]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/jbd/journal.c
[PATCH] Corgi: Add MMC/SD write protection switch handling
[net-next-2.6.git] / fs / jbd / journal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25#include <linux/module.h>
26#include <linux/time.h>
27#include <linux/fs.h>
28#include <linux/jbd.h>
29#include <linux/errno.h>
30#include <linux/slab.h>
31#include <linux/smp_lock.h>
32#include <linux/init.h>
33#include <linux/mm.h>
34#include <linux/suspend.h>
35#include <linux/pagemap.h>
36#include <asm/uaccess.h>
37#include <asm/page.h>
38#include <linux/proc_fs.h>
39
40EXPORT_SYMBOL(journal_start);
41EXPORT_SYMBOL(journal_restart);
42EXPORT_SYMBOL(journal_extend);
43EXPORT_SYMBOL(journal_stop);
44EXPORT_SYMBOL(journal_lock_updates);
45EXPORT_SYMBOL(journal_unlock_updates);
46EXPORT_SYMBOL(journal_get_write_access);
47EXPORT_SYMBOL(journal_get_create_access);
48EXPORT_SYMBOL(journal_get_undo_access);
49EXPORT_SYMBOL(journal_dirty_data);
50EXPORT_SYMBOL(journal_dirty_metadata);
51EXPORT_SYMBOL(journal_release_buffer);
52EXPORT_SYMBOL(journal_forget);
53#if 0
54EXPORT_SYMBOL(journal_sync_buffer);
55#endif
56EXPORT_SYMBOL(journal_flush);
57EXPORT_SYMBOL(journal_revoke);
58
59EXPORT_SYMBOL(journal_init_dev);
60EXPORT_SYMBOL(journal_init_inode);
61EXPORT_SYMBOL(journal_update_format);
62EXPORT_SYMBOL(journal_check_used_features);
63EXPORT_SYMBOL(journal_check_available_features);
64EXPORT_SYMBOL(journal_set_features);
65EXPORT_SYMBOL(journal_create);
66EXPORT_SYMBOL(journal_load);
67EXPORT_SYMBOL(journal_destroy);
1da177e4
LT
68EXPORT_SYMBOL(journal_update_superblock);
69EXPORT_SYMBOL(journal_abort);
70EXPORT_SYMBOL(journal_errno);
71EXPORT_SYMBOL(journal_ack_err);
72EXPORT_SYMBOL(journal_clear_err);
73EXPORT_SYMBOL(log_wait_commit);
74EXPORT_SYMBOL(journal_start_commit);
75EXPORT_SYMBOL(journal_force_commit_nested);
76EXPORT_SYMBOL(journal_wipe);
77EXPORT_SYMBOL(journal_blocks_per_page);
78EXPORT_SYMBOL(journal_invalidatepage);
79EXPORT_SYMBOL(journal_try_to_free_buffers);
80EXPORT_SYMBOL(journal_force_commit);
81
82static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
022a4a7b 83static void __journal_abort_soft (journal_t *journal, int errno);
1da177e4
LT
84
85/*
86 * Helper function used to manage commit timeouts
87 */
88
89static void commit_timeout(unsigned long __data)
90{
91 struct task_struct * p = (struct task_struct *) __data;
92
93 wake_up_process(p);
94}
95
1da177e4
LT
96/*
97 * kjournald: The main thread function used to manage a logging device
98 * journal.
99 *
100 * This kernel thread is responsible for two things:
101 *
102 * 1) COMMIT: Every so often we need to commit the current state of the
103 * filesystem to disk. The journal thread is responsible for writing
104 * all of the metadata buffers to disk.
105 *
106 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
107 * of the data in that part of the log has been rewritten elsewhere on
108 * the disk. Flushing these old buffers to reclaim space in the log is
109 * known as checkpointing, and this thread is responsible for that job.
110 */
111
022a4a7b 112static int kjournald(void *arg)
1da177e4
LT
113{
114 journal_t *journal = (journal_t *) arg;
115 transaction_t *transaction;
116 struct timer_list timer;
117
1da177e4
LT
118 daemonize("kjournald");
119
120 /* Set up an interval timer which can be used to trigger a
121 commit wakeup after the commit interval expires */
122 init_timer(&timer);
123 timer.data = (unsigned long) current;
124 timer.function = commit_timeout;
125 journal->j_commit_timer = &timer;
126
127 /* Record that the journal thread is running */
128 journal->j_task = current;
129 wake_up(&journal->j_wait_done_commit);
130
131 printk(KERN_INFO "kjournald starting. Commit interval %ld seconds\n",
132 journal->j_commit_interval / HZ);
133
134 /*
135 * And now, wait forever for commit wakeup events.
136 */
137 spin_lock(&journal->j_state_lock);
138
139loop:
140 if (journal->j_flags & JFS_UNMOUNT)
141 goto end_loop;
142
143 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
144 journal->j_commit_sequence, journal->j_commit_request);
145
146 if (journal->j_commit_sequence != journal->j_commit_request) {
147 jbd_debug(1, "OK, requests differ\n");
148 spin_unlock(&journal->j_state_lock);
149 del_timer_sync(journal->j_commit_timer);
150 journal_commit_transaction(journal);
151 spin_lock(&journal->j_state_lock);
152 goto loop;
153 }
154
155 wake_up(&journal->j_wait_done_commit);
3e1d1d28 156 if (freezing(current)) {
1da177e4
LT
157 /*
158 * The simpler the better. Flushing journal isn't a
159 * good idea, because that depends on threads that may
160 * be already stopped.
161 */
162 jbd_debug(1, "Now suspending kjournald\n");
163 spin_unlock(&journal->j_state_lock);
3e1d1d28 164 refrigerator();
1da177e4
LT
165 spin_lock(&journal->j_state_lock);
166 } else {
167 /*
168 * We assume on resume that commits are already there,
169 * so we don't sleep
170 */
171 DEFINE_WAIT(wait);
172 int should_sleep = 1;
173
174 prepare_to_wait(&journal->j_wait_commit, &wait,
175 TASK_INTERRUPTIBLE);
176 if (journal->j_commit_sequence != journal->j_commit_request)
177 should_sleep = 0;
178 transaction = journal->j_running_transaction;
179 if (transaction && time_after_eq(jiffies,
180 transaction->t_expires))
181 should_sleep = 0;
182 if (should_sleep) {
183 spin_unlock(&journal->j_state_lock);
184 schedule();
185 spin_lock(&journal->j_state_lock);
186 }
187 finish_wait(&journal->j_wait_commit, &wait);
188 }
189
190 jbd_debug(1, "kjournald wakes\n");
191
192 /*
193 * Were we woken up by a commit wakeup event?
194 */
195 transaction = journal->j_running_transaction;
196 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
197 journal->j_commit_request = transaction->t_tid;
198 jbd_debug(1, "woke because of timeout\n");
199 }
200 goto loop;
201
202end_loop:
203 spin_unlock(&journal->j_state_lock);
204 del_timer_sync(journal->j_commit_timer);
205 journal->j_task = NULL;
206 wake_up(&journal->j_wait_done_commit);
207 jbd_debug(1, "Journal thread exiting.\n");
208 return 0;
209}
210
211static void journal_start_thread(journal_t *journal)
212{
213 kernel_thread(kjournald, journal, CLONE_VM|CLONE_FS|CLONE_FILES);
214 wait_event(journal->j_wait_done_commit, journal->j_task != 0);
215}
216
217static void journal_kill_thread(journal_t *journal)
218{
219 spin_lock(&journal->j_state_lock);
220 journal->j_flags |= JFS_UNMOUNT;
221
222 while (journal->j_task) {
223 wake_up(&journal->j_wait_commit);
224 spin_unlock(&journal->j_state_lock);
225 wait_event(journal->j_wait_done_commit, journal->j_task == 0);
226 spin_lock(&journal->j_state_lock);
227 }
228 spin_unlock(&journal->j_state_lock);
229}
230
231/*
232 * journal_write_metadata_buffer: write a metadata buffer to the journal.
233 *
234 * Writes a metadata buffer to a given disk block. The actual IO is not
235 * performed but a new buffer_head is constructed which labels the data
236 * to be written with the correct destination disk block.
237 *
238 * Any magic-number escaping which needs to be done will cause a
239 * copy-out here. If the buffer happens to start with the
240 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
241 * magic number is only written to the log for descripter blocks. In
242 * this case, we copy the data and replace the first word with 0, and we
243 * return a result code which indicates that this buffer needs to be
244 * marked as an escaped buffer in the corresponding log descriptor
245 * block. The missing word can then be restored when the block is read
246 * during recovery.
247 *
248 * If the source buffer has already been modified by a new transaction
249 * since we took the last commit snapshot, we use the frozen copy of
250 * that data for IO. If we end up using the existing buffer_head's data
251 * for the write, then we *have* to lock the buffer to prevent anyone
252 * else from using and possibly modifying it while the IO is in
253 * progress.
254 *
255 * The function returns a pointer to the buffer_heads to be used for IO.
256 *
257 * We assume that the journal has already been locked in this function.
258 *
259 * Return value:
260 * <0: Error
261 * >=0: Finished OK
262 *
263 * On success:
264 * Bit 0 set == escape performed on the data
265 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
266 */
267
268int journal_write_metadata_buffer(transaction_t *transaction,
269 struct journal_head *jh_in,
270 struct journal_head **jh_out,
271 int blocknr)
272{
273 int need_copy_out = 0;
274 int done_copy_out = 0;
275 int do_escape = 0;
276 char *mapped_data;
277 struct buffer_head *new_bh;
278 struct journal_head *new_jh;
279 struct page *new_page;
280 unsigned int new_offset;
281 struct buffer_head *bh_in = jh2bh(jh_in);
282
283 /*
284 * The buffer really shouldn't be locked: only the current committing
285 * transaction is allowed to write it, so nobody else is allowed
286 * to do any IO.
287 *
288 * akpm: except if we're journalling data, and write() output is
289 * also part of a shared mapping, and another thread has
290 * decided to launch a writepage() against this buffer.
291 */
292 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
293
294 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
295
296 /*
297 * If a new transaction has already done a buffer copy-out, then
298 * we use that version of the data for the commit.
299 */
300 jbd_lock_bh_state(bh_in);
301repeat:
302 if (jh_in->b_frozen_data) {
303 done_copy_out = 1;
304 new_page = virt_to_page(jh_in->b_frozen_data);
305 new_offset = offset_in_page(jh_in->b_frozen_data);
306 } else {
307 new_page = jh2bh(jh_in)->b_page;
308 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
309 }
310
311 mapped_data = kmap_atomic(new_page, KM_USER0);
312 /*
313 * Check for escaping
314 */
315 if (*((__be32 *)(mapped_data + new_offset)) ==
316 cpu_to_be32(JFS_MAGIC_NUMBER)) {
317 need_copy_out = 1;
318 do_escape = 1;
319 }
320 kunmap_atomic(mapped_data, KM_USER0);
321
322 /*
323 * Do we need to do a data copy?
324 */
325 if (need_copy_out && !done_copy_out) {
326 char *tmp;
327
328 jbd_unlock_bh_state(bh_in);
329 tmp = jbd_rep_kmalloc(bh_in->b_size, GFP_NOFS);
330 jbd_lock_bh_state(bh_in);
331 if (jh_in->b_frozen_data) {
332 kfree(tmp);
333 goto repeat;
334 }
335
336 jh_in->b_frozen_data = tmp;
337 mapped_data = kmap_atomic(new_page, KM_USER0);
338 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
339 kunmap_atomic(mapped_data, KM_USER0);
340
341 new_page = virt_to_page(tmp);
342 new_offset = offset_in_page(tmp);
343 done_copy_out = 1;
344 }
345
346 /*
347 * Did we need to do an escaping? Now we've done all the
348 * copying, we can finally do so.
349 */
350 if (do_escape) {
351 mapped_data = kmap_atomic(new_page, KM_USER0);
352 *((unsigned int *)(mapped_data + new_offset)) = 0;
353 kunmap_atomic(mapped_data, KM_USER0);
354 }
355
356 /* keep subsequent assertions sane */
357 new_bh->b_state = 0;
358 init_buffer(new_bh, NULL, NULL);
359 atomic_set(&new_bh->b_count, 1);
360 jbd_unlock_bh_state(bh_in);
361
362 new_jh = journal_add_journal_head(new_bh); /* This sleeps */
363
364 set_bh_page(new_bh, new_page, new_offset);
365 new_jh->b_transaction = NULL;
366 new_bh->b_size = jh2bh(jh_in)->b_size;
367 new_bh->b_bdev = transaction->t_journal->j_dev;
368 new_bh->b_blocknr = blocknr;
369 set_buffer_mapped(new_bh);
370 set_buffer_dirty(new_bh);
371
372 *jh_out = new_jh;
373
374 /*
375 * The to-be-written buffer needs to get moved to the io queue,
376 * and the original buffer whose contents we are shadowing or
377 * copying is moved to the transaction's shadow queue.
378 */
379 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
380 journal_file_buffer(jh_in, transaction, BJ_Shadow);
381 JBUFFER_TRACE(new_jh, "file as BJ_IO");
382 journal_file_buffer(new_jh, transaction, BJ_IO);
383
384 return do_escape | (done_copy_out << 1);
385}
386
387/*
388 * Allocation code for the journal file. Manage the space left in the
389 * journal, so that we can begin checkpointing when appropriate.
390 */
391
392/*
393 * __log_space_left: Return the number of free blocks left in the journal.
394 *
395 * Called with the journal already locked.
396 *
397 * Called under j_state_lock
398 */
399
400int __log_space_left(journal_t *journal)
401{
402 int left = journal->j_free;
403
404 assert_spin_locked(&journal->j_state_lock);
405
406 /*
407 * Be pessimistic here about the number of those free blocks which
408 * might be required for log descriptor control blocks.
409 */
410
411#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
412
413 left -= MIN_LOG_RESERVED_BLOCKS;
414
415 if (left <= 0)
416 return 0;
417 left -= (left >> 3);
418 return left;
419}
420
421/*
422 * Called under j_state_lock. Returns true if a transaction was started.
423 */
424int __log_start_commit(journal_t *journal, tid_t target)
425{
426 /*
427 * Are we already doing a recent enough commit?
428 */
429 if (!tid_geq(journal->j_commit_request, target)) {
430 /*
431 * We want a new commit: OK, mark the request and wakup the
432 * commit thread. We do _not_ do the commit ourselves.
433 */
434
435 journal->j_commit_request = target;
436 jbd_debug(1, "JBD: requesting commit %d/%d\n",
437 journal->j_commit_request,
438 journal->j_commit_sequence);
439 wake_up(&journal->j_wait_commit);
440 return 1;
441 }
442 return 0;
443}
444
445int log_start_commit(journal_t *journal, tid_t tid)
446{
447 int ret;
448
449 spin_lock(&journal->j_state_lock);
450 ret = __log_start_commit(journal, tid);
451 spin_unlock(&journal->j_state_lock);
452 return ret;
453}
454
455/*
456 * Force and wait upon a commit if the calling process is not within
457 * transaction. This is used for forcing out undo-protected data which contains
458 * bitmaps, when the fs is running out of space.
459 *
460 * We can only force the running transaction if we don't have an active handle;
461 * otherwise, we will deadlock.
462 *
463 * Returns true if a transaction was started.
464 */
465int journal_force_commit_nested(journal_t *journal)
466{
467 transaction_t *transaction = NULL;
468 tid_t tid;
469
470 spin_lock(&journal->j_state_lock);
471 if (journal->j_running_transaction && !current->journal_info) {
472 transaction = journal->j_running_transaction;
473 __log_start_commit(journal, transaction->t_tid);
474 } else if (journal->j_committing_transaction)
475 transaction = journal->j_committing_transaction;
476
477 if (!transaction) {
478 spin_unlock(&journal->j_state_lock);
479 return 0; /* Nothing to retry */
480 }
481
482 tid = transaction->t_tid;
483 spin_unlock(&journal->j_state_lock);
484 log_wait_commit(journal, tid);
485 return 1;
486}
487
488/*
489 * Start a commit of the current running transaction (if any). Returns true
490 * if a transaction was started, and fills its tid in at *ptid
491 */
492int journal_start_commit(journal_t *journal, tid_t *ptid)
493{
494 int ret = 0;
495
496 spin_lock(&journal->j_state_lock);
497 if (journal->j_running_transaction) {
498 tid_t tid = journal->j_running_transaction->t_tid;
499
500 ret = __log_start_commit(journal, tid);
501 if (ret && ptid)
502 *ptid = tid;
503 } else if (journal->j_committing_transaction && ptid) {
504 /*
505 * If ext3_write_super() recently started a commit, then we
506 * have to wait for completion of that transaction
507 */
508 *ptid = journal->j_committing_transaction->t_tid;
509 ret = 1;
510 }
511 spin_unlock(&journal->j_state_lock);
512 return ret;
513}
514
515/*
516 * Wait for a specified commit to complete.
517 * The caller may not hold the journal lock.
518 */
519int log_wait_commit(journal_t *journal, tid_t tid)
520{
521 int err = 0;
522
523#ifdef CONFIG_JBD_DEBUG
524 spin_lock(&journal->j_state_lock);
525 if (!tid_geq(journal->j_commit_request, tid)) {
526 printk(KERN_EMERG
527 "%s: error: j_commit_request=%d, tid=%d\n",
528 __FUNCTION__, journal->j_commit_request, tid);
529 }
530 spin_unlock(&journal->j_state_lock);
531#endif
532 spin_lock(&journal->j_state_lock);
533 while (tid_gt(tid, journal->j_commit_sequence)) {
534 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
535 tid, journal->j_commit_sequence);
536 wake_up(&journal->j_wait_commit);
537 spin_unlock(&journal->j_state_lock);
538 wait_event(journal->j_wait_done_commit,
539 !tid_gt(tid, journal->j_commit_sequence));
540 spin_lock(&journal->j_state_lock);
541 }
542 spin_unlock(&journal->j_state_lock);
543
544 if (unlikely(is_journal_aborted(journal))) {
545 printk(KERN_EMERG "journal commit I/O error\n");
546 err = -EIO;
547 }
548 return err;
549}
550
551/*
552 * Log buffer allocation routines:
553 */
554
555int journal_next_log_block(journal_t *journal, unsigned long *retp)
556{
557 unsigned long blocknr;
558
559 spin_lock(&journal->j_state_lock);
560 J_ASSERT(journal->j_free > 1);
561
562 blocknr = journal->j_head;
563 journal->j_head++;
564 journal->j_free--;
565 if (journal->j_head == journal->j_last)
566 journal->j_head = journal->j_first;
567 spin_unlock(&journal->j_state_lock);
568 return journal_bmap(journal, blocknr, retp);
569}
570
571/*
572 * Conversion of logical to physical block numbers for the journal
573 *
574 * On external journals the journal blocks are identity-mapped, so
575 * this is a no-op. If needed, we can use j_blk_offset - everything is
576 * ready.
577 */
578int journal_bmap(journal_t *journal, unsigned long blocknr,
579 unsigned long *retp)
580{
581 int err = 0;
582 unsigned long ret;
583
584 if (journal->j_inode) {
585 ret = bmap(journal->j_inode, blocknr);
586 if (ret)
587 *retp = ret;
588 else {
589 char b[BDEVNAME_SIZE];
590
591 printk(KERN_ALERT "%s: journal block not found "
592 "at offset %lu on %s\n",
593 __FUNCTION__,
594 blocknr,
595 bdevname(journal->j_dev, b));
596 err = -EIO;
597 __journal_abort_soft(journal, err);
598 }
599 } else {
600 *retp = blocknr; /* +journal->j_blk_offset */
601 }
602 return err;
603}
604
605/*
606 * We play buffer_head aliasing tricks to write data/metadata blocks to
607 * the journal without copying their contents, but for journal
608 * descriptor blocks we do need to generate bona fide buffers.
609 *
610 * After the caller of journal_get_descriptor_buffer() has finished modifying
611 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
612 * But we don't bother doing that, so there will be coherency problems with
613 * mmaps of blockdevs which hold live JBD-controlled filesystems.
614 */
615struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
616{
617 struct buffer_head *bh;
618 unsigned long blocknr;
619 int err;
620
621 err = journal_next_log_block(journal, &blocknr);
622
623 if (err)
624 return NULL;
625
626 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
627 lock_buffer(bh);
628 memset(bh->b_data, 0, journal->j_blocksize);
629 set_buffer_uptodate(bh);
630 unlock_buffer(bh);
631 BUFFER_TRACE(bh, "return this buffer");
632 return journal_add_journal_head(bh);
633}
634
635/*
636 * Management for journal control blocks: functions to create and
637 * destroy journal_t structures, and to initialise and read existing
638 * journal blocks from disk. */
639
640/* First: create and setup a journal_t object in memory. We initialise
641 * very few fields yet: that has to wait until we have created the
642 * journal structures from from scratch, or loaded them from disk. */
643
644static journal_t * journal_init_common (void)
645{
646 journal_t *journal;
647 int err;
648
649 journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL);
650 if (!journal)
651 goto fail;
652 memset(journal, 0, sizeof(*journal));
653
654 init_waitqueue_head(&journal->j_wait_transaction_locked);
655 init_waitqueue_head(&journal->j_wait_logspace);
656 init_waitqueue_head(&journal->j_wait_done_commit);
657 init_waitqueue_head(&journal->j_wait_checkpoint);
658 init_waitqueue_head(&journal->j_wait_commit);
659 init_waitqueue_head(&journal->j_wait_updates);
660 init_MUTEX(&journal->j_barrier);
661 init_MUTEX(&journal->j_checkpoint_sem);
662 spin_lock_init(&journal->j_revoke_lock);
663 spin_lock_init(&journal->j_list_lock);
664 spin_lock_init(&journal->j_state_lock);
665
666 journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
667
668 /* The journal is marked for error until we succeed with recovery! */
669 journal->j_flags = JFS_ABORT;
670
671 /* Set up a default-sized revoke table for the new mount. */
672 err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
673 if (err) {
674 kfree(journal);
675 goto fail;
676 }
677 return journal;
678fail:
679 return NULL;
680}
681
682/* journal_init_dev and journal_init_inode:
683 *
684 * Create a journal structure assigned some fixed set of disk blocks to
685 * the journal. We don't actually touch those disk blocks yet, but we
686 * need to set up all of the mapping information to tell the journaling
687 * system where the journal blocks are.
688 *
689 */
690
691/**
692 * journal_t * journal_init_dev() - creates an initialises a journal structure
693 * @bdev: Block device on which to create the journal
694 * @fs_dev: Device which hold journalled filesystem for this journal.
695 * @start: Block nr Start of journal.
696 * @len: Lenght of the journal in blocks.
697 * @blocksize: blocksize of journalling device
698 * @returns: a newly created journal_t *
699 *
700 * journal_init_dev creates a journal which maps a fixed contiguous
701 * range of blocks on an arbitrary block device.
702 *
703 */
704journal_t * journal_init_dev(struct block_device *bdev,
705 struct block_device *fs_dev,
706 int start, int len, int blocksize)
707{
708 journal_t *journal = journal_init_common();
709 struct buffer_head *bh;
710 int n;
711
712 if (!journal)
713 return NULL;
714
715 journal->j_dev = bdev;
716 journal->j_fs_dev = fs_dev;
717 journal->j_blk_offset = start;
718 journal->j_maxlen = len;
719 journal->j_blocksize = blocksize;
720
721 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
722 J_ASSERT(bh != NULL);
723 journal->j_sb_buffer = bh;
724 journal->j_superblock = (journal_superblock_t *)bh->b_data;
725
726 /* journal descriptor can store up to n blocks -bzzz */
727 n = journal->j_blocksize / sizeof(journal_block_tag_t);
728 journal->j_wbufsize = n;
729 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
730 if (!journal->j_wbuf) {
731 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
732 __FUNCTION__);
733 kfree(journal);
734 journal = NULL;
735 }
736
737 return journal;
738}
739
740/**
741 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
742 * @inode: An inode to create the journal in
743 *
744 * journal_init_inode creates a journal which maps an on-disk inode as
745 * the journal. The inode must exist already, must support bmap() and
746 * must have all data blocks preallocated.
747 */
748journal_t * journal_init_inode (struct inode *inode)
749{
750 struct buffer_head *bh;
751 journal_t *journal = journal_init_common();
752 int err;
753 int n;
754 unsigned long blocknr;
755
756 if (!journal)
757 return NULL;
758
759 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
760 journal->j_inode = inode;
761 jbd_debug(1,
762 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
763 journal, inode->i_sb->s_id, inode->i_ino,
764 (long long) inode->i_size,
765 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
766
767 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
768 journal->j_blocksize = inode->i_sb->s_blocksize;
769
770 /* journal descriptor can store up to n blocks -bzzz */
771 n = journal->j_blocksize / sizeof(journal_block_tag_t);
772 journal->j_wbufsize = n;
773 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
774 if (!journal->j_wbuf) {
775 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
776 __FUNCTION__);
777 kfree(journal);
778 return NULL;
779 }
780
781 err = journal_bmap(journal, 0, &blocknr);
782 /* If that failed, give up */
783 if (err) {
784 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
785 __FUNCTION__);
786 kfree(journal);
787 return NULL;
788 }
789
790 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
791 J_ASSERT(bh != NULL);
792 journal->j_sb_buffer = bh;
793 journal->j_superblock = (journal_superblock_t *)bh->b_data;
794
795 return journal;
796}
797
798/*
799 * If the journal init or create aborts, we need to mark the journal
800 * superblock as being NULL to prevent the journal destroy from writing
801 * back a bogus superblock.
802 */
803static void journal_fail_superblock (journal_t *journal)
804{
805 struct buffer_head *bh = journal->j_sb_buffer;
806 brelse(bh);
807 journal->j_sb_buffer = NULL;
808}
809
810/*
811 * Given a journal_t structure, initialise the various fields for
812 * startup of a new journaling session. We use this both when creating
813 * a journal, and after recovering an old journal to reset it for
814 * subsequent use.
815 */
816
817static int journal_reset(journal_t *journal)
818{
819 journal_superblock_t *sb = journal->j_superblock;
820 unsigned int first, last;
821
822 first = be32_to_cpu(sb->s_first);
823 last = be32_to_cpu(sb->s_maxlen);
824
825 journal->j_first = first;
826 journal->j_last = last;
827
828 journal->j_head = first;
829 journal->j_tail = first;
830 journal->j_free = last - first;
831
832 journal->j_tail_sequence = journal->j_transaction_sequence;
833 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
834 journal->j_commit_request = journal->j_commit_sequence;
835
836 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
837
838 /* Add the dynamic fields and write it to disk. */
839 journal_update_superblock(journal, 1);
840 journal_start_thread(journal);
841 return 0;
842}
843
844/**
845 * int journal_create() - Initialise the new journal file
846 * @journal: Journal to create. This structure must have been initialised
847 *
848 * Given a journal_t structure which tells us which disk blocks we can
849 * use, create a new journal superblock and initialise all of the
850 * journal fields from scratch.
851 **/
852int journal_create(journal_t *journal)
853{
854 unsigned long blocknr;
855 struct buffer_head *bh;
856 journal_superblock_t *sb;
857 int i, err;
858
859 if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
860 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
861 journal->j_maxlen);
862 journal_fail_superblock(journal);
863 return -EINVAL;
864 }
865
866 if (journal->j_inode == NULL) {
867 /*
868 * We don't know what block to start at!
869 */
870 printk(KERN_EMERG
871 "%s: creation of journal on external device!\n",
872 __FUNCTION__);
873 BUG();
874 }
875
876 /* Zero out the entire journal on disk. We cannot afford to
877 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
878 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
879 for (i = 0; i < journal->j_maxlen; i++) {
880 err = journal_bmap(journal, i, &blocknr);
881 if (err)
882 return err;
883 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
884 lock_buffer(bh);
885 memset (bh->b_data, 0, journal->j_blocksize);
886 BUFFER_TRACE(bh, "marking dirty");
887 mark_buffer_dirty(bh);
888 BUFFER_TRACE(bh, "marking uptodate");
889 set_buffer_uptodate(bh);
890 unlock_buffer(bh);
891 __brelse(bh);
892 }
893
894 sync_blockdev(journal->j_dev);
895 jbd_debug(1, "JBD: journal cleared.\n");
896
897 /* OK, fill in the initial static fields in the new superblock */
898 sb = journal->j_superblock;
899
900 sb->s_header.h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
901 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
902
903 sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
904 sb->s_maxlen = cpu_to_be32(journal->j_maxlen);
905 sb->s_first = cpu_to_be32(1);
906
907 journal->j_transaction_sequence = 1;
908
909 journal->j_flags &= ~JFS_ABORT;
910 journal->j_format_version = 2;
911
912 return journal_reset(journal);
913}
914
915/**
916 * void journal_update_superblock() - Update journal sb on disk.
917 * @journal: The journal to update.
918 * @wait: Set to '0' if you don't want to wait for IO completion.
919 *
920 * Update a journal's dynamic superblock fields and write it to disk,
921 * optionally waiting for the IO to complete.
922 */
923void journal_update_superblock(journal_t *journal, int wait)
924{
925 journal_superblock_t *sb = journal->j_superblock;
926 struct buffer_head *bh = journal->j_sb_buffer;
927
928 /*
929 * As a special case, if the on-disk copy is already marked as needing
930 * no recovery (s_start == 0) and there are no outstanding transactions
931 * in the filesystem, then we can safely defer the superblock update
932 * until the next commit by setting JFS_FLUSHED. This avoids
933 * attempting a write to a potential-readonly device.
934 */
935 if (sb->s_start == 0 && journal->j_tail_sequence ==
936 journal->j_transaction_sequence) {
937 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
938 "(start %ld, seq %d, errno %d)\n",
939 journal->j_tail, journal->j_tail_sequence,
940 journal->j_errno);
941 goto out;
942 }
943
944 spin_lock(&journal->j_state_lock);
945 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
946 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
947
948 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
949 sb->s_start = cpu_to_be32(journal->j_tail);
950 sb->s_errno = cpu_to_be32(journal->j_errno);
951 spin_unlock(&journal->j_state_lock);
952
953 BUFFER_TRACE(bh, "marking dirty");
954 mark_buffer_dirty(bh);
955 if (wait)
956 sync_dirty_buffer(bh);
957 else
958 ll_rw_block(WRITE, 1, &bh);
959
960out:
961 /* If we have just flushed the log (by marking s_start==0), then
962 * any future commit will have to be careful to update the
963 * superblock again to re-record the true start of the log. */
964
965 spin_lock(&journal->j_state_lock);
966 if (sb->s_start)
967 journal->j_flags &= ~JFS_FLUSHED;
968 else
969 journal->j_flags |= JFS_FLUSHED;
970 spin_unlock(&journal->j_state_lock);
971}
972
973/*
974 * Read the superblock for a given journal, performing initial
975 * validation of the format.
976 */
977
978static int journal_get_superblock(journal_t *journal)
979{
980 struct buffer_head *bh;
981 journal_superblock_t *sb;
982 int err = -EIO;
983
984 bh = journal->j_sb_buffer;
985
986 J_ASSERT(bh != NULL);
987 if (!buffer_uptodate(bh)) {
988 ll_rw_block(READ, 1, &bh);
989 wait_on_buffer(bh);
990 if (!buffer_uptodate(bh)) {
991 printk (KERN_ERR
992 "JBD: IO error reading journal superblock\n");
993 goto out;
994 }
995 }
996
997 sb = journal->j_superblock;
998
999 err = -EINVAL;
1000
1001 if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1002 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1003 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1004 goto out;
1005 }
1006
1007 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1008 case JFS_SUPERBLOCK_V1:
1009 journal->j_format_version = 1;
1010 break;
1011 case JFS_SUPERBLOCK_V2:
1012 journal->j_format_version = 2;
1013 break;
1014 default:
1015 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1016 goto out;
1017 }
1018
1019 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1020 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1021 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1022 printk (KERN_WARNING "JBD: journal file too short\n");
1023 goto out;
1024 }
1025
1026 return 0;
1027
1028out:
1029 journal_fail_superblock(journal);
1030 return err;
1031}
1032
1033/*
1034 * Load the on-disk journal superblock and read the key fields into the
1035 * journal_t.
1036 */
1037
1038static int load_superblock(journal_t *journal)
1039{
1040 int err;
1041 journal_superblock_t *sb;
1042
1043 err = journal_get_superblock(journal);
1044 if (err)
1045 return err;
1046
1047 sb = journal->j_superblock;
1048
1049 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1050 journal->j_tail = be32_to_cpu(sb->s_start);
1051 journal->j_first = be32_to_cpu(sb->s_first);
1052 journal->j_last = be32_to_cpu(sb->s_maxlen);
1053 journal->j_errno = be32_to_cpu(sb->s_errno);
1054
1055 return 0;
1056}
1057
1058
1059/**
1060 * int journal_load() - Read journal from disk.
1061 * @journal: Journal to act on.
1062 *
1063 * Given a journal_t structure which tells us which disk blocks contain
1064 * a journal, read the journal from disk to initialise the in-memory
1065 * structures.
1066 */
1067int journal_load(journal_t *journal)
1068{
1069 int err;
1070
1071 err = load_superblock(journal);
1072 if (err)
1073 return err;
1074
1075 /* If this is a V2 superblock, then we have to check the
1076 * features flags on it. */
1077
1078 if (journal->j_format_version >= 2) {
1079 journal_superblock_t *sb = journal->j_superblock;
1080
1081 if ((sb->s_feature_ro_compat &
1082 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1083 (sb->s_feature_incompat &
1084 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1085 printk (KERN_WARNING
1086 "JBD: Unrecognised features on journal\n");
1087 return -EINVAL;
1088 }
1089 }
1090
1091 /* Let the recovery code check whether it needs to recover any
1092 * data from the journal. */
1093 if (journal_recover(journal))
1094 goto recovery_error;
1095
1096 /* OK, we've finished with the dynamic journal bits:
1097 * reinitialise the dynamic contents of the superblock in memory
1098 * and reset them on disk. */
1099 if (journal_reset(journal))
1100 goto recovery_error;
1101
1102 journal->j_flags &= ~JFS_ABORT;
1103 journal->j_flags |= JFS_LOADED;
1104 return 0;
1105
1106recovery_error:
1107 printk (KERN_WARNING "JBD: recovery failed\n");
1108 return -EIO;
1109}
1110
1111/**
1112 * void journal_destroy() - Release a journal_t structure.
1113 * @journal: Journal to act on.
1114 *
1115 * Release a journal_t structure once it is no longer in use by the
1116 * journaled object.
1117 */
1118void journal_destroy(journal_t *journal)
1119{
1120 /* Wait for the commit thread to wake up and die. */
1121 journal_kill_thread(journal);
1122
1123 /* Force a final log commit */
1124 if (journal->j_running_transaction)
1125 journal_commit_transaction(journal);
1126
1127 /* Force any old transactions to disk */
1128
1129 /* Totally anal locking here... */
1130 spin_lock(&journal->j_list_lock);
1131 while (journal->j_checkpoint_transactions != NULL) {
1132 spin_unlock(&journal->j_list_lock);
1133 log_do_checkpoint(journal);
1134 spin_lock(&journal->j_list_lock);
1135 }
1136
1137 J_ASSERT(journal->j_running_transaction == NULL);
1138 J_ASSERT(journal->j_committing_transaction == NULL);
1139 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1140 spin_unlock(&journal->j_list_lock);
1141
1142 /* We can now mark the journal as empty. */
1143 journal->j_tail = 0;
1144 journal->j_tail_sequence = ++journal->j_transaction_sequence;
1145 if (journal->j_sb_buffer) {
1146 journal_update_superblock(journal, 1);
1147 brelse(journal->j_sb_buffer);
1148 }
1149
1150 if (journal->j_inode)
1151 iput(journal->j_inode);
1152 if (journal->j_revoke)
1153 journal_destroy_revoke(journal);
1154 kfree(journal->j_wbuf);
1155 kfree(journal);
1156}
1157
1158
1159/**
1160 *int journal_check_used_features () - Check if features specified are used.
1161 * @journal: Journal to check.
1162 * @compat: bitmask of compatible features
1163 * @ro: bitmask of features that force read-only mount
1164 * @incompat: bitmask of incompatible features
1165 *
1166 * Check whether the journal uses all of a given set of
1167 * features. Return true (non-zero) if it does.
1168 **/
1169
1170int journal_check_used_features (journal_t *journal, unsigned long compat,
1171 unsigned long ro, unsigned long incompat)
1172{
1173 journal_superblock_t *sb;
1174
1175 if (!compat && !ro && !incompat)
1176 return 1;
1177 if (journal->j_format_version == 1)
1178 return 0;
1179
1180 sb = journal->j_superblock;
1181
1182 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1183 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1184 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1185 return 1;
1186
1187 return 0;
1188}
1189
1190/**
1191 * int journal_check_available_features() - Check feature set in journalling layer
1192 * @journal: Journal to check.
1193 * @compat: bitmask of compatible features
1194 * @ro: bitmask of features that force read-only mount
1195 * @incompat: bitmask of incompatible features
1196 *
1197 * Check whether the journaling code supports the use of
1198 * all of a given set of features on this journal. Return true
1199 * (non-zero) if it can. */
1200
1201int journal_check_available_features (journal_t *journal, unsigned long compat,
1202 unsigned long ro, unsigned long incompat)
1203{
1204 journal_superblock_t *sb;
1205
1206 if (!compat && !ro && !incompat)
1207 return 1;
1208
1209 sb = journal->j_superblock;
1210
1211 /* We can support any known requested features iff the
1212 * superblock is in version 2. Otherwise we fail to support any
1213 * extended sb features. */
1214
1215 if (journal->j_format_version != 2)
1216 return 0;
1217
1218 if ((compat & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1219 (ro & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1220 (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1221 return 1;
1222
1223 return 0;
1224}
1225
1226/**
1227 * int journal_set_features () - Mark a given journal feature in the superblock
1228 * @journal: Journal to act on.
1229 * @compat: bitmask of compatible features
1230 * @ro: bitmask of features that force read-only mount
1231 * @incompat: bitmask of incompatible features
1232 *
1233 * Mark a given journal feature as present on the
1234 * superblock. Returns true if the requested features could be set.
1235 *
1236 */
1237
1238int journal_set_features (journal_t *journal, unsigned long compat,
1239 unsigned long ro, unsigned long incompat)
1240{
1241 journal_superblock_t *sb;
1242
1243 if (journal_check_used_features(journal, compat, ro, incompat))
1244 return 1;
1245
1246 if (!journal_check_available_features(journal, compat, ro, incompat))
1247 return 0;
1248
1249 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1250 compat, ro, incompat);
1251
1252 sb = journal->j_superblock;
1253
1254 sb->s_feature_compat |= cpu_to_be32(compat);
1255 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1256 sb->s_feature_incompat |= cpu_to_be32(incompat);
1257
1258 return 1;
1259}
1260
1261
1262/**
1263 * int journal_update_format () - Update on-disk journal structure.
1264 * @journal: Journal to act on.
1265 *
1266 * Given an initialised but unloaded journal struct, poke about in the
1267 * on-disk structure to update it to the most recent supported version.
1268 */
1269int journal_update_format (journal_t *journal)
1270{
1271 journal_superblock_t *sb;
1272 int err;
1273
1274 err = journal_get_superblock(journal);
1275 if (err)
1276 return err;
1277
1278 sb = journal->j_superblock;
1279
1280 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1281 case JFS_SUPERBLOCK_V2:
1282 return 0;
1283 case JFS_SUPERBLOCK_V1:
1284 return journal_convert_superblock_v1(journal, sb);
1285 default:
1286 break;
1287 }
1288 return -EINVAL;
1289}
1290
1291static int journal_convert_superblock_v1(journal_t *journal,
1292 journal_superblock_t *sb)
1293{
1294 int offset, blocksize;
1295 struct buffer_head *bh;
1296
1297 printk(KERN_WARNING
1298 "JBD: Converting superblock from version 1 to 2.\n");
1299
1300 /* Pre-initialise new fields to zero */
1301 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1302 blocksize = be32_to_cpu(sb->s_blocksize);
1303 memset(&sb->s_feature_compat, 0, blocksize-offset);
1304
1305 sb->s_nr_users = cpu_to_be32(1);
1306 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1307 journal->j_format_version = 2;
1308
1309 bh = journal->j_sb_buffer;
1310 BUFFER_TRACE(bh, "marking dirty");
1311 mark_buffer_dirty(bh);
1312 sync_dirty_buffer(bh);
1313 return 0;
1314}
1315
1316
1317/**
1318 * int journal_flush () - Flush journal
1319 * @journal: Journal to act on.
1320 *
1321 * Flush all data for a given journal to disk and empty the journal.
1322 * Filesystems can use this when remounting readonly to ensure that
1323 * recovery does not need to happen on remount.
1324 */
1325
1326int journal_flush(journal_t *journal)
1327{
1328 int err = 0;
1329 transaction_t *transaction = NULL;
1330 unsigned long old_tail;
1331
1332 spin_lock(&journal->j_state_lock);
1333
1334 /* Force everything buffered to the log... */
1335 if (journal->j_running_transaction) {
1336 transaction = journal->j_running_transaction;
1337 __log_start_commit(journal, transaction->t_tid);
1338 } else if (journal->j_committing_transaction)
1339 transaction = journal->j_committing_transaction;
1340
1341 /* Wait for the log commit to complete... */
1342 if (transaction) {
1343 tid_t tid = transaction->t_tid;
1344
1345 spin_unlock(&journal->j_state_lock);
1346 log_wait_commit(journal, tid);
1347 } else {
1348 spin_unlock(&journal->j_state_lock);
1349 }
1350
1351 /* ...and flush everything in the log out to disk. */
1352 spin_lock(&journal->j_list_lock);
1353 while (!err && journal->j_checkpoint_transactions != NULL) {
1354 spin_unlock(&journal->j_list_lock);
1355 err = log_do_checkpoint(journal);
1356 spin_lock(&journal->j_list_lock);
1357 }
1358 spin_unlock(&journal->j_list_lock);
1359 cleanup_journal_tail(journal);
1360
1361 /* Finally, mark the journal as really needing no recovery.
1362 * This sets s_start==0 in the underlying superblock, which is
1363 * the magic code for a fully-recovered superblock. Any future
1364 * commits of data to the journal will restore the current
1365 * s_start value. */
1366 spin_lock(&journal->j_state_lock);
1367 old_tail = journal->j_tail;
1368 journal->j_tail = 0;
1369 spin_unlock(&journal->j_state_lock);
1370 journal_update_superblock(journal, 1);
1371 spin_lock(&journal->j_state_lock);
1372 journal->j_tail = old_tail;
1373
1374 J_ASSERT(!journal->j_running_transaction);
1375 J_ASSERT(!journal->j_committing_transaction);
1376 J_ASSERT(!journal->j_checkpoint_transactions);
1377 J_ASSERT(journal->j_head == journal->j_tail);
1378 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1379 spin_unlock(&journal->j_state_lock);
1380 return err;
1381}
1382
1383/**
1384 * int journal_wipe() - Wipe journal contents
1385 * @journal: Journal to act on.
1386 * @write: flag (see below)
1387 *
1388 * Wipe out all of the contents of a journal, safely. This will produce
1389 * a warning if the journal contains any valid recovery information.
1390 * Must be called between journal_init_*() and journal_load().
1391 *
1392 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1393 * we merely suppress recovery.
1394 */
1395
1396int journal_wipe(journal_t *journal, int write)
1397{
1398 journal_superblock_t *sb;
1399 int err = 0;
1400
1401 J_ASSERT (!(journal->j_flags & JFS_LOADED));
1402
1403 err = load_superblock(journal);
1404 if (err)
1405 return err;
1406
1407 sb = journal->j_superblock;
1408
1409 if (!journal->j_tail)
1410 goto no_recovery;
1411
1412 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1413 write ? "Clearing" : "Ignoring");
1414
1415 err = journal_skip_recovery(journal);
1416 if (write)
1417 journal_update_superblock(journal, 1);
1418
1419 no_recovery:
1420 return err;
1421}
1422
1423/*
1424 * journal_dev_name: format a character string to describe on what
1425 * device this journal is present.
1426 */
1427
022a4a7b 1428static const char *journal_dev_name(journal_t *journal, char *buffer)
1da177e4
LT
1429{
1430 struct block_device *bdev;
1431
1432 if (journal->j_inode)
1433 bdev = journal->j_inode->i_sb->s_bdev;
1434 else
1435 bdev = journal->j_dev;
1436
1437 return bdevname(bdev, buffer);
1438}
1439
1440/*
1441 * Journal abort has very specific semantics, which we describe
1442 * for journal abort.
1443 *
1444 * Two internal function, which provide abort to te jbd layer
1445 * itself are here.
1446 */
1447
1448/*
1449 * Quick version for internal journal use (doesn't lock the journal).
1450 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1451 * and don't attempt to make any other journal updates.
1452 */
1453void __journal_abort_hard(journal_t *journal)
1454{
1455 transaction_t *transaction;
1456 char b[BDEVNAME_SIZE];
1457
1458 if (journal->j_flags & JFS_ABORT)
1459 return;
1460
1461 printk(KERN_ERR "Aborting journal on device %s.\n",
1462 journal_dev_name(journal, b));
1463
1464 spin_lock(&journal->j_state_lock);
1465 journal->j_flags |= JFS_ABORT;
1466 transaction = journal->j_running_transaction;
1467 if (transaction)
1468 __log_start_commit(journal, transaction->t_tid);
1469 spin_unlock(&journal->j_state_lock);
1470}
1471
1472/* Soft abort: record the abort error status in the journal superblock,
1473 * but don't do any other IO. */
022a4a7b 1474static void __journal_abort_soft (journal_t *journal, int errno)
1da177e4
LT
1475{
1476 if (journal->j_flags & JFS_ABORT)
1477 return;
1478
1479 if (!journal->j_errno)
1480 journal->j_errno = errno;
1481
1482 __journal_abort_hard(journal);
1483
1484 if (errno)
1485 journal_update_superblock(journal, 1);
1486}
1487
1488/**
1489 * void journal_abort () - Shutdown the journal immediately.
1490 * @journal: the journal to shutdown.
1491 * @errno: an error number to record in the journal indicating
1492 * the reason for the shutdown.
1493 *
1494 * Perform a complete, immediate shutdown of the ENTIRE
1495 * journal (not of a single transaction). This operation cannot be
1496 * undone without closing and reopening the journal.
1497 *
1498 * The journal_abort function is intended to support higher level error
1499 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1500 * mode.
1501 *
1502 * Journal abort has very specific semantics. Any existing dirty,
1503 * unjournaled buffers in the main filesystem will still be written to
1504 * disk by bdflush, but the journaling mechanism will be suspended
1505 * immediately and no further transaction commits will be honoured.
1506 *
1507 * Any dirty, journaled buffers will be written back to disk without
1508 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1509 * filesystem, but we _do_ attempt to leave as much data as possible
1510 * behind for fsck to use for cleanup.
1511 *
1512 * Any attempt to get a new transaction handle on a journal which is in
1513 * ABORT state will just result in an -EROFS error return. A
1514 * journal_stop on an existing handle will return -EIO if we have
1515 * entered abort state during the update.
1516 *
1517 * Recursive transactions are not disturbed by journal abort until the
1518 * final journal_stop, which will receive the -EIO error.
1519 *
1520 * Finally, the journal_abort call allows the caller to supply an errno
1521 * which will be recorded (if possible) in the journal superblock. This
1522 * allows a client to record failure conditions in the middle of a
1523 * transaction without having to complete the transaction to record the
1524 * failure to disk. ext3_error, for example, now uses this
1525 * functionality.
1526 *
1527 * Errors which originate from within the journaling layer will NOT
1528 * supply an errno; a null errno implies that absolutely no further
1529 * writes are done to the journal (unless there are any already in
1530 * progress).
1531 *
1532 */
1533
1534void journal_abort(journal_t *journal, int errno)
1535{
1536 __journal_abort_soft(journal, errno);
1537}
1538
1539/**
1540 * int journal_errno () - returns the journal's error state.
1541 * @journal: journal to examine.
1542 *
1543 * This is the errno numbet set with journal_abort(), the last
1544 * time the journal was mounted - if the journal was stopped
1545 * without calling abort this will be 0.
1546 *
1547 * If the journal has been aborted on this mount time -EROFS will
1548 * be returned.
1549 */
1550int journal_errno(journal_t *journal)
1551{
1552 int err;
1553
1554 spin_lock(&journal->j_state_lock);
1555 if (journal->j_flags & JFS_ABORT)
1556 err = -EROFS;
1557 else
1558 err = journal->j_errno;
1559 spin_unlock(&journal->j_state_lock);
1560 return err;
1561}
1562
1563/**
1564 * int journal_clear_err () - clears the journal's error state
1565 * @journal: journal to act on.
1566 *
1567 * An error must be cleared or Acked to take a FS out of readonly
1568 * mode.
1569 */
1570int journal_clear_err(journal_t *journal)
1571{
1572 int err = 0;
1573
1574 spin_lock(&journal->j_state_lock);
1575 if (journal->j_flags & JFS_ABORT)
1576 err = -EROFS;
1577 else
1578 journal->j_errno = 0;
1579 spin_unlock(&journal->j_state_lock);
1580 return err;
1581}
1582
1583/**
1584 * void journal_ack_err() - Ack journal err.
1585 * @journal: journal to act on.
1586 *
1587 * An error must be cleared or Acked to take a FS out of readonly
1588 * mode.
1589 */
1590void journal_ack_err(journal_t *journal)
1591{
1592 spin_lock(&journal->j_state_lock);
1593 if (journal->j_errno)
1594 journal->j_flags |= JFS_ACK_ERR;
1595 spin_unlock(&journal->j_state_lock);
1596}
1597
1598int journal_blocks_per_page(struct inode *inode)
1599{
1600 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1601}
1602
1603/*
1604 * Simple support for retrying memory allocations. Introduced to help to
1605 * debug different VM deadlock avoidance strategies.
1606 */
1607void * __jbd_kmalloc (const char *where, size_t size, int flags, int retry)
1608{
1609 return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0));
1610}
1611
1612/*
1613 * Journal_head storage management
1614 */
1615static kmem_cache_t *journal_head_cache;
1616#ifdef CONFIG_JBD_DEBUG
1617static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1618#endif
1619
1620static int journal_init_journal_head_cache(void)
1621{
1622 int retval;
1623
1624 J_ASSERT(journal_head_cache == 0);
1625 journal_head_cache = kmem_cache_create("journal_head",
1626 sizeof(struct journal_head),
1627 0, /* offset */
1628 0, /* flags */
1629 NULL, /* ctor */
1630 NULL); /* dtor */
1631 retval = 0;
1632 if (journal_head_cache == 0) {
1633 retval = -ENOMEM;
1634 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1635 }
1636 return retval;
1637}
1638
1639static void journal_destroy_journal_head_cache(void)
1640{
1641 J_ASSERT(journal_head_cache != NULL);
1642 kmem_cache_destroy(journal_head_cache);
1643 journal_head_cache = NULL;
1644}
1645
1646/*
1647 * journal_head splicing and dicing
1648 */
1649static struct journal_head *journal_alloc_journal_head(void)
1650{
1651 struct journal_head *ret;
1652 static unsigned long last_warning;
1653
1654#ifdef CONFIG_JBD_DEBUG
1655 atomic_inc(&nr_journal_heads);
1656#endif
1657 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1658 if (ret == 0) {
1659 jbd_debug(1, "out of memory for journal_head\n");
1660 if (time_after(jiffies, last_warning + 5*HZ)) {
1661 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1662 __FUNCTION__);
1663 last_warning = jiffies;
1664 }
1665 while (ret == 0) {
1666 yield();
1667 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1668 }
1669 }
1670 return ret;
1671}
1672
1673static void journal_free_journal_head(struct journal_head *jh)
1674{
1675#ifdef CONFIG_JBD_DEBUG
1676 atomic_dec(&nr_journal_heads);
1677 memset(jh, 0x5b, sizeof(*jh));
1678#endif
1679 kmem_cache_free(journal_head_cache, jh);
1680}
1681
1682/*
1683 * A journal_head is attached to a buffer_head whenever JBD has an
1684 * interest in the buffer.
1685 *
1686 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1687 * is set. This bit is tested in core kernel code where we need to take
1688 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1689 * there.
1690 *
1691 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1692 *
1693 * When a buffer has its BH_JBD bit set it is immune from being released by
1694 * core kernel code, mainly via ->b_count.
1695 *
1696 * A journal_head may be detached from its buffer_head when the journal_head's
1697 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1698 * Various places in JBD call journal_remove_journal_head() to indicate that the
1699 * journal_head can be dropped if needed.
1700 *
1701 * Various places in the kernel want to attach a journal_head to a buffer_head
1702 * _before_ attaching the journal_head to a transaction. To protect the
1703 * journal_head in this situation, journal_add_journal_head elevates the
1704 * journal_head's b_jcount refcount by one. The caller must call
1705 * journal_put_journal_head() to undo this.
1706 *
1707 * So the typical usage would be:
1708 *
1709 * (Attach a journal_head if needed. Increments b_jcount)
1710 * struct journal_head *jh = journal_add_journal_head(bh);
1711 * ...
1712 * jh->b_transaction = xxx;
1713 * journal_put_journal_head(jh);
1714 *
1715 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1716 * because it has a non-zero b_transaction.
1717 */
1718
1719/*
1720 * Give a buffer_head a journal_head.
1721 *
1722 * Doesn't need the journal lock.
1723 * May sleep.
1724 */
1725struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1726{
1727 struct journal_head *jh;
1728 struct journal_head *new_jh = NULL;
1729
1730repeat:
1731 if (!buffer_jbd(bh)) {
1732 new_jh = journal_alloc_journal_head();
1733 memset(new_jh, 0, sizeof(*new_jh));
1734 }
1735
1736 jbd_lock_bh_journal_head(bh);
1737 if (buffer_jbd(bh)) {
1738 jh = bh2jh(bh);
1739 } else {
1740 J_ASSERT_BH(bh,
1741 (atomic_read(&bh->b_count) > 0) ||
1742 (bh->b_page && bh->b_page->mapping));
1743
1744 if (!new_jh) {
1745 jbd_unlock_bh_journal_head(bh);
1746 goto repeat;
1747 }
1748
1749 jh = new_jh;
1750 new_jh = NULL; /* We consumed it */
1751 set_buffer_jbd(bh);
1752 bh->b_private = jh;
1753 jh->b_bh = bh;
1754 get_bh(bh);
1755 BUFFER_TRACE(bh, "added journal_head");
1756 }
1757 jh->b_jcount++;
1758 jbd_unlock_bh_journal_head(bh);
1759 if (new_jh)
1760 journal_free_journal_head(new_jh);
1761 return bh->b_private;
1762}
1763
1764/*
1765 * Grab a ref against this buffer_head's journal_head. If it ended up not
1766 * having a journal_head, return NULL
1767 */
1768struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1769{
1770 struct journal_head *jh = NULL;
1771
1772 jbd_lock_bh_journal_head(bh);
1773 if (buffer_jbd(bh)) {
1774 jh = bh2jh(bh);
1775 jh->b_jcount++;
1776 }
1777 jbd_unlock_bh_journal_head(bh);
1778 return jh;
1779}
1780
1781static void __journal_remove_journal_head(struct buffer_head *bh)
1782{
1783 struct journal_head *jh = bh2jh(bh);
1784
1785 J_ASSERT_JH(jh, jh->b_jcount >= 0);
1786
1787 get_bh(bh);
1788 if (jh->b_jcount == 0) {
1789 if (jh->b_transaction == NULL &&
1790 jh->b_next_transaction == NULL &&
1791 jh->b_cp_transaction == NULL) {
1792 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1793 J_ASSERT_BH(bh, buffer_jbd(bh));
1794 J_ASSERT_BH(bh, jh2bh(jh) == bh);
1795 BUFFER_TRACE(bh, "remove journal_head");
1796 if (jh->b_frozen_data) {
1797 printk(KERN_WARNING "%s: freeing "
1798 "b_frozen_data\n",
1799 __FUNCTION__);
1800 kfree(jh->b_frozen_data);
1801 }
1802 if (jh->b_committed_data) {
1803 printk(KERN_WARNING "%s: freeing "
1804 "b_committed_data\n",
1805 __FUNCTION__);
1806 kfree(jh->b_committed_data);
1807 }
1808 bh->b_private = NULL;
1809 jh->b_bh = NULL; /* debug, really */
1810 clear_buffer_jbd(bh);
1811 __brelse(bh);
1812 journal_free_journal_head(jh);
1813 } else {
1814 BUFFER_TRACE(bh, "journal_head was locked");
1815 }
1816 }
1817}
1818
1819/*
1820 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1821 * and has a zero b_jcount then remove and release its journal_head. If we did
1822 * see that the buffer is not used by any transaction we also "logically"
1823 * decrement ->b_count.
1824 *
1825 * We in fact take an additional increment on ->b_count as a convenience,
1826 * because the caller usually wants to do additional things with the bh
1827 * after calling here.
1828 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1829 * time. Once the caller has run __brelse(), the buffer is eligible for
1830 * reaping by try_to_free_buffers().
1831 */
1832void journal_remove_journal_head(struct buffer_head *bh)
1833{
1834 jbd_lock_bh_journal_head(bh);
1835 __journal_remove_journal_head(bh);
1836 jbd_unlock_bh_journal_head(bh);
1837}
1838
1839/*
1840 * Drop a reference on the passed journal_head. If it fell to zero then try to
1841 * release the journal_head from the buffer_head.
1842 */
1843void journal_put_journal_head(struct journal_head *jh)
1844{
1845 struct buffer_head *bh = jh2bh(jh);
1846
1847 jbd_lock_bh_journal_head(bh);
1848 J_ASSERT_JH(jh, jh->b_jcount > 0);
1849 --jh->b_jcount;
1850 if (!jh->b_jcount && !jh->b_transaction) {
1851 __journal_remove_journal_head(bh);
1852 __brelse(bh);
1853 }
1854 jbd_unlock_bh_journal_head(bh);
1855}
1856
1857/*
1858 * /proc tunables
1859 */
1860#if defined(CONFIG_JBD_DEBUG)
1861int journal_enable_debug;
1862EXPORT_SYMBOL(journal_enable_debug);
1863#endif
1864
1865#if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)
1866
1867static struct proc_dir_entry *proc_jbd_debug;
1868
022a4a7b 1869static int read_jbd_debug(char *page, char **start, off_t off,
1da177e4
LT
1870 int count, int *eof, void *data)
1871{
1872 int ret;
1873
1874 ret = sprintf(page + off, "%d\n", journal_enable_debug);
1875 *eof = 1;
1876 return ret;
1877}
1878
022a4a7b 1879static int write_jbd_debug(struct file *file, const char __user *buffer,
1da177e4
LT
1880 unsigned long count, void *data)
1881{
1882 char buf[32];
1883
1884 if (count > ARRAY_SIZE(buf) - 1)
1885 count = ARRAY_SIZE(buf) - 1;
1886 if (copy_from_user(buf, buffer, count))
1887 return -EFAULT;
1888 buf[ARRAY_SIZE(buf) - 1] = '\0';
1889 journal_enable_debug = simple_strtoul(buf, NULL, 10);
1890 return count;
1891}
1892
1893#define JBD_PROC_NAME "sys/fs/jbd-debug"
1894
1895static void __init create_jbd_proc_entry(void)
1896{
1897 proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL);
1898 if (proc_jbd_debug) {
1899 /* Why is this so hard? */
1900 proc_jbd_debug->read_proc = read_jbd_debug;
1901 proc_jbd_debug->write_proc = write_jbd_debug;
1902 }
1903}
1904
1905static void __exit remove_jbd_proc_entry(void)
1906{
1907 if (proc_jbd_debug)
1908 remove_proc_entry(JBD_PROC_NAME, NULL);
1909}
1910
1911#else
1912
1913#define create_jbd_proc_entry() do {} while (0)
1914#define remove_jbd_proc_entry() do {} while (0)
1915
1916#endif
1917
1918kmem_cache_t *jbd_handle_cache;
1919
1920static int __init journal_init_handle_cache(void)
1921{
1922 jbd_handle_cache = kmem_cache_create("journal_handle",
1923 sizeof(handle_t),
1924 0, /* offset */
1925 0, /* flags */
1926 NULL, /* ctor */
1927 NULL); /* dtor */
1928 if (jbd_handle_cache == NULL) {
1929 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1930 return -ENOMEM;
1931 }
1932 return 0;
1933}
1934
1935static void journal_destroy_handle_cache(void)
1936{
1937 if (jbd_handle_cache)
1938 kmem_cache_destroy(jbd_handle_cache);
1939}
1940
1941/*
1942 * Module startup and shutdown
1943 */
1944
1945static int __init journal_init_caches(void)
1946{
1947 int ret;
1948
1949 ret = journal_init_revoke_caches();
1950 if (ret == 0)
1951 ret = journal_init_journal_head_cache();
1952 if (ret == 0)
1953 ret = journal_init_handle_cache();
1954 return ret;
1955}
1956
1957static void journal_destroy_caches(void)
1958{
1959 journal_destroy_revoke_caches();
1960 journal_destroy_journal_head_cache();
1961 journal_destroy_handle_cache();
1962}
1963
1964static int __init journal_init(void)
1965{
1966 int ret;
1967
022a4a7b
AB
1968/* Static check for data structure consistency. There's no code
1969 * invoked --- we'll just get a linker failure if things aren't right.
1970 */
1971 extern void journal_bad_superblock_size(void);
1972 if (sizeof(struct journal_superblock_s) != 1024)
1973 journal_bad_superblock_size();
1974
1975
1da177e4
LT
1976 ret = journal_init_caches();
1977 if (ret != 0)
1978 journal_destroy_caches();
1979 create_jbd_proc_entry();
1980 return ret;
1981}
1982
1983static void __exit journal_exit(void)
1984{
1985#ifdef CONFIG_JBD_DEBUG
1986 int n = atomic_read(&nr_journal_heads);
1987 if (n)
1988 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
1989#endif
1990 remove_jbd_proc_entry();
1991 journal_destroy_caches();
1992}
1993
1994MODULE_LICENSE("GPL");
1995module_init(journal_init);
1996module_exit(journal_exit);
1997