]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/reiserfs/fix_node.c
kill-the-BKL/reiserfs: release write lock while rescheduling on prepare_for_delete_or...
[net-next-2.6.git] / fs / reiserfs / fix_node.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/**
6 ** old_item_num
7 ** old_entry_num
8 ** set_entry_sizes
9 ** create_virtual_node
10 ** check_left
11 ** check_right
12 ** directory_part_size
13 ** get_num_ver
14 ** set_parameters
15 ** is_leaf_removable
16 ** are_leaves_removable
17 ** get_empty_nodes
18 ** get_lfree
19 ** get_rfree
20 ** is_left_neighbor_in_cache
21 ** decrement_key
22 ** get_far_parent
23 ** get_parents
24 ** can_node_be_removed
25 ** ip_check_balance
26 ** dc_check_balance_internal
27 ** dc_check_balance_leaf
28 ** dc_check_balance
29 ** check_balance
30 ** get_direct_parent
31 ** get_neighbors
32 ** fix_nodes
0222e657
JM
33 **
34 **
1da177e4
LT
35 **/
36
1da177e4
LT
37#include <linux/time.h>
38#include <linux/string.h>
39#include <linux/reiserfs_fs.h>
40#include <linux/buffer_head.h>
41
1da177e4
LT
42/* To make any changes in the tree we find a node, that contains item
43 to be changed/deleted or position in the node we insert a new item
44 to. We call this node S. To do balancing we need to decide what we
45 will shift to left/right neighbor, or to a new node, where new item
46 will be etc. To make this analysis simpler we build virtual
47 node. Virtual node is an array of items, that will replace items of
48 node S. (For instance if we are going to delete an item, virtual
49 node does not contain it). Virtual node keeps information about
50 item sizes and types, mergeability of first and last items, sizes
51 of all entries in directory item. We use this array of items when
52 calculating what we can shift to neighbors and how many nodes we
53 have to have if we do not any shiftings, if we shift to left/right
54 neighbor or to both. */
55
1da177e4 56/* taking item number in virtual node, returns number of item, that it has in source buffer */
bd4c625c 57static inline int old_item_num(int new_num, int affected_item_num, int mode)
1da177e4 58{
bd4c625c
LT
59 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
60 return new_num;
1da177e4 61
bd4c625c 62 if (mode == M_INSERT) {
1da177e4 63
bd4c625c
LT
64 RFALSE(new_num == 0,
65 "vs-8005: for INSERT mode and item number of inserted item");
1da177e4 66
bd4c625c
LT
67 return new_num - 1;
68 }
1da177e4 69
bd4c625c
LT
70 RFALSE(mode != M_DELETE,
71 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
72 mode);
73 /* delete mode */
74 return new_num + 1;
1da177e4
LT
75}
76
bd4c625c 77static void create_virtual_node(struct tree_balance *tb, int h)
1da177e4 78{
bd4c625c
LT
79 struct item_head *ih;
80 struct virtual_node *vn = tb->tb_vn;
81 int new_num;
82 struct buffer_head *Sh; /* this comes from tb->S[h] */
1da177e4 83
bd4c625c 84 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1da177e4 85
bd4c625c
LT
86 /* size of changed node */
87 vn->vn_size =
88 MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
1da177e4 89
bd4c625c
LT
90 /* for internal nodes array if virtual items is not created */
91 if (h) {
92 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
93 return;
1da177e4 94 }
1da177e4 95
bd4c625c
LT
96 /* number of items in virtual node */
97 vn->vn_nr_item =
98 B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
99 ((vn->vn_mode == M_DELETE) ? 1 : 0);
100
101 /* first virtual item */
102 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
103 memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
104 vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
105
106 /* first item in the node */
107 ih = B_N_PITEM_HEAD(Sh, 0);
108
109 /* define the mergeability for 0-th item (if it is not being deleted) */
110 if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
111 && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
112 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
113
114 /* go through all items those remain in the virtual node (except for the new (inserted) one) */
115 for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
116 int j;
117 struct virtual_item *vi = vn->vn_vi + new_num;
118 int is_affected =
119 ((new_num != vn->vn_affected_item_num) ? 0 : 1);
120
121 if (is_affected && vn->vn_mode == M_INSERT)
122 continue;
123
124 /* get item number in source node */
125 j = old_item_num(new_num, vn->vn_affected_item_num,
126 vn->vn_mode);
127
128 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
129 vi->vi_ih = ih + j;
130 vi->vi_item = B_I_PITEM(Sh, ih + j);
131 vi->vi_uarea = vn->vn_free_ptr;
132
133 // FIXME: there is no check, that item operation did not
134 // consume too much memory
135 vn->vn_free_ptr +=
136 op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
137 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
c3a9c210 138 reiserfs_panic(tb->tb_sb, "vs-8030",
bd4c625c
LT
139 "virtual node space consumed");
140
141 if (!is_affected)
142 /* this is not being changed */
143 continue;
144
145 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
146 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
147 vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
148 }
1da177e4 149 }
bd4c625c
LT
150
151 /* virtual inserted item is not defined yet */
152 if (vn->vn_mode == M_INSERT) {
153 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
154
9dce07f1 155 RFALSE(vn->vn_ins_ih == NULL,
bd4c625c
LT
156 "vs-8040: item header of inserted item is not specified");
157 vi->vi_item_len = tb->insert_size[0];
158 vi->vi_ih = vn->vn_ins_ih;
159 vi->vi_item = vn->vn_data;
160 vi->vi_uarea = vn->vn_free_ptr;
161
162 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
163 tb->insert_size[0]);
164 }
165
166 /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
167 if (tb->CFR[0]) {
168 struct reiserfs_key *key;
169
170 key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
171 if (op_is_left_mergeable(key, Sh->b_size)
172 && (vn->vn_mode != M_DELETE
173 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
174 vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
175 VI_TYPE_RIGHT_MERGEABLE;
176
177#ifdef CONFIG_REISERFS_CHECK
178 if (op_is_left_mergeable(key, Sh->b_size) &&
179 !(vn->vn_mode != M_DELETE
180 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
181 /* we delete last item and it could be merged with right neighbor's first item */
182 if (!
183 (B_NR_ITEMS(Sh) == 1
184 && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
185 && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
186 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
187 print_block(Sh, 0, -1, -1);
c3a9c210
JM
188 reiserfs_panic(tb->tb_sb, "vs-8045",
189 "rdkey %k, affected item==%d "
190 "(mode==%c) Must be %c",
bd4c625c
LT
191 key, vn->vn_affected_item_num,
192 vn->vn_mode, M_DELETE);
cd02b966 193 }
bd4c625c 194 }
1da177e4 195#endif
1da177e4 196
bd4c625c
LT
197 }
198}
1da177e4
LT
199
200/* using virtual node check, how many items can be shifted to left
201 neighbor */
bd4c625c 202static void check_left(struct tree_balance *tb, int h, int cur_free)
1da177e4 203{
bd4c625c
LT
204 int i;
205 struct virtual_node *vn = tb->tb_vn;
206 struct virtual_item *vi;
207 int d_size, ih_size;
1da177e4 208
bd4c625c 209 RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
1da177e4 210
bd4c625c
LT
211 /* internal level */
212 if (h > 0) {
213 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
214 return;
215 }
1da177e4 216
bd4c625c 217 /* leaf level */
1da177e4 218
bd4c625c
LT
219 if (!cur_free || !vn->vn_nr_item) {
220 /* no free space or nothing to move */
221 tb->lnum[h] = 0;
222 tb->lbytes = -1;
223 return;
224 }
1da177e4 225
bd4c625c
LT
226 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
227 "vs-8055: parent does not exist or invalid");
1da177e4 228
bd4c625c
LT
229 vi = vn->vn_vi;
230 if ((unsigned int)cur_free >=
231 (vn->vn_size -
232 ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
233 /* all contents of S[0] fits into L[0] */
1da177e4 234
bd4c625c
LT
235 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
236 "vs-8055: invalid mode or balance condition failed");
1da177e4 237
bd4c625c
LT
238 tb->lnum[0] = vn->vn_nr_item;
239 tb->lbytes = -1;
240 return;
1da177e4 241 }
bd4c625c
LT
242
243 d_size = 0, ih_size = IH_SIZE;
244
245 /* first item may be merge with last item in left neighbor */
246 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
247 d_size = -((int)IH_SIZE), ih_size = 0;
248
249 tb->lnum[0] = 0;
250 for (i = 0; i < vn->vn_nr_item;
251 i++, ih_size = IH_SIZE, d_size = 0, vi++) {
252 d_size += vi->vi_item_len;
253 if (cur_free >= d_size) {
254 /* the item can be shifted entirely */
255 cur_free -= d_size;
256 tb->lnum[0]++;
257 continue;
258 }
259
260 /* the item cannot be shifted entirely, try to split it */
261 /* check whether L[0] can hold ih and at least one byte of the item body */
262 if (cur_free <= ih_size) {
263 /* cannot shift even a part of the current item */
264 tb->lbytes = -1;
265 return;
266 }
267 cur_free -= ih_size;
268
269 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
270 if (tb->lbytes != -1)
271 /* count partially shifted item */
272 tb->lnum[0]++;
273
274 break;
1da177e4 275 }
1da177e4 276
bd4c625c
LT
277 return;
278}
1da177e4
LT
279
280/* using virtual node check, how many items can be shifted to right
281 neighbor */
bd4c625c 282static void check_right(struct tree_balance *tb, int h, int cur_free)
1da177e4 283{
bd4c625c
LT
284 int i;
285 struct virtual_node *vn = tb->tb_vn;
286 struct virtual_item *vi;
287 int d_size, ih_size;
288
289 RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
290
291 /* internal level */
292 if (h > 0) {
293 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
294 return;
1da177e4 295 }
bd4c625c
LT
296
297 /* leaf level */
298
299 if (!cur_free || !vn->vn_nr_item) {
300 /* no free space */
301 tb->rnum[h] = 0;
302 tb->rbytes = -1;
303 return;
1da177e4 304 }
1da177e4 305
bd4c625c
LT
306 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
307 "vs-8075: parent does not exist or invalid");
308
309 vi = vn->vn_vi + vn->vn_nr_item - 1;
310 if ((unsigned int)cur_free >=
311 (vn->vn_size -
312 ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
313 /* all contents of S[0] fits into R[0] */
314
315 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
316 "vs-8080: invalid mode or balance condition failed");
317
318 tb->rnum[h] = vn->vn_nr_item;
319 tb->rbytes = -1;
320 return;
321 }
322
323 d_size = 0, ih_size = IH_SIZE;
324
325 /* last item may be merge with first item in right neighbor */
326 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
327 d_size = -(int)IH_SIZE, ih_size = 0;
328
329 tb->rnum[0] = 0;
330 for (i = vn->vn_nr_item - 1; i >= 0;
331 i--, d_size = 0, ih_size = IH_SIZE, vi--) {
332 d_size += vi->vi_item_len;
333 if (cur_free >= d_size) {
334 /* the item can be shifted entirely */
335 cur_free -= d_size;
336 tb->rnum[0]++;
337 continue;
338 }
339
340 /* check whether R[0] can hold ih and at least one byte of the item body */
341 if (cur_free <= ih_size) { /* cannot shift even a part of the current item */
342 tb->rbytes = -1;
343 return;
344 }
345
346 /* R[0] can hold the header of the item and at least one byte of its body */
347 cur_free -= ih_size; /* cur_free is still > 0 */
348
349 tb->rbytes = op_check_right(vi, cur_free);
350 if (tb->rbytes != -1)
351 /* count partially shifted item */
352 tb->rnum[0]++;
353
354 break;
355 }
356
357 return;
358}
1da177e4
LT
359
360/*
361 * from - number of items, which are shifted to left neighbor entirely
362 * to - number of item, which are shifted to right neighbor entirely
363 * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
364 * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
bd4c625c
LT
365static int get_num_ver(int mode, struct tree_balance *tb, int h,
366 int from, int from_bytes,
367 int to, int to_bytes, short *snum012, int flow)
1da177e4 368{
bd4c625c
LT
369 int i;
370 int cur_free;
371 // int bytes;
372 int units;
373 struct virtual_node *vn = tb->tb_vn;
374 // struct virtual_item * vi;
375
376 int total_node_size, max_node_size, current_item_size;
377 int needed_nodes;
378 int start_item, /* position of item we start filling node from */
379 end_item, /* position of item we finish filling node by */
0222e657 380 start_bytes, /* number of first bytes (entries for directory) of start_item-th item
bd4c625c 381 we do not include into node that is being filled */
0222e657 382 end_bytes; /* number of last bytes (entries for directory) of end_item-th item
bd4c625c
LT
383 we do node include into node that is being filled */
384 int split_item_positions[2]; /* these are positions in virtual item of
385 items, that are split between S[0] and
386 S1new and S1new and S2new */
387
388 split_item_positions[0] = -1;
389 split_item_positions[1] = -1;
390
391 /* We only create additional nodes if we are in insert or paste mode
392 or we are in replace mode at the internal level. If h is 0 and
393 the mode is M_REPLACE then in fix_nodes we change the mode to
394 paste or insert before we get here in the code. */
395 RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
396 "vs-8100: insert_size < 0 in overflow");
397
398 max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
399
400 /* snum012 [0-2] - number of items, that lay
401 to S[0], first new node and second new node */
402 snum012[3] = -1; /* s1bytes */
403 snum012[4] = -1; /* s2bytes */
404
405 /* internal level */
406 if (h > 0) {
407 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
408 if (i == max_node_size)
409 return 1;
410 return (i / max_node_size + 1);
1da177e4
LT
411 }
412
bd4c625c
LT
413 /* leaf level */
414 needed_nodes = 1;
415 total_node_size = 0;
416 cur_free = max_node_size;
417
418 // start from 'from'-th item
419 start_item = from;
420 // skip its first 'start_bytes' units
421 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
422
423 // last included item is the 'end_item'-th one
424 end_item = vn->vn_nr_item - to - 1;
425 // do not count last 'end_bytes' units of 'end_item'-th item
426 end_bytes = (to_bytes != -1) ? to_bytes : 0;
427
428 /* go through all item beginning from the start_item-th item and ending by
429 the end_item-th item. Do not count first 'start_bytes' units of
430 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
431
432 for (i = start_item; i <= end_item; i++) {
433 struct virtual_item *vi = vn->vn_vi + i;
434 int skip_from_end = ((i == end_item) ? end_bytes : 0);
435
436 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
437
438 /* get size of current item */
439 current_item_size = vi->vi_item_len;
440
441 /* do not take in calculation head part (from_bytes) of from-th item */
442 current_item_size -=
443 op_part_size(vi, 0 /*from start */ , start_bytes);
444
445 /* do not take in calculation tail part of last item */
446 current_item_size -=
447 op_part_size(vi, 1 /*from end */ , skip_from_end);
448
449 /* if item fits into current node entierly */
450 if (total_node_size + current_item_size <= max_node_size) {
451 snum012[needed_nodes - 1]++;
452 total_node_size += current_item_size;
453 start_bytes = 0;
454 continue;
455 }
456
457 if (current_item_size > max_node_size) {
458 /* virtual item length is longer, than max size of item in
459 a node. It is impossible for direct item */
460 RFALSE(is_direct_le_ih(vi->vi_ih),
461 "vs-8110: "
462 "direct item length is %d. It can not be longer than %d",
463 current_item_size, max_node_size);
464 /* we will try to split it */
465 flow = 1;
466 }
467
468 if (!flow) {
469 /* as we do not split items, take new node and continue */
470 needed_nodes++;
471 i--;
472 total_node_size = 0;
473 continue;
474 }
475 // calculate number of item units which fit into node being
476 // filled
477 {
478 int free_space;
479
480 free_space = max_node_size - total_node_size - IH_SIZE;
481 units =
482 op_check_left(vi, free_space, start_bytes,
483 skip_from_end);
484 if (units == -1) {
485 /* nothing fits into current node, take new node and continue */
486 needed_nodes++, i--, total_node_size = 0;
487 continue;
488 }
489 }
490
491 /* something fits into the current node */
492 //if (snum012[3] != -1 || needed_nodes != 1)
493 // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
494 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
495 start_bytes += units;
496 snum012[needed_nodes - 1 + 3] = units;
497
498 if (needed_nodes > 2)
45b03d5e
JM
499 reiserfs_warning(tb->tb_sb, "vs-8111",
500 "split_item_position is out of range");
bd4c625c
LT
501 snum012[needed_nodes - 1]++;
502 split_item_positions[needed_nodes - 1] = i;
503 needed_nodes++;
504 /* continue from the same item with start_bytes != -1 */
505 start_item = i;
506 i--;
507 total_node_size = 0;
1da177e4
LT
508 }
509
bd4c625c
LT
510 // sum012[4] (if it is not -1) contains number of units of which
511 // are to be in S1new, snum012[3] - to be in S0. They are supposed
512 // to be S1bytes and S2bytes correspondingly, so recalculate
513 if (snum012[4] > 0) {
514 int split_item_num;
515 int bytes_to_r, bytes_to_l;
516 int bytes_to_S1new;
517
518 split_item_num = split_item_positions[1];
519 bytes_to_l =
520 ((from == split_item_num
521 && from_bytes != -1) ? from_bytes : 0);
522 bytes_to_r =
523 ((end_item == split_item_num
524 && end_bytes != -1) ? end_bytes : 0);
525 bytes_to_S1new =
526 ((split_item_positions[0] ==
527 split_item_positions[1]) ? snum012[3] : 0);
528
529 // s2bytes
530 snum012[4] =
531 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
532 bytes_to_r - bytes_to_l - bytes_to_S1new;
533
534 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
535 vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
45b03d5e
JM
536 reiserfs_warning(tb->tb_sb, "vs-8115",
537 "not directory or indirect item");
1da177e4
LT
538 }
539
bd4c625c
LT
540 /* now we know S2bytes, calculate S1bytes */
541 if (snum012[3] > 0) {
542 int split_item_num;
543 int bytes_to_r, bytes_to_l;
544 int bytes_to_S2new;
545
546 split_item_num = split_item_positions[0];
547 bytes_to_l =
548 ((from == split_item_num
549 && from_bytes != -1) ? from_bytes : 0);
550 bytes_to_r =
551 ((end_item == split_item_num
552 && end_bytes != -1) ? end_bytes : 0);
553 bytes_to_S2new =
554 ((split_item_positions[0] == split_item_positions[1]
555 && snum012[4] != -1) ? snum012[4] : 0);
556
557 // s1bytes
558 snum012[3] =
559 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
560 bytes_to_r - bytes_to_l - bytes_to_S2new;
1da177e4
LT
561 }
562
bd4c625c 563 return needed_nodes;
1da177e4
LT
564}
565
1da177e4 566#ifdef CONFIG_REISERFS_CHECK
bd4c625c 567extern struct tree_balance *cur_tb;
1da177e4
LT
568#endif
569
1da177e4
LT
570/* Set parameters for balancing.
571 * Performs write of results of analysis of balancing into structure tb,
0222e657 572 * where it will later be used by the functions that actually do the balancing.
1da177e4
LT
573 * Parameters:
574 * tb tree_balance structure;
575 * h current level of the node;
576 * lnum number of items from S[h] that must be shifted to L[h];
577 * rnum number of items from S[h] that must be shifted to R[h];
578 * blk_num number of blocks that S[h] will be splitted into;
579 * s012 number of items that fall into splitted nodes.
580 * lbytes number of bytes which flow to the left neighbor from the item that is not
581 * not shifted entirely
582 * rbytes number of bytes which flow to the right neighbor from the item that is not
583 * not shifted entirely
584 * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array)
585 */
586
bd4c625c
LT
587static void set_parameters(struct tree_balance *tb, int h, int lnum,
588 int rnum, int blk_num, short *s012, int lb, int rb)
1da177e4
LT
589{
590
bd4c625c
LT
591 tb->lnum[h] = lnum;
592 tb->rnum[h] = rnum;
593 tb->blknum[h] = blk_num;
1da177e4 594
bd4c625c
LT
595 if (h == 0) { /* only for leaf level */
596 if (s012 != NULL) {
597 tb->s0num = *s012++,
598 tb->s1num = *s012++, tb->s2num = *s012++;
599 tb->s1bytes = *s012++;
600 tb->s2bytes = *s012;
601 }
602 tb->lbytes = lb;
603 tb->rbytes = rb;
1da177e4 604 }
bd4c625c
LT
605 PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
606 PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
1da177e4 607
bd4c625c
LT
608 PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
609 PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
610}
1da177e4
LT
611
612/* check, does node disappear if we shift tb->lnum[0] items to left
613 neighbor and tb->rnum[0] to the right one. */
bd4c625c 614static int is_leaf_removable(struct tree_balance *tb)
1da177e4 615{
bd4c625c
LT
616 struct virtual_node *vn = tb->tb_vn;
617 int to_left, to_right;
618 int size;
619 int remain_items;
620
621 /* number of items, that will be shifted to left (right) neighbor
622 entirely */
623 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
624 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
625 remain_items = vn->vn_nr_item;
626
627 /* how many items remain in S[0] after shiftings to neighbors */
628 remain_items -= (to_left + to_right);
629
630 if (remain_items < 1) {
631 /* all content of node can be shifted to neighbors */
632 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
633 NULL, -1, -1);
634 return 1;
635 }
1da177e4 636
bd4c625c
LT
637 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
638 /* S[0] is not removable */
639 return 0;
640
641 /* check, whether we can divide 1 remaining item between neighbors */
642
643 /* get size of remaining item (in item units) */
644 size = op_unit_num(&(vn->vn_vi[to_left]));
645
646 if (tb->lbytes + tb->rbytes >= size) {
647 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
648 tb->lbytes, -1);
649 return 1;
650 }
651
652 return 0;
653}
1da177e4
LT
654
655/* check whether L, S, R can be joined in one node */
bd4c625c 656static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
1da177e4 657{
bd4c625c
LT
658 struct virtual_node *vn = tb->tb_vn;
659 int ih_size;
660 struct buffer_head *S0;
661
662 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
663
664 ih_size = 0;
665 if (vn->vn_nr_item) {
666 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
667 ih_size += IH_SIZE;
668
669 if (vn->vn_vi[vn->vn_nr_item - 1].
670 vi_type & VI_TYPE_RIGHT_MERGEABLE)
671 ih_size += IH_SIZE;
672 } else {
673 /* there was only one item and it will be deleted */
674 struct item_head *ih;
675
676 RFALSE(B_NR_ITEMS(S0) != 1,
677 "vs-8125: item number must be 1: it is %d",
678 B_NR_ITEMS(S0));
679
680 ih = B_N_PITEM_HEAD(S0, 0);
681 if (tb->CFR[0]
682 && !comp_short_le_keys(&(ih->ih_key),
683 B_N_PDELIM_KEY(tb->CFR[0],
684 tb->rkey[0])))
685 if (is_direntry_le_ih(ih)) {
686 /* Directory must be in correct state here: that is
687 somewhere at the left side should exist first directory
688 item. But the item being deleted can not be that first
689 one because its right neighbor is item of the same
690 directory. (But first item always gets deleted in last
691 turn). So, neighbors of deleted item can be merged, so
692 we can save ih_size */
693 ih_size = IH_SIZE;
694
695 /* we might check that left neighbor exists and is of the
696 same directory */
697 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
698 "vs-8130: first directory item can not be removed until directory is not empty");
699 }
1da177e4 700
bd4c625c
LT
701 }
702
703 if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
704 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
705 PROC_INFO_INC(tb->tb_sb, leaves_removable);
706 return 1;
707 }
708 return 0;
1da177e4 709
bd4c625c 710}
1da177e4
LT
711
712/* when we do not split item, lnum and rnum are numbers of entire items */
713#define SET_PAR_SHIFT_LEFT \
714if (h)\
715{\
716 int to_l;\
717 \
718 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
719 (MAX_NR_KEY(Sh) + 1 - lpar);\
720 \
721 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
722}\
723else \
724{\
725 if (lset==LEFT_SHIFT_FLOW)\
726 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
727 tb->lbytes, -1);\
728 else\
729 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
730 -1, -1);\
731}
732
1da177e4
LT
733#define SET_PAR_SHIFT_RIGHT \
734if (h)\
735{\
736 int to_r;\
737 \
738 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
739 \
740 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
741}\
742else \
743{\
744 if (rset==RIGHT_SHIFT_FLOW)\
745 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
746 -1, tb->rbytes);\
747 else\
748 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
749 -1, -1);\
750}
751
a063ae17 752static void free_buffers_in_tb(struct tree_balance *tb)
bd4c625c 753{
ee93961b 754 int i;
bd4c625c 755
a063ae17 756 pathrelse(tb->tb_path);
bd4c625c 757
ee93961b
JM
758 for (i = 0; i < MAX_HEIGHT; i++) {
759 brelse(tb->L[i]);
760 brelse(tb->R[i]);
761 brelse(tb->FL[i]);
762 brelse(tb->FR[i]);
763 brelse(tb->CFL[i]);
764 brelse(tb->CFR[i]);
765
766 tb->L[i] = NULL;
767 tb->R[i] = NULL;
768 tb->FL[i] = NULL;
769 tb->FR[i] = NULL;
770 tb->CFL[i] = NULL;
771 tb->CFR[i] = NULL;
bd4c625c 772 }
1da177e4
LT
773}
774
1da177e4
LT
775/* Get new buffers for storing new nodes that are created while balancing.
776 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
777 * CARRY_ON - schedule didn't occur while the function worked;
778 * NO_DISK_SPACE - no disk space.
779 */
780/* The function is NOT SCHEDULE-SAFE! */
ee93961b 781static int get_empty_nodes(struct tree_balance *tb, int h)
bd4c625c 782{
d68caa95 783 struct buffer_head *new_bh,
ee93961b
JM
784 *Sh = PATH_H_PBUFFER(tb->tb_path, h);
785 b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
786 int counter, number_of_freeblk, amount_needed, /* number of needed empty blocks */
787 retval = CARRY_ON;
a063ae17 788 struct super_block *sb = tb->tb_sb;
bd4c625c
LT
789
790 /* number_of_freeblk is the number of empty blocks which have been
791 acquired for use by the balancing algorithm minus the number of
792 empty blocks used in the previous levels of the analysis,
793 number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
794 after empty blocks are acquired, and the balancing analysis is
795 then restarted, amount_needed is the number needed by this level
ee93961b 796 (h) of the balancing analysis.
bd4c625c
LT
797
798 Note that for systems with many processes writing, it would be
799 more layout optimal to calculate the total number needed by all
800 levels and then to run reiserfs_new_blocks to get all of them at once. */
801
802 /* Initiate number_of_freeblk to the amount acquired prior to the restart of
803 the analysis or 0 if not restarted, then subtract the amount needed
ee93961b
JM
804 by all of the levels of the tree below h. */
805 /* blknum includes S[h], so we subtract 1 in this calculation */
806 for (counter = 0, number_of_freeblk = tb->cur_blknum;
807 counter < h; counter++)
808 number_of_freeblk -=
809 (tb->blknum[counter]) ? (tb->blknum[counter] -
bd4c625c
LT
810 1) : 0;
811
812 /* Allocate missing empty blocks. */
d68caa95 813 /* if Sh == 0 then we are getting a new root */
ee93961b 814 amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
bd4c625c 815 /* Amount_needed = the amount that we need more than the amount that we have. */
ee93961b
JM
816 if (amount_needed > number_of_freeblk)
817 amount_needed -= number_of_freeblk;
bd4c625c
LT
818 else /* If we have enough already then there is nothing to do. */
819 return CARRY_ON;
820
821 /* No need to check quota - is not allocated for blocks used for formatted nodes */
ee93961b
JM
822 if (reiserfs_new_form_blocknrs(tb, blocknrs,
823 amount_needed) == NO_DISK_SPACE)
bd4c625c
LT
824 return NO_DISK_SPACE;
825
826 /* for each blocknumber we just got, get a buffer and stick it on FEB */
ee93961b
JM
827 for (blocknr = blocknrs, counter = 0;
828 counter < amount_needed; blocknr++, counter++) {
bd4c625c 829
d68caa95 830 RFALSE(!*blocknr,
bd4c625c
LT
831 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
832
d68caa95
JM
833 new_bh = sb_getblk(sb, *blocknr);
834 RFALSE(buffer_dirty(new_bh) ||
835 buffer_journaled(new_bh) ||
836 buffer_journal_dirty(new_bh),
bd4c625c 837 "PAP-8140: journlaled or dirty buffer %b for the new block",
d68caa95 838 new_bh);
bd4c625c
LT
839
840 /* Put empty buffers into the array. */
a063ae17 841 RFALSE(tb->FEB[tb->cur_blknum],
bd4c625c
LT
842 "PAP-8141: busy slot for new buffer");
843
d68caa95
JM
844 set_buffer_journal_new(new_bh);
845 tb->FEB[tb->cur_blknum++] = new_bh;
bd4c625c
LT
846 }
847
ee93961b
JM
848 if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
849 retval = REPEAT_SEARCH;
1da177e4 850
ee93961b 851 return retval;
bd4c625c 852}
1da177e4
LT
853
854/* Get free space of the left neighbor, which is stored in the parent
855 * node of the left neighbor. */
bd4c625c 856static int get_lfree(struct tree_balance *tb, int h)
1da177e4 857{
bd4c625c
LT
858 struct buffer_head *l, *f;
859 int order;
1da177e4 860
9dce07f1
AV
861 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
862 (l = tb->FL[h]) == NULL)
bd4c625c 863 return 0;
1da177e4 864
bd4c625c
LT
865 if (f == l)
866 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
867 else {
868 order = B_NR_ITEMS(l);
869 f = l;
870 }
1da177e4 871
bd4c625c 872 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
1da177e4
LT
873}
874
1da177e4
LT
875/* Get free space of the right neighbor,
876 * which is stored in the parent node of the right neighbor.
877 */
bd4c625c 878static int get_rfree(struct tree_balance *tb, int h)
1da177e4 879{
bd4c625c
LT
880 struct buffer_head *r, *f;
881 int order;
1da177e4 882
9dce07f1
AV
883 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
884 (r = tb->FR[h]) == NULL)
bd4c625c 885 return 0;
1da177e4 886
bd4c625c
LT
887 if (f == r)
888 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
889 else {
890 order = 0;
891 f = r;
892 }
1da177e4 893
bd4c625c 894 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
1da177e4
LT
895
896}
897
1da177e4 898/* Check whether left neighbor is in memory. */
ee93961b 899static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
bd4c625c 900{
d68caa95 901 struct buffer_head *father, *left;
a063ae17 902 struct super_block *sb = tb->tb_sb;
ee93961b
JM
903 b_blocknr_t left_neighbor_blocknr;
904 int left_neighbor_position;
bd4c625c 905
a063ae17 906 /* Father of the left neighbor does not exist. */
ee93961b 907 if (!tb->FL[h])
bd4c625c
LT
908 return 0;
909
910 /* Calculate father of the node to be balanced. */
ee93961b 911 father = PATH_H_PBUFFER(tb->tb_path, h + 1);
bd4c625c 912
d68caa95
JM
913 RFALSE(!father ||
914 !B_IS_IN_TREE(father) ||
ee93961b 915 !B_IS_IN_TREE(tb->FL[h]) ||
d68caa95 916 !buffer_uptodate(father) ||
ee93961b 917 !buffer_uptodate(tb->FL[h]),
bd4c625c 918 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
ee93961b 919 father, tb->FL[h]);
bd4c625c
LT
920
921 /* Get position of the pointer to the left neighbor into the left father. */
ee93961b
JM
922 left_neighbor_position = (father == tb->FL[h]) ?
923 tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
bd4c625c 924 /* Get left neighbor block number. */
ee93961b
JM
925 left_neighbor_blocknr =
926 B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
bd4c625c 927 /* Look for the left neighbor in the cache. */
ee93961b 928 if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
bd4c625c
LT
929
930 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
931 "vs-8170: left neighbor (%b %z) is not in the tree",
932 left, left);
933 put_bh(left);
934 return 1;
935 }
1da177e4 936
bd4c625c
LT
937 return 0;
938}
1da177e4
LT
939
940#define LEFT_PARENTS 'l'
941#define RIGHT_PARENTS 'r'
942
d68caa95 943static void decrement_key(struct cpu_key *key)
1da177e4 944{
bd4c625c 945 // call item specific function for this key
d68caa95 946 item_ops[cpu_key_k_type(key)]->decrement_key(key);
1da177e4
LT
947}
948
1da177e4
LT
949/* Calculate far left/right parent of the left/right neighbor of the current node, that
950 * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
951 * Calculate left/right common parent of the current node and L[h]/R[h].
952 * Calculate left/right delimiting key position.
953 * Returns: PATH_INCORRECT - path in the tree is not correct;
954 SCHEDULE_OCCURRED - schedule occurred while the function worked;
955 * CARRY_ON - schedule didn't occur while the function worked;
956 */
a063ae17 957static int get_far_parent(struct tree_balance *tb,
ee93961b 958 int h,
d68caa95
JM
959 struct buffer_head **pfather,
960 struct buffer_head **pcom_father, char c_lr_par)
1da177e4 961{
d68caa95 962 struct buffer_head *parent;
bd4c625c 963 INITIALIZE_PATH(s_path_to_neighbor_father);
d68caa95 964 struct treepath *path = tb->tb_path;
bd4c625c 965 struct cpu_key s_lr_father_key;
ee93961b
JM
966 int counter,
967 position = INT_MAX,
968 first_last_position = 0,
969 path_offset = PATH_H_PATH_OFFSET(path, h);
bd4c625c 970
ee93961b
JM
971 /* Starting from F[h] go upwards in the tree, and look for the common
972 ancestor of F[h], and its neighbor l/r, that should be obtained. */
bd4c625c 973
ee93961b 974 counter = path_offset;
bd4c625c 975
ee93961b 976 RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
bd4c625c
LT
977 "PAP-8180: invalid path length");
978
ee93961b 979 for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
bd4c625c
LT
980 /* Check whether parent of the current buffer in the path is really parent in the tree. */
981 if (!B_IS_IN_TREE
ee93961b 982 (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
bd4c625c
LT
983 return REPEAT_SEARCH;
984 /* Check whether position in the parent is correct. */
ee93961b 985 if ((position =
d68caa95 986 PATH_OFFSET_POSITION(path,
ee93961b 987 counter - 1)) >
d68caa95 988 B_NR_ITEMS(parent))
bd4c625c
LT
989 return REPEAT_SEARCH;
990 /* Check whether parent at the path really points to the child. */
ee93961b
JM
991 if (B_N_CHILD_NUM(parent, position) !=
992 PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
bd4c625c
LT
993 return REPEAT_SEARCH;
994 /* Return delimiting key if position in the parent is not equal to first/last one. */
995 if (c_lr_par == RIGHT_PARENTS)
ee93961b
JM
996 first_last_position = B_NR_ITEMS(parent);
997 if (position != first_last_position) {
d68caa95
JM
998 *pcom_father = parent;
999 get_bh(*pcom_father);
1000 /*(*pcom_father = parent)->b_count++; */
bd4c625c
LT
1001 break;
1002 }
1da177e4 1003 }
bd4c625c
LT
1004
1005 /* if we are in the root of the tree, then there is no common father */
ee93961b 1006 if (counter == FIRST_PATH_ELEMENT_OFFSET) {
bd4c625c
LT
1007 /* Check whether first buffer in the path is the root of the tree. */
1008 if (PATH_OFFSET_PBUFFER
a063ae17 1009 (tb->tb_path,
bd4c625c 1010 FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
a063ae17 1011 SB_ROOT_BLOCK(tb->tb_sb)) {
d68caa95 1012 *pfather = *pcom_father = NULL;
bd4c625c
LT
1013 return CARRY_ON;
1014 }
1015 return REPEAT_SEARCH;
1da177e4 1016 }
1da177e4 1017
d68caa95 1018 RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
bd4c625c 1019 "PAP-8185: (%b %z) level too small",
d68caa95 1020 *pcom_father, *pcom_father);
1da177e4 1021
bd4c625c 1022 /* Check whether the common parent is locked. */
1da177e4 1023
d68caa95 1024 if (buffer_locked(*pcom_father)) {
8ebc4232
FW
1025
1026 /* Release the write lock while the buffer is busy */
1027 reiserfs_write_unlock(tb->tb_sb);
d68caa95 1028 __wait_on_buffer(*pcom_father);
8ebc4232 1029 reiserfs_write_lock(tb->tb_sb);
a063ae17 1030 if (FILESYSTEM_CHANGED_TB(tb)) {
d68caa95 1031 brelse(*pcom_father);
bd4c625c
LT
1032 return REPEAT_SEARCH;
1033 }
1da177e4 1034 }
1da177e4 1035
bd4c625c
LT
1036 /* So, we got common parent of the current node and its left/right neighbor.
1037 Now we are geting the parent of the left/right neighbor. */
1da177e4 1038
bd4c625c
LT
1039 /* Form key to get parent of the left/right neighbor. */
1040 le_key2cpu_key(&s_lr_father_key,
d68caa95 1041 B_N_PDELIM_KEY(*pcom_father,
bd4c625c 1042 (c_lr_par ==
ee93961b
JM
1043 LEFT_PARENTS) ? (tb->lkey[h - 1] =
1044 position -
1045 1) : (tb->rkey[h -
bd4c625c 1046 1] =
ee93961b 1047 position)));
1da177e4 1048
bd4c625c
LT
1049 if (c_lr_par == LEFT_PARENTS)
1050 decrement_key(&s_lr_father_key);
1da177e4 1051
bd4c625c 1052 if (search_by_key
a063ae17 1053 (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
ee93961b 1054 h + 1) == IO_ERROR)
bd4c625c
LT
1055 // path is released
1056 return IO_ERROR;
1da177e4 1057
a063ae17 1058 if (FILESYSTEM_CHANGED_TB(tb)) {
3cd6dbe6 1059 pathrelse(&s_path_to_neighbor_father);
d68caa95 1060 brelse(*pcom_father);
bd4c625c
LT
1061 return REPEAT_SEARCH;
1062 }
1da177e4 1063
d68caa95 1064 *pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1da177e4 1065
ee93961b 1066 RFALSE(B_LEVEL(*pfather) != h + 1,
d68caa95 1067 "PAP-8190: (%b %z) level too small", *pfather, *pfather);
bd4c625c
LT
1068 RFALSE(s_path_to_neighbor_father.path_length <
1069 FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1da177e4 1070
bd4c625c 1071 s_path_to_neighbor_father.path_length--;
3cd6dbe6 1072 pathrelse(&s_path_to_neighbor_father);
bd4c625c 1073 return CARRY_ON;
1da177e4
LT
1074}
1075
ee93961b
JM
1076/* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
1077 * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
1078 * FR[path_offset], CFL[path_offset], CFR[path_offset].
1079 * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
1da177e4
LT
1080 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1081 * CARRY_ON - schedule didn't occur while the function worked;
1082 */
ee93961b 1083static int get_parents(struct tree_balance *tb, int h)
1da177e4 1084{
d68caa95 1085 struct treepath *path = tb->tb_path;
ee93961b
JM
1086 int position,
1087 ret,
1088 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
d68caa95 1089 struct buffer_head *curf, *curcf;
bd4c625c
LT
1090
1091 /* Current node is the root of the tree or will be root of the tree */
ee93961b 1092 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
bd4c625c
LT
1093 /* The root can not have parents.
1094 Release nodes which previously were obtained as parents of the current node neighbors. */
ee93961b
JM
1095 brelse(tb->FL[h]);
1096 brelse(tb->CFL[h]);
1097 brelse(tb->FR[h]);
1098 brelse(tb->CFR[h]);
1099 tb->FL[h] = NULL;
1100 tb->CFL[h] = NULL;
1101 tb->FR[h] = NULL;
1102 tb->CFR[h] = NULL;
bd4c625c
LT
1103 return CARRY_ON;
1104 }
1105
ee93961b
JM
1106 /* Get parent FL[path_offset] of L[path_offset]. */
1107 position = PATH_OFFSET_POSITION(path, path_offset - 1);
1108 if (position) {
bd4c625c 1109 /* Current node is not the first child of its parent. */
ee93961b
JM
1110 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1111 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
d68caa95
JM
1112 get_bh(curf);
1113 get_bh(curf);
ee93961b 1114 tb->lkey[h] = position - 1;
bd4c625c 1115 } else {
ee93961b
JM
1116 /* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
1117 Calculate current common parent of L[path_offset] and the current node. Note that
1118 CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
1119 Calculate lkey[path_offset]. */
1120 if ((ret = get_far_parent(tb, h + 1, &curf,
d68caa95 1121 &curcf,
bd4c625c 1122 LEFT_PARENTS)) != CARRY_ON)
ee93961b 1123 return ret;
bd4c625c
LT
1124 }
1125
ee93961b
JM
1126 brelse(tb->FL[h]);
1127 tb->FL[h] = curf; /* New initialization of FL[h]. */
1128 brelse(tb->CFL[h]);
1129 tb->CFL[h] = curcf; /* New initialization of CFL[h]. */
bd4c625c 1130
d68caa95
JM
1131 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1132 (curcf && !B_IS_IN_TREE(curcf)),
1133 "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1da177e4 1134
ee93961b 1135/* Get parent FR[h] of R[h]. */
1da177e4 1136
ee93961b
JM
1137/* Current node is the last child of F[h]. FR[h] != F[h]. */
1138 if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1139/* Calculate current parent of R[h], which is the right neighbor of F[h].
1140 Calculate current common parent of R[h] and current node. Note that CFR[h]
1141 not equal FR[path_offset] and CFR[h] not equal F[h]. */
1142 if ((ret =
1143 get_far_parent(tb, h + 1, &curf, &curcf,
bd4c625c 1144 RIGHT_PARENTS)) != CARRY_ON)
ee93961b 1145 return ret;
bd4c625c 1146 } else {
ee93961b
JM
1147/* Current node is not the last child of its parent F[h]. */
1148 curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1149 curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
d68caa95
JM
1150 get_bh(curf);
1151 get_bh(curf);
ee93961b 1152 tb->rkey[h] = position;
bd4c625c 1153 }
1da177e4 1154
ee93961b
JM
1155 brelse(tb->FR[h]);
1156 /* New initialization of FR[path_offset]. */
1157 tb->FR[h] = curf;
bd4c625c 1158
ee93961b
JM
1159 brelse(tb->CFR[h]);
1160 /* New initialization of CFR[path_offset]. */
1161 tb->CFR[h] = curcf;
bd4c625c 1162
d68caa95
JM
1163 RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1164 (curcf && !B_IS_IN_TREE(curcf)),
1165 "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
bd4c625c
LT
1166
1167 return CARRY_ON;
1168}
1da177e4
LT
1169
1170/* it is possible to remove node as result of shiftings to
1171 neighbors even when we insert or paste item. */
bd4c625c
LT
1172static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1173 struct tree_balance *tb, int h)
1da177e4 1174{
bd4c625c
LT
1175 struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1176 int levbytes = tb->insert_size[h];
1177 struct item_head *ih;
1178 struct reiserfs_key *r_key = NULL;
1179
1180 ih = B_N_PITEM_HEAD(Sh, 0);
1181 if (tb->CFR[h])
1182 r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1183
1184 if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1185 /* shifting may merge items which might save space */
1186 -
1187 ((!h
1188 && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1189 -
1190 ((!h && r_key
1191 && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1192 + ((h) ? KEY_SIZE : 0)) {
1193 /* node can not be removed */
1194 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1195 if (!h)
1196 tb->s0num =
1197 B_NR_ITEMS(Sh) +
1198 ((mode == M_INSERT) ? 1 : 0);
1199 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1200 return NO_BALANCING_NEEDED;
1201 }
1da177e4 1202 }
bd4c625c
LT
1203 PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1204 return !NO_BALANCING_NEEDED;
1da177e4
LT
1205}
1206
1da177e4
LT
1207/* Check whether current node S[h] is balanced when increasing its size by
1208 * Inserting or Pasting.
1209 * Calculate parameters for balancing for current level h.
1210 * Parameters:
1211 * tb tree_balance structure;
1212 * h current level of the node;
1213 * inum item number in S[h];
1214 * mode i - insert, p - paste;
0222e657 1215 * Returns: 1 - schedule occurred;
1da177e4
LT
1216 * 0 - balancing for higher levels needed;
1217 * -1 - no balancing for higher levels needed;
1218 * -2 - no disk space.
1219 */
1220/* ip means Inserting or Pasting */
bd4c625c 1221static int ip_check_balance(struct tree_balance *tb, int h)
1da177e4 1222{
bd4c625c
LT
1223 struct virtual_node *vn = tb->tb_vn;
1224 int levbytes, /* Number of bytes that must be inserted into (value
1225 is negative if bytes are deleted) buffer which
1226 contains node being balanced. The mnemonic is
1227 that the attempted change in node space used level
1228 is levbytes bytes. */
ee93961b 1229 ret;
bd4c625c
LT
1230
1231 int lfree, sfree, rfree /* free space in L, S and R */ ;
1232
1233 /* nver is short for number of vertixes, and lnver is the number if
1234 we shift to the left, rnver is the number if we shift to the
1235 right, and lrnver is the number if we shift in both directions.
1236 The goal is to minimize first the number of vertixes, and second,
1237 the number of vertixes whose contents are changed by shifting,
1238 and third the number of uncached vertixes whose contents are
1239 changed by shifting and must be read from disk. */
1240 int nver, lnver, rnver, lrnver;
1241
1242 /* used at leaf level only, S0 = S[0] is the node being balanced,
1243 sInum [ I = 0,1,2 ] is the number of items that will
1244 remain in node SI after balancing. S1 and S2 are new
1245 nodes that might be created. */
1246
1247 /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
1248 where 4th parameter is s1bytes and 5th - s2bytes
1249 */
0222e657 1250 short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
bd4c625c
LT
1251 0,1 - do not shift and do not shift but bottle
1252 2 - shift only whole item to left
1253 3 - shift to left and bottle as much as possible
1254 4,5 - shift to right (whole items and as much as possible
1255 6,7 - shift to both directions (whole items and as much as possible)
1256 */
1257
1258 /* Sh is the node whose balance is currently being checked */
1259 struct buffer_head *Sh;
1260
1261 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1262 levbytes = tb->insert_size[h];
1263
1264 /* Calculate balance parameters for creating new root. */
1265 if (!Sh) {
1266 if (!h)
c3a9c210
JM
1267 reiserfs_panic(tb->tb_sb, "vs-8210",
1268 "S[0] can not be 0");
ee93961b 1269 switch (ret = get_empty_nodes(tb, h)) {
bd4c625c
LT
1270 case CARRY_ON:
1271 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1272 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1273
1274 case NO_DISK_SPACE:
1275 case REPEAT_SEARCH:
ee93961b 1276 return ret;
bd4c625c 1277 default:
c3a9c210
JM
1278 reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1279 "return value of get_empty_nodes");
bd4c625c 1280 }
1da177e4 1281 }
1da177e4 1282
ee93961b
JM
1283 if ((ret = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */
1284 return ret;
1da177e4 1285
bd4c625c
LT
1286 sfree = B_FREE_SPACE(Sh);
1287
1288 /* get free space of neighbors */
1289 rfree = get_rfree(tb, h);
1290 lfree = get_lfree(tb, h);
1291
1292 if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1293 NO_BALANCING_NEEDED)
1294 /* and new item fits into node S[h] without any shifting */
1295 return NO_BALANCING_NEEDED;
1da177e4 1296
bd4c625c 1297 create_virtual_node(tb, h);
1da177e4 1298
0222e657 1299 /*
bd4c625c
LT
1300 determine maximal number of items we can shift to the left neighbor (in tb structure)
1301 and the maximal number of bytes that can flow to the left neighbor
1302 from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1da177e4 1303 */
bd4c625c 1304 check_left(tb, h, lfree);
1da177e4 1305
bd4c625c
LT
1306 /*
1307 determine maximal number of items we can shift to the right neighbor (in tb structure)
1308 and the maximal number of bytes that can flow to the right neighbor
1309 from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1310 */
1311 check_right(tb, h, rfree);
1312
1313 /* all contents of internal node S[h] can be moved into its
1314 neighbors, S[h] will be removed after balancing */
1315 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1316 int to_r;
1317
1318 /* Since we are working on internal nodes, and our internal
1319 nodes have fixed size entries, then we can balance by the
1320 number of items rather than the space they consume. In this
1321 routine we set the left node equal to the right node,
1322 allowing a difference of less than or equal to 1 child
1323 pointer. */
1324 to_r =
1325 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1326 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1327 tb->rnum[h]);
1328 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1329 -1, -1);
1330 return CARRY_ON;
1331 }
1332
1333 /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1334 RFALSE(h &&
1335 (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1336 tb->rnum[h] >= vn->vn_nr_item + 1),
1337 "vs-8220: tree is not balanced on internal level");
1338 RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1339 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1340 "vs-8225: tree is not balanced on leaf level");
1341
1342 /* all contents of S[0] can be moved into its neighbors
1343 S[0] will be removed after balancing. */
1344 if (!h && is_leaf_removable(tb))
1345 return CARRY_ON;
1346
1347 /* why do we perform this check here rather than earlier??
1348 Answer: we can win 1 node in some cases above. Moreover we
1349 checked it above, when we checked, that S[0] is not removable
1350 in principle */
1351 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1352 if (!h)
1353 tb->s0num = vn->vn_nr_item;
1354 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1355 return NO_BALANCING_NEEDED;
1356 }
1357
1358 {
1359 int lpar, rpar, nset, lset, rset, lrset;
0222e657 1360 /*
bd4c625c
LT
1361 * regular overflowing of the node
1362 */
1363
0222e657 1364 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
bd4c625c 1365 lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
0222e657 1366 nset, lset, rset, lrset - shows, whether flowing items give better packing
bd4c625c 1367 */
1da177e4 1368#define FLOW 1
bd4c625c 1369#define NO_FLOW 0 /* do not any splitting */
1da177e4 1370
bd4c625c 1371 /* we choose one the following */
1da177e4
LT
1372#define NOTHING_SHIFT_NO_FLOW 0
1373#define NOTHING_SHIFT_FLOW 5
1374#define LEFT_SHIFT_NO_FLOW 10
1375#define LEFT_SHIFT_FLOW 15
1376#define RIGHT_SHIFT_NO_FLOW 20
1377#define RIGHT_SHIFT_FLOW 25
1378#define LR_SHIFT_NO_FLOW 30
1379#define LR_SHIFT_FLOW 35
1380
bd4c625c
LT
1381 lpar = tb->lnum[h];
1382 rpar = tb->rnum[h];
1383
1384 /* calculate number of blocks S[h] must be split into when
1385 nothing is shifted to the neighbors,
1386 as well as number of items in each part of the split node (s012 numbers),
1387 and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1388 nset = NOTHING_SHIFT_NO_FLOW;
1389 nver = get_num_ver(vn->vn_mode, tb, h,
1390 0, -1, h ? vn->vn_nr_item : 0, -1,
1391 snum012, NO_FLOW);
1392
1393 if (!h) {
1394 int nver1;
1395
1396 /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1397 nver1 = get_num_ver(vn->vn_mode, tb, h,
1398 0, -1, 0, -1,
1399 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1400 if (nver > nver1)
1401 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1402 }
1da177e4 1403
bd4c625c
LT
1404 /* calculate number of blocks S[h] must be split into when
1405 l_shift_num first items and l_shift_bytes of the right most
1406 liquid item to be shifted are shifted to the left neighbor,
1407 as well as number of items in each part of the splitted node (s012 numbers),
1408 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1409 */
1410 lset = LEFT_SHIFT_NO_FLOW;
1411 lnver = get_num_ver(vn->vn_mode, tb, h,
1412 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1413 -1, h ? vn->vn_nr_item : 0, -1,
1414 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1415 if (!h) {
1416 int lnver1;
1417
1418 lnver1 = get_num_ver(vn->vn_mode, tb, h,
1419 lpar -
1420 ((tb->lbytes != -1) ? 1 : 0),
1421 tb->lbytes, 0, -1,
1422 snum012 + LEFT_SHIFT_FLOW, FLOW);
1423 if (lnver > lnver1)
1424 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1425 }
1da177e4 1426
bd4c625c
LT
1427 /* calculate number of blocks S[h] must be split into when
1428 r_shift_num first items and r_shift_bytes of the left most
1429 liquid item to be shifted are shifted to the right neighbor,
1430 as well as number of items in each part of the splitted node (s012 numbers),
1431 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1432 */
1433 rset = RIGHT_SHIFT_NO_FLOW;
1434 rnver = get_num_ver(vn->vn_mode, tb, h,
1435 0, -1,
1436 h ? (vn->vn_nr_item - rpar) : (rpar -
1437 ((tb->
1438 rbytes !=
1439 -1) ? 1 :
1440 0)), -1,
1441 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1442 if (!h) {
1443 int rnver1;
1444
1445 rnver1 = get_num_ver(vn->vn_mode, tb, h,
1446 0, -1,
1447 (rpar -
1448 ((tb->rbytes != -1) ? 1 : 0)),
1449 tb->rbytes,
1450 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1451
1452 if (rnver > rnver1)
1453 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1454 }
1da177e4 1455
bd4c625c
LT
1456 /* calculate number of blocks S[h] must be split into when
1457 items are shifted in both directions,
1458 as well as number of items in each part of the splitted node (s012 numbers),
1459 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1460 */
1461 lrset = LR_SHIFT_NO_FLOW;
1462 lrnver = get_num_ver(vn->vn_mode, tb, h,
1463 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1464 -1,
1465 h ? (vn->vn_nr_item - rpar) : (rpar -
1466 ((tb->
1467 rbytes !=
1468 -1) ? 1 :
1469 0)), -1,
1470 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1471 if (!h) {
1472 int lrnver1;
1473
1474 lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1475 lpar -
1476 ((tb->lbytes != -1) ? 1 : 0),
1477 tb->lbytes,
1478 (rpar -
1479 ((tb->rbytes != -1) ? 1 : 0)),
1480 tb->rbytes,
1481 snum012 + LR_SHIFT_FLOW, FLOW);
1482 if (lrnver > lrnver1)
1483 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1484 }
1da177e4 1485
bd4c625c
LT
1486 /* Our general shifting strategy is:
1487 1) to minimized number of new nodes;
1488 2) to minimized number of neighbors involved in shifting;
1489 3) to minimized number of disk reads; */
1490
1491 /* we can win TWO or ONE nodes by shifting in both directions */
1492 if (lrnver < lnver && lrnver < rnver) {
1493 RFALSE(h &&
1494 (tb->lnum[h] != 1 ||
1495 tb->rnum[h] != 1 ||
1496 lrnver != 1 || rnver != 2 || lnver != 2
1497 || h != 1), "vs-8230: bad h");
1498 if (lrset == LR_SHIFT_FLOW)
1499 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1500 lrnver, snum012 + lrset,
1501 tb->lbytes, tb->rbytes);
1502 else
1503 set_parameters(tb, h,
1504 tb->lnum[h] -
1505 ((tb->lbytes == -1) ? 0 : 1),
1506 tb->rnum[h] -
1507 ((tb->rbytes == -1) ? 0 : 1),
1508 lrnver, snum012 + lrset, -1, -1);
1509
1510 return CARRY_ON;
1511 }
1da177e4 1512
bd4c625c
LT
1513 /* if shifting doesn't lead to better packing then don't shift */
1514 if (nver == lrnver) {
1515 set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1516 -1);
1517 return CARRY_ON;
1518 }
1da177e4 1519
bd4c625c
LT
1520 /* now we know that for better packing shifting in only one
1521 direction either to the left or to the right is required */
1da177e4 1522
bd4c625c
LT
1523 /* if shifting to the left is better than shifting to the right */
1524 if (lnver < rnver) {
1525 SET_PAR_SHIFT_LEFT;
1526 return CARRY_ON;
1527 }
1da177e4 1528
bd4c625c
LT
1529 /* if shifting to the right is better than shifting to the left */
1530 if (lnver > rnver) {
1531 SET_PAR_SHIFT_RIGHT;
1532 return CARRY_ON;
1533 }
1da177e4 1534
bd4c625c
LT
1535 /* now shifting in either direction gives the same number
1536 of nodes and we can make use of the cached neighbors */
1537 if (is_left_neighbor_in_cache(tb, h)) {
1538 SET_PAR_SHIFT_LEFT;
1539 return CARRY_ON;
1540 }
1da177e4 1541
bd4c625c
LT
1542 /* shift to the right independently on whether the right neighbor in cache or not */
1543 SET_PAR_SHIFT_RIGHT;
1544 return CARRY_ON;
1da177e4 1545 }
1da177e4
LT
1546}
1547
1da177e4
LT
1548/* Check whether current node S[h] is balanced when Decreasing its size by
1549 * Deleting or Cutting for INTERNAL node of S+tree.
1550 * Calculate parameters for balancing for current level h.
1551 * Parameters:
1552 * tb tree_balance structure;
1553 * h current level of the node;
1554 * inum item number in S[h];
1555 * mode i - insert, p - paste;
0222e657 1556 * Returns: 1 - schedule occurred;
1da177e4
LT
1557 * 0 - balancing for higher levels needed;
1558 * -1 - no balancing for higher levels needed;
1559 * -2 - no disk space.
1560 *
1561 * Note: Items of internal nodes have fixed size, so the balance condition for
1562 * the internal part of S+tree is as for the B-trees.
1563 */
bd4c625c 1564static int dc_check_balance_internal(struct tree_balance *tb, int h)
1da177e4 1565{
bd4c625c 1566 struct virtual_node *vn = tb->tb_vn;
1da177e4 1567
bd4c625c
LT
1568 /* Sh is the node whose balance is currently being checked,
1569 and Fh is its father. */
1570 struct buffer_head *Sh, *Fh;
ee93961b 1571 int maxsize, ret;
bd4c625c 1572 int lfree, rfree /* free space in L and R */ ;
1da177e4 1573
bd4c625c
LT
1574 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1575 Fh = PATH_H_PPARENT(tb->tb_path, h);
1da177e4 1576
bd4c625c 1577 maxsize = MAX_CHILD_SIZE(Sh);
1da177e4
LT
1578
1579/* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1580/* new_nr_item = number of items node would have if operation is */
1581/* performed without balancing (new_nr_item); */
bd4c625c 1582 create_virtual_node(tb, h);
1da177e4 1583
bd4c625c
LT
1584 if (!Fh) { /* S[h] is the root. */
1585 if (vn->vn_nr_item > 0) {
1586 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1587 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1588 }
1589 /* new_nr_item == 0.
1590 * Current root will be deleted resulting in
1591 * decrementing the tree height. */
1592 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1593 return CARRY_ON;
1594 }
1595
ee93961b
JM
1596 if ((ret = get_parents(tb, h)) != CARRY_ON)
1597 return ret;
bd4c625c
LT
1598
1599 /* get free space of neighbors */
1600 rfree = get_rfree(tb, h);
1601 lfree = get_lfree(tb, h);
1602
1603 /* determine maximal number of items we can fit into neighbors */
1604 check_left(tb, h, lfree);
1605 check_right(tb, h, rfree);
1606
1607 if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1608 * In this case we balance only if it leads to better packing. */
1609 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1610 * which is impossible with greater values of new_nr_item. */
1611 if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1612 /* All contents of S[h] can be moved to L[h]. */
1613 int n;
1614 int order_L;
1615
1616 order_L =
1617 ((n =
1618 PATH_H_B_ITEM_ORDER(tb->tb_path,
1619 h)) ==
1620 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1621 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1622 (DC_SIZE + KEY_SIZE);
1623 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1624 -1);
1625 return CARRY_ON;
1626 }
1627
1628 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1629 /* All contents of S[h] can be moved to R[h]. */
1630 int n;
1631 int order_R;
1632
1633 order_R =
1634 ((n =
1635 PATH_H_B_ITEM_ORDER(tb->tb_path,
1636 h)) ==
1637 B_NR_ITEMS(Fh)) ? 0 : n + 1;
1638 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1639 (DC_SIZE + KEY_SIZE);
1640 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1641 -1);
1642 return CARRY_ON;
1643 }
1644 }
1645
1646 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1647 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1648 int to_r;
1649
1650 to_r =
1651 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1652 tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1653 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1654 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1655 0, NULL, -1, -1);
1656 return CARRY_ON;
1657 }
1658
1659 /* Balancing does not lead to better packing. */
1660 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1661 return NO_BALANCING_NEEDED;
1da177e4 1662 }
bd4c625c
LT
1663
1664 /* Current node contain insufficient number of items. Balancing is required. */
1665 /* Check whether we can merge S[h] with left neighbor. */
1666 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1667 if (is_left_neighbor_in_cache(tb, h)
1668 || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1669 int n;
1670 int order_L;
1671
1672 order_L =
1673 ((n =
1674 PATH_H_B_ITEM_ORDER(tb->tb_path,
1675 h)) ==
1676 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1677 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1678 KEY_SIZE);
1679 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1680 return CARRY_ON;
1681 }
1682
1683 /* Check whether we can merge S[h] with right neighbor. */
1684 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1685 int n;
1686 int order_R;
1687
1688 order_R =
1689 ((n =
1690 PATH_H_B_ITEM_ORDER(tb->tb_path,
1691 h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1692 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1693 KEY_SIZE);
1694 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1695 return CARRY_ON;
1da177e4
LT
1696 }
1697
bd4c625c
LT
1698 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1699 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1700 int to_r;
1701
1702 to_r =
1703 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1704 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1705 tb->rnum[h]);
1706 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1707 -1, -1);
1708 return CARRY_ON;
1709 }
1da177e4 1710
bd4c625c
LT
1711 /* For internal nodes try to borrow item from a neighbor */
1712 RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1713
1714 /* Borrow one or two items from caching neighbor */
1715 if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1716 int from_l;
1717
1718 from_l =
1719 (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1720 1) / 2 - (vn->vn_nr_item + 1);
1721 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1722 return CARRY_ON;
1da177e4
LT
1723 }
1724
bd4c625c
LT
1725 set_parameters(tb, h, 0,
1726 -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1727 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1da177e4 1728 return CARRY_ON;
1da177e4
LT
1729}
1730
1da177e4
LT
1731/* Check whether current node S[h] is balanced when Decreasing its size by
1732 * Deleting or Truncating for LEAF node of S+tree.
1733 * Calculate parameters for balancing for current level h.
1734 * Parameters:
1735 * tb tree_balance structure;
1736 * h current level of the node;
1737 * inum item number in S[h];
1738 * mode i - insert, p - paste;
0222e657 1739 * Returns: 1 - schedule occurred;
1da177e4
LT
1740 * 0 - balancing for higher levels needed;
1741 * -1 - no balancing for higher levels needed;
1742 * -2 - no disk space.
1743 */
bd4c625c 1744static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1da177e4 1745{
bd4c625c
LT
1746 struct virtual_node *vn = tb->tb_vn;
1747
1748 /* Number of bytes that must be deleted from
1749 (value is negative if bytes are deleted) buffer which
1750 contains node being balanced. The mnemonic is that the
1751 attempted change in node space used level is levbytes bytes. */
1752 int levbytes;
1753 /* the maximal item size */
ee93961b 1754 int maxsize, ret;
bd4c625c
LT
1755 /* S0 is the node whose balance is currently being checked,
1756 and F0 is its father. */
1757 struct buffer_head *S0, *F0;
1758 int lfree, rfree /* free space in L and R */ ;
1759
1760 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1761 F0 = PATH_H_PPARENT(tb->tb_path, 0);
1da177e4 1762
bd4c625c 1763 levbytes = tb->insert_size[h];
1da177e4 1764
bd4c625c
LT
1765 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
1766
1767 if (!F0) { /* S[0] is the root now. */
1768
1769 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1770 "vs-8240: attempt to create empty buffer tree");
1771
1772 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1773 return NO_BALANCING_NEEDED;
1774 }
1775
ee93961b
JM
1776 if ((ret = get_parents(tb, h)) != CARRY_ON)
1777 return ret;
bd4c625c
LT
1778
1779 /* get free space of neighbors */
1780 rfree = get_rfree(tb, h);
1781 lfree = get_lfree(tb, h);
1782
1783 create_virtual_node(tb, h);
1784
1785 /* if 3 leaves can be merge to one, set parameters and return */
1786 if (are_leaves_removable(tb, lfree, rfree))
1787 return CARRY_ON;
1788
1789 /* determine maximal number of items we can shift to the left/right neighbor
1790 and the maximal number of bytes that can flow to the left/right neighbor
1791 from the left/right most liquid item that cannot be shifted from S[0] entirely
1792 */
1793 check_left(tb, h, lfree);
1794 check_right(tb, h, rfree);
1795
1796 /* check whether we can merge S with left neighbor. */
1797 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1798 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1799 !tb->FR[h]) {
1800
1801 RFALSE(!tb->FL[h],
1802 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1803
1804 /* set parameter to merge S[0] with its left neighbor */
1805 set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1806 return CARRY_ON;
1807 }
1808
1809 /* check whether we can merge S[0] with right neighbor. */
1810 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1811 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1812 return CARRY_ON;
1813 }
1814
1815 /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1816 if (is_leaf_removable(tb))
1817 return CARRY_ON;
1818
1819 /* Balancing is not required. */
1820 tb->s0num = vn->vn_nr_item;
1821 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1822 return NO_BALANCING_NEEDED;
1823}
1da177e4
LT
1824
1825/* Check whether current node S[h] is balanced when Decreasing its size by
1826 * Deleting or Cutting.
1827 * Calculate parameters for balancing for current level h.
1828 * Parameters:
1829 * tb tree_balance structure;
1830 * h current level of the node;
1831 * inum item number in S[h];
1832 * mode d - delete, c - cut.
0222e657 1833 * Returns: 1 - schedule occurred;
1da177e4
LT
1834 * 0 - balancing for higher levels needed;
1835 * -1 - no balancing for higher levels needed;
1836 * -2 - no disk space.
1837 */
bd4c625c 1838static int dc_check_balance(struct tree_balance *tb, int h)
1da177e4 1839{
bd4c625c
LT
1840 RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1841 "vs-8250: S is not initialized");
1da177e4 1842
bd4c625c
LT
1843 if (h)
1844 return dc_check_balance_internal(tb, h);
1845 else
1846 return dc_check_balance_leaf(tb, h);
1da177e4
LT
1847}
1848
1da177e4
LT
1849/* Check whether current node S[h] is balanced.
1850 * Calculate parameters for balancing for current level h.
1851 * Parameters:
1852 *
1853 * tb tree_balance structure:
1854 *
1855 * tb is a large structure that must be read about in the header file
1856 * at the same time as this procedure if the reader is to successfully
1857 * understand this procedure
1858 *
1859 * h current level of the node;
1860 * inum item number in S[h];
1861 * mode i - insert, p - paste, d - delete, c - cut.
0222e657 1862 * Returns: 1 - schedule occurred;
1da177e4
LT
1863 * 0 - balancing for higher levels needed;
1864 * -1 - no balancing for higher levels needed;
1865 * -2 - no disk space.
1866 */
bd4c625c
LT
1867static int check_balance(int mode,
1868 struct tree_balance *tb,
1869 int h,
1870 int inum,
1871 int pos_in_item,
1872 struct item_head *ins_ih, const void *data)
1da177e4 1873{
bd4c625c 1874 struct virtual_node *vn;
1da177e4 1875
bd4c625c
LT
1876 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1877 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1878 vn->vn_mode = mode;
1879 vn->vn_affected_item_num = inum;
1880 vn->vn_pos_in_item = pos_in_item;
1881 vn->vn_ins_ih = ins_ih;
1882 vn->vn_data = data;
1da177e4 1883
bd4c625c
LT
1884 RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1885 "vs-8255: ins_ih can not be 0 in insert mode");
1da177e4 1886
bd4c625c
LT
1887 if (tb->insert_size[h] > 0)
1888 /* Calculate balance parameters when size of node is increasing. */
1889 return ip_check_balance(tb, h);
1da177e4 1890
bd4c625c
LT
1891 /* Calculate balance parameters when size of node is decreasing. */
1892 return dc_check_balance(tb, h);
1da177e4
LT
1893}
1894
bd4c625c 1895/* Check whether parent at the path is the really parent of the current node.*/
ee93961b 1896static int get_direct_parent(struct tree_balance *tb, int h)
bd4c625c 1897{
ad31a4fc 1898 struct buffer_head *bh;
d68caa95 1899 struct treepath *path = tb->tb_path;
ee93961b
JM
1900 int position,
1901 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
bd4c625c
LT
1902
1903 /* We are in the root or in the new root. */
ee93961b 1904 if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
bd4c625c 1905
ee93961b 1906 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
bd4c625c
LT
1907 "PAP-8260: invalid offset in the path");
1908
d68caa95 1909 if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
a063ae17 1910 b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
bd4c625c 1911 /* Root is not changed. */
ee93961b
JM
1912 PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
1913 PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
bd4c625c
LT
1914 return CARRY_ON;
1915 }
1916 return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
1917 }
1918
1919 if (!B_IS_IN_TREE
ee93961b 1920 (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
bd4c625c 1921 return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
1da177e4 1922
ee93961b 1923 if ((position =
d68caa95 1924 PATH_OFFSET_POSITION(path,
ee93961b 1925 path_offset - 1)) > B_NR_ITEMS(bh))
bd4c625c 1926 return REPEAT_SEARCH;
1da177e4 1927
ee93961b
JM
1928 if (B_N_CHILD_NUM(bh, position) !=
1929 PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
bd4c625c
LT
1930 /* Parent in the path is not parent of the current node in the tree. */
1931 return REPEAT_SEARCH;
1932
ad31a4fc 1933 if (buffer_locked(bh)) {
8ebc4232 1934 reiserfs_write_unlock(tb->tb_sb);
ad31a4fc 1935 __wait_on_buffer(bh);
8ebc4232 1936 reiserfs_write_lock(tb->tb_sb);
a063ae17 1937 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c 1938 return REPEAT_SEARCH;
1da177e4 1939 }
1da177e4 1940
bd4c625c
LT
1941 return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */
1942}
1da177e4 1943
ee93961b
JM
1944/* Using lnum[h] and rnum[h] we should determine what neighbors
1945 * of S[h] we
1946 * need in order to balance S[h], and get them if necessary.
1da177e4
LT
1947 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1948 * CARRY_ON - schedule didn't occur while the function worked;
1949 */
ee93961b 1950static int get_neighbors(struct tree_balance *tb, int h)
bd4c625c 1951{
ee93961b
JM
1952 int child_position,
1953 path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
1954 unsigned long son_number;
a063ae17 1955 struct super_block *sb = tb->tb_sb;
ad31a4fc 1956 struct buffer_head *bh;
bd4c625c 1957
ee93961b 1958 PROC_INFO_INC(sb, get_neighbors[h]);
bd4c625c 1959
ee93961b
JM
1960 if (tb->lnum[h]) {
1961 /* We need left neighbor to balance S[h]. */
1962 PROC_INFO_INC(sb, need_l_neighbor[h]);
1963 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
bd4c625c 1964
ee93961b
JM
1965 RFALSE(bh == tb->FL[h] &&
1966 !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
bd4c625c
LT
1967 "PAP-8270: invalid position in the parent");
1968
ee93961b 1969 child_position =
ad31a4fc 1970 (bh ==
ee93961b
JM
1971 tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
1972 FL[h]);
1973 son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
1974 bh = sb_bread(sb, son_number);
ad31a4fc 1975 if (!bh)
bd4c625c 1976 return IO_ERROR;
a063ae17 1977 if (FILESYSTEM_CHANGED_TB(tb)) {
ad31a4fc 1978 brelse(bh);
ee93961b 1979 PROC_INFO_INC(sb, get_neighbors_restart[h]);
bd4c625c
LT
1980 return REPEAT_SEARCH;
1981 }
1982
ee93961b
JM
1983 RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
1984 child_position > B_NR_ITEMS(tb->FL[h]) ||
1985 B_N_CHILD_NUM(tb->FL[h], child_position) !=
ad31a4fc
JM
1986 bh->b_blocknr, "PAP-8275: invalid parent");
1987 RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
ee93961b 1988 RFALSE(!h &&
ad31a4fc
JM
1989 B_FREE_SPACE(bh) !=
1990 MAX_CHILD_SIZE(bh) -
ee93961b 1991 dc_size(B_N_CHILD(tb->FL[0], child_position)),
bd4c625c
LT
1992 "PAP-8290: invalid child size of left neighbor");
1993
ee93961b
JM
1994 brelse(tb->L[h]);
1995 tb->L[h] = bh;
1da177e4 1996 }
bd4c625c 1997
ee93961b
JM
1998 /* We need right neighbor to balance S[path_offset]. */
1999 if (tb->rnum[h]) { /* We need right neighbor to balance S[path_offset]. */
2000 PROC_INFO_INC(sb, need_r_neighbor[h]);
2001 bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
bd4c625c 2002
ee93961b 2003 RFALSE(bh == tb->FR[h] &&
a063ae17 2004 PATH_OFFSET_POSITION(tb->tb_path,
ee93961b 2005 path_offset) >=
ad31a4fc 2006 B_NR_ITEMS(bh),
bd4c625c
LT
2007 "PAP-8295: invalid position in the parent");
2008
ee93961b
JM
2009 child_position =
2010 (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2011 son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2012 bh = sb_bread(sb, son_number);
ad31a4fc 2013 if (!bh)
bd4c625c 2014 return IO_ERROR;
a063ae17 2015 if (FILESYSTEM_CHANGED_TB(tb)) {
ad31a4fc 2016 brelse(bh);
ee93961b 2017 PROC_INFO_INC(sb, get_neighbors_restart[h]);
bd4c625c
LT
2018 return REPEAT_SEARCH;
2019 }
ee93961b
JM
2020 brelse(tb->R[h]);
2021 tb->R[h] = bh;
bd4c625c 2022
ee93961b 2023 RFALSE(!h
ad31a4fc
JM
2024 && B_FREE_SPACE(bh) !=
2025 MAX_CHILD_SIZE(bh) -
ee93961b 2026 dc_size(B_N_CHILD(tb->FR[0], child_position)),
bd4c625c 2027 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
ad31a4fc 2028 B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
ee93961b 2029 dc_size(B_N_CHILD(tb->FR[0], child_position)));
bd4c625c 2030
1da177e4 2031 }
bd4c625c 2032 return CARRY_ON;
1da177e4
LT
2033}
2034
bd4c625c 2035static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
1da177e4 2036{
bd4c625c
LT
2037 int max_num_of_items;
2038 int max_num_of_entries;
2039 unsigned long blocksize = sb->s_blocksize;
1da177e4
LT
2040
2041#define MIN_NAME_LEN 1
2042
bd4c625c
LT
2043 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2044 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2045 (DEH_SIZE + MIN_NAME_LEN);
1da177e4 2046
bd4c625c
LT
2047 return sizeof(struct virtual_node) +
2048 max(max_num_of_items * sizeof(struct virtual_item),
2049 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2050 (max_num_of_entries - 1) * sizeof(__u16));
1da177e4
LT
2051}
2052
1da177e4
LT
2053/* maybe we should fail balancing we are going to perform when kmalloc
2054 fails several times. But now it will loop until kmalloc gets
2055 required memory */
bd4c625c 2056static int get_mem_for_virtual_node(struct tree_balance *tb)
1da177e4 2057{
bd4c625c
LT
2058 int check_fs = 0;
2059 int size;
2060 char *buf;
2061
2062 size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2063
2064 if (size > tb->vn_buf_size) {
2065 /* we have to allocate more memory for virtual node */
2066 if (tb->vn_buf) {
2067 /* free memory allocated before */
d739b42b 2068 kfree(tb->vn_buf);
bd4c625c
LT
2069 /* this is not needed if kfree is atomic */
2070 check_fs = 1;
2071 }
1da177e4 2072
bd4c625c
LT
2073 /* virtual node requires now more memory */
2074 tb->vn_buf_size = size;
2075
2076 /* get memory for virtual item */
d739b42b 2077 buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
bd4c625c
LT
2078 if (!buf) {
2079 /* getting memory with GFP_KERNEL priority may involve
2080 balancing now (due to indirect_to_direct conversion on
2081 dcache shrinking). So, release path and collected
2082 resources here */
2083 free_buffers_in_tb(tb);
d739b42b 2084 buf = kmalloc(size, GFP_NOFS);
bd4c625c 2085 if (!buf) {
bd4c625c
LT
2086 tb->vn_buf_size = 0;
2087 }
2088 tb->vn_buf = buf;
2089 schedule();
2090 return REPEAT_SEARCH;
2091 }
1da177e4 2092
bd4c625c
LT
2093 tb->vn_buf = buf;
2094 }
1da177e4 2095
bd4c625c
LT
2096 if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2097 return REPEAT_SEARCH;
1da177e4 2098
bd4c625c 2099 return CARRY_ON;
1da177e4
LT
2100}
2101
1da177e4 2102#ifdef CONFIG_REISERFS_CHECK
a9dd3643 2103static void tb_buffer_sanity_check(struct super_block *sb,
ad31a4fc 2104 struct buffer_head *bh,
bd4c625c 2105 const char *descr, int level)
1da177e4 2106{
ad31a4fc
JM
2107 if (bh) {
2108 if (atomic_read(&(bh->b_count)) <= 0)
1da177e4 2109
a9dd3643 2110 reiserfs_panic(sb, "jmacd-1", "negative or zero "
c3a9c210 2111 "reference counter for buffer %s[%d] "
ad31a4fc 2112 "(%b)", descr, level, bh);
1da177e4 2113
ad31a4fc 2114 if (!buffer_uptodate(bh))
a9dd3643 2115 reiserfs_panic(sb, "jmacd-2", "buffer is not up "
c3a9c210 2116 "to date %s[%d] (%b)",
ad31a4fc 2117 descr, level, bh);
1da177e4 2118
ad31a4fc 2119 if (!B_IS_IN_TREE(bh))
a9dd3643 2120 reiserfs_panic(sb, "jmacd-3", "buffer is not "
c3a9c210 2121 "in tree %s[%d] (%b)",
ad31a4fc 2122 descr, level, bh);
1da177e4 2123
ad31a4fc 2124 if (bh->b_bdev != sb->s_bdev)
a9dd3643 2125 reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
c3a9c210 2126 "device %s[%d] (%b)",
ad31a4fc 2127 descr, level, bh);
1da177e4 2128
ad31a4fc 2129 if (bh->b_size != sb->s_blocksize)
a9dd3643 2130 reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
c3a9c210 2131 "blocksize %s[%d] (%b)",
ad31a4fc 2132 descr, level, bh);
1da177e4 2133
ad31a4fc 2134 if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
a9dd3643 2135 reiserfs_panic(sb, "jmacd-6", "buffer block "
c3a9c210 2136 "number too high %s[%d] (%b)",
ad31a4fc 2137 descr, level, bh);
bd4c625c
LT
2138 }
2139}
2140#else
a9dd3643 2141static void tb_buffer_sanity_check(struct super_block *sb,
ad31a4fc 2142 struct buffer_head *bh,
bd4c625c
LT
2143 const char *descr, int level)
2144{;
2145}
2146#endif
1da177e4 2147
bd4c625c
LT
2148static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2149{
2150 return reiserfs_prepare_for_journal(s, bh, 0);
2151}
1da177e4 2152
a063ae17 2153static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
bd4c625c
LT
2154{
2155 struct buffer_head *locked;
2156#ifdef CONFIG_REISERFS_CHECK
2157 int repeat_counter = 0;
2158#endif
2159 int i;
1da177e4 2160
bd4c625c 2161 do {
1da177e4 2162
bd4c625c
LT
2163 locked = NULL;
2164
a063ae17 2165 for (i = tb->tb_path->path_length;
bd4c625c 2166 !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
a063ae17 2167 if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
bd4c625c
LT
2168 /* if I understand correctly, we can only be sure the last buffer
2169 ** in the path is in the tree --clm
2170 */
2171#ifdef CONFIG_REISERFS_CHECK
a063ae17
JM
2172 if (PATH_PLAST_BUFFER(tb->tb_path) ==
2173 PATH_OFFSET_PBUFFER(tb->tb_path, i))
2174 tb_buffer_sanity_check(tb->tb_sb,
bd4c625c 2175 PATH_OFFSET_PBUFFER
a063ae17 2176 (tb->tb_path,
bd4c625c 2177 i), "S",
a063ae17 2178 tb->tb_path->
bd4c625c 2179 path_length - i);
bd4c625c 2180#endif
a063ae17 2181 if (!clear_all_dirty_bits(tb->tb_sb,
bd4c625c 2182 PATH_OFFSET_PBUFFER
a063ae17 2183 (tb->tb_path,
bd4c625c
LT
2184 i))) {
2185 locked =
a063ae17 2186 PATH_OFFSET_PBUFFER(tb->tb_path,
bd4c625c
LT
2187 i);
2188 }
2189 }
1da177e4
LT
2190 }
2191
a063ae17 2192 for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
bd4c625c
LT
2193 i++) {
2194
a063ae17 2195 if (tb->lnum[i]) {
bd4c625c 2196
a063ae17
JM
2197 if (tb->L[i]) {
2198 tb_buffer_sanity_check(tb->tb_sb,
2199 tb->L[i],
bd4c625c
LT
2200 "L", i);
2201 if (!clear_all_dirty_bits
a063ae17
JM
2202 (tb->tb_sb, tb->L[i]))
2203 locked = tb->L[i];
bd4c625c
LT
2204 }
2205
a063ae17
JM
2206 if (!locked && tb->FL[i]) {
2207 tb_buffer_sanity_check(tb->tb_sb,
2208 tb->FL[i],
bd4c625c
LT
2209 "FL", i);
2210 if (!clear_all_dirty_bits
a063ae17
JM
2211 (tb->tb_sb, tb->FL[i]))
2212 locked = tb->FL[i];
bd4c625c
LT
2213 }
2214
a063ae17
JM
2215 if (!locked && tb->CFL[i]) {
2216 tb_buffer_sanity_check(tb->tb_sb,
2217 tb->CFL[i],
bd4c625c
LT
2218 "CFL", i);
2219 if (!clear_all_dirty_bits
a063ae17
JM
2220 (tb->tb_sb, tb->CFL[i]))
2221 locked = tb->CFL[i];
bd4c625c
LT
2222 }
2223
2224 }
2225
a063ae17 2226 if (!locked && (tb->rnum[i])) {
bd4c625c 2227
a063ae17
JM
2228 if (tb->R[i]) {
2229 tb_buffer_sanity_check(tb->tb_sb,
2230 tb->R[i],
bd4c625c
LT
2231 "R", i);
2232 if (!clear_all_dirty_bits
a063ae17
JM
2233 (tb->tb_sb, tb->R[i]))
2234 locked = tb->R[i];
bd4c625c
LT
2235 }
2236
a063ae17
JM
2237 if (!locked && tb->FR[i]) {
2238 tb_buffer_sanity_check(tb->tb_sb,
2239 tb->FR[i],
bd4c625c
LT
2240 "FR", i);
2241 if (!clear_all_dirty_bits
a063ae17
JM
2242 (tb->tb_sb, tb->FR[i]))
2243 locked = tb->FR[i];
bd4c625c
LT
2244 }
2245
a063ae17
JM
2246 if (!locked && tb->CFR[i]) {
2247 tb_buffer_sanity_check(tb->tb_sb,
2248 tb->CFR[i],
bd4c625c
LT
2249 "CFR", i);
2250 if (!clear_all_dirty_bits
a063ae17
JM
2251 (tb->tb_sb, tb->CFR[i]))
2252 locked = tb->CFR[i];
bd4c625c
LT
2253 }
2254 }
2255 }
2256 /* as far as I can tell, this is not required. The FEB list seems
2257 ** to be full of newly allocated nodes, which will never be locked,
2258 ** dirty, or anything else.
2259 ** To be safe, I'm putting in the checks and waits in. For the moment,
2260 ** they are needed to keep the code in journal.c from complaining
2261 ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well.
2262 ** --clm
2263 */
2264 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
a063ae17 2265 if (tb->FEB[i]) {
bd4c625c 2266 if (!clear_all_dirty_bits
a063ae17
JM
2267 (tb->tb_sb, tb->FEB[i]))
2268 locked = tb->FEB[i];
bd4c625c 2269 }
1da177e4 2270 }
1da177e4 2271
bd4c625c 2272 if (locked) {
1da177e4 2273#ifdef CONFIG_REISERFS_CHECK
bd4c625c
LT
2274 repeat_counter++;
2275 if ((repeat_counter % 10000) == 0) {
a063ae17 2276 reiserfs_warning(tb->tb_sb, "reiserfs-8200",
45b03d5e
JM
2277 "too many iterations waiting "
2278 "for buffer to unlock "
bd4c625c
LT
2279 "(%b)", locked);
2280
2281 /* Don't loop forever. Try to recover from possible error. */
2282
a063ae17 2283 return (FILESYSTEM_CHANGED_TB(tb)) ?
bd4c625c
LT
2284 REPEAT_SEARCH : CARRY_ON;
2285 }
1da177e4 2286#endif
8ebc4232 2287 reiserfs_write_unlock(tb->tb_sb);
bd4c625c 2288 __wait_on_buffer(locked);
8ebc4232 2289 reiserfs_write_lock(tb->tb_sb);
a063ae17 2290 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c 2291 return REPEAT_SEARCH;
bd4c625c 2292 }
1da177e4 2293
bd4c625c 2294 } while (locked);
1da177e4 2295
bd4c625c 2296 return CARRY_ON;
1da177e4
LT
2297}
2298
1da177e4
LT
2299/* Prepare for balancing, that is
2300 * get all necessary parents, and neighbors;
2301 * analyze what and where should be moved;
2302 * get sufficient number of new nodes;
2303 * Balancing will start only after all resources will be collected at a time.
0222e657 2304 *
1da177e4
LT
2305 * When ported to SMP kernels, only at the last moment after all needed nodes
2306 * are collected in cache, will the resources be locked using the usual
2307 * textbook ordered lock acquisition algorithms. Note that ensuring that
2308 * this code neither write locks what it does not need to write lock nor locks out of order
2309 * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
0222e657 2310 *
1da177e4 2311 * fix is meant in the sense of render unchanging
0222e657 2312 *
1da177e4
LT
2313 * Latency might be improved by first gathering a list of what buffers are needed
2314 * and then getting as many of them in parallel as possible? -Hans
2315 *
2316 * Parameters:
2317 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2318 * tb tree_balance structure;
2319 * inum item number in S[h];
2320 * pos_in_item - comment this if you can
a063ae17
JM
2321 * ins_ih item head of item being inserted
2322 * data inserted item or data to be pasted
1da177e4
LT
2323 * Returns: 1 - schedule occurred while the function worked;
2324 * 0 - schedule didn't occur while the function worked;
0222e657 2325 * -1 - if no_disk_space
1da177e4
LT
2326 */
2327
ee93961b 2328int fix_nodes(int op_mode, struct tree_balance *tb,
d68caa95 2329 struct item_head *ins_ih, const void *data)
bd4c625c 2330{
ee93961b
JM
2331 int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2332 int pos_in_item;
1da177e4 2333
bd4c625c
LT
2334 /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2335 ** during wait_tb_buffers_run
2336 */
2337 int wait_tb_buffers_run = 0;
a063ae17 2338 struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
1da177e4 2339
a063ae17 2340 ++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
bd4c625c 2341
ee93961b 2342 pos_in_item = tb->tb_path->pos_in_item;
bd4c625c 2343
a063ae17 2344 tb->fs_gen = get_generation(tb->tb_sb);
1da177e4 2345
bd4c625c
LT
2346 /* we prepare and log the super here so it will already be in the
2347 ** transaction when do_balance needs to change it.
2348 ** This way do_balance won't have to schedule when trying to prepare
2349 ** the super for logging
2350 */
a063ae17
JM
2351 reiserfs_prepare_for_journal(tb->tb_sb,
2352 SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2353 journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
2354 SB_BUFFER_WITH_SB(tb->tb_sb));
2355 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c 2356 return REPEAT_SEARCH;
1da177e4 2357
bd4c625c 2358 /* if it possible in indirect_to_direct conversion */
a063ae17 2359 if (buffer_locked(tbS0)) {
8ebc4232 2360 reiserfs_write_unlock(tb->tb_sb);
a063ae17 2361 __wait_on_buffer(tbS0);
8ebc4232 2362 reiserfs_write_lock(tb->tb_sb);
a063ae17 2363 if (FILESYSTEM_CHANGED_TB(tb))
bd4c625c
LT
2364 return REPEAT_SEARCH;
2365 }
2366#ifdef CONFIG_REISERFS_CHECK
2367 if (cur_tb) {
2368 print_cur_tb("fix_nodes");
a063ae17 2369 reiserfs_panic(tb->tb_sb, "PAP-8305",
c3a9c210 2370 "there is pending do_balance");
bd4c625c 2371 }
1da177e4 2372
a063ae17
JM
2373 if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2374 reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
c3a9c210
JM
2375 "not uptodate at the beginning of fix_nodes "
2376 "or not in tree (mode %c)",
ee93961b 2377 tbS0, tbS0, op_mode);
1da177e4 2378
bd4c625c 2379 /* Check parameters. */
ee93961b 2380 switch (op_mode) {
bd4c625c 2381 case M_INSERT:
ee93961b 2382 if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
a063ae17 2383 reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
c3a9c210 2384 "item number %d (in S0 - %d) in case "
ee93961b 2385 "of insert", item_num,
a063ae17 2386 B_NR_ITEMS(tbS0));
bd4c625c
LT
2387 break;
2388 case M_PASTE:
2389 case M_DELETE:
2390 case M_CUT:
ee93961b 2391 if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
a063ae17
JM
2392 print_block(tbS0, 0, -1, -1);
2393 reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
c3a9c210
JM
2394 "item number(%d); mode = %c "
2395 "insert_size = %d",
ee93961b 2396 item_num, op_mode,
a063ae17 2397 tb->insert_size[0]);
1da177e4 2398 }
1da177e4 2399 break;
bd4c625c 2400 default:
a063ae17 2401 reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
c3a9c210 2402 "of operation");
1da177e4 2403 }
bd4c625c 2404#endif
1da177e4 2405
a063ae17 2406 if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
bd4c625c
LT
2407 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2408 return REPEAT_SEARCH;
1da177e4 2409
ee93961b
JM
2410 /* Starting from the leaf level; for all levels h of the tree. */
2411 for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2412 ret = get_direct_parent(tb, h);
2413 if (ret != CARRY_ON)
bd4c625c 2414 goto repeat;
1da177e4 2415
ee93961b
JM
2416 ret = check_balance(op_mode, tb, h, item_num,
2417 pos_in_item, ins_ih, data);
2418 if (ret != CARRY_ON) {
2419 if (ret == NO_BALANCING_NEEDED) {
bd4c625c 2420 /* No balancing for higher levels needed. */
ee93961b
JM
2421 ret = get_neighbors(tb, h);
2422 if (ret != CARRY_ON)
bd4c625c 2423 goto repeat;
ee93961b
JM
2424 if (h != MAX_HEIGHT - 1)
2425 tb->insert_size[h + 1] = 0;
bd4c625c
LT
2426 /* ok, analysis and resource gathering are complete */
2427 break;
2428 }
2429 goto repeat;
2430 }
1da177e4 2431
ee93961b
JM
2432 ret = get_neighbors(tb, h);
2433 if (ret != CARRY_ON)
bd4c625c 2434 goto repeat;
bd4c625c 2435
a063ae17
JM
2436 /* No disk space, or schedule occurred and analysis may be
2437 * invalid and needs to be redone. */
ee93961b
JM
2438 ret = get_empty_nodes(tb, h);
2439 if (ret != CARRY_ON)
a063ae17 2440 goto repeat;
bd4c625c 2441
ee93961b 2442 if (!PATH_H_PBUFFER(tb->tb_path, h)) {
bd4c625c
LT
2443 /* We have a positive insert size but no nodes exist on this
2444 level, this means that we are creating a new root. */
2445
ee93961b 2446 RFALSE(tb->blknum[h] != 1,
bd4c625c
LT
2447 "PAP-8350: creating new empty root");
2448
ee93961b
JM
2449 if (h < MAX_HEIGHT - 1)
2450 tb->insert_size[h + 1] = 0;
2451 } else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2452 if (tb->blknum[h] > 1) {
2453 /* The tree needs to be grown, so this node S[h]
bd4c625c 2454 which is the root node is split into two nodes,
ee93961b 2455 and a new node (S[h+1]) will be created to
bd4c625c
LT
2456 become the root node. */
2457
ee93961b 2458 RFALSE(h == MAX_HEIGHT - 1,
bd4c625c
LT
2459 "PAP-8355: attempt to create too high of a tree");
2460
ee93961b 2461 tb->insert_size[h + 1] =
bd4c625c 2462 (DC_SIZE +
ee93961b 2463 KEY_SIZE) * (tb->blknum[h] - 1) +
bd4c625c 2464 DC_SIZE;
ee93961b
JM
2465 } else if (h < MAX_HEIGHT - 1)
2466 tb->insert_size[h + 1] = 0;
bd4c625c 2467 } else
ee93961b
JM
2468 tb->insert_size[h + 1] =
2469 (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
1da177e4 2470 }
1da177e4 2471
ee93961b
JM
2472 ret = wait_tb_buffers_until_unlocked(tb);
2473 if (ret == CARRY_ON) {
a063ae17 2474 if (FILESYSTEM_CHANGED_TB(tb)) {
bd4c625c 2475 wait_tb_buffers_run = 1;
ee93961b 2476 ret = REPEAT_SEARCH;
bd4c625c
LT
2477 goto repeat;
2478 } else {
2479 return CARRY_ON;
2480 }
1da177e4 2481 } else {
bd4c625c
LT
2482 wait_tb_buffers_run = 1;
2483 goto repeat;
1da177e4
LT
2484 }
2485
bd4c625c
LT
2486 repeat:
2487 // fix_nodes was unable to perform its calculation due to
2488 // filesystem got changed under us, lack of free disk space or i/o
2489 // failure. If the first is the case - the search will be
2490 // repeated. For now - free all resources acquired so far except
2491 // for the new allocated nodes
2492 {
2493 int i;
2494
2495 /* Release path buffers. */
2496 if (wait_tb_buffers_run) {
a063ae17 2497 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
bd4c625c 2498 } else {
a063ae17 2499 pathrelse(tb->tb_path);
bd4c625c
LT
2500 }
2501 /* brelse all resources collected for balancing */
2502 for (i = 0; i < MAX_HEIGHT; i++) {
2503 if (wait_tb_buffers_run) {
a063ae17
JM
2504 reiserfs_restore_prepared_buffer(tb->tb_sb,
2505 tb->L[i]);
2506 reiserfs_restore_prepared_buffer(tb->tb_sb,
2507 tb->R[i]);
2508 reiserfs_restore_prepared_buffer(tb->tb_sb,
2509 tb->FL[i]);
2510 reiserfs_restore_prepared_buffer(tb->tb_sb,
2511 tb->FR[i]);
2512 reiserfs_restore_prepared_buffer(tb->tb_sb,
2513 tb->
bd4c625c 2514 CFL[i]);
a063ae17
JM
2515 reiserfs_restore_prepared_buffer(tb->tb_sb,
2516 tb->
bd4c625c
LT
2517 CFR[i]);
2518 }
2519
a063ae17
JM
2520 brelse(tb->L[i]);
2521 brelse(tb->R[i]);
2522 brelse(tb->FL[i]);
2523 brelse(tb->FR[i]);
2524 brelse(tb->CFL[i]);
2525 brelse(tb->CFR[i]);
2526
2527 tb->L[i] = NULL;
2528 tb->R[i] = NULL;
2529 tb->FL[i] = NULL;
2530 tb->FR[i] = NULL;
2531 tb->CFL[i] = NULL;
2532 tb->CFR[i] = NULL;
bd4c625c
LT
2533 }
2534
2535 if (wait_tb_buffers_run) {
2536 for (i = 0; i < MAX_FEB_SIZE; i++) {
a063ae17 2537 if (tb->FEB[i])
bd4c625c 2538 reiserfs_restore_prepared_buffer
a063ae17 2539 (tb->tb_sb, tb->FEB[i]);
bd4c625c 2540 }
1da177e4 2541 }
ee93961b 2542 return ret;
1da177e4 2543 }
1da177e4
LT
2544
2545}
2546
a063ae17 2547/* Anatoly will probably forgive me renaming tb to tb. I just
1da177e4 2548 wanted to make lines shorter */
bd4c625c 2549void unfix_nodes(struct tree_balance *tb)
1da177e4 2550{
bd4c625c 2551 int i;
1da177e4 2552
bd4c625c
LT
2553 /* Release path buffers. */
2554 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
1da177e4 2555
bd4c625c
LT
2556 /* brelse all resources collected for balancing */
2557 for (i = 0; i < MAX_HEIGHT; i++) {
2558 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2559 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2560 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2561 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2562 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2563 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2564
2565 brelse(tb->L[i]);
2566 brelse(tb->R[i]);
2567 brelse(tb->FL[i]);
2568 brelse(tb->FR[i]);
2569 brelse(tb->CFL[i]);
2570 brelse(tb->CFR[i]);
2571 }
1da177e4 2572
bd4c625c
LT
2573 /* deal with list of allocated (used and unused) nodes */
2574 for (i = 0; i < MAX_FEB_SIZE; i++) {
2575 if (tb->FEB[i]) {
2576 b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2577 /* de-allocated block which was not used by balancing and
2578 bforget about buffer for it */
2579 brelse(tb->FEB[i]);
2580 reiserfs_free_block(tb->transaction_handle, NULL,
2581 blocknr, 0);
2582 }
2583 if (tb->used[i]) {
2584 /* release used as new nodes including a new root */
2585 brelse(tb->used[i]);
2586 }
2587 }
1da177e4 2588
d739b42b 2589 kfree(tb->vn_buf);
1da177e4 2590
bd4c625c 2591}