]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
percpu_counter: new function percpu_counter_sum_and_set
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec
DK
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
3dcf5451 39#include "ext4_jbd2.h"
ac27a0ec
DK
40#include "xattr.h"
41#include "acl.h"
42
678aaf48
JK
43static inline int ext4_begin_ordered_truncate(struct inode *inode,
44 loff_t new_size)
45{
46 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
47 new_size);
48}
49
64769240
AT
50static void ext4_invalidatepage(struct page *page, unsigned long offset);
51
ac27a0ec
DK
52/*
53 * Test whether an inode is a fast symlink.
54 */
617ba13b 55static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 56{
617ba13b 57 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
58 (inode->i_sb->s_blocksize >> 9) : 0;
59
60 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
61}
62
63/*
617ba13b 64 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
65 * which has been journaled. Metadata (eg. indirect blocks) must be
66 * revoked in all cases.
67 *
68 * "bh" may be NULL: a metadata block may have been freed from memory
69 * but there may still be a record of it in the journal, and that record
70 * still needs to be revoked.
71 */
617ba13b
MC
72int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
73 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
74{
75 int err;
76
77 might_sleep();
78
79 BUFFER_TRACE(bh, "enter");
80
81 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
82 "data mode %lx\n",
83 bh, is_metadata, inode->i_mode,
84 test_opt(inode->i_sb, DATA_FLAGS));
85
86 /* Never use the revoke function if we are doing full data
87 * journaling: there is no need to, and a V1 superblock won't
88 * support it. Otherwise, only skip the revoke on un-journaled
89 * data blocks. */
90
617ba13b
MC
91 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
92 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 93 if (bh) {
dab291af 94 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 95 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
96 }
97 return 0;
98 }
99
100 /*
101 * data!=journal && (is_metadata || should_journal_data(inode))
102 */
617ba13b
MC
103 BUFFER_TRACE(bh, "call ext4_journal_revoke");
104 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 105 if (err)
46e665e9 106 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
107 "error %d when attempting revoke", err);
108 BUFFER_TRACE(bh, "exit");
109 return err;
110}
111
112/*
113 * Work out how many blocks we need to proceed with the next chunk of a
114 * truncate transaction.
115 */
116static unsigned long blocks_for_truncate(struct inode *inode)
117{
725d26d3 118 ext4_lblk_t needed;
ac27a0ec
DK
119
120 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
121
122 /* Give ourselves just enough room to cope with inodes in which
123 * i_blocks is corrupt: we've seen disk corruptions in the past
124 * which resulted in random data in an inode which looked enough
617ba13b 125 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
126 * will go a bit crazy if that happens, but at least we should
127 * try not to panic the whole kernel. */
128 if (needed < 2)
129 needed = 2;
130
131 /* But we need to bound the transaction so we don't overflow the
132 * journal. */
617ba13b
MC
133 if (needed > EXT4_MAX_TRANS_DATA)
134 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 135
617ba13b 136 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
137}
138
139/*
140 * Truncate transactions can be complex and absolutely huge. So we need to
141 * be able to restart the transaction at a conventient checkpoint to make
142 * sure we don't overflow the journal.
143 *
144 * start_transaction gets us a new handle for a truncate transaction,
145 * and extend_transaction tries to extend the existing one a bit. If
146 * extend fails, we need to propagate the failure up and restart the
147 * transaction in the top-level truncate loop. --sct
148 */
149static handle_t *start_transaction(struct inode *inode)
150{
151 handle_t *result;
152
617ba13b 153 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
154 if (!IS_ERR(result))
155 return result;
156
617ba13b 157 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
158 return result;
159}
160
161/*
162 * Try to extend this transaction for the purposes of truncation.
163 *
164 * Returns 0 if we managed to create more room. If we can't create more
165 * room, and the transaction must be restarted we return 1.
166 */
167static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
168{
617ba13b 169 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 170 return 0;
617ba13b 171 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
172 return 0;
173 return 1;
174}
175
176/*
177 * Restart the transaction associated with *handle. This does a commit,
178 * so before we call here everything must be consistently dirtied against
179 * this transaction.
180 */
617ba13b 181static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
182{
183 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 184 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
185}
186
187/*
188 * Called at the last iput() if i_nlink is zero.
189 */
617ba13b 190void ext4_delete_inode (struct inode * inode)
ac27a0ec
DK
191{
192 handle_t *handle;
193
678aaf48
JK
194 if (ext4_should_order_data(inode))
195 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
196 truncate_inode_pages(&inode->i_data, 0);
197
198 if (is_bad_inode(inode))
199 goto no_delete;
200
201 handle = start_transaction(inode);
202 if (IS_ERR(handle)) {
203 /*
204 * If we're going to skip the normal cleanup, we still need to
205 * make sure that the in-core orphan linked list is properly
206 * cleaned up.
207 */
617ba13b 208 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
209 goto no_delete;
210 }
211
212 if (IS_SYNC(inode))
213 handle->h_sync = 1;
214 inode->i_size = 0;
215 if (inode->i_blocks)
617ba13b 216 ext4_truncate(inode);
ac27a0ec 217 /*
617ba13b 218 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 219 * AKPM: I think this can be inside the above `if'.
617ba13b 220 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 221 * deletion of a non-existent orphan - this is because we don't
617ba13b 222 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
223 * (Well, we could do this if we need to, but heck - it works)
224 */
617ba13b
MC
225 ext4_orphan_del(handle, inode);
226 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
227
228 /*
229 * One subtle ordering requirement: if anything has gone wrong
230 * (transaction abort, IO errors, whatever), then we can still
231 * do these next steps (the fs will already have been marked as
232 * having errors), but we can't free the inode if the mark_dirty
233 * fails.
234 */
617ba13b 235 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
236 /* If that failed, just do the required in-core inode clear. */
237 clear_inode(inode);
238 else
617ba13b
MC
239 ext4_free_inode(handle, inode);
240 ext4_journal_stop(handle);
ac27a0ec
DK
241 return;
242no_delete:
243 clear_inode(inode); /* We must guarantee clearing of inode... */
244}
245
246typedef struct {
247 __le32 *p;
248 __le32 key;
249 struct buffer_head *bh;
250} Indirect;
251
252static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
253{
254 p->key = *(p->p = v);
255 p->bh = bh;
256}
257
ac27a0ec 258/**
617ba13b 259 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
260 * @inode: inode in question (we are only interested in its superblock)
261 * @i_block: block number to be parsed
262 * @offsets: array to store the offsets in
8c55e204
DK
263 * @boundary: set this non-zero if the referred-to block is likely to be
264 * followed (on disk) by an indirect block.
ac27a0ec 265 *
617ba13b 266 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
267 * for UNIX filesystems - tree of pointers anchored in the inode, with
268 * data blocks at leaves and indirect blocks in intermediate nodes.
269 * This function translates the block number into path in that tree -
270 * return value is the path length and @offsets[n] is the offset of
271 * pointer to (n+1)th node in the nth one. If @block is out of range
272 * (negative or too large) warning is printed and zero returned.
273 *
274 * Note: function doesn't find node addresses, so no IO is needed. All
275 * we need to know is the capacity of indirect blocks (taken from the
276 * inode->i_sb).
277 */
278
279/*
280 * Portability note: the last comparison (check that we fit into triple
281 * indirect block) is spelled differently, because otherwise on an
282 * architecture with 32-bit longs and 8Kb pages we might get into trouble
283 * if our filesystem had 8Kb blocks. We might use long long, but that would
284 * kill us on x86. Oh, well, at least the sign propagation does not matter -
285 * i_block would have to be negative in the very beginning, so we would not
286 * get there at all.
287 */
288
617ba13b 289static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
290 ext4_lblk_t i_block,
291 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 292{
617ba13b
MC
293 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
294 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
295 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
296 indirect_blocks = ptrs,
297 double_blocks = (1 << (ptrs_bits * 2));
298 int n = 0;
299 int final = 0;
300
301 if (i_block < 0) {
617ba13b 302 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
303 } else if (i_block < direct_blocks) {
304 offsets[n++] = i_block;
305 final = direct_blocks;
306 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
617ba13b 307 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
308 offsets[n++] = i_block;
309 final = ptrs;
310 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 311 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
312 offsets[n++] = i_block >> ptrs_bits;
313 offsets[n++] = i_block & (ptrs - 1);
314 final = ptrs;
315 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 316 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
317 offsets[n++] = i_block >> (ptrs_bits * 2);
318 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
319 offsets[n++] = i_block & (ptrs - 1);
320 final = ptrs;
321 } else {
e2b46574 322 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 323 "block %lu > max",
e2b46574
ES
324 i_block + direct_blocks +
325 indirect_blocks + double_blocks);
ac27a0ec
DK
326 }
327 if (boundary)
328 *boundary = final - 1 - (i_block & (ptrs - 1));
329 return n;
330}
331
332/**
617ba13b 333 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
334 * @inode: inode in question
335 * @depth: depth of the chain (1 - direct pointer, etc.)
336 * @offsets: offsets of pointers in inode/indirect blocks
337 * @chain: place to store the result
338 * @err: here we store the error value
339 *
340 * Function fills the array of triples <key, p, bh> and returns %NULL
341 * if everything went OK or the pointer to the last filled triple
342 * (incomplete one) otherwise. Upon the return chain[i].key contains
343 * the number of (i+1)-th block in the chain (as it is stored in memory,
344 * i.e. little-endian 32-bit), chain[i].p contains the address of that
345 * number (it points into struct inode for i==0 and into the bh->b_data
346 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
347 * block for i>0 and NULL for i==0. In other words, it holds the block
348 * numbers of the chain, addresses they were taken from (and where we can
349 * verify that chain did not change) and buffer_heads hosting these
350 * numbers.
351 *
352 * Function stops when it stumbles upon zero pointer (absent block)
353 * (pointer to last triple returned, *@err == 0)
354 * or when it gets an IO error reading an indirect block
355 * (ditto, *@err == -EIO)
ac27a0ec
DK
356 * or when it reads all @depth-1 indirect blocks successfully and finds
357 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
358 *
359 * Need to be called with
0e855ac8 360 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 361 */
725d26d3
AK
362static Indirect *ext4_get_branch(struct inode *inode, int depth,
363 ext4_lblk_t *offsets,
ac27a0ec
DK
364 Indirect chain[4], int *err)
365{
366 struct super_block *sb = inode->i_sb;
367 Indirect *p = chain;
368 struct buffer_head *bh;
369
370 *err = 0;
371 /* i_data is not going away, no lock needed */
617ba13b 372 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
373 if (!p->key)
374 goto no_block;
375 while (--depth) {
376 bh = sb_bread(sb, le32_to_cpu(p->key));
377 if (!bh)
378 goto failure;
ac27a0ec
DK
379 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
380 /* Reader: end */
381 if (!p->key)
382 goto no_block;
383 }
384 return NULL;
385
ac27a0ec
DK
386failure:
387 *err = -EIO;
388no_block:
389 return p;
390}
391
392/**
617ba13b 393 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
394 * @inode: owner
395 * @ind: descriptor of indirect block.
396 *
1cc8dcf5 397 * This function returns the preferred place for block allocation.
ac27a0ec
DK
398 * It is used when heuristic for sequential allocation fails.
399 * Rules are:
400 * + if there is a block to the left of our position - allocate near it.
401 * + if pointer will live in indirect block - allocate near that block.
402 * + if pointer will live in inode - allocate in the same
403 * cylinder group.
404 *
405 * In the latter case we colour the starting block by the callers PID to
406 * prevent it from clashing with concurrent allocations for a different inode
407 * in the same block group. The PID is used here so that functionally related
408 * files will be close-by on-disk.
409 *
410 * Caller must make sure that @ind is valid and will stay that way.
411 */
617ba13b 412static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 413{
617ba13b 414 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
415 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
416 __le32 *p;
617ba13b 417 ext4_fsblk_t bg_start;
74d3487f 418 ext4_fsblk_t last_block;
617ba13b 419 ext4_grpblk_t colour;
ac27a0ec
DK
420
421 /* Try to find previous block */
422 for (p = ind->p - 1; p >= start; p--) {
423 if (*p)
424 return le32_to_cpu(*p);
425 }
426
427 /* No such thing, so let's try location of indirect block */
428 if (ind->bh)
429 return ind->bh->b_blocknr;
430
431 /*
432 * It is going to be referred to from the inode itself? OK, just put it
433 * into the same cylinder group then.
434 */
617ba13b 435 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
436 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
437
438 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
439 colour = (current->pid % 16) *
617ba13b 440 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
441 else
442 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
443 return bg_start + colour;
444}
445
446/**
1cc8dcf5 447 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
448 * @inode: owner
449 * @block: block we want
ac27a0ec 450 * @partial: pointer to the last triple within a chain
ac27a0ec 451 *
1cc8dcf5 452 * Normally this function find the preferred place for block allocation,
fb01bfda 453 * returns it.
ac27a0ec 454 */
725d26d3 455static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 456 Indirect *partial)
ac27a0ec 457{
617ba13b 458 struct ext4_block_alloc_info *block_i;
ac27a0ec 459
617ba13b 460 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
461
462 /*
463 * try the heuristic for sequential allocation,
464 * failing that at least try to get decent locality.
465 */
466 if (block_i && (block == block_i->last_alloc_logical_block + 1)
467 && (block_i->last_alloc_physical_block != 0)) {
468 return block_i->last_alloc_physical_block + 1;
469 }
470
617ba13b 471 return ext4_find_near(inode, partial);
ac27a0ec
DK
472}
473
474/**
617ba13b 475 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
476 * of direct blocks need to be allocated for the given branch.
477 *
478 * @branch: chain of indirect blocks
479 * @k: number of blocks need for indirect blocks
480 * @blks: number of data blocks to be mapped.
481 * @blocks_to_boundary: the offset in the indirect block
482 *
483 * return the total number of blocks to be allocate, including the
484 * direct and indirect blocks.
485 */
617ba13b 486static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
487 int blocks_to_boundary)
488{
489 unsigned long count = 0;
490
491 /*
492 * Simple case, [t,d]Indirect block(s) has not allocated yet
493 * then it's clear blocks on that path have not allocated
494 */
495 if (k > 0) {
496 /* right now we don't handle cross boundary allocation */
497 if (blks < blocks_to_boundary + 1)
498 count += blks;
499 else
500 count += blocks_to_boundary + 1;
501 return count;
502 }
503
504 count++;
505 while (count < blks && count <= blocks_to_boundary &&
506 le32_to_cpu(*(branch[0].p + count)) == 0) {
507 count++;
508 }
509 return count;
510}
511
512/**
617ba13b 513 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
514 * @indirect_blks: the number of blocks need to allocate for indirect
515 * blocks
516 *
517 * @new_blocks: on return it will store the new block numbers for
518 * the indirect blocks(if needed) and the first direct block,
519 * @blks: on return it will store the total number of allocated
520 * direct blocks
521 */
617ba13b 522static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
523 ext4_lblk_t iblock, ext4_fsblk_t goal,
524 int indirect_blks, int blks,
525 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
526{
527 int target, i;
7061eba7 528 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 529 int index = 0;
617ba13b 530 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
531 int ret = 0;
532
533 /*
534 * Here we try to allocate the requested multiple blocks at once,
535 * on a best-effort basis.
536 * To build a branch, we should allocate blocks for
537 * the indirect blocks(if not allocated yet), and at least
538 * the first direct block of this branch. That's the
539 * minimum number of blocks need to allocate(required)
540 */
7061eba7
AK
541 /* first we try to allocate the indirect blocks */
542 target = indirect_blks;
543 while (target > 0) {
ac27a0ec
DK
544 count = target;
545 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
546 current_block = ext4_new_meta_blocks(handle, inode,
547 goal, &count, err);
ac27a0ec
DK
548 if (*err)
549 goto failed_out;
550
551 target -= count;
552 /* allocate blocks for indirect blocks */
553 while (index < indirect_blks && count) {
554 new_blocks[index++] = current_block++;
555 count--;
556 }
7061eba7
AK
557 if (count > 0) {
558 /*
559 * save the new block number
560 * for the first direct block
561 */
562 new_blocks[index] = current_block;
563 printk(KERN_INFO "%s returned more blocks than "
564 "requested\n", __func__);
565 WARN_ON(1);
ac27a0ec 566 break;
7061eba7 567 }
ac27a0ec
DK
568 }
569
7061eba7
AK
570 target = blks - count ;
571 blk_allocated = count;
572 if (!target)
573 goto allocated;
574 /* Now allocate data blocks */
575 count = target;
654b4908 576 /* allocating blocks for data blocks */
7061eba7
AK
577 current_block = ext4_new_blocks(handle, inode, iblock,
578 goal, &count, err);
579 if (*err && (target == blks)) {
580 /*
581 * if the allocation failed and we didn't allocate
582 * any blocks before
583 */
584 goto failed_out;
585 }
586 if (!*err) {
587 if (target == blks) {
588 /*
589 * save the new block number
590 * for the first direct block
591 */
592 new_blocks[index] = current_block;
593 }
594 blk_allocated += count;
595 }
596allocated:
ac27a0ec 597 /* total number of blocks allocated for direct blocks */
7061eba7 598 ret = blk_allocated;
ac27a0ec
DK
599 *err = 0;
600 return ret;
601failed_out:
602 for (i = 0; i <index; i++)
c9de560d 603 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
604 return ret;
605}
606
607/**
617ba13b 608 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
609 * @inode: owner
610 * @indirect_blks: number of allocated indirect blocks
611 * @blks: number of allocated direct blocks
612 * @offsets: offsets (in the blocks) to store the pointers to next.
613 * @branch: place to store the chain in.
614 *
615 * This function allocates blocks, zeroes out all but the last one,
616 * links them into chain and (if we are synchronous) writes them to disk.
617 * In other words, it prepares a branch that can be spliced onto the
618 * inode. It stores the information about that chain in the branch[], in
617ba13b 619 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
620 * we had read the existing part of chain and partial points to the last
621 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 622 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
623 * place chain is disconnected - *branch->p is still zero (we did not
624 * set the last link), but branch->key contains the number that should
625 * be placed into *branch->p to fill that gap.
626 *
627 * If allocation fails we free all blocks we've allocated (and forget
628 * their buffer_heads) and return the error value the from failed
617ba13b 629 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
630 * as described above and return 0.
631 */
617ba13b 632static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
633 ext4_lblk_t iblock, int indirect_blks,
634 int *blks, ext4_fsblk_t goal,
635 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
636{
637 int blocksize = inode->i_sb->s_blocksize;
638 int i, n = 0;
639 int err = 0;
640 struct buffer_head *bh;
641 int num;
617ba13b
MC
642 ext4_fsblk_t new_blocks[4];
643 ext4_fsblk_t current_block;
ac27a0ec 644
7061eba7 645 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
646 *blks, new_blocks, &err);
647 if (err)
648 return err;
649
650 branch[0].key = cpu_to_le32(new_blocks[0]);
651 /*
652 * metadata blocks and data blocks are allocated.
653 */
654 for (n = 1; n <= indirect_blks; n++) {
655 /*
656 * Get buffer_head for parent block, zero it out
657 * and set the pointer to new one, then send
658 * parent to disk.
659 */
660 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
661 branch[n].bh = bh;
662 lock_buffer(bh);
663 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 664 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
665 if (err) {
666 unlock_buffer(bh);
667 brelse(bh);
668 goto failed;
669 }
670
671 memset(bh->b_data, 0, blocksize);
672 branch[n].p = (__le32 *) bh->b_data + offsets[n];
673 branch[n].key = cpu_to_le32(new_blocks[n]);
674 *branch[n].p = branch[n].key;
675 if ( n == indirect_blks) {
676 current_block = new_blocks[n];
677 /*
678 * End of chain, update the last new metablock of
679 * the chain to point to the new allocated
680 * data blocks numbers
681 */
682 for (i=1; i < num; i++)
683 *(branch[n].p + i) = cpu_to_le32(++current_block);
684 }
685 BUFFER_TRACE(bh, "marking uptodate");
686 set_buffer_uptodate(bh);
687 unlock_buffer(bh);
688
617ba13b
MC
689 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
690 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
691 if (err)
692 goto failed;
693 }
694 *blks = num;
695 return err;
696failed:
697 /* Allocation failed, free what we already allocated */
698 for (i = 1; i <= n ; i++) {
dab291af 699 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 700 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec
DK
701 }
702 for (i = 0; i <indirect_blks; i++)
c9de560d 703 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 704
c9de560d 705 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
706
707 return err;
708}
709
710/**
617ba13b 711 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
712 * @inode: owner
713 * @block: (logical) number of block we are adding
714 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 715 * ext4_alloc_branch)
ac27a0ec
DK
716 * @where: location of missing link
717 * @num: number of indirect blocks we are adding
718 * @blks: number of direct blocks we are adding
719 *
720 * This function fills the missing link and does all housekeeping needed in
721 * inode (->i_blocks, etc.). In case of success we end up with the full
722 * chain to new block and return 0.
723 */
617ba13b 724static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 725 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
726{
727 int i;
728 int err = 0;
617ba13b
MC
729 struct ext4_block_alloc_info *block_i;
730 ext4_fsblk_t current_block;
ac27a0ec 731
617ba13b 732 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
733 /*
734 * If we're splicing into a [td]indirect block (as opposed to the
735 * inode) then we need to get write access to the [td]indirect block
736 * before the splice.
737 */
738 if (where->bh) {
739 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 740 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
741 if (err)
742 goto err_out;
743 }
744 /* That's it */
745
746 *where->p = where->key;
747
748 /*
749 * Update the host buffer_head or inode to point to more just allocated
750 * direct blocks blocks
751 */
752 if (num == 0 && blks > 1) {
753 current_block = le32_to_cpu(where->key) + 1;
754 for (i = 1; i < blks; i++)
755 *(where->p + i ) = cpu_to_le32(current_block++);
756 }
757
758 /*
759 * update the most recently allocated logical & physical block
760 * in i_block_alloc_info, to assist find the proper goal block for next
761 * allocation
762 */
763 if (block_i) {
764 block_i->last_alloc_logical_block = block + blks - 1;
765 block_i->last_alloc_physical_block =
766 le32_to_cpu(where[num].key) + blks - 1;
767 }
768
769 /* We are done with atomic stuff, now do the rest of housekeeping */
770
ef7f3835 771 inode->i_ctime = ext4_current_time(inode);
617ba13b 772 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
773
774 /* had we spliced it onto indirect block? */
775 if (where->bh) {
776 /*
777 * If we spliced it onto an indirect block, we haven't
778 * altered the inode. Note however that if it is being spliced
779 * onto an indirect block at the very end of the file (the
780 * file is growing) then we *will* alter the inode to reflect
781 * the new i_size. But that is not done here - it is done in
617ba13b 782 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
783 */
784 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
785 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
786 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
787 if (err)
788 goto err_out;
789 } else {
790 /*
791 * OK, we spliced it into the inode itself on a direct block.
792 * Inode was dirtied above.
793 */
794 jbd_debug(5, "splicing direct\n");
795 }
796 return err;
797
798err_out:
799 for (i = 1; i <= num; i++) {
dab291af 800 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 801 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
802 ext4_free_blocks(handle, inode,
803 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 804 }
c9de560d 805 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
806
807 return err;
808}
809
810/*
811 * Allocation strategy is simple: if we have to allocate something, we will
812 * have to go the whole way to leaf. So let's do it before attaching anything
813 * to tree, set linkage between the newborn blocks, write them if sync is
814 * required, recheck the path, free and repeat if check fails, otherwise
815 * set the last missing link (that will protect us from any truncate-generated
816 * removals - all blocks on the path are immune now) and possibly force the
817 * write on the parent block.
818 * That has a nice additional property: no special recovery from the failed
819 * allocations is needed - we simply release blocks and do not touch anything
820 * reachable from inode.
821 *
822 * `handle' can be NULL if create == 0.
823 *
ac27a0ec
DK
824 * return > 0, # of blocks mapped or allocated.
825 * return = 0, if plain lookup failed.
826 * return < 0, error case.
c278bfec
AK
827 *
828 *
829 * Need to be called with
0e855ac8
AK
830 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
831 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 832 */
617ba13b 833int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 834 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
835 struct buffer_head *bh_result,
836 int create, int extend_disksize)
837{
838 int err = -EIO;
725d26d3 839 ext4_lblk_t offsets[4];
ac27a0ec
DK
840 Indirect chain[4];
841 Indirect *partial;
617ba13b 842 ext4_fsblk_t goal;
ac27a0ec
DK
843 int indirect_blks;
844 int blocks_to_boundary = 0;
845 int depth;
617ba13b 846 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 847 int count = 0;
617ba13b 848 ext4_fsblk_t first_block = 0;
ac27a0ec
DK
849
850
a86c6181 851 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 852 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
853 depth = ext4_block_to_path(inode, iblock, offsets,
854 &blocks_to_boundary);
ac27a0ec
DK
855
856 if (depth == 0)
857 goto out;
858
617ba13b 859 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
860
861 /* Simplest case - block found, no allocation needed */
862 if (!partial) {
863 first_block = le32_to_cpu(chain[depth - 1].key);
864 clear_buffer_new(bh_result);
865 count++;
866 /*map more blocks*/
867 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 868 ext4_fsblk_t blk;
ac27a0ec 869
ac27a0ec
DK
870 blk = le32_to_cpu(*(chain[depth-1].p + count));
871
872 if (blk == first_block + count)
873 count++;
874 else
875 break;
876 }
c278bfec 877 goto got_it;
ac27a0ec
DK
878 }
879
880 /* Next simple case - plain lookup or failed read of indirect block */
881 if (!create || err == -EIO)
882 goto cleanup;
883
ac27a0ec
DK
884 /*
885 * Okay, we need to do block allocation. Lazily initialize the block
886 * allocation info here if necessary
887 */
888 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 889 ext4_init_block_alloc_info(inode);
ac27a0ec 890
fb01bfda 891 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
892
893 /* the number of blocks need to allocate for [d,t]indirect blocks */
894 indirect_blks = (chain + depth) - partial - 1;
895
896 /*
897 * Next look up the indirect map to count the totoal number of
898 * direct blocks to allocate for this branch.
899 */
617ba13b 900 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
901 maxblocks, blocks_to_boundary);
902 /*
617ba13b 903 * Block out ext4_truncate while we alter the tree
ac27a0ec 904 */
7061eba7
AK
905 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
906 &count, goal,
907 offsets + (partial - chain), partial);
ac27a0ec
DK
908
909 /*
617ba13b 910 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
911 * on the new chain if there is a failure, but that risks using
912 * up transaction credits, especially for bitmaps where the
913 * credits cannot be returned. Can we handle this somehow? We
914 * may need to return -EAGAIN upwards in the worst case. --sct
915 */
916 if (!err)
617ba13b 917 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
918 partial, indirect_blks, count);
919 /*
0e855ac8 920 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 921 * protect it if you're about to implement concurrent
617ba13b 922 * ext4_get_block() -bzzz
ac27a0ec
DK
923 */
924 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
925 ei->i_disksize = inode->i_size;
ac27a0ec
DK
926 if (err)
927 goto cleanup;
928
929 set_buffer_new(bh_result);
930got_it:
931 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
932 if (count > blocks_to_boundary)
933 set_buffer_boundary(bh_result);
934 err = count;
935 /* Clean up and exit */
936 partial = chain + depth - 1; /* the whole chain */
937cleanup:
938 while (partial > chain) {
939 BUFFER_TRACE(partial->bh, "call brelse");
940 brelse(partial->bh);
941 partial--;
942 }
943 BUFFER_TRACE(bh_result, "returned");
944out:
945 return err;
946}
947
7fb5409d
JK
948/* Maximum number of blocks we map for direct IO at once. */
949#define DIO_MAX_BLOCKS 4096
950/*
951 * Number of credits we need for writing DIO_MAX_BLOCKS:
952 * We need sb + group descriptor + bitmap + inode -> 4
953 * For B blocks with A block pointers per block we need:
954 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
955 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
956 */
957#define DIO_CREDITS 25
ac27a0ec 958
f5ab0d1f
MC
959
960/*
961 *
962 *
963 * ext4_ext4 get_block() wrapper function
964 * It will do a look up first, and returns if the blocks already mapped.
965 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
966 * and store the allocated blocks in the result buffer head and mark it
967 * mapped.
968 *
969 * If file type is extents based, it will call ext4_ext_get_blocks(),
970 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
971 * based files
972 *
973 * On success, it returns the number of blocks being mapped or allocate.
974 * if create==0 and the blocks are pre-allocated and uninitialized block,
975 * the result buffer head is unmapped. If the create ==1, it will make sure
976 * the buffer head is mapped.
977 *
978 * It returns 0 if plain look up failed (blocks have not been allocated), in
979 * that casem, buffer head is unmapped
980 *
981 * It returns the error in case of allocation failure.
982 */
0e855ac8
AK
983int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
984 unsigned long max_blocks, struct buffer_head *bh,
985 int create, int extend_disksize)
986{
987 int retval;
f5ab0d1f
MC
988
989 clear_buffer_mapped(bh);
990
4df3d265
AK
991 /*
992 * Try to see if we can get the block without requesting
993 * for new file system block.
994 */
995 down_read((&EXT4_I(inode)->i_data_sem));
996 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
997 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
998 bh, 0, 0);
0e855ac8 999 } else {
4df3d265
AK
1000 retval = ext4_get_blocks_handle(handle,
1001 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1002 }
4df3d265 1003 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1004
1005 /* If it is only a block(s) look up */
1006 if (!create)
1007 return retval;
1008
1009 /*
1010 * Returns if the blocks have already allocated
1011 *
1012 * Note that if blocks have been preallocated
1013 * ext4_ext_get_block() returns th create = 0
1014 * with buffer head unmapped.
1015 */
1016 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1017 return retval;
1018
1019 /*
f5ab0d1f
MC
1020 * New blocks allocate and/or writing to uninitialized extent
1021 * will possibly result in updating i_data, so we take
1022 * the write lock of i_data_sem, and call get_blocks()
1023 * with create == 1 flag.
4df3d265
AK
1024 */
1025 down_write((&EXT4_I(inode)->i_data_sem));
1026 /*
1027 * We need to check for EXT4 here because migrate
1028 * could have changed the inode type in between
1029 */
0e855ac8
AK
1030 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1031 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1032 bh, create, extend_disksize);
1033 } else {
1034 retval = ext4_get_blocks_handle(handle, inode, block,
1035 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1036
1037 if (retval > 0 && buffer_new(bh)) {
1038 /*
1039 * We allocated new blocks which will result in
1040 * i_data's format changing. Force the migrate
1041 * to fail by clearing migrate flags
1042 */
1043 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1044 ~EXT4_EXT_MIGRATE;
1045 }
0e855ac8 1046 }
4df3d265 1047 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1048 return retval;
1049}
1050
617ba13b 1051static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
1052 struct buffer_head *bh_result, int create)
1053{
3e4fdaf8 1054 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1055 int ret = 0, started = 0;
ac27a0ec
DK
1056 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1057
7fb5409d
JK
1058 if (create && !handle) {
1059 /* Direct IO write... */
1060 if (max_blocks > DIO_MAX_BLOCKS)
1061 max_blocks = DIO_MAX_BLOCKS;
1062 handle = ext4_journal_start(inode, DIO_CREDITS +
1063 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1064 if (IS_ERR(handle)) {
ac27a0ec 1065 ret = PTR_ERR(handle);
7fb5409d 1066 goto out;
ac27a0ec 1067 }
7fb5409d 1068 started = 1;
ac27a0ec
DK
1069 }
1070
7fb5409d 1071 ret = ext4_get_blocks_wrap(handle, inode, iblock,
ac27a0ec 1072 max_blocks, bh_result, create, 0);
7fb5409d
JK
1073 if (ret > 0) {
1074 bh_result->b_size = (ret << inode->i_blkbits);
1075 ret = 0;
ac27a0ec 1076 }
7fb5409d
JK
1077 if (started)
1078 ext4_journal_stop(handle);
1079out:
ac27a0ec
DK
1080 return ret;
1081}
1082
1083/*
1084 * `handle' can be NULL if create is zero
1085 */
617ba13b 1086struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1087 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1088{
1089 struct buffer_head dummy;
1090 int fatal = 0, err;
1091
1092 J_ASSERT(handle != NULL || create == 0);
1093
1094 dummy.b_state = 0;
1095 dummy.b_blocknr = -1000;
1096 buffer_trace_init(&dummy.b_history);
a86c6181 1097 err = ext4_get_blocks_wrap(handle, inode, block, 1,
ac27a0ec
DK
1098 &dummy, create, 1);
1099 /*
617ba13b 1100 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1101 * mapped. 0 in case of a HOLE.
1102 */
1103 if (err > 0) {
1104 if (err > 1)
1105 WARN_ON(1);
1106 err = 0;
1107 }
1108 *errp = err;
1109 if (!err && buffer_mapped(&dummy)) {
1110 struct buffer_head *bh;
1111 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1112 if (!bh) {
1113 *errp = -EIO;
1114 goto err;
1115 }
1116 if (buffer_new(&dummy)) {
1117 J_ASSERT(create != 0);
ac39849d 1118 J_ASSERT(handle != NULL);
ac27a0ec
DK
1119
1120 /*
1121 * Now that we do not always journal data, we should
1122 * keep in mind whether this should always journal the
1123 * new buffer as metadata. For now, regular file
617ba13b 1124 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1125 * problem.
1126 */
1127 lock_buffer(bh);
1128 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1129 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
1130 if (!fatal && !buffer_uptodate(bh)) {
1131 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1132 set_buffer_uptodate(bh);
1133 }
1134 unlock_buffer(bh);
617ba13b
MC
1135 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1136 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1137 if (!fatal)
1138 fatal = err;
1139 } else {
1140 BUFFER_TRACE(bh, "not a new buffer");
1141 }
1142 if (fatal) {
1143 *errp = fatal;
1144 brelse(bh);
1145 bh = NULL;
1146 }
1147 return bh;
1148 }
1149err:
1150 return NULL;
1151}
1152
617ba13b 1153struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1154 ext4_lblk_t block, int create, int *err)
ac27a0ec
DK
1155{
1156 struct buffer_head * bh;
1157
617ba13b 1158 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1159 if (!bh)
1160 return bh;
1161 if (buffer_uptodate(bh))
1162 return bh;
1163 ll_rw_block(READ_META, 1, &bh);
1164 wait_on_buffer(bh);
1165 if (buffer_uptodate(bh))
1166 return bh;
1167 put_bh(bh);
1168 *err = -EIO;
1169 return NULL;
1170}
1171
1172static int walk_page_buffers( handle_t *handle,
1173 struct buffer_head *head,
1174 unsigned from,
1175 unsigned to,
1176 int *partial,
1177 int (*fn)( handle_t *handle,
1178 struct buffer_head *bh))
1179{
1180 struct buffer_head *bh;
1181 unsigned block_start, block_end;
1182 unsigned blocksize = head->b_size;
1183 int err, ret = 0;
1184 struct buffer_head *next;
1185
1186 for ( bh = head, block_start = 0;
1187 ret == 0 && (bh != head || !block_start);
1188 block_start = block_end, bh = next)
1189 {
1190 next = bh->b_this_page;
1191 block_end = block_start + blocksize;
1192 if (block_end <= from || block_start >= to) {
1193 if (partial && !buffer_uptodate(bh))
1194 *partial = 1;
1195 continue;
1196 }
1197 err = (*fn)(handle, bh);
1198 if (!ret)
1199 ret = err;
1200 }
1201 return ret;
1202}
1203
1204/*
1205 * To preserve ordering, it is essential that the hole instantiation and
1206 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1207 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1208 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1209 * prepare_write() is the right place.
1210 *
617ba13b
MC
1211 * Also, this function can nest inside ext4_writepage() ->
1212 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1213 * has generated enough buffer credits to do the whole page. So we won't
1214 * block on the journal in that case, which is good, because the caller may
1215 * be PF_MEMALLOC.
1216 *
617ba13b 1217 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1218 * quota file writes. If we were to commit the transaction while thus
1219 * reentered, there can be a deadlock - we would be holding a quota
1220 * lock, and the commit would never complete if another thread had a
1221 * transaction open and was blocking on the quota lock - a ranking
1222 * violation.
1223 *
dab291af 1224 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1225 * will _not_ run commit under these circumstances because handle->h_ref
1226 * is elevated. We'll still have enough credits for the tiny quotafile
1227 * write.
1228 */
1229static int do_journal_get_write_access(handle_t *handle,
1230 struct buffer_head *bh)
1231{
1232 if (!buffer_mapped(bh) || buffer_freed(bh))
1233 return 0;
617ba13b 1234 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1235}
1236
bfc1af65
NP
1237static int ext4_write_begin(struct file *file, struct address_space *mapping,
1238 loff_t pos, unsigned len, unsigned flags,
1239 struct page **pagep, void **fsdata)
ac27a0ec 1240{
bfc1af65 1241 struct inode *inode = mapping->host;
7479d2b9 1242 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1243 handle_t *handle;
1244 int retries = 0;
bfc1af65
NP
1245 struct page *page;
1246 pgoff_t index;
1247 unsigned from, to;
1248
1249 index = pos >> PAGE_CACHE_SHIFT;
1250 from = pos & (PAGE_CACHE_SIZE - 1);
1251 to = from + len;
ac27a0ec
DK
1252
1253retry:
bfc1af65
NP
1254 handle = ext4_journal_start(inode, needed_blocks);
1255 if (IS_ERR(handle)) {
bfc1af65
NP
1256 ret = PTR_ERR(handle);
1257 goto out;
7479d2b9 1258 }
ac27a0ec 1259
cf108bca
JK
1260 page = __grab_cache_page(mapping, index);
1261 if (!page) {
1262 ext4_journal_stop(handle);
1263 ret = -ENOMEM;
1264 goto out;
1265 }
1266 *pagep = page;
1267
bfc1af65
NP
1268 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1269 ext4_get_block);
1270
1271 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1272 ret = walk_page_buffers(handle, page_buffers(page),
1273 from, to, NULL, do_journal_get_write_access);
1274 }
bfc1af65
NP
1275
1276 if (ret) {
bfc1af65 1277 unlock_page(page);
cf108bca 1278 ext4_journal_stop(handle);
bfc1af65
NP
1279 page_cache_release(page);
1280 }
1281
617ba13b 1282 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1283 goto retry;
7479d2b9 1284out:
ac27a0ec
DK
1285 return ret;
1286}
1287
bfc1af65
NP
1288/* For write_end() in data=journal mode */
1289static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1290{
1291 if (!buffer_mapped(bh) || buffer_freed(bh))
1292 return 0;
1293 set_buffer_uptodate(bh);
617ba13b 1294 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1295}
1296
1297/*
1298 * We need to pick up the new inode size which generic_commit_write gave us
1299 * `file' can be NULL - eg, when called from page_symlink().
1300 *
617ba13b 1301 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1302 * buffers are managed internally.
1303 */
bfc1af65
NP
1304static int ext4_ordered_write_end(struct file *file,
1305 struct address_space *mapping,
1306 loff_t pos, unsigned len, unsigned copied,
1307 struct page *page, void *fsdata)
ac27a0ec 1308{
617ba13b 1309 handle_t *handle = ext4_journal_current_handle();
cf108bca 1310 struct inode *inode = mapping->host;
bfc1af65 1311 unsigned from, to;
ac27a0ec
DK
1312 int ret = 0, ret2;
1313
bfc1af65
NP
1314 from = pos & (PAGE_CACHE_SIZE - 1);
1315 to = from + len;
1316
678aaf48 1317 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1318
1319 if (ret == 0) {
1320 /*
bfc1af65 1321 * generic_write_end() will run mark_inode_dirty() if i_size
ac27a0ec
DK
1322 * changes. So let's piggyback the i_disksize mark_inode_dirty
1323 * into that.
1324 */
1325 loff_t new_i_size;
1326
bfc1af65 1327 new_i_size = pos + copied;
617ba13b
MC
1328 if (new_i_size > EXT4_I(inode)->i_disksize)
1329 EXT4_I(inode)->i_disksize = new_i_size;
cf108bca 1330 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1331 page, fsdata);
f8a87d89
RK
1332 copied = ret2;
1333 if (ret2 < 0)
1334 ret = ret2;
ac27a0ec 1335 }
617ba13b 1336 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1337 if (!ret)
1338 ret = ret2;
bfc1af65
NP
1339
1340 return ret ? ret : copied;
ac27a0ec
DK
1341}
1342
bfc1af65
NP
1343static int ext4_writeback_write_end(struct file *file,
1344 struct address_space *mapping,
1345 loff_t pos, unsigned len, unsigned copied,
1346 struct page *page, void *fsdata)
ac27a0ec 1347{
617ba13b 1348 handle_t *handle = ext4_journal_current_handle();
cf108bca 1349 struct inode *inode = mapping->host;
ac27a0ec
DK
1350 int ret = 0, ret2;
1351 loff_t new_i_size;
1352
bfc1af65 1353 new_i_size = pos + copied;
617ba13b
MC
1354 if (new_i_size > EXT4_I(inode)->i_disksize)
1355 EXT4_I(inode)->i_disksize = new_i_size;
ac27a0ec 1356
cf108bca 1357 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1358 page, fsdata);
f8a87d89
RK
1359 copied = ret2;
1360 if (ret2 < 0)
1361 ret = ret2;
ac27a0ec 1362
617ba13b 1363 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1364 if (!ret)
1365 ret = ret2;
bfc1af65
NP
1366
1367 return ret ? ret : copied;
ac27a0ec
DK
1368}
1369
bfc1af65
NP
1370static int ext4_journalled_write_end(struct file *file,
1371 struct address_space *mapping,
1372 loff_t pos, unsigned len, unsigned copied,
1373 struct page *page, void *fsdata)
ac27a0ec 1374{
617ba13b 1375 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1376 struct inode *inode = mapping->host;
ac27a0ec
DK
1377 int ret = 0, ret2;
1378 int partial = 0;
bfc1af65 1379 unsigned from, to;
ac27a0ec 1380
bfc1af65
NP
1381 from = pos & (PAGE_CACHE_SIZE - 1);
1382 to = from + len;
1383
1384 if (copied < len) {
1385 if (!PageUptodate(page))
1386 copied = 0;
1387 page_zero_new_buffers(page, from+copied, to);
1388 }
ac27a0ec
DK
1389
1390 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1391 to, &partial, write_end_fn);
ac27a0ec
DK
1392 if (!partial)
1393 SetPageUptodate(page);
bfc1af65
NP
1394 if (pos+copied > inode->i_size)
1395 i_size_write(inode, pos+copied);
617ba13b
MC
1396 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1397 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1398 EXT4_I(inode)->i_disksize = inode->i_size;
1399 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1400 if (!ret)
1401 ret = ret2;
1402 }
bfc1af65 1403
cf108bca 1404 unlock_page(page);
617ba13b 1405 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1406 if (!ret)
1407 ret = ret2;
bfc1af65
NP
1408 page_cache_release(page);
1409
1410 return ret ? ret : copied;
ac27a0ec
DK
1411}
1412
64769240
AT
1413/*
1414 * Delayed allocation stuff
1415 */
1416
1417struct mpage_da_data {
1418 struct inode *inode;
1419 struct buffer_head lbh; /* extent of blocks */
1420 unsigned long first_page, next_page; /* extent of pages */
1421 get_block_t *get_block;
1422 struct writeback_control *wbc;
1423};
1424
1425/*
1426 * mpage_da_submit_io - walks through extent of pages and try to write
1427 * them with __mpage_writepage()
1428 *
1429 * @mpd->inode: inode
1430 * @mpd->first_page: first page of the extent
1431 * @mpd->next_page: page after the last page of the extent
1432 * @mpd->get_block: the filesystem's block mapper function
1433 *
1434 * By the time mpage_da_submit_io() is called we expect all blocks
1435 * to be allocated. this may be wrong if allocation failed.
1436 *
1437 * As pages are already locked by write_cache_pages(), we can't use it
1438 */
1439static int mpage_da_submit_io(struct mpage_da_data *mpd)
1440{
1441 struct address_space *mapping = mpd->inode->i_mapping;
1442 struct mpage_data mpd_pp = {
1443 .bio = NULL,
1444 .last_block_in_bio = 0,
1445 .get_block = mpd->get_block,
1446 .use_writepage = 1,
1447 };
1448 int ret = 0, err, nr_pages, i;
1449 unsigned long index, end;
1450 struct pagevec pvec;
1451
1452 BUG_ON(mpd->next_page <= mpd->first_page);
1453
1454 pagevec_init(&pvec, 0);
1455 index = mpd->first_page;
1456 end = mpd->next_page - 1;
1457
1458 while (index <= end) {
1459 /* XXX: optimize tail */
1460 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461 if (nr_pages == 0)
1462 break;
1463 for (i = 0; i < nr_pages; i++) {
1464 struct page *page = pvec.pages[i];
1465
1466 index = page->index;
1467 if (index > end)
1468 break;
1469 index++;
1470
1471 err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1472
1473 /*
1474 * In error case, we have to continue because
1475 * remaining pages are still locked
1476 * XXX: unlock and re-dirty them?
1477 */
1478 if (ret == 0)
1479 ret = err;
1480 }
1481 pagevec_release(&pvec);
1482 }
1483 if (mpd_pp.bio)
1484 mpage_bio_submit(WRITE, mpd_pp.bio);
1485
1486 return ret;
1487}
1488
1489/*
1490 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1491 *
1492 * @mpd->inode - inode to walk through
1493 * @exbh->b_blocknr - first block on a disk
1494 * @exbh->b_size - amount of space in bytes
1495 * @logical - first logical block to start assignment with
1496 *
1497 * the function goes through all passed space and put actual disk
1498 * block numbers into buffer heads, dropping BH_Delay
1499 */
1500static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1501 struct buffer_head *exbh)
1502{
1503 struct inode *inode = mpd->inode;
1504 struct address_space *mapping = inode->i_mapping;
1505 int blocks = exbh->b_size >> inode->i_blkbits;
1506 sector_t pblock = exbh->b_blocknr, cur_logical;
1507 struct buffer_head *head, *bh;
1508 unsigned long index, end;
1509 struct pagevec pvec;
1510 int nr_pages, i;
1511
1512 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1513 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1514 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1515
1516 pagevec_init(&pvec, 0);
1517
1518 while (index <= end) {
1519 /* XXX: optimize tail */
1520 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1521 if (nr_pages == 0)
1522 break;
1523 for (i = 0; i < nr_pages; i++) {
1524 struct page *page = pvec.pages[i];
1525
1526 index = page->index;
1527 if (index > end)
1528 break;
1529 index++;
1530
1531 BUG_ON(!PageLocked(page));
1532 BUG_ON(PageWriteback(page));
1533 BUG_ON(!page_has_buffers(page));
1534
1535 bh = page_buffers(page);
1536 head = bh;
1537
1538 /* skip blocks out of the range */
1539 do {
1540 if (cur_logical >= logical)
1541 break;
1542 cur_logical++;
1543 } while ((bh = bh->b_this_page) != head);
1544
1545 do {
1546 if (cur_logical >= logical + blocks)
1547 break;
1548
1549 if (buffer_delay(bh)) {
1550 bh->b_blocknr = pblock;
1551 clear_buffer_delay(bh);
1552 } else if (buffer_mapped(bh)) {
1553 BUG_ON(bh->b_blocknr != pblock);
1554 }
1555
1556 cur_logical++;
1557 pblock++;
1558 } while ((bh = bh->b_this_page) != head);
1559 }
1560 pagevec_release(&pvec);
1561 }
1562}
1563
1564
1565/*
1566 * __unmap_underlying_blocks - just a helper function to unmap
1567 * set of blocks described by @bh
1568 */
1569static inline void __unmap_underlying_blocks(struct inode *inode,
1570 struct buffer_head *bh)
1571{
1572 struct block_device *bdev = inode->i_sb->s_bdev;
1573 int blocks, i;
1574
1575 blocks = bh->b_size >> inode->i_blkbits;
1576 for (i = 0; i < blocks; i++)
1577 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1578}
1579
1580/*
1581 * mpage_da_map_blocks - go through given space
1582 *
1583 * @mpd->lbh - bh describing space
1584 * @mpd->get_block - the filesystem's block mapper function
1585 *
1586 * The function skips space we know is already mapped to disk blocks.
1587 *
1588 * The function ignores errors ->get_block() returns, thus real
1589 * error handling is postponed to __mpage_writepage()
1590 */
1591static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1592{
1593 struct buffer_head *lbh = &mpd->lbh;
1594 int err = 0, remain = lbh->b_size;
1595 sector_t next = lbh->b_blocknr;
1596 struct buffer_head new;
1597
1598 /*
1599 * We consider only non-mapped and non-allocated blocks
1600 */
1601 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1602 return;
1603
1604 while (remain) {
1605 new.b_state = lbh->b_state;
1606 new.b_blocknr = 0;
1607 new.b_size = remain;
1608 err = mpd->get_block(mpd->inode, next, &new, 1);
1609 if (err) {
1610 /*
1611 * Rather than implement own error handling
1612 * here, we just leave remaining blocks
1613 * unallocated and try again with ->writepage()
1614 */
1615 break;
1616 }
1617 BUG_ON(new.b_size == 0);
1618
1619 if (buffer_new(&new))
1620 __unmap_underlying_blocks(mpd->inode, &new);
1621
1622 /*
1623 * If blocks are delayed marked, we need to
1624 * put actual blocknr and drop delayed bit
1625 */
1626 if (buffer_delay(lbh))
1627 mpage_put_bnr_to_bhs(mpd, next, &new);
1628
1629 /* go for the remaining blocks */
1630 next += new.b_size >> mpd->inode->i_blkbits;
1631 remain -= new.b_size;
1632 }
1633}
1634
1635#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1636
1637/*
1638 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1639 *
1640 * @mpd->lbh - extent of blocks
1641 * @logical - logical number of the block in the file
1642 * @bh - bh of the block (used to access block's state)
1643 *
1644 * the function is used to collect contig. blocks in same state
1645 */
1646static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1647 sector_t logical, struct buffer_head *bh)
1648{
1649 struct buffer_head *lbh = &mpd->lbh;
1650 sector_t next;
1651
1652 next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1653
1654 /*
1655 * First block in the extent
1656 */
1657 if (lbh->b_size == 0) {
1658 lbh->b_blocknr = logical;
1659 lbh->b_size = bh->b_size;
1660 lbh->b_state = bh->b_state & BH_FLAGS;
1661 return;
1662 }
1663
1664 /*
1665 * Can we merge the block to our big extent?
1666 */
1667 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1668 lbh->b_size += bh->b_size;
1669 return;
1670 }
1671
1672 /*
1673 * We couldn't merge the block to our extent, so we
1674 * need to flush current extent and start new one
1675 */
1676 mpage_da_map_blocks(mpd);
1677
1678 /*
1679 * Now start a new extent
1680 */
1681 lbh->b_size = bh->b_size;
1682 lbh->b_state = bh->b_state & BH_FLAGS;
1683 lbh->b_blocknr = logical;
1684}
1685
1686/*
1687 * __mpage_da_writepage - finds extent of pages and blocks
1688 *
1689 * @page: page to consider
1690 * @wbc: not used, we just follow rules
1691 * @data: context
1692 *
1693 * The function finds extents of pages and scan them for all blocks.
1694 */
1695static int __mpage_da_writepage(struct page *page,
1696 struct writeback_control *wbc, void *data)
1697{
1698 struct mpage_da_data *mpd = data;
1699 struct inode *inode = mpd->inode;
1700 struct buffer_head *bh, *head, fake;
1701 sector_t logical;
1702
1703 /*
1704 * Can we merge this page to current extent?
1705 */
1706 if (mpd->next_page != page->index) {
1707 /*
1708 * Nope, we can't. So, we map non-allocated blocks
1709 * and start IO on them using __mpage_writepage()
1710 */
1711 if (mpd->next_page != mpd->first_page) {
1712 mpage_da_map_blocks(mpd);
1713 mpage_da_submit_io(mpd);
1714 }
1715
1716 /*
1717 * Start next extent of pages ...
1718 */
1719 mpd->first_page = page->index;
1720
1721 /*
1722 * ... and blocks
1723 */
1724 mpd->lbh.b_size = 0;
1725 mpd->lbh.b_state = 0;
1726 mpd->lbh.b_blocknr = 0;
1727 }
1728
1729 mpd->next_page = page->index + 1;
1730 logical = (sector_t) page->index <<
1731 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1732
1733 if (!page_has_buffers(page)) {
1734 /*
1735 * There is no attached buffer heads yet (mmap?)
1736 * we treat the page asfull of dirty blocks
1737 */
1738 bh = &fake;
1739 bh->b_size = PAGE_CACHE_SIZE;
1740 bh->b_state = 0;
1741 set_buffer_dirty(bh);
1742 set_buffer_uptodate(bh);
1743 mpage_add_bh_to_extent(mpd, logical, bh);
1744 } else {
1745 /*
1746 * Page with regular buffer heads, just add all dirty ones
1747 */
1748 head = page_buffers(page);
1749 bh = head;
1750 do {
1751 BUG_ON(buffer_locked(bh));
1752 if (buffer_dirty(bh))
1753 mpage_add_bh_to_extent(mpd, logical, bh);
1754 logical++;
1755 } while ((bh = bh->b_this_page) != head);
1756 }
1757
1758 return 0;
1759}
1760
1761/*
1762 * mpage_da_writepages - walk the list of dirty pages of the given
1763 * address space, allocates non-allocated blocks, maps newly-allocated
1764 * blocks to existing bhs and issue IO them
1765 *
1766 * @mapping: address space structure to write
1767 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1768 * @get_block: the filesystem's block mapper function.
1769 *
1770 * This is a library function, which implements the writepages()
1771 * address_space_operation.
1772 *
1773 * In order to avoid duplication of logic that deals with partial pages,
1774 * multiple bio per page, etc, we find non-allocated blocks, allocate
1775 * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1776 *
1777 * It's important that we call __mpage_writepage() only once for each
1778 * involved page, otherwise we'd have to implement more complicated logic
1779 * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1780 *
1781 * See comments to mpage_writepages()
1782 */
1783static int mpage_da_writepages(struct address_space *mapping,
1784 struct writeback_control *wbc,
1785 get_block_t get_block)
1786{
1787 struct mpage_da_data mpd;
1788 int ret;
1789
1790 if (!get_block)
1791 return generic_writepages(mapping, wbc);
1792
1793 mpd.wbc = wbc;
1794 mpd.inode = mapping->host;
1795 mpd.lbh.b_size = 0;
1796 mpd.lbh.b_state = 0;
1797 mpd.lbh.b_blocknr = 0;
1798 mpd.first_page = 0;
1799 mpd.next_page = 0;
1800 mpd.get_block = get_block;
1801
1802 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
1803
1804 /*
1805 * Handle last extent of pages
1806 */
1807 if (mpd.next_page != mpd.first_page) {
1808 mpage_da_map_blocks(&mpd);
1809 mpage_da_submit_io(&mpd);
1810 }
1811
1812 return ret;
1813}
1814
1815/*
1816 * this is a special callback for ->write_begin() only
1817 * it's intention is to return mapped block or reserve space
1818 */
1819static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1820 struct buffer_head *bh_result, int create)
1821{
1822 int ret = 0;
1823
1824 BUG_ON(create == 0);
1825 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1826
1827 /*
1828 * first, we need to know whether the block is allocated already
1829 * preallocated blocks are unmapped but should treated
1830 * the same as allocated blocks.
1831 */
1832 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0);
1833 if (ret == 0) {
1834 /* the block isn't allocated yet, let's reserve space */
1835 /* XXX: call reservation here */
1836 /*
1837 * XXX: __block_prepare_write() unmaps passed block,
1838 * is it OK?
1839 */
1840 map_bh(bh_result, inode->i_sb, 0);
1841 set_buffer_new(bh_result);
1842 set_buffer_delay(bh_result);
1843 } else if (ret > 0) {
1844 bh_result->b_size = (ret << inode->i_blkbits);
1845 ret = 0;
1846 }
1847
1848 return ret;
1849}
1850
1851static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1852 struct buffer_head *bh_result, int create)
1853{
1854 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1855 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1856 loff_t disksize = EXT4_I(inode)->i_disksize;
1857 handle_t *handle = NULL;
1858
1859 if (create) {
1860 handle = ext4_journal_start(inode, needed_blocks);
1861 if (IS_ERR(handle)) {
1862 ret = PTR_ERR(handle);
1863 goto out;
1864 }
1865 }
1866
1867 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
1868 bh_result, create, 0);
1869 if (ret > 0) {
1870 bh_result->b_size = (ret << inode->i_blkbits);
1871
1872 /*
1873 * Update on-disk size along with block allocation
1874 * we don't use 'extend_disksize' as size may change
1875 * within already allocated block -bzzz
1876 */
1877 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
1878 if (disksize > i_size_read(inode))
1879 disksize = i_size_read(inode);
1880 if (disksize > EXT4_I(inode)->i_disksize) {
1881 /*
1882 * XXX: replace with spinlock if seen contended -bzzz
1883 */
1884 down_write(&EXT4_I(inode)->i_data_sem);
1885 if (disksize > EXT4_I(inode)->i_disksize)
1886 EXT4_I(inode)->i_disksize = disksize;
1887 up_write(&EXT4_I(inode)->i_data_sem);
1888
1889 if (EXT4_I(inode)->i_disksize == disksize) {
1890 if (handle == NULL)
1891 handle = ext4_journal_start(inode, 1);
1892 if (!IS_ERR(handle))
1893 ext4_mark_inode_dirty(handle, inode);
1894 }
1895 }
1896
1897 ret = 0;
1898 }
1899
1900out:
1901 if (handle && !IS_ERR(handle))
1902 ext4_journal_stop(handle);
1903
1904 return ret;
1905}
1906/* FIXME!! only support data=writeback mode */
1907static int ext4_da_writepage(struct page *page,
1908 struct writeback_control *wbc)
1909{
1910 struct inode *inode = page->mapping->host;
1911 handle_t *handle = NULL;
1912 int ret = 0;
1913 int err;
1914
1915 if (ext4_journal_current_handle())
1916 goto out_fail;
1917
1918 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1919 if (IS_ERR(handle)) {
1920 ret = PTR_ERR(handle);
1921 goto out_fail;
1922 }
1923
1924 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1925 ret = nobh_writepage(page, ext4_get_block, wbc);
1926 else
1927 ret = block_write_full_page(page, ext4_get_block, wbc);
1928
1929 if (!ret && inode->i_size > EXT4_I(inode)->i_disksize) {
1930 EXT4_I(inode)->i_disksize = inode->i_size;
1931 ext4_mark_inode_dirty(handle, inode);
1932 }
1933
1934 err = ext4_journal_stop(handle);
1935 if (!ret)
1936 ret = err;
1937 return ret;
1938
1939out_fail:
1940 redirty_page_for_writepage(wbc, page);
1941 unlock_page(page);
1942 return ret;
1943}
1944
1945static int ext4_da_writepages(struct address_space *mapping,
1946 struct writeback_control *wbc)
1947{
1948 return mpage_da_writepages(mapping, wbc, ext4_da_get_block_write);
1949}
1950
1951static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
1952 loff_t pos, unsigned len, unsigned flags,
1953 struct page **pagep, void **fsdata)
1954{
1955 int ret;
1956 struct page *page;
1957 pgoff_t index;
1958 unsigned from, to;
1959 struct inode *inode = mapping->host;
1960 handle_t *handle;
1961
1962 index = pos >> PAGE_CACHE_SHIFT;
1963 from = pos & (PAGE_CACHE_SIZE - 1);
1964 to = from + len;
1965
1966 /*
1967 * With delayed allocation, we don't log the i_disksize update
1968 * if there is delayed block allocation. But we still need
1969 * to journalling the i_disksize update if writes to the end
1970 * of file which has an already mapped buffer.
1971 */
1972 handle = ext4_journal_start(inode, 1);
1973 if (IS_ERR(handle)) {
1974 ret = PTR_ERR(handle);
1975 goto out;
1976 }
1977
1978 page = __grab_cache_page(mapping, index);
1979 if (!page)
1980 return -ENOMEM;
1981 *pagep = page;
1982
1983 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1984 ext4_da_get_block_prep);
1985 if (ret < 0) {
1986 unlock_page(page);
1987 ext4_journal_stop(handle);
1988 page_cache_release(page);
1989 }
1990
1991out:
1992 return ret;
1993}
1994
1995static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
1996{
1997 return !buffer_mapped(bh) || buffer_delay(bh);
1998}
1999
2000static int ext4_da_write_end(struct file *file,
2001 struct address_space *mapping,
2002 loff_t pos, unsigned len, unsigned copied,
2003 struct page *page, void *fsdata)
2004{
2005 struct inode *inode = mapping->host;
2006 int ret = 0, ret2;
2007 handle_t *handle = ext4_journal_current_handle();
2008 loff_t new_i_size;
2009
2010 /*
2011 * generic_write_end() will run mark_inode_dirty() if i_size
2012 * changes. So let's piggyback the i_disksize mark_inode_dirty
2013 * into that.
2014 */
2015
2016 new_i_size = pos + copied;
2017 if (new_i_size > EXT4_I(inode)->i_disksize)
2018 if (!walk_page_buffers(NULL, page_buffers(page),
2019 0, len, NULL, ext4_bh_unmapped_or_delay)){
2020 /*
2021 * Updating i_disksize when extending file without
2022 * needing block allocation
2023 */
2024 if (ext4_should_order_data(inode))
2025 ret = ext4_jbd2_file_inode(handle, inode);
2026
2027 EXT4_I(inode)->i_disksize = new_i_size;
2028 }
2029 ret2 = generic_write_end(file, mapping, pos, len, copied,
2030 page, fsdata);
2031 copied = ret2;
2032 if (ret2 < 0)
2033 ret = ret2;
2034 ret2 = ext4_journal_stop(handle);
2035 if (!ret)
2036 ret = ret2;
2037
2038 return ret ? ret : copied;
2039}
2040
2041static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2042{
2043 struct buffer_head *head, *bh;
2044 unsigned int curr_off = 0;
2045
2046 /*
2047 * Drop reserved blocks
2048 */
2049 BUG_ON(!PageLocked(page));
2050 if (!page_has_buffers(page))
2051 goto out;
2052
2053 head = page_buffers(page);
2054 bh = head;
2055 do {
2056 unsigned int next_off = curr_off + bh->b_size;
2057
2058 /*
2059 * is this block fully invalidated?
2060 */
2061 if (offset <= curr_off && buffer_delay(bh)) {
2062 clear_buffer_delay(bh);
2063 /* XXX: add real stuff here */
2064 }
2065 curr_off = next_off;
2066 bh = bh->b_this_page;
2067 } while (bh != head);
2068
2069out:
2070 ext4_invalidatepage(page, offset);
2071
2072 return;
2073}
2074
2075
ac27a0ec
DK
2076/*
2077 * bmap() is special. It gets used by applications such as lilo and by
2078 * the swapper to find the on-disk block of a specific piece of data.
2079 *
2080 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2081 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2082 * filesystem and enables swap, then they may get a nasty shock when the
2083 * data getting swapped to that swapfile suddenly gets overwritten by
2084 * the original zero's written out previously to the journal and
2085 * awaiting writeback in the kernel's buffer cache.
2086 *
2087 * So, if we see any bmap calls here on a modified, data-journaled file,
2088 * take extra steps to flush any blocks which might be in the cache.
2089 */
617ba13b 2090static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2091{
2092 struct inode *inode = mapping->host;
2093 journal_t *journal;
2094 int err;
2095
64769240
AT
2096 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2097 test_opt(inode->i_sb, DELALLOC)) {
2098 /*
2099 * With delalloc we want to sync the file
2100 * so that we can make sure we allocate
2101 * blocks for file
2102 */
2103 filemap_write_and_wait(mapping);
2104 }
2105
617ba13b 2106 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2107 /*
2108 * This is a REALLY heavyweight approach, but the use of
2109 * bmap on dirty files is expected to be extremely rare:
2110 * only if we run lilo or swapon on a freshly made file
2111 * do we expect this to happen.
2112 *
2113 * (bmap requires CAP_SYS_RAWIO so this does not
2114 * represent an unprivileged user DOS attack --- we'd be
2115 * in trouble if mortal users could trigger this path at
2116 * will.)
2117 *
617ba13b 2118 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2119 * regular files. If somebody wants to bmap a directory
2120 * or symlink and gets confused because the buffer
2121 * hasn't yet been flushed to disk, they deserve
2122 * everything they get.
2123 */
2124
617ba13b
MC
2125 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2126 journal = EXT4_JOURNAL(inode);
dab291af
MC
2127 jbd2_journal_lock_updates(journal);
2128 err = jbd2_journal_flush(journal);
2129 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2130
2131 if (err)
2132 return 0;
2133 }
2134
617ba13b 2135 return generic_block_bmap(mapping,block,ext4_get_block);
ac27a0ec
DK
2136}
2137
2138static int bget_one(handle_t *handle, struct buffer_head *bh)
2139{
2140 get_bh(bh);
2141 return 0;
2142}
2143
2144static int bput_one(handle_t *handle, struct buffer_head *bh)
2145{
2146 put_bh(bh);
2147 return 0;
2148}
2149
ac27a0ec 2150/*
678aaf48
JK
2151 * Note that we don't need to start a transaction unless we're journaling data
2152 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2153 * need to file the inode to the transaction's list in ordered mode because if
2154 * we are writing back data added by write(), the inode is already there and if
2155 * we are writing back data modified via mmap(), noone guarantees in which
2156 * transaction the data will hit the disk. In case we are journaling data, we
2157 * cannot start transaction directly because transaction start ranks above page
2158 * lock so we have to do some magic.
ac27a0ec 2159 *
678aaf48 2160 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2161 *
2162 * Problem:
2163 *
617ba13b
MC
2164 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2165 * ext4_writepage()
ac27a0ec
DK
2166 *
2167 * Similar for:
2168 *
617ba13b 2169 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2170 *
617ba13b 2171 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2172 * lock_journal and i_data_sem
ac27a0ec
DK
2173 *
2174 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2175 * allocations fail.
2176 *
2177 * 16May01: If we're reentered then journal_current_handle() will be
2178 * non-zero. We simply *return*.
2179 *
2180 * 1 July 2001: @@@ FIXME:
2181 * In journalled data mode, a data buffer may be metadata against the
2182 * current transaction. But the same file is part of a shared mapping
2183 * and someone does a writepage() on it.
2184 *
2185 * We will move the buffer onto the async_data list, but *after* it has
2186 * been dirtied. So there's a small window where we have dirty data on
2187 * BJ_Metadata.
2188 *
2189 * Note that this only applies to the last partial page in the file. The
2190 * bit which block_write_full_page() uses prepare/commit for. (That's
2191 * broken code anyway: it's wrong for msync()).
2192 *
2193 * It's a rare case: affects the final partial page, for journalled data
2194 * where the file is subject to bith write() and writepage() in the same
2195 * transction. To fix it we'll need a custom block_write_full_page().
2196 * We'll probably need that anyway for journalling writepage() output.
2197 *
2198 * We don't honour synchronous mounts for writepage(). That would be
2199 * disastrous. Any write() or metadata operation will sync the fs for
2200 * us.
2201 *
ac27a0ec 2202 */
678aaf48 2203static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2204 struct writeback_control *wbc)
2205{
2206 struct inode *inode = page->mapping->host;
2207
2208 if (test_opt(inode->i_sb, NOBH))
2209 return nobh_writepage(page, ext4_get_block, wbc);
2210 else
2211 return block_write_full_page(page, ext4_get_block, wbc);
2212}
2213
2214
678aaf48 2215static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2216 struct writeback_control *wbc)
2217{
2218 struct inode *inode = page->mapping->host;
cf108bca
JK
2219 loff_t size = i_size_read(inode);
2220 loff_t len;
2221
2222 J_ASSERT(PageLocked(page));
2223 J_ASSERT(page_has_buffers(page));
2224 if (page->index == size >> PAGE_CACHE_SHIFT)
2225 len = size & ~PAGE_CACHE_MASK;
2226 else
2227 len = PAGE_CACHE_SIZE;
2228 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2229 ext4_bh_unmapped_or_delay));
2230
2231 if (!ext4_journal_current_handle())
678aaf48 2232 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2233
2234 redirty_page_for_writepage(wbc, page);
2235 unlock_page(page);
2236 return 0;
2237}
2238
2239static int __ext4_journalled_writepage(struct page *page,
2240 struct writeback_control *wbc)
2241{
2242 struct address_space *mapping = page->mapping;
2243 struct inode *inode = mapping->host;
2244 struct buffer_head *page_bufs;
ac27a0ec
DK
2245 handle_t *handle = NULL;
2246 int ret = 0;
2247 int err;
2248
cf108bca
JK
2249 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, ext4_get_block);
2250 if (ret != 0)
2251 goto out_unlock;
2252
2253 page_bufs = page_buffers(page);
2254 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2255 bget_one);
2256 /* As soon as we unlock the page, it can go away, but we have
2257 * references to buffers so we are safe */
2258 unlock_page(page);
ac27a0ec 2259
617ba13b 2260 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2261 if (IS_ERR(handle)) {
2262 ret = PTR_ERR(handle);
cf108bca 2263 goto out;
ac27a0ec
DK
2264 }
2265
cf108bca
JK
2266 ret = walk_page_buffers(handle, page_bufs, 0,
2267 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2268
cf108bca
JK
2269 err = walk_page_buffers(handle, page_bufs, 0,
2270 PAGE_CACHE_SIZE, NULL, write_end_fn);
2271 if (ret == 0)
2272 ret = err;
617ba13b 2273 err = ext4_journal_stop(handle);
ac27a0ec
DK
2274 if (!ret)
2275 ret = err;
ac27a0ec 2276
cf108bca
JK
2277 walk_page_buffers(handle, page_bufs, 0,
2278 PAGE_CACHE_SIZE, NULL, bput_one);
2279 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2280 goto out;
2281
2282out_unlock:
ac27a0ec 2283 unlock_page(page);
cf108bca 2284out:
ac27a0ec
DK
2285 return ret;
2286}
2287
617ba13b 2288static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2289 struct writeback_control *wbc)
2290{
2291 struct inode *inode = page->mapping->host;
cf108bca
JK
2292 loff_t size = i_size_read(inode);
2293 loff_t len;
ac27a0ec 2294
cf108bca
JK
2295 J_ASSERT(PageLocked(page));
2296 J_ASSERT(page_has_buffers(page));
2297 if (page->index == size >> PAGE_CACHE_SHIFT)
2298 len = size & ~PAGE_CACHE_MASK;
2299 else
2300 len = PAGE_CACHE_SIZE;
2301 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2302 ext4_bh_unmapped_or_delay));
ac27a0ec 2303
cf108bca 2304 if (ext4_journal_current_handle())
ac27a0ec 2305 goto no_write;
ac27a0ec 2306
cf108bca 2307 if (PageChecked(page)) {
ac27a0ec
DK
2308 /*
2309 * It's mmapped pagecache. Add buffers and journal it. There
2310 * doesn't seem much point in redirtying the page here.
2311 */
2312 ClearPageChecked(page);
cf108bca 2313 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
2314 } else {
2315 /*
2316 * It may be a page full of checkpoint-mode buffers. We don't
2317 * really know unless we go poke around in the buffer_heads.
2318 * But block_write_full_page will do the right thing.
2319 */
cf108bca 2320 return block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec 2321 }
ac27a0ec
DK
2322no_write:
2323 redirty_page_for_writepage(wbc, page);
ac27a0ec 2324 unlock_page(page);
cf108bca 2325 return 0;
ac27a0ec
DK
2326}
2327
617ba13b 2328static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2329{
617ba13b 2330 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2331}
2332
2333static int
617ba13b 2334ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2335 struct list_head *pages, unsigned nr_pages)
2336{
617ba13b 2337 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2338}
2339
617ba13b 2340static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2341{
617ba13b 2342 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2343
2344 /*
2345 * If it's a full truncate we just forget about the pending dirtying
2346 */
2347 if (offset == 0)
2348 ClearPageChecked(page);
2349
dab291af 2350 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
2351}
2352
617ba13b 2353static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2354{
617ba13b 2355 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2356
2357 WARN_ON(PageChecked(page));
2358 if (!page_has_buffers(page))
2359 return 0;
dab291af 2360 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
2361}
2362
2363/*
2364 * If the O_DIRECT write will extend the file then add this inode to the
2365 * orphan list. So recovery will truncate it back to the original size
2366 * if the machine crashes during the write.
2367 *
2368 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
2369 * crashes then stale disk data _may_ be exposed inside the file. But current
2370 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 2371 */
617ba13b 2372static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
2373 const struct iovec *iov, loff_t offset,
2374 unsigned long nr_segs)
2375{
2376 struct file *file = iocb->ki_filp;
2377 struct inode *inode = file->f_mapping->host;
617ba13b 2378 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 2379 handle_t *handle;
ac27a0ec
DK
2380 ssize_t ret;
2381 int orphan = 0;
2382 size_t count = iov_length(iov, nr_segs);
2383
2384 if (rw == WRITE) {
2385 loff_t final_size = offset + count;
2386
ac27a0ec 2387 if (final_size > inode->i_size) {
7fb5409d
JK
2388 /* Credits for sb + inode write */
2389 handle = ext4_journal_start(inode, 2);
2390 if (IS_ERR(handle)) {
2391 ret = PTR_ERR(handle);
2392 goto out;
2393 }
617ba13b 2394 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
2395 if (ret) {
2396 ext4_journal_stop(handle);
2397 goto out;
2398 }
ac27a0ec
DK
2399 orphan = 1;
2400 ei->i_disksize = inode->i_size;
7fb5409d 2401 ext4_journal_stop(handle);
ac27a0ec
DK
2402 }
2403 }
2404
2405 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2406 offset, nr_segs,
617ba13b 2407 ext4_get_block, NULL);
ac27a0ec 2408
7fb5409d 2409 if (orphan) {
ac27a0ec
DK
2410 int err;
2411
7fb5409d
JK
2412 /* Credits for sb + inode write */
2413 handle = ext4_journal_start(inode, 2);
2414 if (IS_ERR(handle)) {
2415 /* This is really bad luck. We've written the data
2416 * but cannot extend i_size. Bail out and pretend
2417 * the write failed... */
2418 ret = PTR_ERR(handle);
2419 goto out;
2420 }
2421 if (inode->i_nlink)
617ba13b 2422 ext4_orphan_del(handle, inode);
7fb5409d 2423 if (ret > 0) {
ac27a0ec
DK
2424 loff_t end = offset + ret;
2425 if (end > inode->i_size) {
2426 ei->i_disksize = end;
2427 i_size_write(inode, end);
2428 /*
2429 * We're going to return a positive `ret'
2430 * here due to non-zero-length I/O, so there's
2431 * no way of reporting error returns from
617ba13b 2432 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
2433 * ignore it.
2434 */
617ba13b 2435 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
2436 }
2437 }
617ba13b 2438 err = ext4_journal_stop(handle);
ac27a0ec
DK
2439 if (ret == 0)
2440 ret = err;
2441 }
2442out:
2443 return ret;
2444}
2445
2446/*
617ba13b 2447 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
2448 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2449 * much here because ->set_page_dirty is called under VFS locks. The page is
2450 * not necessarily locked.
2451 *
2452 * We cannot just dirty the page and leave attached buffers clean, because the
2453 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2454 * or jbddirty because all the journalling code will explode.
2455 *
2456 * So what we do is to mark the page "pending dirty" and next time writepage
2457 * is called, propagate that into the buffers appropriately.
2458 */
617ba13b 2459static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
2460{
2461 SetPageChecked(page);
2462 return __set_page_dirty_nobuffers(page);
2463}
2464
617ba13b
MC
2465static const struct address_space_operations ext4_ordered_aops = {
2466 .readpage = ext4_readpage,
2467 .readpages = ext4_readpages,
678aaf48 2468 .writepage = ext4_normal_writepage,
ac27a0ec 2469 .sync_page = block_sync_page,
bfc1af65
NP
2470 .write_begin = ext4_write_begin,
2471 .write_end = ext4_ordered_write_end,
617ba13b
MC
2472 .bmap = ext4_bmap,
2473 .invalidatepage = ext4_invalidatepage,
2474 .releasepage = ext4_releasepage,
2475 .direct_IO = ext4_direct_IO,
ac27a0ec
DK
2476 .migratepage = buffer_migrate_page,
2477};
2478
617ba13b
MC
2479static const struct address_space_operations ext4_writeback_aops = {
2480 .readpage = ext4_readpage,
2481 .readpages = ext4_readpages,
678aaf48 2482 .writepage = ext4_normal_writepage,
ac27a0ec 2483 .sync_page = block_sync_page,
bfc1af65
NP
2484 .write_begin = ext4_write_begin,
2485 .write_end = ext4_writeback_write_end,
617ba13b
MC
2486 .bmap = ext4_bmap,
2487 .invalidatepage = ext4_invalidatepage,
2488 .releasepage = ext4_releasepage,
2489 .direct_IO = ext4_direct_IO,
ac27a0ec
DK
2490 .migratepage = buffer_migrate_page,
2491};
2492
617ba13b
MC
2493static const struct address_space_operations ext4_journalled_aops = {
2494 .readpage = ext4_readpage,
2495 .readpages = ext4_readpages,
2496 .writepage = ext4_journalled_writepage,
ac27a0ec 2497 .sync_page = block_sync_page,
bfc1af65
NP
2498 .write_begin = ext4_write_begin,
2499 .write_end = ext4_journalled_write_end,
617ba13b
MC
2500 .set_page_dirty = ext4_journalled_set_page_dirty,
2501 .bmap = ext4_bmap,
2502 .invalidatepage = ext4_invalidatepage,
2503 .releasepage = ext4_releasepage,
ac27a0ec
DK
2504};
2505
64769240
AT
2506static const struct address_space_operations ext4_da_aops = {
2507 .readpage = ext4_readpage,
2508 .readpages = ext4_readpages,
2509 .writepage = ext4_da_writepage,
2510 .writepages = ext4_da_writepages,
2511 .sync_page = block_sync_page,
2512 .write_begin = ext4_da_write_begin,
2513 .write_end = ext4_da_write_end,
2514 .bmap = ext4_bmap,
2515 .invalidatepage = ext4_da_invalidatepage,
2516 .releasepage = ext4_releasepage,
2517 .direct_IO = ext4_direct_IO,
2518 .migratepage = buffer_migrate_page,
2519};
2520
617ba13b 2521void ext4_set_aops(struct inode *inode)
ac27a0ec 2522{
617ba13b
MC
2523 if (ext4_should_order_data(inode))
2524 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
2525 else if (ext4_should_writeback_data(inode) &&
2526 test_opt(inode->i_sb, DELALLOC))
2527 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
2528 else if (ext4_should_writeback_data(inode))
2529 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 2530 else
617ba13b 2531 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
2532}
2533
2534/*
617ba13b 2535 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
2536 * up to the end of the block which corresponds to `from'.
2537 * This required during truncate. We need to physically zero the tail end
2538 * of that block so it doesn't yield old data if the file is later grown.
2539 */
cf108bca 2540int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
2541 struct address_space *mapping, loff_t from)
2542{
617ba13b 2543 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 2544 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
2545 unsigned blocksize, length, pos;
2546 ext4_lblk_t iblock;
ac27a0ec
DK
2547 struct inode *inode = mapping->host;
2548 struct buffer_head *bh;
cf108bca 2549 struct page *page;
ac27a0ec 2550 int err = 0;
ac27a0ec 2551
cf108bca
JK
2552 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2553 if (!page)
2554 return -EINVAL;
2555
ac27a0ec
DK
2556 blocksize = inode->i_sb->s_blocksize;
2557 length = blocksize - (offset & (blocksize - 1));
2558 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2559
2560 /*
2561 * For "nobh" option, we can only work if we don't need to
2562 * read-in the page - otherwise we create buffers to do the IO.
2563 */
2564 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 2565 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 2566 zero_user(page, offset, length);
ac27a0ec
DK
2567 set_page_dirty(page);
2568 goto unlock;
2569 }
2570
2571 if (!page_has_buffers(page))
2572 create_empty_buffers(page, blocksize, 0);
2573
2574 /* Find the buffer that contains "offset" */
2575 bh = page_buffers(page);
2576 pos = blocksize;
2577 while (offset >= pos) {
2578 bh = bh->b_this_page;
2579 iblock++;
2580 pos += blocksize;
2581 }
2582
2583 err = 0;
2584 if (buffer_freed(bh)) {
2585 BUFFER_TRACE(bh, "freed: skip");
2586 goto unlock;
2587 }
2588
2589 if (!buffer_mapped(bh)) {
2590 BUFFER_TRACE(bh, "unmapped");
617ba13b 2591 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
2592 /* unmapped? It's a hole - nothing to do */
2593 if (!buffer_mapped(bh)) {
2594 BUFFER_TRACE(bh, "still unmapped");
2595 goto unlock;
2596 }
2597 }
2598
2599 /* Ok, it's mapped. Make sure it's up-to-date */
2600 if (PageUptodate(page))
2601 set_buffer_uptodate(bh);
2602
2603 if (!buffer_uptodate(bh)) {
2604 err = -EIO;
2605 ll_rw_block(READ, 1, &bh);
2606 wait_on_buffer(bh);
2607 /* Uhhuh. Read error. Complain and punt. */
2608 if (!buffer_uptodate(bh))
2609 goto unlock;
2610 }
2611
617ba13b 2612 if (ext4_should_journal_data(inode)) {
ac27a0ec 2613 BUFFER_TRACE(bh, "get write access");
617ba13b 2614 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
2615 if (err)
2616 goto unlock;
2617 }
2618
eebd2aa3 2619 zero_user(page, offset, length);
ac27a0ec
DK
2620
2621 BUFFER_TRACE(bh, "zeroed end of block");
2622
2623 err = 0;
617ba13b
MC
2624 if (ext4_should_journal_data(inode)) {
2625 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 2626 } else {
617ba13b 2627 if (ext4_should_order_data(inode))
678aaf48 2628 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
2629 mark_buffer_dirty(bh);
2630 }
2631
2632unlock:
2633 unlock_page(page);
2634 page_cache_release(page);
2635 return err;
2636}
2637
2638/*
2639 * Probably it should be a library function... search for first non-zero word
2640 * or memcmp with zero_page, whatever is better for particular architecture.
2641 * Linus?
2642 */
2643static inline int all_zeroes(__le32 *p, __le32 *q)
2644{
2645 while (p < q)
2646 if (*p++)
2647 return 0;
2648 return 1;
2649}
2650
2651/**
617ba13b 2652 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
2653 * @inode: inode in question
2654 * @depth: depth of the affected branch
617ba13b 2655 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
2656 * @chain: place to store the pointers to partial indirect blocks
2657 * @top: place to the (detached) top of branch
2658 *
617ba13b 2659 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
2660 *
2661 * When we do truncate() we may have to clean the ends of several
2662 * indirect blocks but leave the blocks themselves alive. Block is
2663 * partially truncated if some data below the new i_size is refered
2664 * from it (and it is on the path to the first completely truncated
2665 * data block, indeed). We have to free the top of that path along
2666 * with everything to the right of the path. Since no allocation
617ba13b 2667 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
2668 * finishes, we may safely do the latter, but top of branch may
2669 * require special attention - pageout below the truncation point
2670 * might try to populate it.
2671 *
2672 * We atomically detach the top of branch from the tree, store the
2673 * block number of its root in *@top, pointers to buffer_heads of
2674 * partially truncated blocks - in @chain[].bh and pointers to
2675 * their last elements that should not be removed - in
2676 * @chain[].p. Return value is the pointer to last filled element
2677 * of @chain.
2678 *
2679 * The work left to caller to do the actual freeing of subtrees:
2680 * a) free the subtree starting from *@top
2681 * b) free the subtrees whose roots are stored in
2682 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2683 * c) free the subtrees growing from the inode past the @chain[0].
2684 * (no partially truncated stuff there). */
2685
617ba13b 2686static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 2687 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
2688{
2689 Indirect *partial, *p;
2690 int k, err;
2691
2692 *top = 0;
2693 /* Make k index the deepest non-null offest + 1 */
2694 for (k = depth; k > 1 && !offsets[k-1]; k--)
2695 ;
617ba13b 2696 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
2697 /* Writer: pointers */
2698 if (!partial)
2699 partial = chain + k-1;
2700 /*
2701 * If the branch acquired continuation since we've looked at it -
2702 * fine, it should all survive and (new) top doesn't belong to us.
2703 */
2704 if (!partial->key && *partial->p)
2705 /* Writer: end */
2706 goto no_top;
2707 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2708 ;
2709 /*
2710 * OK, we've found the last block that must survive. The rest of our
2711 * branch should be detached before unlocking. However, if that rest
2712 * of branch is all ours and does not grow immediately from the inode
2713 * it's easier to cheat and just decrement partial->p.
2714 */
2715 if (p == chain + k - 1 && p > chain) {
2716 p->p--;
2717 } else {
2718 *top = *p->p;
617ba13b 2719 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
2720#if 0
2721 *p->p = 0;
2722#endif
2723 }
2724 /* Writer: end */
2725
2726 while(partial > p) {
2727 brelse(partial->bh);
2728 partial--;
2729 }
2730no_top:
2731 return partial;
2732}
2733
2734/*
2735 * Zero a number of block pointers in either an inode or an indirect block.
2736 * If we restart the transaction we must again get write access to the
2737 * indirect block for further modification.
2738 *
2739 * We release `count' blocks on disk, but (last - first) may be greater
2740 * than `count' because there can be holes in there.
2741 */
617ba13b
MC
2742static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2743 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
2744 unsigned long count, __le32 *first, __le32 *last)
2745{
2746 __le32 *p;
2747 if (try_to_extend_transaction(handle, inode)) {
2748 if (bh) {
617ba13b
MC
2749 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2750 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 2751 }
617ba13b
MC
2752 ext4_mark_inode_dirty(handle, inode);
2753 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
2754 if (bh) {
2755 BUFFER_TRACE(bh, "retaking write access");
617ba13b 2756 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
2757 }
2758 }
2759
2760 /*
2761 * Any buffers which are on the journal will be in memory. We find
dab291af 2762 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 2763 * on them. We've already detached each block from the file, so
dab291af 2764 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 2765 *
dab291af 2766 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
2767 */
2768 for (p = first; p < last; p++) {
2769 u32 nr = le32_to_cpu(*p);
2770 if (nr) {
1d03ec98 2771 struct buffer_head *tbh;
ac27a0ec
DK
2772
2773 *p = 0;
1d03ec98
AK
2774 tbh = sb_find_get_block(inode->i_sb, nr);
2775 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
2776 }
2777 }
2778
c9de560d 2779 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
2780}
2781
2782/**
617ba13b 2783 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
2784 * @handle: handle for this transaction
2785 * @inode: inode we are dealing with
2786 * @this_bh: indirect buffer_head which contains *@first and *@last
2787 * @first: array of block numbers
2788 * @last: points immediately past the end of array
2789 *
2790 * We are freeing all blocks refered from that array (numbers are stored as
2791 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2792 *
2793 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2794 * blocks are contiguous then releasing them at one time will only affect one
2795 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2796 * actually use a lot of journal space.
2797 *
2798 * @this_bh will be %NULL if @first and @last point into the inode's direct
2799 * block pointers.
2800 */
617ba13b 2801static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
2802 struct buffer_head *this_bh,
2803 __le32 *first, __le32 *last)
2804{
617ba13b 2805 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
2806 unsigned long count = 0; /* Number of blocks in the run */
2807 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2808 corresponding to
2809 block_to_free */
617ba13b 2810 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
2811 __le32 *p; /* Pointer into inode/ind
2812 for current block */
2813 int err;
2814
2815 if (this_bh) { /* For indirect block */
2816 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 2817 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
2818 /* Important: if we can't update the indirect pointers
2819 * to the blocks, we can't free them. */
2820 if (err)
2821 return;
2822 }
2823
2824 for (p = first; p < last; p++) {
2825 nr = le32_to_cpu(*p);
2826 if (nr) {
2827 /* accumulate blocks to free if they're contiguous */
2828 if (count == 0) {
2829 block_to_free = nr;
2830 block_to_free_p = p;
2831 count = 1;
2832 } else if (nr == block_to_free + count) {
2833 count++;
2834 } else {
617ba13b 2835 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
2836 block_to_free,
2837 count, block_to_free_p, p);
2838 block_to_free = nr;
2839 block_to_free_p = p;
2840 count = 1;
2841 }
2842 }
2843 }
2844
2845 if (count > 0)
617ba13b 2846 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
2847 count, block_to_free_p, p);
2848
2849 if (this_bh) {
617ba13b 2850 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
2851
2852 /*
2853 * The buffer head should have an attached journal head at this
2854 * point. However, if the data is corrupted and an indirect
2855 * block pointed to itself, it would have been detached when
2856 * the block was cleared. Check for this instead of OOPSing.
2857 */
2858 if (bh2jh(this_bh))
2859 ext4_journal_dirty_metadata(handle, this_bh);
2860 else
2861 ext4_error(inode->i_sb, __func__,
2862 "circular indirect block detected, "
2863 "inode=%lu, block=%llu",
2864 inode->i_ino,
2865 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
2866 }
2867}
2868
2869/**
617ba13b 2870 * ext4_free_branches - free an array of branches
ac27a0ec
DK
2871 * @handle: JBD handle for this transaction
2872 * @inode: inode we are dealing with
2873 * @parent_bh: the buffer_head which contains *@first and *@last
2874 * @first: array of block numbers
2875 * @last: pointer immediately past the end of array
2876 * @depth: depth of the branches to free
2877 *
2878 * We are freeing all blocks refered from these branches (numbers are
2879 * stored as little-endian 32-bit) and updating @inode->i_blocks
2880 * appropriately.
2881 */
617ba13b 2882static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
2883 struct buffer_head *parent_bh,
2884 __le32 *first, __le32 *last, int depth)
2885{
617ba13b 2886 ext4_fsblk_t nr;
ac27a0ec
DK
2887 __le32 *p;
2888
2889 if (is_handle_aborted(handle))
2890 return;
2891
2892 if (depth--) {
2893 struct buffer_head *bh;
617ba13b 2894 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
2895 p = last;
2896 while (--p >= first) {
2897 nr = le32_to_cpu(*p);
2898 if (!nr)
2899 continue; /* A hole */
2900
2901 /* Go read the buffer for the next level down */
2902 bh = sb_bread(inode->i_sb, nr);
2903
2904 /*
2905 * A read failure? Report error and clear slot
2906 * (should be rare).
2907 */
2908 if (!bh) {
617ba13b 2909 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 2910 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
2911 inode->i_ino, nr);
2912 continue;
2913 }
2914
2915 /* This zaps the entire block. Bottom up. */
2916 BUFFER_TRACE(bh, "free child branches");
617ba13b 2917 ext4_free_branches(handle, inode, bh,
ac27a0ec
DK
2918 (__le32*)bh->b_data,
2919 (__le32*)bh->b_data + addr_per_block,
2920 depth);
2921
2922 /*
2923 * We've probably journalled the indirect block several
2924 * times during the truncate. But it's no longer
2925 * needed and we now drop it from the transaction via
dab291af 2926 * jbd2_journal_revoke().
ac27a0ec
DK
2927 *
2928 * That's easy if it's exclusively part of this
2929 * transaction. But if it's part of the committing
dab291af 2930 * transaction then jbd2_journal_forget() will simply
ac27a0ec 2931 * brelse() it. That means that if the underlying
617ba13b 2932 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
2933 * unmap_underlying_metadata() will find this block
2934 * and will try to get rid of it. damn, damn.
2935 *
2936 * If this block has already been committed to the
2937 * journal, a revoke record will be written. And
2938 * revoke records must be emitted *before* clearing
2939 * this block's bit in the bitmaps.
2940 */
617ba13b 2941 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
2942
2943 /*
2944 * Everything below this this pointer has been
2945 * released. Now let this top-of-subtree go.
2946 *
2947 * We want the freeing of this indirect block to be
2948 * atomic in the journal with the updating of the
2949 * bitmap block which owns it. So make some room in
2950 * the journal.
2951 *
2952 * We zero the parent pointer *after* freeing its
2953 * pointee in the bitmaps, so if extend_transaction()
2954 * for some reason fails to put the bitmap changes and
2955 * the release into the same transaction, recovery
2956 * will merely complain about releasing a free block,
2957 * rather than leaking blocks.
2958 */
2959 if (is_handle_aborted(handle))
2960 return;
2961 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
2962 ext4_mark_inode_dirty(handle, inode);
2963 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
2964 }
2965
c9de560d 2966 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
2967
2968 if (parent_bh) {
2969 /*
2970 * The block which we have just freed is
2971 * pointed to by an indirect block: journal it
2972 */
2973 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 2974 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
2975 parent_bh)){
2976 *p = 0;
2977 BUFFER_TRACE(parent_bh,
617ba13b
MC
2978 "call ext4_journal_dirty_metadata");
2979 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
2980 parent_bh);
2981 }
2982 }
2983 }
2984 } else {
2985 /* We have reached the bottom of the tree. */
2986 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 2987 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
2988 }
2989}
2990
91ef4caf
DG
2991int ext4_can_truncate(struct inode *inode)
2992{
2993 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2994 return 0;
2995 if (S_ISREG(inode->i_mode))
2996 return 1;
2997 if (S_ISDIR(inode->i_mode))
2998 return 1;
2999 if (S_ISLNK(inode->i_mode))
3000 return !ext4_inode_is_fast_symlink(inode);
3001 return 0;
3002}
3003
ac27a0ec 3004/*
617ba13b 3005 * ext4_truncate()
ac27a0ec 3006 *
617ba13b
MC
3007 * We block out ext4_get_block() block instantiations across the entire
3008 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3009 * simultaneously on behalf of the same inode.
3010 *
3011 * As we work through the truncate and commmit bits of it to the journal there
3012 * is one core, guiding principle: the file's tree must always be consistent on
3013 * disk. We must be able to restart the truncate after a crash.
3014 *
3015 * The file's tree may be transiently inconsistent in memory (although it
3016 * probably isn't), but whenever we close off and commit a journal transaction,
3017 * the contents of (the filesystem + the journal) must be consistent and
3018 * restartable. It's pretty simple, really: bottom up, right to left (although
3019 * left-to-right works OK too).
3020 *
3021 * Note that at recovery time, journal replay occurs *before* the restart of
3022 * truncate against the orphan inode list.
3023 *
3024 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3025 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3026 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3027 * ext4_truncate() to have another go. So there will be instantiated blocks
3028 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3029 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3030 * ext4_truncate() run will find them and release them.
ac27a0ec 3031 */
617ba13b 3032void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3033{
3034 handle_t *handle;
617ba13b 3035 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3036 __le32 *i_data = ei->i_data;
617ba13b 3037 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3038 struct address_space *mapping = inode->i_mapping;
725d26d3 3039 ext4_lblk_t offsets[4];
ac27a0ec
DK
3040 Indirect chain[4];
3041 Indirect *partial;
3042 __le32 nr = 0;
3043 int n;
725d26d3 3044 ext4_lblk_t last_block;
ac27a0ec 3045 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3046
91ef4caf 3047 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3048 return;
3049
1d03ec98 3050 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3051 ext4_ext_truncate(inode);
1d03ec98
AK
3052 return;
3053 }
a86c6181 3054
ac27a0ec 3055 handle = start_transaction(inode);
cf108bca 3056 if (IS_ERR(handle))
ac27a0ec 3057 return; /* AKPM: return what? */
ac27a0ec
DK
3058
3059 last_block = (inode->i_size + blocksize-1)
617ba13b 3060 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3061
cf108bca
JK
3062 if (inode->i_size & (blocksize - 1))
3063 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3064 goto out_stop;
ac27a0ec 3065
617ba13b 3066 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3067 if (n == 0)
3068 goto out_stop; /* error */
3069
3070 /*
3071 * OK. This truncate is going to happen. We add the inode to the
3072 * orphan list, so that if this truncate spans multiple transactions,
3073 * and we crash, we will resume the truncate when the filesystem
3074 * recovers. It also marks the inode dirty, to catch the new size.
3075 *
3076 * Implication: the file must always be in a sane, consistent
3077 * truncatable state while each transaction commits.
3078 */
617ba13b 3079 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3080 goto out_stop;
3081
3082 /*
3083 * The orphan list entry will now protect us from any crash which
3084 * occurs before the truncate completes, so it is now safe to propagate
3085 * the new, shorter inode size (held for now in i_size) into the
3086 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3087 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3088 */
3089 ei->i_disksize = inode->i_size;
3090
3091 /*
617ba13b 3092 * From here we block out all ext4_get_block() callers who want to
ac27a0ec
DK
3093 * modify the block allocation tree.
3094 */
0e855ac8 3095 down_write(&ei->i_data_sem);
ac27a0ec
DK
3096
3097 if (n == 1) { /* direct blocks */
617ba13b
MC
3098 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3099 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3100 goto do_indirects;
3101 }
3102
617ba13b 3103 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3104 /* Kill the top of shared branch (not detached) */
3105 if (nr) {
3106 if (partial == chain) {
3107 /* Shared branch grows from the inode */
617ba13b 3108 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3109 &nr, &nr+1, (chain+n-1) - partial);
3110 *partial->p = 0;
3111 /*
3112 * We mark the inode dirty prior to restart,
3113 * and prior to stop. No need for it here.
3114 */
3115 } else {
3116 /* Shared branch grows from an indirect block */
3117 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3118 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3119 partial->p,
3120 partial->p+1, (chain+n-1) - partial);
3121 }
3122 }
3123 /* Clear the ends of indirect blocks on the shared branch */
3124 while (partial > chain) {
617ba13b 3125 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3126 (__le32*)partial->bh->b_data+addr_per_block,
3127 (chain+n-1) - partial);
3128 BUFFER_TRACE(partial->bh, "call brelse");
3129 brelse (partial->bh);
3130 partial--;
3131 }
3132do_indirects:
3133 /* Kill the remaining (whole) subtrees */
3134 switch (offsets[0]) {
3135 default:
617ba13b 3136 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3137 if (nr) {
617ba13b
MC
3138 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3139 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3140 }
617ba13b
MC
3141 case EXT4_IND_BLOCK:
3142 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3143 if (nr) {
617ba13b
MC
3144 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3145 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3146 }
617ba13b
MC
3147 case EXT4_DIND_BLOCK:
3148 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3149 if (nr) {
617ba13b
MC
3150 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3151 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3152 }
617ba13b 3153 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3154 ;
3155 }
3156
617ba13b 3157 ext4_discard_reservation(inode);
ac27a0ec 3158
0e855ac8 3159 up_write(&ei->i_data_sem);
ef7f3835 3160 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3161 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3162
3163 /*
3164 * In a multi-transaction truncate, we only make the final transaction
3165 * synchronous
3166 */
3167 if (IS_SYNC(inode))
3168 handle->h_sync = 1;
3169out_stop:
3170 /*
3171 * If this was a simple ftruncate(), and the file will remain alive
3172 * then we need to clear up the orphan record which we created above.
3173 * However, if this was a real unlink then we were called by
617ba13b 3174 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3175 * orphan info for us.
3176 */
3177 if (inode->i_nlink)
617ba13b 3178 ext4_orphan_del(handle, inode);
ac27a0ec 3179
617ba13b 3180 ext4_journal_stop(handle);
ac27a0ec
DK
3181}
3182
617ba13b
MC
3183static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3184 unsigned long ino, struct ext4_iloc *iloc)
ac27a0ec 3185{
fd2d4291 3186 ext4_group_t block_group;
ac27a0ec 3187 unsigned long offset;
617ba13b 3188 ext4_fsblk_t block;
c0a4ef38 3189 struct ext4_group_desc *gdp;
ac27a0ec 3190
617ba13b 3191 if (!ext4_valid_inum(sb, ino)) {
ac27a0ec
DK
3192 /*
3193 * This error is already checked for in namei.c unless we are
3194 * looking at an NFS filehandle, in which case no error
3195 * report is needed
3196 */
3197 return 0;
3198 }
3199
617ba13b 3200 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
c0a4ef38
AM
3201 gdp = ext4_get_group_desc(sb, block_group, NULL);
3202 if (!gdp)
ac27a0ec 3203 return 0;
ac27a0ec 3204
ac27a0ec
DK
3205 /*
3206 * Figure out the offset within the block group inode table
3207 */
617ba13b
MC
3208 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3209 EXT4_INODE_SIZE(sb);
8fadc143
AR
3210 block = ext4_inode_table(sb, gdp) +
3211 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
ac27a0ec
DK
3212
3213 iloc->block_group = block_group;
617ba13b 3214 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
ac27a0ec
DK
3215 return block;
3216}
3217
3218/*
617ba13b 3219 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3220 * underlying buffer_head on success. If 'in_mem' is true, we have all
3221 * data in memory that is needed to recreate the on-disk version of this
3222 * inode.
3223 */
617ba13b
MC
3224static int __ext4_get_inode_loc(struct inode *inode,
3225 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3226{
617ba13b 3227 ext4_fsblk_t block;
ac27a0ec
DK
3228 struct buffer_head *bh;
3229
617ba13b 3230 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
ac27a0ec
DK
3231 if (!block)
3232 return -EIO;
3233
3234 bh = sb_getblk(inode->i_sb, block);
3235 if (!bh) {
617ba13b 3236 ext4_error (inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3237 "unable to read inode block - "
2ae02107 3238 "inode=%lu, block=%llu",
ac27a0ec
DK
3239 inode->i_ino, block);
3240 return -EIO;
3241 }
3242 if (!buffer_uptodate(bh)) {
3243 lock_buffer(bh);
3244 if (buffer_uptodate(bh)) {
3245 /* someone brought it uptodate while we waited */
3246 unlock_buffer(bh);
3247 goto has_buffer;
3248 }
3249
3250 /*
3251 * If we have all information of the inode in memory and this
3252 * is the only valid inode in the block, we need not read the
3253 * block.
3254 */
3255 if (in_mem) {
3256 struct buffer_head *bitmap_bh;
617ba13b 3257 struct ext4_group_desc *desc;
ac27a0ec
DK
3258 int inodes_per_buffer;
3259 int inode_offset, i;
fd2d4291 3260 ext4_group_t block_group;
ac27a0ec
DK
3261 int start;
3262
3263 block_group = (inode->i_ino - 1) /
617ba13b 3264 EXT4_INODES_PER_GROUP(inode->i_sb);
ac27a0ec 3265 inodes_per_buffer = bh->b_size /
617ba13b 3266 EXT4_INODE_SIZE(inode->i_sb);
ac27a0ec 3267 inode_offset = ((inode->i_ino - 1) %
617ba13b 3268 EXT4_INODES_PER_GROUP(inode->i_sb));
ac27a0ec
DK
3269 start = inode_offset & ~(inodes_per_buffer - 1);
3270
3271 /* Is the inode bitmap in cache? */
617ba13b 3272 desc = ext4_get_group_desc(inode->i_sb,
ac27a0ec
DK
3273 block_group, NULL);
3274 if (!desc)
3275 goto make_io;
3276
3277 bitmap_bh = sb_getblk(inode->i_sb,
8fadc143 3278 ext4_inode_bitmap(inode->i_sb, desc));
ac27a0ec
DK
3279 if (!bitmap_bh)
3280 goto make_io;
3281
3282 /*
3283 * If the inode bitmap isn't in cache then the
3284 * optimisation may end up performing two reads instead
3285 * of one, so skip it.
3286 */
3287 if (!buffer_uptodate(bitmap_bh)) {
3288 brelse(bitmap_bh);
3289 goto make_io;
3290 }
3291 for (i = start; i < start + inodes_per_buffer; i++) {
3292 if (i == inode_offset)
3293 continue;
617ba13b 3294 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3295 break;
3296 }
3297 brelse(bitmap_bh);
3298 if (i == start + inodes_per_buffer) {
3299 /* all other inodes are free, so skip I/O */
3300 memset(bh->b_data, 0, bh->b_size);
3301 set_buffer_uptodate(bh);
3302 unlock_buffer(bh);
3303 goto has_buffer;
3304 }
3305 }
3306
3307make_io:
3308 /*
3309 * There are other valid inodes in the buffer, this inode
3310 * has in-inode xattrs, or we don't have this inode in memory.
3311 * Read the block from disk.
3312 */
3313 get_bh(bh);
3314 bh->b_end_io = end_buffer_read_sync;
3315 submit_bh(READ_META, bh);
3316 wait_on_buffer(bh);
3317 if (!buffer_uptodate(bh)) {
617ba13b 3318 ext4_error(inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3319 "unable to read inode block - "
2ae02107 3320 "inode=%lu, block=%llu",
ac27a0ec
DK
3321 inode->i_ino, block);
3322 brelse(bh);
3323 return -EIO;
3324 }
3325 }
3326has_buffer:
3327 iloc->bh = bh;
3328 return 0;
3329}
3330
617ba13b 3331int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3332{
3333 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
3334 return __ext4_get_inode_loc(inode, iloc,
3335 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
3336}
3337
617ba13b 3338void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3339{
617ba13b 3340 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3341
3342 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3343 if (flags & EXT4_SYNC_FL)
ac27a0ec 3344 inode->i_flags |= S_SYNC;
617ba13b 3345 if (flags & EXT4_APPEND_FL)
ac27a0ec 3346 inode->i_flags |= S_APPEND;
617ba13b 3347 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3348 inode->i_flags |= S_IMMUTABLE;
617ba13b 3349 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3350 inode->i_flags |= S_NOATIME;
617ba13b 3351 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3352 inode->i_flags |= S_DIRSYNC;
3353}
3354
ff9ddf7e
JK
3355/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3356void ext4_get_inode_flags(struct ext4_inode_info *ei)
3357{
3358 unsigned int flags = ei->vfs_inode.i_flags;
3359
3360 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3361 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3362 if (flags & S_SYNC)
3363 ei->i_flags |= EXT4_SYNC_FL;
3364 if (flags & S_APPEND)
3365 ei->i_flags |= EXT4_APPEND_FL;
3366 if (flags & S_IMMUTABLE)
3367 ei->i_flags |= EXT4_IMMUTABLE_FL;
3368 if (flags & S_NOATIME)
3369 ei->i_flags |= EXT4_NOATIME_FL;
3370 if (flags & S_DIRSYNC)
3371 ei->i_flags |= EXT4_DIRSYNC_FL;
3372}
0fc1b451
AK
3373static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3374 struct ext4_inode_info *ei)
3375{
3376 blkcnt_t i_blocks ;
8180a562
AK
3377 struct inode *inode = &(ei->vfs_inode);
3378 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3379
3380 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3381 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3382 /* we are using combined 48 bit field */
3383 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3384 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
3385 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3386 /* i_blocks represent file system block size */
3387 return i_blocks << (inode->i_blkbits - 9);
3388 } else {
3389 return i_blocks;
3390 }
0fc1b451
AK
3391 } else {
3392 return le32_to_cpu(raw_inode->i_blocks_lo);
3393 }
3394}
ff9ddf7e 3395
1d1fe1ee 3396struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3397{
617ba13b
MC
3398 struct ext4_iloc iloc;
3399 struct ext4_inode *raw_inode;
1d1fe1ee 3400 struct ext4_inode_info *ei;
ac27a0ec 3401 struct buffer_head *bh;
1d1fe1ee
DH
3402 struct inode *inode;
3403 long ret;
ac27a0ec
DK
3404 int block;
3405
1d1fe1ee
DH
3406 inode = iget_locked(sb, ino);
3407 if (!inode)
3408 return ERR_PTR(-ENOMEM);
3409 if (!(inode->i_state & I_NEW))
3410 return inode;
3411
3412 ei = EXT4_I(inode);
617ba13b
MC
3413#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3414 ei->i_acl = EXT4_ACL_NOT_CACHED;
3415 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
3416#endif
3417 ei->i_block_alloc_info = NULL;
3418
1d1fe1ee
DH
3419 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3420 if (ret < 0)
ac27a0ec
DK
3421 goto bad_inode;
3422 bh = iloc.bh;
617ba13b 3423 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3424 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3425 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3426 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3427 if(!(test_opt (inode->i_sb, NO_UID32))) {
3428 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3429 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3430 }
3431 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
3432
3433 ei->i_state = 0;
3434 ei->i_dir_start_lookup = 0;
3435 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3436 /* We now have enough fields to check if the inode was active or not.
3437 * This is needed because nfsd might try to access dead inodes
3438 * the test is that same one that e2fsck uses
3439 * NeilBrown 1999oct15
3440 */
3441 if (inode->i_nlink == 0) {
3442 if (inode->i_mode == 0 ||
617ba13b 3443 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec
DK
3444 /* this inode is deleted */
3445 brelse (bh);
1d1fe1ee 3446 ret = -ESTALE;
ac27a0ec
DK
3447 goto bad_inode;
3448 }
3449 /* The only unlinked inodes we let through here have
3450 * valid i_mode and are being read by the orphan
3451 * recovery code: that's fine, we're about to complete
3452 * the process of deleting those. */
3453 }
ac27a0ec 3454 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3455 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3456 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 3457 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 3458 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
3459 ei->i_file_acl |=
3460 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 3461 }
a48380f7 3462 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
3463 ei->i_disksize = inode->i_size;
3464 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3465 ei->i_block_group = iloc.block_group;
3466 /*
3467 * NOTE! The in-memory inode i_data array is in little-endian order
3468 * even on big-endian machines: we do NOT byteswap the block numbers!
3469 */
617ba13b 3470 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3471 ei->i_data[block] = raw_inode->i_block[block];
3472 INIT_LIST_HEAD(&ei->i_orphan);
3473
0040d987 3474 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3475 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3476 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f
KK
3477 EXT4_INODE_SIZE(inode->i_sb)) {
3478 brelse (bh);
1d1fe1ee 3479 ret = -EIO;
ac27a0ec 3480 goto bad_inode;
e5d2861f 3481 }
ac27a0ec
DK
3482 if (ei->i_extra_isize == 0) {
3483 /* The extra space is currently unused. Use it. */
617ba13b
MC
3484 ei->i_extra_isize = sizeof(struct ext4_inode) -
3485 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3486 } else {
3487 __le32 *magic = (void *)raw_inode +
617ba13b 3488 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3489 ei->i_extra_isize;
617ba13b
MC
3490 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3491 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
3492 }
3493 } else
3494 ei->i_extra_isize = 0;
3495
ef7f3835
KS
3496 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3497 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3498 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3499 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3500
25ec56b5
JNC
3501 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3502 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3503 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3504 inode->i_version |=
3505 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3506 }
3507
ac27a0ec 3508 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3509 inode->i_op = &ext4_file_inode_operations;
3510 inode->i_fop = &ext4_file_operations;
3511 ext4_set_aops(inode);
ac27a0ec 3512 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3513 inode->i_op = &ext4_dir_inode_operations;
3514 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3515 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
3516 if (ext4_inode_is_fast_symlink(inode))
3517 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 3518 else {
617ba13b
MC
3519 inode->i_op = &ext4_symlink_inode_operations;
3520 ext4_set_aops(inode);
ac27a0ec
DK
3521 }
3522 } else {
617ba13b 3523 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3524 if (raw_inode->i_block[0])
3525 init_special_inode(inode, inode->i_mode,
3526 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3527 else
3528 init_special_inode(inode, inode->i_mode,
3529 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3530 }
3531 brelse (iloc.bh);
617ba13b 3532 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3533 unlock_new_inode(inode);
3534 return inode;
ac27a0ec
DK
3535
3536bad_inode:
1d1fe1ee
DH
3537 iget_failed(inode);
3538 return ERR_PTR(ret);
ac27a0ec
DK
3539}
3540
0fc1b451
AK
3541static int ext4_inode_blocks_set(handle_t *handle,
3542 struct ext4_inode *raw_inode,
3543 struct ext4_inode_info *ei)
3544{
3545 struct inode *inode = &(ei->vfs_inode);
3546 u64 i_blocks = inode->i_blocks;
3547 struct super_block *sb = inode->i_sb;
3548 int err = 0;
3549
3550 if (i_blocks <= ~0U) {
3551 /*
3552 * i_blocks can be represnted in a 32 bit variable
3553 * as multiple of 512 bytes
3554 */
8180a562 3555 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3556 raw_inode->i_blocks_high = 0;
8180a562 3557 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
3558 } else if (i_blocks <= 0xffffffffffffULL) {
3559 /*
3560 * i_blocks can be represented in a 48 bit variable
3561 * as multiple of 512 bytes
3562 */
3563 err = ext4_update_rocompat_feature(handle, sb,
3564 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3565 if (err)
3566 goto err_out;
3567 /* i_block is stored in the split 48 bit fields */
8180a562 3568 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3569 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 3570 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 3571 } else {
8180a562
AK
3572 /*
3573 * i_blocks should be represented in a 48 bit variable
3574 * as multiple of file system block size
3575 */
3576 err = ext4_update_rocompat_feature(handle, sb,
3577 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3578 if (err)
3579 goto err_out;
3580 ei->i_flags |= EXT4_HUGE_FILE_FL;
3581 /* i_block is stored in file system block size */
3582 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3583 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3584 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
3585 }
3586err_out:
3587 return err;
3588}
3589
ac27a0ec
DK
3590/*
3591 * Post the struct inode info into an on-disk inode location in the
3592 * buffer-cache. This gobbles the caller's reference to the
3593 * buffer_head in the inode location struct.
3594 *
3595 * The caller must have write access to iloc->bh.
3596 */
617ba13b 3597static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 3598 struct inode *inode,
617ba13b 3599 struct ext4_iloc *iloc)
ac27a0ec 3600{
617ba13b
MC
3601 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3602 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
3603 struct buffer_head *bh = iloc->bh;
3604 int err = 0, rc, block;
3605
3606 /* For fields not not tracking in the in-memory inode,
3607 * initialise them to zero for new inodes. */
617ba13b
MC
3608 if (ei->i_state & EXT4_STATE_NEW)
3609 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 3610
ff9ddf7e 3611 ext4_get_inode_flags(ei);
ac27a0ec
DK
3612 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3613 if(!(test_opt(inode->i_sb, NO_UID32))) {
3614 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3615 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3616/*
3617 * Fix up interoperability with old kernels. Otherwise, old inodes get
3618 * re-used with the upper 16 bits of the uid/gid intact
3619 */
3620 if(!ei->i_dtime) {
3621 raw_inode->i_uid_high =
3622 cpu_to_le16(high_16_bits(inode->i_uid));
3623 raw_inode->i_gid_high =
3624 cpu_to_le16(high_16_bits(inode->i_gid));
3625 } else {
3626 raw_inode->i_uid_high = 0;
3627 raw_inode->i_gid_high = 0;
3628 }
3629 } else {
3630 raw_inode->i_uid_low =
3631 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3632 raw_inode->i_gid_low =
3633 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3634 raw_inode->i_uid_high = 0;
3635 raw_inode->i_gid_high = 0;
3636 }
3637 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
3638
3639 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3640 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3641 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3642 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3643
0fc1b451
AK
3644 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3645 goto out_brelse;
ac27a0ec 3646 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
3647 /* clear the migrate flag in the raw_inode */
3648 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
3649 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3650 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
3651 raw_inode->i_file_acl_high =
3652 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 3653 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
3654 ext4_isize_set(raw_inode, ei->i_disksize);
3655 if (ei->i_disksize > 0x7fffffffULL) {
3656 struct super_block *sb = inode->i_sb;
3657 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3658 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3659 EXT4_SB(sb)->s_es->s_rev_level ==
3660 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3661 /* If this is the first large file
3662 * created, add a flag to the superblock.
3663 */
3664 err = ext4_journal_get_write_access(handle,
3665 EXT4_SB(sb)->s_sbh);
3666 if (err)
3667 goto out_brelse;
3668 ext4_update_dynamic_rev(sb);
3669 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 3670 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
3671 sb->s_dirt = 1;
3672 handle->h_sync = 1;
3673 err = ext4_journal_dirty_metadata(handle,
3674 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
3675 }
3676 }
3677 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3678 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3679 if (old_valid_dev(inode->i_rdev)) {
3680 raw_inode->i_block[0] =
3681 cpu_to_le32(old_encode_dev(inode->i_rdev));
3682 raw_inode->i_block[1] = 0;
3683 } else {
3684 raw_inode->i_block[0] = 0;
3685 raw_inode->i_block[1] =
3686 cpu_to_le32(new_encode_dev(inode->i_rdev));
3687 raw_inode->i_block[2] = 0;
3688 }
617ba13b 3689 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3690 raw_inode->i_block[block] = ei->i_data[block];
3691
25ec56b5
JNC
3692 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3693 if (ei->i_extra_isize) {
3694 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3695 raw_inode->i_version_hi =
3696 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 3697 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
3698 }
3699
ac27a0ec 3700
617ba13b
MC
3701 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3702 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
3703 if (!err)
3704 err = rc;
617ba13b 3705 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
3706
3707out_brelse:
3708 brelse (bh);
617ba13b 3709 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3710 return err;
3711}
3712
3713/*
617ba13b 3714 * ext4_write_inode()
ac27a0ec
DK
3715 *
3716 * We are called from a few places:
3717 *
3718 * - Within generic_file_write() for O_SYNC files.
3719 * Here, there will be no transaction running. We wait for any running
3720 * trasnaction to commit.
3721 *
3722 * - Within sys_sync(), kupdate and such.
3723 * We wait on commit, if tol to.
3724 *
3725 * - Within prune_icache() (PF_MEMALLOC == true)
3726 * Here we simply return. We can't afford to block kswapd on the
3727 * journal commit.
3728 *
3729 * In all cases it is actually safe for us to return without doing anything,
3730 * because the inode has been copied into a raw inode buffer in
617ba13b 3731 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
3732 * knfsd.
3733 *
3734 * Note that we are absolutely dependent upon all inode dirtiers doing the
3735 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3736 * which we are interested.
3737 *
3738 * It would be a bug for them to not do this. The code:
3739 *
3740 * mark_inode_dirty(inode)
3741 * stuff();
3742 * inode->i_size = expr;
3743 *
3744 * is in error because a kswapd-driven write_inode() could occur while
3745 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3746 * will no longer be on the superblock's dirty inode list.
3747 */
617ba13b 3748int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
3749{
3750 if (current->flags & PF_MEMALLOC)
3751 return 0;
3752
617ba13b 3753 if (ext4_journal_current_handle()) {
b38bd33a 3754 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
3755 dump_stack();
3756 return -EIO;
3757 }
3758
3759 if (!wait)
3760 return 0;
3761
617ba13b 3762 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
3763}
3764
3765/*
617ba13b 3766 * ext4_setattr()
ac27a0ec
DK
3767 *
3768 * Called from notify_change.
3769 *
3770 * We want to trap VFS attempts to truncate the file as soon as
3771 * possible. In particular, we want to make sure that when the VFS
3772 * shrinks i_size, we put the inode on the orphan list and modify
3773 * i_disksize immediately, so that during the subsequent flushing of
3774 * dirty pages and freeing of disk blocks, we can guarantee that any
3775 * commit will leave the blocks being flushed in an unused state on
3776 * disk. (On recovery, the inode will get truncated and the blocks will
3777 * be freed, so we have a strong guarantee that no future commit will
3778 * leave these blocks visible to the user.)
3779 *
678aaf48
JK
3780 * Another thing we have to assure is that if we are in ordered mode
3781 * and inode is still attached to the committing transaction, we must
3782 * we start writeout of all the dirty pages which are being truncated.
3783 * This way we are sure that all the data written in the previous
3784 * transaction are already on disk (truncate waits for pages under
3785 * writeback).
3786 *
3787 * Called with inode->i_mutex down.
ac27a0ec 3788 */
617ba13b 3789int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
3790{
3791 struct inode *inode = dentry->d_inode;
3792 int error, rc = 0;
3793 const unsigned int ia_valid = attr->ia_valid;
3794
3795 error = inode_change_ok(inode, attr);
3796 if (error)
3797 return error;
3798
3799 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3800 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3801 handle_t *handle;
3802
3803 /* (user+group)*(old+new) structure, inode write (sb,
3804 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
3805 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3806 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
3807 if (IS_ERR(handle)) {
3808 error = PTR_ERR(handle);
3809 goto err_out;
3810 }
3811 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3812 if (error) {
617ba13b 3813 ext4_journal_stop(handle);
ac27a0ec
DK
3814 return error;
3815 }
3816 /* Update corresponding info in inode so that everything is in
3817 * one transaction */
3818 if (attr->ia_valid & ATTR_UID)
3819 inode->i_uid = attr->ia_uid;
3820 if (attr->ia_valid & ATTR_GID)
3821 inode->i_gid = attr->ia_gid;
617ba13b
MC
3822 error = ext4_mark_inode_dirty(handle, inode);
3823 ext4_journal_stop(handle);
ac27a0ec
DK
3824 }
3825
e2b46574
ES
3826 if (attr->ia_valid & ATTR_SIZE) {
3827 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3828 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3829
3830 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3831 error = -EFBIG;
3832 goto err_out;
3833 }
3834 }
3835 }
3836
ac27a0ec
DK
3837 if (S_ISREG(inode->i_mode) &&
3838 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3839 handle_t *handle;
3840
617ba13b 3841 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
3842 if (IS_ERR(handle)) {
3843 error = PTR_ERR(handle);
3844 goto err_out;
3845 }
3846
617ba13b
MC
3847 error = ext4_orphan_add(handle, inode);
3848 EXT4_I(inode)->i_disksize = attr->ia_size;
3849 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3850 if (!error)
3851 error = rc;
617ba13b 3852 ext4_journal_stop(handle);
678aaf48
JK
3853
3854 if (ext4_should_order_data(inode)) {
3855 error = ext4_begin_ordered_truncate(inode,
3856 attr->ia_size);
3857 if (error) {
3858 /* Do as much error cleanup as possible */
3859 handle = ext4_journal_start(inode, 3);
3860 if (IS_ERR(handle)) {
3861 ext4_orphan_del(NULL, inode);
3862 goto err_out;
3863 }
3864 ext4_orphan_del(handle, inode);
3865 ext4_journal_stop(handle);
3866 goto err_out;
3867 }
3868 }
ac27a0ec
DK
3869 }
3870
3871 rc = inode_setattr(inode, attr);
3872
617ba13b 3873 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
3874 * transaction handle at all, we need to clean up the in-core
3875 * orphan list manually. */
3876 if (inode->i_nlink)
617ba13b 3877 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
3878
3879 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 3880 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
3881
3882err_out:
617ba13b 3883 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
3884 if (!error)
3885 error = rc;
3886 return error;
3887}
3888
3889
3890/*
3891 * How many blocks doth make a writepage()?
3892 *
3893 * With N blocks per page, it may be:
3894 * N data blocks
3895 * 2 indirect block
3896 * 2 dindirect
3897 * 1 tindirect
3898 * N+5 bitmap blocks (from the above)
3899 * N+5 group descriptor summary blocks
3900 * 1 inode block
3901 * 1 superblock.
617ba13b 3902 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
ac27a0ec 3903 *
617ba13b 3904 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
ac27a0ec
DK
3905 *
3906 * With ordered or writeback data it's the same, less the N data blocks.
3907 *
3908 * If the inode's direct blocks can hold an integral number of pages then a
3909 * page cannot straddle two indirect blocks, and we can only touch one indirect
3910 * and dindirect block, and the "5" above becomes "3".
3911 *
3912 * This still overestimates under most circumstances. If we were to pass the
3913 * start and end offsets in here as well we could do block_to_path() on each
3914 * block and work out the exact number of indirects which are touched. Pah.
3915 */
3916
a86c6181 3917int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 3918{
617ba13b
MC
3919 int bpp = ext4_journal_blocks_per_page(inode);
3920 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
ac27a0ec
DK
3921 int ret;
3922
a86c6181
AT
3923 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3924 return ext4_ext_writepage_trans_blocks(inode, bpp);
3925
617ba13b 3926 if (ext4_should_journal_data(inode))
ac27a0ec
DK
3927 ret = 3 * (bpp + indirects) + 2;
3928 else
3929 ret = 2 * (bpp + indirects) + 2;
3930
3931#ifdef CONFIG_QUOTA
3932 /* We know that structure was already allocated during DQUOT_INIT so
3933 * we will be updating only the data blocks + inodes */
617ba13b 3934 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
ac27a0ec
DK
3935#endif
3936
3937 return ret;
3938}
3939
3940/*
617ba13b 3941 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
3942 * Give this, we know that the caller already has write access to iloc->bh.
3943 */
617ba13b
MC
3944int ext4_mark_iloc_dirty(handle_t *handle,
3945 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3946{
3947 int err = 0;
3948
25ec56b5
JNC
3949 if (test_opt(inode->i_sb, I_VERSION))
3950 inode_inc_iversion(inode);
3951
ac27a0ec
DK
3952 /* the do_update_inode consumes one bh->b_count */
3953 get_bh(iloc->bh);
3954
dab291af 3955 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 3956 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
3957 put_bh(iloc->bh);
3958 return err;
3959}
3960
3961/*
3962 * On success, We end up with an outstanding reference count against
3963 * iloc->bh. This _must_ be cleaned up later.
3964 */
3965
3966int
617ba13b
MC
3967ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3968 struct ext4_iloc *iloc)
ac27a0ec
DK
3969{
3970 int err = 0;
3971 if (handle) {
617ba13b 3972 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
3973 if (!err) {
3974 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 3975 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
3976 if (err) {
3977 brelse(iloc->bh);
3978 iloc->bh = NULL;
3979 }
3980 }
3981 }
617ba13b 3982 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3983 return err;
3984}
3985
6dd4ee7c
KS
3986/*
3987 * Expand an inode by new_extra_isize bytes.
3988 * Returns 0 on success or negative error number on failure.
3989 */
1d03ec98
AK
3990static int ext4_expand_extra_isize(struct inode *inode,
3991 unsigned int new_extra_isize,
3992 struct ext4_iloc iloc,
3993 handle_t *handle)
6dd4ee7c
KS
3994{
3995 struct ext4_inode *raw_inode;
3996 struct ext4_xattr_ibody_header *header;
3997 struct ext4_xattr_entry *entry;
3998
3999 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4000 return 0;
4001
4002 raw_inode = ext4_raw_inode(&iloc);
4003
4004 header = IHDR(inode, raw_inode);
4005 entry = IFIRST(header);
4006
4007 /* No extended attributes present */
4008 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4009 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4010 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4011 new_extra_isize);
4012 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4013 return 0;
4014 }
4015
4016 /* try to expand with EAs present */
4017 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4018 raw_inode, handle);
4019}
4020
ac27a0ec
DK
4021/*
4022 * What we do here is to mark the in-core inode as clean with respect to inode
4023 * dirtiness (it may still be data-dirty).
4024 * This means that the in-core inode may be reaped by prune_icache
4025 * without having to perform any I/O. This is a very good thing,
4026 * because *any* task may call prune_icache - even ones which
4027 * have a transaction open against a different journal.
4028 *
4029 * Is this cheating? Not really. Sure, we haven't written the
4030 * inode out, but prune_icache isn't a user-visible syncing function.
4031 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4032 * we start and wait on commits.
4033 *
4034 * Is this efficient/effective? Well, we're being nice to the system
4035 * by cleaning up our inodes proactively so they can be reaped
4036 * without I/O. But we are potentially leaving up to five seconds'
4037 * worth of inodes floating about which prune_icache wants us to
4038 * write out. One way to fix that would be to get prune_icache()
4039 * to do a write_super() to free up some memory. It has the desired
4040 * effect.
4041 */
617ba13b 4042int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4043{
617ba13b 4044 struct ext4_iloc iloc;
6dd4ee7c
KS
4045 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4046 static unsigned int mnt_count;
4047 int err, ret;
ac27a0ec
DK
4048
4049 might_sleep();
617ba13b 4050 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
4051 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4052 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4053 /*
4054 * We need extra buffer credits since we may write into EA block
4055 * with this same handle. If journal_extend fails, then it will
4056 * only result in a minor loss of functionality for that inode.
4057 * If this is felt to be critical, then e2fsck should be run to
4058 * force a large enough s_min_extra_isize.
4059 */
4060 if ((jbd2_journal_extend(handle,
4061 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4062 ret = ext4_expand_extra_isize(inode,
4063 sbi->s_want_extra_isize,
4064 iloc, handle);
4065 if (ret) {
4066 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4067 if (mnt_count !=
4068 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4069 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4070 "Unable to expand inode %lu. Delete"
4071 " some EAs or run e2fsck.",
4072 inode->i_ino);
c1bddad9
AK
4073 mnt_count =
4074 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4075 }
4076 }
4077 }
4078 }
ac27a0ec 4079 if (!err)
617ba13b 4080 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4081 return err;
4082}
4083
4084/*
617ba13b 4085 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4086 *
4087 * We're really interested in the case where a file is being extended.
4088 * i_size has been changed by generic_commit_write() and we thus need
4089 * to include the updated inode in the current transaction.
4090 *
4091 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4092 * are allocated to the file.
4093 *
4094 * If the inode is marked synchronous, we don't honour that here - doing
4095 * so would cause a commit on atime updates, which we don't bother doing.
4096 * We handle synchronous inodes at the highest possible level.
4097 */
617ba13b 4098void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4099{
617ba13b 4100 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4101 handle_t *handle;
4102
617ba13b 4103 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4104 if (IS_ERR(handle))
4105 goto out;
4106 if (current_handle &&
4107 current_handle->h_transaction != handle->h_transaction) {
4108 /* This task has a transaction open against a different fs */
4109 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4110 __func__);
ac27a0ec
DK
4111 } else {
4112 jbd_debug(5, "marking dirty. outer handle=%p\n",
4113 current_handle);
617ba13b 4114 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4115 }
617ba13b 4116 ext4_journal_stop(handle);
ac27a0ec
DK
4117out:
4118 return;
4119}
4120
4121#if 0
4122/*
4123 * Bind an inode's backing buffer_head into this transaction, to prevent
4124 * it from being flushed to disk early. Unlike
617ba13b 4125 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4126 * returns no iloc structure, so the caller needs to repeat the iloc
4127 * lookup to mark the inode dirty later.
4128 */
617ba13b 4129static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4130{
617ba13b 4131 struct ext4_iloc iloc;
ac27a0ec
DK
4132
4133 int err = 0;
4134 if (handle) {
617ba13b 4135 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4136 if (!err) {
4137 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4138 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4139 if (!err)
617ba13b 4140 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
4141 iloc.bh);
4142 brelse(iloc.bh);
4143 }
4144 }
617ba13b 4145 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4146 return err;
4147}
4148#endif
4149
617ba13b 4150int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4151{
4152 journal_t *journal;
4153 handle_t *handle;
4154 int err;
4155
4156 /*
4157 * We have to be very careful here: changing a data block's
4158 * journaling status dynamically is dangerous. If we write a
4159 * data block to the journal, change the status and then delete
4160 * that block, we risk forgetting to revoke the old log record
4161 * from the journal and so a subsequent replay can corrupt data.
4162 * So, first we make sure that the journal is empty and that
4163 * nobody is changing anything.
4164 */
4165
617ba13b 4166 journal = EXT4_JOURNAL(inode);
d699594d 4167 if (is_journal_aborted(journal))
ac27a0ec
DK
4168 return -EROFS;
4169
dab291af
MC
4170 jbd2_journal_lock_updates(journal);
4171 jbd2_journal_flush(journal);
ac27a0ec
DK
4172
4173 /*
4174 * OK, there are no updates running now, and all cached data is
4175 * synced to disk. We are now in a completely consistent state
4176 * which doesn't have anything in the journal, and we know that
4177 * no filesystem updates are running, so it is safe to modify
4178 * the inode's in-core data-journaling state flag now.
4179 */
4180
4181 if (val)
617ba13b 4182 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 4183 else
617ba13b
MC
4184 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4185 ext4_set_aops(inode);
ac27a0ec 4186
dab291af 4187 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4188
4189 /* Finally we can mark the inode as dirty. */
4190
617ba13b 4191 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4192 if (IS_ERR(handle))
4193 return PTR_ERR(handle);
4194
617ba13b 4195 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4196 handle->h_sync = 1;
617ba13b
MC
4197 ext4_journal_stop(handle);
4198 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4199
4200 return err;
4201}
2e9ee850
AK
4202
4203static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4204{
4205 return !buffer_mapped(bh);
4206}
4207
4208int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4209{
4210 loff_t size;
4211 unsigned long len;
4212 int ret = -EINVAL;
4213 struct file *file = vma->vm_file;
4214 struct inode *inode = file->f_path.dentry->d_inode;
4215 struct address_space *mapping = inode->i_mapping;
4216
4217 /*
4218 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4219 * get i_mutex because we are already holding mmap_sem.
4220 */
4221 down_read(&inode->i_alloc_sem);
4222 size = i_size_read(inode);
4223 if (page->mapping != mapping || size <= page_offset(page)
4224 || !PageUptodate(page)) {
4225 /* page got truncated from under us? */
4226 goto out_unlock;
4227 }
4228 ret = 0;
4229 if (PageMappedToDisk(page))
4230 goto out_unlock;
4231
4232 if (page->index == size >> PAGE_CACHE_SHIFT)
4233 len = size & ~PAGE_CACHE_MASK;
4234 else
4235 len = PAGE_CACHE_SIZE;
4236
4237 if (page_has_buffers(page)) {
4238 /* return if we have all the buffers mapped */
4239 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4240 ext4_bh_unmapped))
4241 goto out_unlock;
4242 }
4243 /*
4244 * OK, we need to fill the hole... Do write_begin write_end
4245 * to do block allocation/reservation.We are not holding
4246 * inode.i__mutex here. That allow * parallel write_begin,
4247 * write_end call. lock_page prevent this from happening
4248 * on the same page though
4249 */
4250 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4251 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4252 if (ret < 0)
4253 goto out_unlock;
4254 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4255 len, len, page, NULL);
4256 if (ret < 0)
4257 goto out_unlock;
4258 ret = 0;
4259out_unlock:
4260 up_read(&inode->i_alloc_sem);
4261 return ret;
4262}