulk_read = 1;
1072 c->bulk_read = 0;
1073 return;
1074 }
1075}
1076
57a450e9
AB
1077/**
1078 * check_free_space - check if there is enough free space to mount.
1079 * @c: UBIFS file-system description object
1080 *
1081 * This function makes sure UBIFS has enough free space to be mounted in
1082 * read/write mode. UBIFS must always have some free space to allow deletions.
1083 */
1084static int check_free_space(struct ubifs_info *c)
1085{
1086 ubifs_assert(c->dark_wm > 0);
1087 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1088 ubifs_err("insufficient free space to mount in read/write mode");
1089 dbg_dump_budg(c);
1090 dbg_dump_lprops(c);
1091 /*
1092 * We return %-EINVAL instead of %-ENOSPC because it seems to
1093 * be the closest error code mentioned in the mount function
1094 * documentation.
1095 */
1096 return -EINVAL;
1097 }
1098 return 0;
1099}
1100
1e51764a
AB
1101/**
1102 * mount_ubifs - mount UBIFS file-system.
1103 * @c: UBIFS file-system description object
1104 *
1105 * This function mounts UBIFS file system. Returns zero in case of success and
1106 * a negative error code in case of failure.
1107 *
1108 * Note, the function does not de-allocate resources it it fails half way
1109 * through, and the caller has to do this instead.
1110 */
1111static int mount_ubifs(struct ubifs_info *c)
1112{
1113 struct super_block *sb = c->vfs_sb;
1114 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1115 long long x;
1116 size_t sz;
1117
1118 err = init_constants_early(c);
1119 if (err)
1120 return err;
1121
17c2f9f8
AB
1122 err = ubifs_debugging_init(c);
1123 if (err)
1124 return err;
1e51764a
AB
1125
1126 err = check_volume_empty(c);
1127 if (err)
1128 goto out_free;
1129
1130 if (c->empty && (mounted_read_only || c->ro_media)) {
1131 /*
1132 * This UBI volume is empty, and read-only, or the file system
1133 * is mounted read-only - we cannot format it.
1134 */
1135 ubifs_err("can't format empty UBI volume: read-only %s",
1136 c->ro_media ? "UBI volume" : "mount");
1137 err = -EROFS;
1138 goto out_free;
1139 }
1140
1141 if (c->ro_media && !mounted_read_only) {
1142 ubifs_err("cannot mount read-write - read-only media");
1143 err = -EROFS;
1144 goto out_free;
1145 }
1146
1147 /*
1148 * The requirement for the buffer is that it should fit indexing B-tree
1149 * height amount of integers. We assume the height if the TNC tree will
1150 * never exceed 64.
1151 */
1152 err = -ENOMEM;
1153 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1154 if (!c->bottom_up_buf)
1155 goto out_free;
1156
1157 c->sbuf = vmalloc(c->leb_size);
1158 if (!c->sbuf)
1159 goto out_free;
1160
1161 if (!mounted_read_only) {
1162 c->ileb_buf = vmalloc(c->leb_size);
1163 if (!c->ileb_buf)
1164 goto out_free;
1165 }
1166
3477d204
AB
1167 if (c->bulk_read == 1)
1168 bu_init(c);
1169
1170 /*
1171 * We have to check all CRCs, even for data nodes, when we mount the FS
1172 * (specifically, when we are replaying).
1173 */
2953e73f
AH
1174 c->always_chk_crc = 1;
1175
1e51764a
AB
1176 err = ubifs_read_superblock(c);
1177 if (err)
1178 goto out_free;
1179
1180 /*
553dea4d 1181 * Make sure the compressor which is set as default in the superblock
57a450e9 1182 * or overridden by mount options is actually compiled in.
1e51764a
AB
1183 */
1184 if (!ubifs_compr_present(c->default_compr)) {
553dea4d
AB
1185 ubifs_err("'compressor \"%s\" is not compiled in",
1186 ubifs_compr_name(c->default_compr));
1187 goto out_free;
1e51764a
AB
1188 }
1189
79807d07 1190 err = init_constants_sb(c);
1e51764a 1191 if (err)
17c2f9f8 1192 goto out_free;
1e51764a
AB
1193
1194 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1195 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1196 c->cbuf = kmalloc(sz, GFP_NOFS);
1197 if (!c->cbuf) {
1198 err = -ENOMEM;
17c2f9f8 1199 goto out_free;
1e51764a
AB
1200 }
1201
0855f310 1202 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1e51764a
AB
1203 if (!mounted_read_only) {
1204 err = alloc_wbufs(c);
1205 if (err)
1206 goto out_cbuf;
1207
1208 /* Create background thread */
1e51764a 1209 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1e51764a
AB
1210 if (IS_ERR(c->bgt)) {
1211 err = PTR_ERR(c->bgt);
1212 c->bgt = NULL;
1213 ubifs_err("cannot spawn \"%s\", error %d",
1214 c->bgt_name, err);
1215 goto out_wbufs;
1216 }
1217 wake_up_process(c->bgt);
1218 }
1219
1220 err = ubifs_read_master(c);
1221 if (err)
1222 goto out_master;
1223
79807d07
AB
1224 init_constants_master(c);
1225
1e51764a
AB
1226 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1227 ubifs_msg("recovery needed");
1228 c->need_recovery = 1;
1229 if (!mounted_read_only) {
1230 err = ubifs_recover_inl_heads(c, c->sbuf);
1231 if (err)
1232 goto out_master;
1233 }
1234 } else if (!mounted_read_only) {
1235 /*
1236 * Set the "dirty" flag so that if we reboot uncleanly we
1237 * will notice this immediately on the next mount.
1238 */
1239 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1240 err = ubifs_write_master(c);
1241 if (err)
1242 goto out_master;
1243 }
1244
1245 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1246 if (err)
1247 goto out_lpt;
1248
1249 err = dbg_check_idx_size(c, c->old_idx_sz);
1250 if (err)
1251 goto out_lpt;
1252
1253 err = ubifs_replay_journal(c);
1254 if (err)
1255 goto out_journal;
1256
1257 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1258 if (err)
1259 goto out_orphans;
1260
1261 if (!mounted_read_only) {
1262 int lnum;
1263
57a450e9
AB
1264 err = check_free_space(c);
1265 if (err)
1e51764a 1266 goto out_orphans;
1e51764a
AB
1267
1268 /* Check for enough log space */
1269 lnum = c->lhead_lnum + 1;
1270 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1271 lnum = UBIFS_LOG_LNUM;
1272 if (lnum == c->ltail_lnum) {
1273 err = ubifs_consolidate_log(c);
1274 if (err)
1275 goto out_orphans;
1276 }
1277
1278 if (c->need_recovery) {
1279 err = ubifs_recover_size(c);
1280 if (err)
1281 goto out_orphans;
1282 err = ubifs_rcvry_gc_commit(c);
1283 } else
1284 err = take_gc_lnum(c);
1285 if (err)
1286 goto out_orphans;
1287
1288 err = dbg_check_lprops(c);
1289 if (err)
1290 goto out_orphans;
1291 } else if (c->need_recovery) {
1292 err = ubifs_recover_size(c);
1293 if (err)
1294 goto out_orphans;
1295 }
1296
1297 spin_lock(&ubifs_infos_lock);
1298 list_add_tail(&c->infos_list, &ubifs_infos);
1299 spin_unlock(&ubifs_infos_lock);
1300
1301 if (c->need_recovery) {
1302 if (mounted_read_only)
1303 ubifs_msg("recovery deferred");
1304 else {
1305 c->need_recovery = 0;
1306 ubifs_msg("recovery completed");
1307 }
1308 }
1309
552ff317
AB
1310 err = dbg_debugfs_init_fs(c);
1311 if (err)
1312 goto out_infos;
1313
1e51764a
AB
1314 err = dbg_check_filesystem(c);
1315 if (err)
1316 goto out_infos;
1317
2953e73f
AH
1318 c->always_chk_crc = 0;
1319
ce769caa
AB
1320 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1321 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1e51764a
AB
1322 if (mounted_read_only)
1323 ubifs_msg("mounted read-only");
1324 x = (long long)c->main_lebs * c->leb_size;
948cfb21
AB
1325 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1326 "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1e51764a 1327 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
948cfb21
AB
1328 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1329 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1330 ubifs_msg("media format: %d (latest is %d)",
1e51764a 1331 c->fmt_version, UBIFS_FORMAT_VERSION);
948cfb21 1332 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
fae7fb29 1333 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
948cfb21 1334 c->report_rp_size, c->report_rp_size >> 10);
1e51764a
AB
1335
1336 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1337 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1338 dbg_msg("LEB size: %d bytes (%d KiB)",
948cfb21 1339 c->leb_size, c->leb_size >> 10);
1e51764a
AB
1340 dbg_msg("data journal heads: %d",
1341 c->jhead_cnt - NONDATA_JHEADS_CNT);
1342 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1343 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1344 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1345 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1346 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1347 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1348 dbg_msg("fast unmount: %d", c->fast_unmount);
1349 dbg_msg("big_lpt %d", c->big_lpt);
1350 dbg_msg("log LEBs: %d (%d - %d)",
1351 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1352 dbg_msg("LPT area LEBs: %d (%d - %d)",
1353 c->lpt_lebs, c->lpt_first, c->lpt_last);
1354 dbg_msg("orphan area LEBs: %d (%d - %d)",
1355 c->orph_lebs, c->orph_first, c->orph_last);
1356 dbg_msg("main area LEBs: %d (%d - %d)",
1357 c->main_lebs, c->main_first, c->leb_cnt - 1);
1358 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1359 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1360 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1361 dbg_msg("key hash type: %d", c->key_hash_type);
1362 dbg_msg("tree fanout: %d", c->fanout);
1363 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1364 dbg_msg("first main LEB: %d", c->main_first);
8e5033ad
AB
1365 dbg_msg("max. znode size %d", c->max_znode_sz);
1366 dbg_msg("max. index node size %d", c->max_idx_node_sz);
1367 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu",
1368 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1369 dbg_msg("node sizes: trun %zu, sb %zu, master %zu",
1370 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1371 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
1372 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1373 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu",
1374 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1375 UBIFS_MAX_DENT_NODE_SZ);
1e51764a
AB
1376 dbg_msg("dead watermark: %d", c->dead_wm);
1377 dbg_msg("dark watermark: %d", c->dark_wm);
8e5033ad 1378 dbg_msg("LEB overhead: %d", c->leb_overhead);
1e51764a
AB
1379 x = (long long)c->main_lebs * c->dark_wm;
1380 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1381 x, x >> 10, x >> 20);
1382 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1383 c->max_bud_bytes, c->max_bud_bytes >> 10,
1384 c->max_bud_bytes >> 20);
1385 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1386 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1387 c->bg_bud_bytes >> 20);
1388 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1389 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1390 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1391 dbg_msg("commit number: %llu", c->cmt_no);
1392
1393 return 0;
1394
1395out_infos:
1396 spin_lock(&ubifs_infos_lock);
1397 list_del(&c->infos_list);
1398 spin_unlock(&ubifs_infos_lock);
1399out_orphans:
1400 free_orphans(c);
1401out_journal:
1402 destroy_journal(c);
1403out_lpt:
1404 ubifs_lpt_free(c, 0);
1405out_master:
1406 kfree(c->mst_node);
1407 kfree(c->rcvrd_mst_node);
1408 if (c->bgt)
1409 kthread_stop(c->bgt);
1410out_wbufs:
1411 free_wbufs(c);
1412out_cbuf:
1413 kfree(c->cbuf);
1e51764a 1414out_free:
3477d204 1415 kfree(c->bu.buf);
1e51764a
AB
1416 vfree(c->ileb_buf);
1417 vfree(c->sbuf);
1418 kfree(c->bottom_up_buf);
17c2f9f8 1419 ubifs_debugging_exit(c);
1e51764a
AB
1420 return err;
1421}
1422
1423/**
1424 * ubifs_umount - un-mount UBIFS file-system.
1425 * @c: UBIFS file-system description object
1426 *
1427 * Note, this function is called to free allocated resourced when un-mounting,
1428 * as well as free resources when an error occurred while we were half way
1429 * through mounting (error path cleanup function). So it has to make sure the
1430 * resource was actually allocated before freeing it.
1431 */
1432static void ubifs_umount(struct ubifs_info *c)
1433{
1434 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1435 c->vi.vol_id);
1436
552ff317 1437 dbg_debugfs_exit_fs(c);
1e51764a
AB
1438 spin_lock(&ubifs_infos_lock);
1439 list_del(&c->infos_list);
1440 spin_unlock(&ubifs_infos_lock);
1441
1442 if (c->bgt)
1443 kthread_stop(c->bgt);
1444
1445 destroy_journal(c);
1446 free_wbufs(c);
1447 free_orphans(c);
1448 ubifs_lpt_free(c, 0);
1449
1450 kfree(c->cbuf);
1451 kfree(c->rcvrd_mst_node);
1452 kfree(c->mst_node);
3477d204
AB
1453 kfree(c->bu.buf);
1454 vfree(c->ileb_buf);
1e51764a
AB
1455 vfree(c->sbuf);
1456 kfree(c->bottom_up_buf);
17c2f9f8 1457 ubifs_debugging_exit(c);
1e51764a
AB
1458}
1459
1460/**
1461 * ubifs_remount_rw - re-mount in read-write mode.
1462 * @c: UBIFS file-system description object
1463 *
1464 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1465 * mode. This function allocates the needed resources and re-mounts UBIFS in
1466 * read-write mode.
1467 */
1468static int ubifs_remount_rw(struct ubifs_info *c)
1469{
1470 int err, lnum;
1471
1e51764a 1472 mutex_lock(&c->umount_mutex);
84abf972 1473 dbg_save_space_info(c);
1e51764a 1474 c->remounting_rw = 1;
2953e73f 1475 c->always_chk_crc = 1;
1e51764a 1476
57a450e9
AB
1477 err = check_free_space(c);
1478 if (err)
1e51764a 1479 goto out;
1e51764a
AB
1480
1481 if (c->old_leb_cnt != c->leb_cnt) {
1482 struct ubifs_sb_node *sup;
1483
1484 sup = ubifs_read_sb_node(c);
1485 if (IS_ERR(sup)) {
1486 err = PTR_ERR(sup);
1487 goto out;
1488 }
1489 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1490 err = ubifs_write_sb_node(c, sup);
1491 if (err)
1492 goto out;
1493 }
1494
1495 if (c->need_recovery) {
1496 ubifs_msg("completing deferred recovery");
1497 err = ubifs_write_rcvrd_mst_node(c);
1498 if (err)
1499 goto out;
1500 err = ubifs_recover_size(c);
1501 if (err)
1502 goto out;
1503 err = ubifs_clean_lebs(c, c->sbuf);
1504 if (err)
1505 goto out;
1506 err = ubifs_recover_inl_heads(c, c->sbuf);
1507 if (err)
1508 goto out;
1509 }
1510
1511 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1512 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1513 err = ubifs_write_master(c);
1514 if (err)
1515 goto out;
1516 }
1517
1518 c->ileb_buf = vmalloc(c->leb_size);
1519 if (!c->ileb_buf) {
1520 err = -ENOMEM;
1521 goto out;
1522 }
1523
1524 err = ubifs_lpt_init(c, 0, 1);
1525 if (err)
1526 goto out;
1527
1528 err = alloc_wbufs(c);
1529 if (err)
1530 goto out;
1531
1532 ubifs_create_buds_lists(c);
1533
1534 /* Create background thread */
1535 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1e51764a
AB
1536 if (IS_ERR(c->bgt)) {
1537 err = PTR_ERR(c->bgt);
1538 c->bgt = NULL;
1539 ubifs_err("cannot spawn \"%s\", error %d",
1540 c->bgt_name, err);
2953e73f 1541 goto out;
1e51764a
AB
1542 }
1543 wake_up_process(c->bgt);
1544
1545 c->orph_buf = vmalloc(c->leb_size);
2953e73f
AH
1546 if (!c->orph_buf) {
1547 err = -ENOMEM;
1548 goto out;
1549 }
1e51764a
AB
1550
1551 /* Check for enough log space */
1552 lnum = c->lhead_lnum + 1;
1553 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1554 lnum = UBIFS_LOG_LNUM;
1555 if (lnum == c->ltail_lnum) {
1556 err = ubifs_consolidate_log(c);
1557 if (err)
1558 goto out;
1559 }
1560
1561 if (c->need_recovery)
1562 err = ubifs_rcvry_gc_commit(c);
1563 else
1564 err = take_gc_lnum(c);
1565 if (err)
1566 goto out;
1567
1568 if (c->need_recovery) {
1569 c->need_recovery = 0;
1570 ubifs_msg("deferred recovery completed");
1571 }
1572
1573 dbg_gen("re-mounted read-write");
1574 c->vfs_sb->s_flags &= ~MS_RDONLY;
1575 c->remounting_rw = 0;
2953e73f 1576 c->always_chk_crc = 0;
84abf972 1577 err = dbg_check_space_info(c);
1e51764a 1578 mutex_unlock(&c->umount_mutex);
84abf972 1579 return err;
1e51764a
AB
1580
1581out:
1582 vfree(c->orph_buf);
1583 c->orph_buf = NULL;
1584 if (c->bgt) {
1585 kthread_stop(c->bgt);
1586 c->bgt = NULL;
1587 }
1588 free_wbufs(c);
1589 vfree(c->ileb_buf);
1590 c->ileb_buf = NULL;
1591 ubifs_lpt_free(c, 1);
1592 c->remounting_rw = 0;
2953e73f 1593 c->always_chk_crc = 0;
1e51764a
AB
1594 mutex_unlock(&c->umount_mutex);
1595 return err;
1596}
1597
1598/**
1599 * commit_on_unmount - commit the journal when un-mounting.
1600 * @c: UBIFS file-system description object
1601 *
af2eb563 1602 * This function is called during un-mounting and re-mounting, and it commits
26d05777 1603 * the journal unless the "fast unmount" mode is enabled.
1e51764a
AB
1604 */
1605static void commit_on_unmount(struct ubifs_info *c)
1606{
26d05777
AB
1607 long long bud_bytes;
1608
e4d9b6cb
AB
1609 if (!c->fast_unmount) {
1610 dbg_gen("skip committing - fast unmount enabled");
1611 return;
1612 }
1613
26d05777
AB
1614 /*
1615 * This function is called before the background thread is stopped, so
1616 * we may race with ongoing commit, which means we have to take
1617 * @c->bud_lock to access @c->bud_bytes.
1618 */
1619 spin_lock(&c->buds_lock);
1620 bud_bytes = c->bud_bytes;
1621 spin_unlock(&c->buds_lock);
1622
e4d9b6cb
AB
1623 if (bud_bytes) {
1624 dbg_gen("run commit");
26d05777 1625 ubifs_run_commit(c);
e4d9b6cb
AB
1626 } else
1627 dbg_gen("journal is empty, do not run commit");
1e51764a
AB
1628}
1629
1630/**
1631 * ubifs_remount_ro - re-mount in read-only mode.
1632 * @c: UBIFS file-system description object
1633 *
84abf972
AB
1634 * We assume VFS has stopped writing. Possibly the background thread could be
1635 * running a commit, however kthread_stop will wait in that case.
1e51764a
AB
1636 */
1637static void ubifs_remount_ro(struct ubifs_info *c)
1638{
1639 int i, err;
1640
1641 ubifs_assert(!c->need_recovery);
e4d9b6cb
AB
1642 ubifs_assert(!c->ro_media);
1643
1e51764a 1644 commit_on_unmount(c);
1e51764a
AB
1645 mutex_lock(&c->umount_mutex);
1646 if (c->bgt) {
1647 kthread_stop(c->bgt);
1648 c->bgt = NULL;
1649 }
1650
84abf972
AB
1651 dbg_save_space_info(c);
1652
1e51764a
AB
1653 for (i = 0; i < c->jhead_cnt; i++) {
1654 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1655 del_timer_sync(&c->jheads[i].wbuf.timer);
1656 }
1657
e4d9b6cb
AB
1658 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1659 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1660 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1661 err = ubifs_write_master(c);
1662 if (err)
1663 ubifs_ro_mode(c, err);
1664
1665 err = ubifs_destroy_idx_gc(c);
1666 if (err)
1667 ubifs_ro_mode(c, err);
1e51764a 1668
1e51764a
AB
1669 free_wbufs(c);
1670 vfree(c->orph_buf);
1671 c->orph_buf = NULL;
1672 vfree(c->ileb_buf);
1673 c->ileb_buf = NULL;
1674 ubifs_lpt_free(c, 1);
84abf972
AB
1675 err = dbg_check_space_info(c);
1676 if (err)
1677 ubifs_ro_mode(c, err);
1e51764a
AB
1678 mutex_unlock(&c->umount_mutex);
1679}
1680
1681static void ubifs_put_super(struct super_block *sb)
1682{
1683 int i;
1684 struct ubifs_info *c = sb->s_fs_info;
1685
1686 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1687 c->vi.vol_id);
1688 /*
1689 * The following asserts are only valid if there has not been a failure
1690 * of the media. For example, there will be dirty inodes if we failed
1691 * to write them back because of I/O errors.
1692 */
1693 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1694 ubifs_assert(c->budg_idx_growth == 0);
7d32c2bb 1695 ubifs_assert(c->budg_dd_growth == 0);
1e51764a
AB
1696 ubifs_assert(c->budg_data_growth == 0);
1697
1698 /*
1699 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1700 * and file system un-mount. Namely, it prevents the shrinker from
1701 * picking this superblock for shrinking - it will be just skipped if
1702 * the mutex is locked.
1703 */
1704 mutex_lock(&c->umount_mutex);
1705 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1706 /*
1707 * First of all kill the background thread to make sure it does
1708 * not interfere with un-mounting and freeing resources.
1709 */
1710 if (c->bgt) {
1711 kthread_stop(c->bgt);
1712 c->bgt = NULL;
1713 }
1714
1715 /* Synchronize write-buffers */
1716 if (c->jheads)
1717 for (i = 0; i < c->jhead_cnt; i++) {
1718 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1719 del_timer_sync(&c->jheads[i].wbuf.timer);
1720 }
1721
1722 /*
1723 * On fatal errors c->ro_media is set to 1, in which case we do
1724 * not write the master node.
1725 */
1726 if (!c->ro_media) {
1727 /*
1728 * We are being cleanly unmounted which means the
1729 * orphans were killed - indicate this in the master
1730 * node. Also save the reserved GC LEB number.
1731 */
1732 int err;
1733
1734 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1735 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1736 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1737 err = ubifs_write_master(c);
1738 if (err)
1739 /*
1740 * Recovery will attempt to fix the master area
1741 * next mount, so we just print a message and
1742 * continue to unmount normally.
1743 */
1744 ubifs_err("failed to write master node, "
1745 "error %d", err);
1746 }
1747 }
1748
1749 ubifs_umount(c);
1750 bdi_destroy(&c->bdi);
1751 ubi_close_volume(c->ubi);
1752 mutex_unlock(&c->umount_mutex);
1753 kfree(c);
1754}
1755
1756static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1757{
1758 int err;
1759 struct ubifs_info *c = sb->s_fs_info;
1760
1761 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1762
1763 err = ubifs_parse_options(c, data, 1);
1764 if (err) {
1765 ubifs_err("invalid or unknown remount parameter");
1766 return err;
1767 }
3477d204 1768
1e51764a 1769 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
e4d9b6cb
AB
1770 if (c->ro_media) {
1771 ubifs_msg("cannot re-mount R/W, UBIFS is working in "
1772 "R/O mode");
1773 return -EINVAL;
1774 }
1e51764a
AB
1775 err = ubifs_remount_rw(c);
1776 if (err)
1777 return err;
1778 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1779 ubifs_remount_ro(c);
1780
3477d204
AB
1781 if (c->bulk_read == 1)
1782 bu_init(c);
1783 else {
1784 dbg_gen("disable bulk-read");
1785 kfree(c->bu.buf);
1786 c->bu.buf = NULL;
1787 }
1788
1e51764a
AB
1789 return 0;
1790}
1791
e8b81566 1792const struct super_operations ubifs_super_operations = {
1e51764a
AB
1793 .alloc_inode = ubifs_alloc_inode,
1794 .destroy_inode = ubifs_destroy_inode,
1795 .put_super = ubifs_put_super,
1796 .write_inode = ubifs_write_inode,
1797 .delete_inode = ubifs_delete_inode,
1798 .statfs = ubifs_statfs,
1799 .dirty_inode = ubifs_dirty_inode,
1800 .remount_fs = ubifs_remount_fs,
1801 .show_options = ubifs_show_options,
1802 .sync_fs = ubifs_sync_fs,
1803};
1804
1805/**
1806 * open_ubi - parse UBI device name string and open the UBI device.
1807 * @name: UBI volume name
1808 * @mode: UBI volume open mode
1809 *
1810 * There are several ways to specify UBI volumes when mounting UBIFS:
1811 * o ubiX_Y - UBI device number X, volume Y;
1812 * o ubiY - UBI device number 0, volume Y;
1813 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1814 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1815 *
1816 * Alternative '!' separator may be used instead of ':' (because some shells
1817 * like busybox may interpret ':' as an NFS host name separator). This function
1818 * returns ubi volume object in case of success and a negative error code in
1819 * case of failure.
1820 */
1821static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1822{
1823 int dev, vol;
1824 char *endptr;
1825
1826 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1827 return ERR_PTR(-EINVAL);
1828
1829 /* ubi:NAME method */
1830 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1831 return ubi_open_volume_nm(0, name + 4, mode);
1832
1833 if (!isdigit(name[3]))
1834 return ERR_PTR(-EINVAL);
1835
1836 dev = simple_strtoul(name + 3, &endptr, 0);
1837
1838 /* ubiY method */
1839 if (*endptr == '\0')
1840 return ubi_open_volume(0, dev, mode);
1841
1842 /* ubiX_Y method */
1843 if (*endptr == '_' && isdigit(endptr[1])) {
1844 vol = simple_strtoul(endptr + 1, &endptr, 0);
1845 if (*endptr != '\0')
1846 return ERR_PTR(-EINVAL);
1847 return ubi_open_volume(dev, vol, mode);
1848 }
1849
1850 /* ubiX:NAME method */
1851 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1852 return ubi_open_volume_nm(dev, ++endptr, mode);
1853
1854 return ERR_PTR(-EINVAL);
1855}
1856
1857static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1858{
1859 struct ubi_volume_desc *ubi = sb->s_fs_info;
1860 struct ubifs_info *c;
1861 struct inode *root;
1862 int err;
1863
1864 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1865 if (!c)
1866 return -ENOMEM;
1867
1868 spin_lock_init(&c->cnt_lock);
1869 spin_lock_init(&c->cs_lock);
1870 spin_lock_init(&c->buds_lock);
1871 spin_lock_init(&c->space_lock);
1872 spin_lock_init(&c->orphan_lock);
1873 init_rwsem(&c->commit_sem);
1874 mutex_init(&c->lp_mutex);
1875 mutex_init(&c->tnc_mutex);
1876 mutex_init(&c->log_mutex);
1877 mutex_init(&c->mst_mutex);
1878 mutex_init(&c->umount_mutex);
3477d204 1879 mutex_init(&c->bu_mutex);
1e51764a
AB
1880 init_waitqueue_head(&c->cmt_wq);
1881 c->buds = RB_ROOT;
1882 c->old_idx = RB_ROOT;
1883 c->size_tree = RB_ROOT;
1884 c->orph_tree = RB_ROOT;
1885 INIT_LIST_HEAD(&c->infos_list);
1886 INIT_LIST_HEAD(&c->idx_gc);
1887 INIT_LIST_HEAD(&c->replay_list);
1888 INIT_LIST_HEAD(&c->replay_buds);
1889 INIT_LIST_HEAD(&c->uncat_list);
1890 INIT_LIST_HEAD(&c->empty_list);
1891 INIT_LIST_HEAD(&c->freeable_list);
1892 INIT_LIST_HEAD(&c->frdi_idx_list);
1893 INIT_LIST_HEAD(&c->unclean_leb_list);
1894 INIT_LIST_HEAD(&c->old_buds);
1895 INIT_LIST_HEAD(&c->orph_list);
1896 INIT_LIST_HEAD(&c->orph_new);
1897
1898 c->highest_inum = UBIFS_FIRST_INO;
1e51764a
AB
1899 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1900
1901 ubi_get_volume_info(ubi, &c->vi);
1902 ubi_get_device_info(c->vi.ubi_num, &c->di);
1903
1904 /* Re-open the UBI device in read-write mode */
1905 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1906 if (IS_ERR(c->ubi)) {
1907 err = PTR_ERR(c->ubi);
1908 goto out_free;
1909 }
1910
1911 /*
0a883a05 1912 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1e51764a
AB
1913 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1914 * which means the user would have to wait not just for their own I/O
0a883a05 1915 * but the read-ahead I/O as well i.e. completely pointless.
1e51764a
AB
1916 *
1917 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1918 */
1919 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1920 c->bdi.unplug_io_fn = default_unplug_io_fn;
1921 err = bdi_init(&c->bdi);
1922 if (err)
1923 goto out_close;
1924
1925 err = ubifs_parse_options(c, data, 0);
1926 if (err)
1927 goto out_bdi;
1928
1929 c->vfs_sb = sb;
1930
1931 sb->s_fs_info = c;
1932 sb->s_magic = UBIFS_SUPER_MAGIC;
1933 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1934 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1935 sb->s_dev = c->vi.cdev;
1936 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1937 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1938 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1939 sb->s_op = &ubifs_super_operations;
1940
1941 mutex_lock(&c->umount_mutex);
1942 err = mount_ubifs(c);
1943 if (err) {
1944 ubifs_assert(err < 0);
1945 goto out_unlock;
1946 }
1947
1948 /* Read the root inode */
1949 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1950 if (IS_ERR(root)) {
1951 err = PTR_ERR(root);
1952 goto out_umount;
1953 }
1954
1955 sb->s_root = d_alloc_root(root);
1956 if (!sb->s_root)
1957 goto out_iput;
1958
1959 mutex_unlock(&c->umount_mutex);
1e51764a
AB
1960 return 0;
1961
1962out_iput:
1963 iput(root);
1964out_umount:
1965 ubifs_umount(c);
1966out_unlock:
1967 mutex_unlock(&c->umount_mutex);
1968out_bdi:
1969 bdi_destroy(&c->bdi);
1970out_close:
1971 ubi_close_volume(c->ubi);
1972out_free:
1973 kfree(c);
1974 return err;
1975}
1976
1977static int sb_test(struct super_block *sb, void *data)
1978{
1979 dev_t *dev = data;
1980
1981 return sb->s_dev == *dev;
1982}
1983
1984static int sb_set(struct super_block *sb, void *data)
1985{
1986 dev_t *dev = data;
1987
1988 sb->s_dev = *dev;
1989 return 0;
1990}
1991
1992static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1993 const char *name, void *data, struct vfsmount *mnt)
1994{
1995 struct ubi_volume_desc *ubi;
1996 struct ubi_volume_info vi;
1997 struct super_block *sb;
1998 int err;
1999
2000 dbg_gen("name %s, flags %#x", name, flags);
2001
2002 /*
2003 * Get UBI device number and volume ID. Mount it read-only so far
2004 * because this might be a new mount point, and UBI allows only one
2005 * read-write user at a time.
2006 */
2007 ubi = open_ubi(name, UBI_READONLY);
2008 if (IS_ERR(ubi)) {
2009 ubifs_err("cannot open \"%s\", error %d",
2010 name, (int)PTR_ERR(ubi));
2011 return PTR_ERR(ubi);
2012 }
2013 ubi_get_volume_info(ubi, &vi);
2014
2015 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
2016
2017 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
2018 if (IS_ERR(sb)) {
2019 err = PTR_ERR(sb);
2020 goto out_close;
2021 }
2022
2023 if (sb->s_root) {
2024 /* A new mount point for already mounted UBIFS */
2025 dbg_gen("this ubi volume is already mounted");
2026 if ((flags ^ sb->s_flags) & MS_RDONLY) {
2027 err = -EBUSY;
2028 goto out_deact;
2029 }
2030 } else {
2031 sb->s_flags = flags;
2032 /*
2033 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2034 * replaced by 'c'.
2035 */
2036 sb->s_fs_info = ubi;
2037 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2038 if (err)
2039 goto out_deact;
2040 /* We do not support atime */
2041 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2042 }
2043
2044 /* 'fill_super()' opens ubi again so we must close it here */
2045 ubi_close_volume(ubi);
2046
2047 return simple_set_mnt(mnt, sb);
2048
2049out_deact:
2050 up_write(&sb->s_umount);
2051 deactivate_super(sb);
2052out_close:
2053 ubi_close_volume(ubi);
2054 return err;
2055}
2056
2057static void ubifs_kill_sb(struct super_block *sb)
2058{
2059 struct ubifs_info *c = sb->s_fs_info;
2060
2061 /*
2062 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
2063 * in order to be outside BKL.
2064 */
e4d9b6cb 2065 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1e51764a
AB
2066 commit_on_unmount(c);
2067 /* The un-mount routine is actually done in put_super() */
2068 generic_shutdown_super(sb);
2069}
2070
2071static struct file_system_type ubifs_fs_type = {
2072 .name = "ubifs",
2073 .owner = THIS_MODULE,
2074 .get_sb = ubifs_get_sb,
2075 .kill_sb = ubifs_kill_sb
2076};
2077
2078/*
2079 * Inode slab cache constructor.
2080 */
51cc5068 2081static void inode_slab_ctor(void *obj)
1e51764a
AB
2082{
2083 struct ubifs_inode *ui = obj;
2084 inode_init_once(&ui->vfs_inode);
2085}
2086
2087static int __init ubifs_init(void)
2088{
2089 int err;
2090
2091 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2092
2093 /* Make sure node sizes are 8-byte aligned */
2094 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2095 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2096 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2097 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2098 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2099 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2100 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2101 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2102 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2103 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2104 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2105
2106 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2107 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2108 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2109 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2110 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2111 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2112
2113 /* Check min. node size */
2114 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2115 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2116 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2117 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2118
2119 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2120 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2121 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2122 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2123
2124 /* Defined node sizes */
2125 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2126 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2127 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2128 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2129
a1dc080c
AB
2130 /*
2131 * We use 2 bit wide bit-fields to store compression type, which should
2132 * be amended if more compressors are added. The bit-fields are:
553dea4d
AB
2133 * @compr_type in 'struct ubifs_inode', @default_compr in
2134 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
a1dc080c
AB
2135 */
2136 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2137
1e51764a
AB
2138 /*
2139 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2140 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2141 */
2142 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2143 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2144 " at least 4096 bytes",
2145 (unsigned int)PAGE_CACHE_SIZE);
2146 return -EINVAL;
2147 }
2148
2149 err = register_filesystem(&ubifs_fs_type);
2150 if (err) {
2151 ubifs_err("cannot register file system, error %d", err);
2152 return err;
2153 }
2154
2155 err = -ENOMEM;
2156 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2157 sizeof(struct ubifs_inode), 0,
2158 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2159 &inode_slab_ctor);
2160 if (!ubifs_inode_slab)
2161 goto out_reg;
2162
2163 register_shrinker(&ubifs_shrinker_info);
2164
2165 err = ubifs_compressors_init();
552ff317
AB
2166 if (err)
2167 goto out_shrinker;
2168
2169 err = dbg_debugfs_init();
1e51764a
AB
2170 if (err)
2171 goto out_compr;
2172
2173 return 0;
2174
2175out_compr:
552ff317
AB
2176 ubifs_compressors_exit();
2177out_shrinker:
1e51764a
AB
2178 unregister_shrinker(&ubifs_shrinker_info);
2179 kmem_cache_destroy(ubifs_inode_slab);
2180out_reg:
2181 unregister_filesystem(&ubifs_fs_type);
2182 return err;
2183}
2184/* late_initcall to let compressors initialize first */
2185late_initcall(ubifs_init);
2186
2187static void __exit ubifs_exit(void)
2188{
2189 ubifs_assert(list_empty(&ubifs_infos));
2190 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2191
552ff317 2192 dbg_debugfs_exit();
1e51764a
AB
2193 ubifs_compressors_exit();
2194 unregister_shrinker(&ubifs_shrinker_info);
2195 kmem_cache_destroy(ubifs_inode_slab);
2196 unregister_filesystem(&ubifs_fs_type);
2197}
2198module_exit(ubifs_exit);
2199
2200MODULE_LICENSE("GPL");
2201MODULE_VERSION(__stringify(UBIFS_VERSION));
2202MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2203MODULE_DESCRIPTION("UBIFS - UBI File System");