]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/jffs2/gc.c
[MTD] OneNAND: Remove experimental Kconfig dependency
[net-next-2.6.git] / fs / jffs2 / gc.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
3a69e0cd 10 * $Id: gc.c,v 1.153 2005/08/17 13:46:22 dedekind Exp $
1da177e4
LT
11 *
12 */
13
14#include <linux/kernel.h>
15#include <linux/mtd/mtd.h>
16#include <linux/slab.h>
17#include <linux/pagemap.h>
18#include <linux/crc32.h>
19#include <linux/compiler.h>
20#include <linux/stat.h>
21#include "nodelist.h"
22#include "compr.h"
23
24static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
25 struct jffs2_inode_cache *ic,
26 struct jffs2_raw_node_ref *raw);
27static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
28 struct jffs2_inode_info *f, struct jffs2_full_dnode *fd);
29static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
30 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
31static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
32 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd);
33static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
34 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
35 uint32_t start, uint32_t end);
36static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
37 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
38 uint32_t start, uint32_t end);
39static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
40 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f);
41
42/* Called with erase_completion_lock held */
43static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c)
44{
45 struct jffs2_eraseblock *ret;
46 struct list_head *nextlist = NULL;
47 int n = jiffies % 128;
48
49 /* Pick an eraseblock to garbage collect next. This is where we'll
50 put the clever wear-levelling algorithms. Eventually. */
51 /* We possibly want to favour the dirtier blocks more when the
52 number of free blocks is low. */
a42163d7 53again:
1da177e4
LT
54 if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) {
55 D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n"));
56 nextlist = &c->bad_used_list;
57 } else if (n < 50 && !list_empty(&c->erasable_list)) {
58 /* Note that most of them will have gone directly to be erased.
59 So don't favour the erasable_list _too_ much. */
60 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n"));
61 nextlist = &c->erasable_list;
62 } else if (n < 110 && !list_empty(&c->very_dirty_list)) {
63 /* Most of the time, pick one off the very_dirty list */
64 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n"));
65 nextlist = &c->very_dirty_list;
66 } else if (n < 126 && !list_empty(&c->dirty_list)) {
67 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n"));
68 nextlist = &c->dirty_list;
69 } else if (!list_empty(&c->clean_list)) {
70 D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n"));
71 nextlist = &c->clean_list;
72 } else if (!list_empty(&c->dirty_list)) {
73 D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n"));
74
75 nextlist = &c->dirty_list;
76 } else if (!list_empty(&c->very_dirty_list)) {
77 D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n"));
78 nextlist = &c->very_dirty_list;
79 } else if (!list_empty(&c->erasable_list)) {
80 D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n"));
81
82 nextlist = &c->erasable_list;
a42163d7
AB
83 } else if (!list_empty(&c->erasable_pending_wbuf_list)) {
84 /* There are blocks are wating for the wbuf sync */
85 D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n"));
3cceb9f6 86 spin_unlock(&c->erase_completion_lock);
a42163d7 87 jffs2_flush_wbuf_pad(c);
3cceb9f6 88 spin_lock(&c->erase_completion_lock);
a42163d7 89 goto again;
1da177e4
LT
90 } else {
91 /* Eep. All were empty */
92 D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n"));
93 return NULL;
94 }
95
96 ret = list_entry(nextlist->next, struct jffs2_eraseblock, list);
97 list_del(&ret->list);
98 c->gcblock = ret;
99 ret->gc_node = ret->first_node;
100 if (!ret->gc_node) {
101 printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset);
102 BUG();
103 }
104
105 /* Have we accidentally picked a clean block with wasted space ? */
106 if (ret->wasted_size) {
107 D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size));
108 ret->dirty_size += ret->wasted_size;
109 c->wasted_size -= ret->wasted_size;
110 c->dirty_size += ret->wasted_size;
111 ret->wasted_size = 0;
112 }
113
1da177e4
LT
114 return ret;
115}
116
117/* jffs2_garbage_collect_pass
118 * Make a single attempt to progress GC. Move one node, and possibly
119 * start erasing one eraseblock.
120 */
121int jffs2_garbage_collect_pass(struct jffs2_sb_info *c)
122{
123 struct jffs2_inode_info *f;
124 struct jffs2_inode_cache *ic;
125 struct jffs2_eraseblock *jeb;
126 struct jffs2_raw_node_ref *raw;
127 int ret = 0, inum, nlink;
128
129 if (down_interruptible(&c->alloc_sem))
130 return -EINTR;
131
132 for (;;) {
133 spin_lock(&c->erase_completion_lock);
134 if (!c->unchecked_size)
135 break;
136
137 /* We can't start doing GC yet. We haven't finished checking
138 the node CRCs etc. Do it now. */
139
140 /* checked_ino is protected by the alloc_sem */
141 if (c->checked_ino > c->highest_ino) {
142 printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n",
143 c->unchecked_size);
e0c8e42f 144 jffs2_dbg_dump_block_lists_nolock(c);
1da177e4
LT
145 spin_unlock(&c->erase_completion_lock);
146 BUG();
147 }
148
149 spin_unlock(&c->erase_completion_lock);
150
151 spin_lock(&c->inocache_lock);
152
153 ic = jffs2_get_ino_cache(c, c->checked_ino++);
154
155 if (!ic) {
156 spin_unlock(&c->inocache_lock);
157 continue;
158 }
159
160 if (!ic->nlink) {
161 D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n",
162 ic->ino));
163 spin_unlock(&c->inocache_lock);
164 continue;
165 }
166 switch(ic->state) {
167 case INO_STATE_CHECKEDABSENT:
168 case INO_STATE_PRESENT:
169 D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino));
170 spin_unlock(&c->inocache_lock);
171 continue;
172
173 case INO_STATE_GC:
174 case INO_STATE_CHECKING:
175 printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state);
176 spin_unlock(&c->inocache_lock);
177 BUG();
178
179 case INO_STATE_READING:
180 /* We need to wait for it to finish, lest we move on
181 and trigger the BUG() above while we haven't yet
182 finished checking all its nodes */
183 D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino));
184 up(&c->alloc_sem);
185 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
186 return 0;
187
188 default:
189 BUG();
190
191 case INO_STATE_UNCHECKED:
192 ;
193 }
194 ic->state = INO_STATE_CHECKING;
195 spin_unlock(&c->inocache_lock);
196
197 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino));
198
199 ret = jffs2_do_crccheck_inode(c, ic);
200 if (ret)
201 printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino);
202
203 jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT);
204 up(&c->alloc_sem);
205 return ret;
206 }
207
208 /* First, work out which block we're garbage-collecting */
209 jeb = c->gcblock;
210
211 if (!jeb)
212 jeb = jffs2_find_gc_block(c);
213
214 if (!jeb) {
215 D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n"));
216 spin_unlock(&c->erase_completion_lock);
217 up(&c->alloc_sem);
218 return -EIO;
219 }
220
221 D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size));
222 D1(if (c->nextblock)
223 printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size));
224
225 if (!jeb->used_size) {
226 up(&c->alloc_sem);
227 goto eraseit;
228 }
229
230 raw = jeb->gc_node;
231
232 while(ref_obsolete(raw)) {
233 D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw)));
234 raw = raw->next_phys;
235 if (unlikely(!raw)) {
236 printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n");
237 printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n",
238 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size);
239 jeb->gc_node = raw;
240 spin_unlock(&c->erase_completion_lock);
241 up(&c->alloc_sem);
242 BUG();
243 }
244 }
245 jeb->gc_node = raw;
246
247 D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw)));
248
249 if (!raw->next_in_ino) {
250 /* Inode-less node. Clean marker, snapshot or something like that */
251 /* FIXME: If it's something that needs to be copied, including something
252 we don't grok that has JFFS2_NODETYPE_RWCOMPAT_COPY, we should do so */
253 spin_unlock(&c->erase_completion_lock);
254 jffs2_mark_node_obsolete(c, raw);
255 up(&c->alloc_sem);
256 goto eraseit_lock;
257 }
258
259 ic = jffs2_raw_ref_to_ic(raw);
260
261 /* We need to hold the inocache. Either the erase_completion_lock or
262 the inocache_lock are sufficient; we trade down since the inocache_lock
263 causes less contention. */
264 spin_lock(&c->inocache_lock);
265
266 spin_unlock(&c->erase_completion_lock);
267
268 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino));
269
270 /* Three possibilities:
271 1. Inode is already in-core. We must iget it and do proper
272 updating to its fragtree, etc.
273 2. Inode is not in-core, node is REF_PRISTINE. We lock the
274 inocache to prevent a read_inode(), copy the node intact.
275 3. Inode is not in-core, node is not pristine. We must iget()
276 and take the slow path.
277 */
278
279 switch(ic->state) {
280 case INO_STATE_CHECKEDABSENT:
281 /* It's been checked, but it's not currently in-core.
282 We can just copy any pristine nodes, but have
283 to prevent anyone else from doing read_inode() while
284 we're at it, so we set the state accordingly */
285 if (ref_flags(raw) == REF_PRISTINE)
286 ic->state = INO_STATE_GC;
287 else {
288 D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n",
289 ic->ino));
290 }
291 break;
292
293 case INO_STATE_PRESENT:
294 /* It's in-core. GC must iget() it. */
295 break;
296
297 case INO_STATE_UNCHECKED:
298 case INO_STATE_CHECKING:
299 case INO_STATE_GC:
300 /* Should never happen. We should have finished checking
301 by the time we actually start doing any GC, and since
302 we're holding the alloc_sem, no other garbage collection
303 can happen.
304 */
305 printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n",
306 ic->ino, ic->state);
307 up(&c->alloc_sem);
308 spin_unlock(&c->inocache_lock);
309 BUG();
310
311 case INO_STATE_READING:
312 /* Someone's currently trying to read it. We must wait for
313 them to finish and then go through the full iget() route
314 to do the GC. However, sometimes read_inode() needs to get
315 the alloc_sem() (for marking nodes invalid) so we must
316 drop the alloc_sem before sleeping. */
317
318 up(&c->alloc_sem);
319 D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n",
320 ic->ino, ic->state));
321 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
322 /* And because we dropped the alloc_sem we must start again from the
323 beginning. Ponder chance of livelock here -- we're returning success
324 without actually making any progress.
325
326 Q: What are the chances that the inode is back in INO_STATE_READING
327 again by the time we next enter this function? And that this happens
328 enough times to cause a real delay?
329
330 A: Small enough that I don't care :)
331 */
332 return 0;
333 }
334
335 /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the
336 node intact, and we don't have to muck about with the fragtree etc.
337 because we know it's not in-core. If it _was_ in-core, we go through
338 all the iget() crap anyway */
339
340 if (ic->state == INO_STATE_GC) {
341 spin_unlock(&c->inocache_lock);
342
343 ret = jffs2_garbage_collect_pristine(c, ic, raw);
344
345 spin_lock(&c->inocache_lock);
346 ic->state = INO_STATE_CHECKEDABSENT;
347 wake_up(&c->inocache_wq);
348
349 if (ret != -EBADFD) {
350 spin_unlock(&c->inocache_lock);
351 goto release_sem;
352 }
353
354 /* Fall through if it wanted us to, with inocache_lock held */
355 }
356
357 /* Prevent the fairly unlikely race where the gcblock is
358 entirely obsoleted by the final close of a file which had
359 the only valid nodes in the block, followed by erasure,
360 followed by freeing of the ic because the erased block(s)
361 held _all_ the nodes of that inode.... never been seen but
362 it's vaguely possible. */
363
364 inum = ic->ino;
365 nlink = ic->nlink;
366 spin_unlock(&c->inocache_lock);
367
368 f = jffs2_gc_fetch_inode(c, inum, nlink);
369 if (IS_ERR(f)) {
370 ret = PTR_ERR(f);
371 goto release_sem;
372 }
373 if (!f) {
374 ret = 0;
375 goto release_sem;
376 }
377
378 ret = jffs2_garbage_collect_live(c, jeb, raw, f);
379
380 jffs2_gc_release_inode(c, f);
381
382 release_sem:
383 up(&c->alloc_sem);
384
385 eraseit_lock:
386 /* If we've finished this block, start it erasing */
387 spin_lock(&c->erase_completion_lock);
388
389 eraseit:
390 if (c->gcblock && !c->gcblock->used_size) {
391 D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset));
392 /* We're GC'ing an empty block? */
393 list_add_tail(&c->gcblock->list, &c->erase_pending_list);
394 c->gcblock = NULL;
395 c->nr_erasing_blocks++;
396 jffs2_erase_pending_trigger(c);
397 }
398 spin_unlock(&c->erase_completion_lock);
399
400 return ret;
401}
402
403static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
404 struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f)
405{
406 struct jffs2_node_frag *frag;
407 struct jffs2_full_dnode *fn = NULL;
408 struct jffs2_full_dirent *fd;
409 uint32_t start = 0, end = 0, nrfrags = 0;
410 int ret = 0;
411
412 down(&f->sem);
413
414 /* Now we have the lock for this inode. Check that it's still the one at the head
415 of the list. */
416
417 spin_lock(&c->erase_completion_lock);
418
419 if (c->gcblock != jeb) {
420 spin_unlock(&c->erase_completion_lock);
421 D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n"));
422 goto upnout;
423 }
424 if (ref_obsolete(raw)) {
425 spin_unlock(&c->erase_completion_lock);
426 D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n"));
427 /* They'll call again */
428 goto upnout;
429 }
430 spin_unlock(&c->erase_completion_lock);
431
432 /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */
433 if (f->metadata && f->metadata->raw == raw) {
434 fn = f->metadata;
435 ret = jffs2_garbage_collect_metadata(c, jeb, f, fn);
436 goto upnout;
437 }
438
439 /* FIXME. Read node and do lookup? */
440 for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) {
441 if (frag->node && frag->node->raw == raw) {
442 fn = frag->node;
443 end = frag->ofs + frag->size;
444 if (!nrfrags++)
445 start = frag->ofs;
446 if (nrfrags == frag->node->frags)
447 break; /* We've found them all */
448 }
449 }
450 if (fn) {
451 if (ref_flags(raw) == REF_PRISTINE) {
452 ret = jffs2_garbage_collect_pristine(c, f->inocache, raw);
453 if (!ret) {
454 /* Urgh. Return it sensibly. */
455 frag->node->raw = f->inocache->nodes;
456 }
457 if (ret != -EBADFD)
458 goto upnout;
459 }
460 /* We found a datanode. Do the GC */
461 if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) {
462 /* It crosses a page boundary. Therefore, it must be a hole. */
463 ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end);
464 } else {
465 /* It could still be a hole. But we GC the page this way anyway */
466 ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end);
467 }
468 goto upnout;
469 }
470
471 /* Wasn't a dnode. Try dirent */
472 for (fd = f->dents; fd; fd=fd->next) {
473 if (fd->raw == raw)
474 break;
475 }
476
477 if (fd && fd->ino) {
478 ret = jffs2_garbage_collect_dirent(c, jeb, f, fd);
479 } else if (fd) {
480 ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd);
481 } else {
482 printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n",
483 ref_offset(raw), f->inocache->ino);
484 if (ref_obsolete(raw)) {
485 printk(KERN_WARNING "But it's obsolete so we don't mind too much\n");
486 } else {
e0c8e42f
AB
487 jffs2_dbg_dump_node(c, ref_offset(raw));
488 BUG();
1da177e4
LT
489 }
490 }
491 upnout:
492 up(&f->sem);
493
494 return ret;
495}
496
497static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c,
498 struct jffs2_inode_cache *ic,
499 struct jffs2_raw_node_ref *raw)
500{
501 union jffs2_node_union *node;
502 struct jffs2_raw_node_ref *nraw;
503 size_t retlen;
504 int ret;
505 uint32_t phys_ofs, alloclen;
506 uint32_t crc, rawlen;
507 int retried = 0;
508
509 D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw)));
510
511 rawlen = ref_totlen(c, c->gcblock, raw);
512
513 /* Ask for a small amount of space (or the totlen if smaller) because we
514 don't want to force wastage of the end of a block if splitting would
515 work. */
516 ret = jffs2_reserve_space_gc(c, min_t(uint32_t, sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN,
517 rawlen), &phys_ofs, &alloclen);
518 if (ret)
519 return ret;
520
521 if (alloclen < rawlen) {
522 /* Doesn't fit untouched. We'll go the old route and split it */
523 return -EBADFD;
524 }
525
526 node = kmalloc(rawlen, GFP_KERNEL);
527 if (!node)
528 return -ENOMEM;
529
530 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node);
531 if (!ret && retlen != rawlen)
532 ret = -EIO;
533 if (ret)
534 goto out_node;
535
536 crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4);
537 if (je32_to_cpu(node->u.hdr_crc) != crc) {
538 printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
539 ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc);
540 goto bail;
541 }
542
543 switch(je16_to_cpu(node->u.nodetype)) {
544 case JFFS2_NODETYPE_INODE:
545 crc = crc32(0, node, sizeof(node->i)-8);
546 if (je32_to_cpu(node->i.node_crc) != crc) {
547 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
548 ref_offset(raw), je32_to_cpu(node->i.node_crc), crc);
549 goto bail;
550 }
551
552 if (je32_to_cpu(node->i.dsize)) {
553 crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize));
554 if (je32_to_cpu(node->i.data_crc) != crc) {
555 printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
556 ref_offset(raw), je32_to_cpu(node->i.data_crc), crc);
557 goto bail;
558 }
559 }
560 break;
561
562 case JFFS2_NODETYPE_DIRENT:
563 crc = crc32(0, node, sizeof(node->d)-8);
564 if (je32_to_cpu(node->d.node_crc) != crc) {
565 printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
566 ref_offset(raw), je32_to_cpu(node->d.node_crc), crc);
567 goto bail;
568 }
569
570 if (node->d.nsize) {
571 crc = crc32(0, node->d.name, node->d.nsize);
572 if (je32_to_cpu(node->d.name_crc) != crc) {
573 printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
574 ref_offset(raw), je32_to_cpu(node->d.name_crc), crc);
575 goto bail;
576 }
577 }
578 break;
579 default:
580 printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n",
581 ref_offset(raw), je16_to_cpu(node->u.nodetype));
582 goto bail;
583 }
584
585 nraw = jffs2_alloc_raw_node_ref();
586 if (!nraw) {
587 ret = -ENOMEM;
588 goto out_node;
589 }
590
591 /* OK, all the CRCs are good; this node can just be copied as-is. */
592 retry:
593 nraw->flash_offset = phys_ofs;
594 nraw->__totlen = rawlen;
595 nraw->next_phys = NULL;
596
597 ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node);
598
599 if (ret || (retlen != rawlen)) {
600 printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n",
601 rawlen, phys_ofs, ret, retlen);
602 if (retlen) {
603 /* Doesn't belong to any inode */
604 nraw->next_in_ino = NULL;
605
606 nraw->flash_offset |= REF_OBSOLETE;
607 jffs2_add_physical_node_ref(c, nraw);
608 jffs2_mark_node_obsolete(c, nraw);
609 } else {
610 printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset);
611 jffs2_free_raw_node_ref(nraw);
612 }
613 if (!retried && (nraw = jffs2_alloc_raw_node_ref())) {
614 /* Try to reallocate space and retry */
615 uint32_t dummy;
616 struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size];
617
618 retried = 1;
619
620 D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n"));
621
730554d9
AB
622 jffs2_dbg_acct_sanity_check(c,jeb);
623 jffs2_dbg_acct_paranoia_check(c, jeb);
1da177e4
LT
624
625 ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy);
626
627 if (!ret) {
628 D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs));
629
730554d9
AB
630 jffs2_dbg_acct_sanity_check(c,jeb);
631 jffs2_dbg_acct_paranoia_check(c, jeb);
1da177e4
LT
632
633 goto retry;
634 }
635 D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret));
636 jffs2_free_raw_node_ref(nraw);
637 }
638
639 jffs2_free_raw_node_ref(nraw);
640 if (!ret)
641 ret = -EIO;
642 goto out_node;
643 }
644 nraw->flash_offset |= REF_PRISTINE;
645 jffs2_add_physical_node_ref(c, nraw);
646
647 /* Link into per-inode list. This is safe because of the ic
648 state being INO_STATE_GC. Note that if we're doing this
649 for an inode which is in-core, the 'nraw' pointer is then
650 going to be fetched from ic->nodes by our caller. */
651 spin_lock(&c->erase_completion_lock);
652 nraw->next_in_ino = ic->nodes;
653 ic->nodes = nraw;
654 spin_unlock(&c->erase_completion_lock);
655
656 jffs2_mark_node_obsolete(c, raw);
657 D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw)));
658
659 out_node:
660 kfree(node);
661 return ret;
662 bail:
663 ret = -EBADFD;
664 goto out_node;
665}
666
667static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
668 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
669{
670 struct jffs2_full_dnode *new_fn;
671 struct jffs2_raw_inode ri;
8557fd51 672 struct jffs2_node_frag *last_frag;
1da177e4
LT
673 jint16_t dev;
674 char *mdata = NULL, mdatalen = 0;
8557fd51 675 uint32_t alloclen, phys_ofs, ilen;
1da177e4
LT
676 int ret;
677
678 if (S_ISBLK(JFFS2_F_I_MODE(f)) ||
679 S_ISCHR(JFFS2_F_I_MODE(f)) ) {
680 /* For these, we don't actually need to read the old node */
681 /* FIXME: for minor or major > 255. */
682 dev = cpu_to_je16(((JFFS2_F_I_RDEV_MAJ(f) << 8) |
683 JFFS2_F_I_RDEV_MIN(f)));
684 mdata = (char *)&dev;
685 mdatalen = sizeof(dev);
686 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen));
687 } else if (S_ISLNK(JFFS2_F_I_MODE(f))) {
688 mdatalen = fn->size;
689 mdata = kmalloc(fn->size, GFP_KERNEL);
690 if (!mdata) {
691 printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n");
692 return -ENOMEM;
693 }
694 ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen);
695 if (ret) {
696 printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret);
697 kfree(mdata);
698 return ret;
699 }
700 D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen));
701
702 }
703
704 ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen);
705 if (ret) {
706 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n",
707 sizeof(ri)+ mdatalen, ret);
708 goto out;
709 }
710
8557fd51
AB
711 last_frag = frag_last(&f->fragtree);
712 if (last_frag)
713 /* Fetch the inode length from the fragtree rather then
714 * from i_size since i_size may have not been updated yet */
715 ilen = last_frag->ofs + last_frag->size;
716 else
717 ilen = JFFS2_F_I_SIZE(f);
718
1da177e4
LT
719 memset(&ri, 0, sizeof(ri));
720 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
721 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
722 ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen);
723 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
724
725 ri.ino = cpu_to_je32(f->inocache->ino);
726 ri.version = cpu_to_je32(++f->highest_version);
727 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
728 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
729 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
8557fd51 730 ri.isize = cpu_to_je32(ilen);
1da177e4
LT
731 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
732 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
733 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
734 ri.offset = cpu_to_je32(0);
735 ri.csize = cpu_to_je32(mdatalen);
736 ri.dsize = cpu_to_je32(mdatalen);
737 ri.compr = JFFS2_COMPR_NONE;
738 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
739 ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
740
741 new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC);
742
743 if (IS_ERR(new_fn)) {
744 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
745 ret = PTR_ERR(new_fn);
746 goto out;
747 }
748 jffs2_mark_node_obsolete(c, fn->raw);
749 jffs2_free_full_dnode(fn);
750 f->metadata = new_fn;
751 out:
752 if (S_ISLNK(JFFS2_F_I_MODE(f)))
753 kfree(mdata);
754 return ret;
755}
756
757static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
758 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
759{
760 struct jffs2_full_dirent *new_fd;
761 struct jffs2_raw_dirent rd;
762 uint32_t alloclen, phys_ofs;
763 int ret;
764
765 rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
766 rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
767 rd.nsize = strlen(fd->name);
768 rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize);
769 rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4));
770
771 rd.pino = cpu_to_je32(f->inocache->ino);
772 rd.version = cpu_to_je32(++f->highest_version);
773 rd.ino = cpu_to_je32(fd->ino);
3a69e0cd
AB
774 /* If the times on this inode were set by explicit utime() they can be different,
775 so refrain from splatting them. */
776 if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f))
777 rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f));
778 else
779 rd.mctime = cpu_to_je32(0);
1da177e4
LT
780 rd.type = fd->type;
781 rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8));
782 rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize));
783
784 ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen);
785 if (ret) {
786 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n",
787 sizeof(rd)+rd.nsize, ret);
788 return ret;
789 }
790 new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC);
791
792 if (IS_ERR(new_fd)) {
793 printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd));
794 return PTR_ERR(new_fd);
795 }
796 jffs2_add_fd_to_list(c, new_fd, &f->dents);
797 return 0;
798}
799
800static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
801 struct jffs2_inode_info *f, struct jffs2_full_dirent *fd)
802{
803 struct jffs2_full_dirent **fdp = &f->dents;
804 int found = 0;
805
806 /* On a medium where we can't actually mark nodes obsolete
807 pernamently, such as NAND flash, we need to work out
808 whether this deletion dirent is still needed to actively
809 delete a 'real' dirent with the same name that's still
810 somewhere else on the flash. */
811 if (!jffs2_can_mark_obsolete(c)) {
812 struct jffs2_raw_dirent *rd;
813 struct jffs2_raw_node_ref *raw;
814 int ret;
815 size_t retlen;
816 int name_len = strlen(fd->name);
817 uint32_t name_crc = crc32(0, fd->name, name_len);
818 uint32_t rawlen = ref_totlen(c, jeb, fd->raw);
819
820 rd = kmalloc(rawlen, GFP_KERNEL);
821 if (!rd)
822 return -ENOMEM;
823
824 /* Prevent the erase code from nicking the obsolete node refs while
825 we're looking at them. I really don't like this extra lock but
826 can't see any alternative. Suggestions on a postcard to... */
827 down(&c->erase_free_sem);
828
829 for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) {
830
831 /* We only care about obsolete ones */
832 if (!(ref_obsolete(raw)))
833 continue;
834
835 /* Any dirent with the same name is going to have the same length... */
836 if (ref_totlen(c, NULL, raw) != rawlen)
837 continue;
838
839 /* Doesn't matter if there's one in the same erase block. We're going to
840 delete it too at the same time. */
3be36675 841 if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset))
1da177e4
LT
842 continue;
843
844 D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw)));
845
846 /* This is an obsolete node belonging to the same directory, and it's of the right
847 length. We need to take a closer look...*/
848 ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd);
849 if (ret) {
850 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw));
851 /* If we can't read it, we don't need to continue to obsolete it. Continue */
852 continue;
853 }
854 if (retlen != rawlen) {
855 printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n",
856 retlen, rawlen, ref_offset(raw));
857 continue;
858 }
859
860 if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT)
861 continue;
862
863 /* If the name CRC doesn't match, skip */
864 if (je32_to_cpu(rd->name_crc) != name_crc)
865 continue;
866
867 /* If the name length doesn't match, or it's another deletion dirent, skip */
868 if (rd->nsize != name_len || !je32_to_cpu(rd->ino))
869 continue;
870
871 /* OK, check the actual name now */
872 if (memcmp(rd->name, fd->name, name_len))
873 continue;
874
875 /* OK. The name really does match. There really is still an older node on
876 the flash which our deletion dirent obsoletes. So we have to write out
877 a new deletion dirent to replace it */
878 up(&c->erase_free_sem);
879
880 D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n",
881 ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino)));
882 kfree(rd);
883
884 return jffs2_garbage_collect_dirent(c, jeb, f, fd);
885 }
886
887 up(&c->erase_free_sem);
888 kfree(rd);
889 }
890
3a69e0cd
AB
891 /* FIXME: If we're deleting a dirent which contains the current mtime and ctime,
892 we should update the metadata node with those times accordingly */
893
1da177e4
LT
894 /* No need for it any more. Just mark it obsolete and remove it from the list */
895 while (*fdp) {
896 if ((*fdp) == fd) {
897 found = 1;
898 *fdp = fd->next;
899 break;
900 }
901 fdp = &(*fdp)->next;
902 }
903 if (!found) {
904 printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino);
905 }
906 jffs2_mark_node_obsolete(c, fd->raw);
907 jffs2_free_full_dirent(fd);
908 return 0;
909}
910
911static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
912 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
913 uint32_t start, uint32_t end)
914{
915 struct jffs2_raw_inode ri;
916 struct jffs2_node_frag *frag;
917 struct jffs2_full_dnode *new_fn;
8557fd51 918 uint32_t alloclen, phys_ofs, ilen;
1da177e4
LT
919 int ret;
920
921 D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n",
922 f->inocache->ino, start, end));
923
924 memset(&ri, 0, sizeof(ri));
925
926 if(fn->frags > 1) {
927 size_t readlen;
928 uint32_t crc;
929 /* It's partially obsoleted by a later write. So we have to
930 write it out again with the _same_ version as before */
931 ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri);
932 if (readlen != sizeof(ri) || ret) {
933 printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen);
934 goto fill;
935 }
936 if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) {
937 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n",
938 ref_offset(fn->raw),
939 je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE);
940 return -EIO;
941 }
942 if (je32_to_cpu(ri.totlen) != sizeof(ri)) {
943 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n",
944 ref_offset(fn->raw),
945 je32_to_cpu(ri.totlen), sizeof(ri));
946 return -EIO;
947 }
948 crc = crc32(0, &ri, sizeof(ri)-8);
949 if (crc != je32_to_cpu(ri.node_crc)) {
950 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n",
951 ref_offset(fn->raw),
952 je32_to_cpu(ri.node_crc), crc);
953 /* FIXME: We could possibly deal with this by writing new holes for each frag */
954 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
955 start, end, f->inocache->ino);
956 goto fill;
957 }
958 if (ri.compr != JFFS2_COMPR_ZERO) {
959 printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw));
960 printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n",
961 start, end, f->inocache->ino);
962 goto fill;
963 }
964 } else {
965 fill:
966 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
967 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
968 ri.totlen = cpu_to_je32(sizeof(ri));
969 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
970
971 ri.ino = cpu_to_je32(f->inocache->ino);
972 ri.version = cpu_to_je32(++f->highest_version);
973 ri.offset = cpu_to_je32(start);
974 ri.dsize = cpu_to_je32(end - start);
975 ri.csize = cpu_to_je32(0);
976 ri.compr = JFFS2_COMPR_ZERO;
977 }
8557fd51
AB
978
979 frag = frag_last(&f->fragtree);
980 if (frag)
981 /* Fetch the inode length from the fragtree rather then
982 * from i_size since i_size may have not been updated yet */
983 ilen = frag->ofs + frag->size;
984 else
985 ilen = JFFS2_F_I_SIZE(f);
986
1da177e4
LT
987 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
988 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
989 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
8557fd51 990 ri.isize = cpu_to_je32(ilen);
1da177e4
LT
991 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
992 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
993 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
994 ri.data_crc = cpu_to_je32(0);
995 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
996
997 ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen);
998 if (ret) {
999 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n",
1000 sizeof(ri), ret);
1001 return ret;
1002 }
1003 new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC);
1004
1005 if (IS_ERR(new_fn)) {
1006 printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn));
1007 return PTR_ERR(new_fn);
1008 }
1009 if (je32_to_cpu(ri.version) == f->highest_version) {
1010 jffs2_add_full_dnode_to_inode(c, f, new_fn);
1011 if (f->metadata) {
1012 jffs2_mark_node_obsolete(c, f->metadata->raw);
1013 jffs2_free_full_dnode(f->metadata);
1014 f->metadata = NULL;
1015 }
1016 return 0;
1017 }
1018
1019 /*
1020 * We should only get here in the case where the node we are
1021 * replacing had more than one frag, so we kept the same version
1022 * number as before. (Except in case of error -- see 'goto fill;'
1023 * above.)
1024 */
1025 D1(if(unlikely(fn->frags <= 1)) {
1026 printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n",
1027 fn->frags, je32_to_cpu(ri.version), f->highest_version,
1028 je32_to_cpu(ri.ino));
1029 });
1030
1031 /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */
1032 mark_ref_normal(new_fn->raw);
1033
1034 for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs);
1035 frag; frag = frag_next(frag)) {
1036 if (frag->ofs > fn->size + fn->ofs)
1037 break;
1038 if (frag->node == fn) {
1039 frag->node = new_fn;
1040 new_fn->frags++;
1041 fn->frags--;
1042 }
1043 }
1044 if (fn->frags) {
1045 printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n");
1046 BUG();
1047 }
1048 if (!new_fn->frags) {
1049 printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n");
1050 BUG();
1051 }
1052
1053 jffs2_mark_node_obsolete(c, fn->raw);
1054 jffs2_free_full_dnode(fn);
1055
1056 return 0;
1057}
1058
1059static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
1060 struct jffs2_inode_info *f, struct jffs2_full_dnode *fn,
1061 uint32_t start, uint32_t end)
1062{
1063 struct jffs2_full_dnode *new_fn;
1064 struct jffs2_raw_inode ri;
1065 uint32_t alloclen, phys_ofs, offset, orig_end, orig_start;
1066 int ret = 0;
1067 unsigned char *comprbuf = NULL, *writebuf;
1068 unsigned long pg;
1069 unsigned char *pg_ptr;
1070
1071 memset(&ri, 0, sizeof(ri));
1072
1073 D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n",
1074 f->inocache->ino, start, end));
1075
1076 orig_end = end;
1077 orig_start = start;
1078
1079 if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) {
1080 /* Attempt to do some merging. But only expand to cover logically
1081 adjacent frags if the block containing them is already considered
1082 to be dirty. Otherwise we end up with GC just going round in
1083 circles dirtying the nodes it already wrote out, especially
1084 on NAND where we have small eraseblocks and hence a much higher
1085 chance of nodes having to be split to cross boundaries. */
1086
1087 struct jffs2_node_frag *frag;
1088 uint32_t min, max;
1089
1090 min = start & ~(PAGE_CACHE_SIZE-1);
1091 max = min + PAGE_CACHE_SIZE;
1092
1093 frag = jffs2_lookup_node_frag(&f->fragtree, start);
1094
1095 /* BUG_ON(!frag) but that'll happen anyway... */
1096
1097 BUG_ON(frag->ofs != start);
1098
1099 /* First grow down... */
1100 while((frag = frag_prev(frag)) && frag->ofs >= min) {
1101
1102 /* If the previous frag doesn't even reach the beginning, there's
1103 excessive fragmentation. Just merge. */
1104 if (frag->ofs > min) {
1105 D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n",
1106 frag->ofs, frag->ofs+frag->size));
1107 start = frag->ofs;
1108 continue;
1109 }
1110 /* OK. This frag holds the first byte of the page. */
1111 if (!frag->node || !frag->node->raw) {
1112 D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n",
1113 frag->ofs, frag->ofs+frag->size));
1114 break;
1115 } else {
1116
1117 /* OK, it's a frag which extends to the beginning of the page. Does it live
1118 in a block which is still considered clean? If so, don't obsolete it.
1119 If not, cover it anyway. */
1120
1121 struct jffs2_raw_node_ref *raw = frag->node->raw;
1122 struct jffs2_eraseblock *jeb;
1123
1124 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1125
1126 if (jeb == c->gcblock) {
1127 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1128 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1129 start = frag->ofs;
1130 break;
1131 }
1132 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1133 D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n",
1134 frag->ofs, frag->ofs+frag->size, jeb->offset));
1135 break;
1136 }
1137
1138 D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n",
1139 frag->ofs, frag->ofs+frag->size, jeb->offset));
1140 start = frag->ofs;
1141 break;
1142 }
1143 }
1144
1145 /* ... then up */
1146
1147 /* Find last frag which is actually part of the node we're to GC. */
1148 frag = jffs2_lookup_node_frag(&f->fragtree, end-1);
1149
1150 while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) {
1151
1152 /* If the previous frag doesn't even reach the beginning, there's lots
1153 of fragmentation. Just merge. */
1154 if (frag->ofs+frag->size < max) {
1155 D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n",
1156 frag->ofs, frag->ofs+frag->size));
1157 end = frag->ofs + frag->size;
1158 continue;
1159 }
1160
1161 if (!frag->node || !frag->node->raw) {
1162 D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n",
1163 frag->ofs, frag->ofs+frag->size));
1164 break;
1165 } else {
1166
1167 /* OK, it's a frag which extends to the beginning of the page. Does it live
1168 in a block which is still considered clean? If so, don't obsolete it.
1169 If not, cover it anyway. */
1170
1171 struct jffs2_raw_node_ref *raw = frag->node->raw;
1172 struct jffs2_eraseblock *jeb;
1173
1174 jeb = &c->blocks[raw->flash_offset / c->sector_size];
1175
1176 if (jeb == c->gcblock) {
1177 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n",
1178 frag->ofs, frag->ofs+frag->size, ref_offset(raw)));
1179 end = frag->ofs + frag->size;
1180 break;
1181 }
1182 if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) {
1183 D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n",
1184 frag->ofs, frag->ofs+frag->size, jeb->offset));
1185 break;
1186 }
1187
1188 D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n",
1189 frag->ofs, frag->ofs+frag->size, jeb->offset));
1190 end = frag->ofs + frag->size;
1191 break;
1192 }
1193 }
1194 D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n",
1195 orig_start, orig_end, start, end));
1196
8557fd51 1197 D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size));
1da177e4
LT
1198 BUG_ON(end < orig_end);
1199 BUG_ON(start > orig_start);
1200 }
1201
1202 /* First, use readpage() to read the appropriate page into the page cache */
1203 /* Q: What happens if we actually try to GC the _same_ page for which commit_write()
1204 * triggered garbage collection in the first place?
1205 * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the
1206 * page OK. We'll actually write it out again in commit_write, which is a little
1207 * suboptimal, but at least we're correct.
1208 */
1209 pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg);
1210
1211 if (IS_ERR(pg_ptr)) {
1212 printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr));
1213 return PTR_ERR(pg_ptr);
1214 }
1215
1216 offset = start;
1217 while(offset < orig_end) {
1218 uint32_t datalen;
1219 uint32_t cdatalen;
1220 uint16_t comprtype = JFFS2_COMPR_NONE;
1221
1222 ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, &alloclen);
1223
1224 if (ret) {
1225 printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n",
1226 sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret);
1227 break;
1228 }
1229 cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset);
1230 datalen = end - offset;
1231
1232 writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1));
1233
1234 comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen);
1235
1236 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1237 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
1238 ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen);
1239 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
1240
1241 ri.ino = cpu_to_je32(f->inocache->ino);
1242 ri.version = cpu_to_je32(++f->highest_version);
1243 ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f));
1244 ri.uid = cpu_to_je16(JFFS2_F_I_UID(f));
1245 ri.gid = cpu_to_je16(JFFS2_F_I_GID(f));
1246 ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f));
1247 ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f));
1248 ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f));
1249 ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f));
1250 ri.offset = cpu_to_je32(offset);
1251 ri.csize = cpu_to_je32(cdatalen);
1252 ri.dsize = cpu_to_je32(datalen);
1253 ri.compr = comprtype & 0xff;
1254 ri.usercompr = (comprtype >> 8) & 0xff;
1255 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
1256 ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen));
1257
1258 new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC);
1259
1260 jffs2_free_comprbuf(comprbuf, writebuf);
1261
1262 if (IS_ERR(new_fn)) {
1263 printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn));
1264 ret = PTR_ERR(new_fn);
1265 break;
1266 }
1267 ret = jffs2_add_full_dnode_to_inode(c, f, new_fn);
1268 offset += datalen;
1269 if (f->metadata) {
1270 jffs2_mark_node_obsolete(c, f->metadata->raw);
1271 jffs2_free_full_dnode(f->metadata);
1272 f->metadata = NULL;
1273 }
1274 }
1275
1276 jffs2_gc_release_page(c, pg_ptr, &pg);
1277 return ret;
1278}
1279