]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Add documentation to the ext4_*get_block* functions
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
fe2c8191 374static int __ext4_check_blockref(const char *function, struct inode *inode,
f73953c0 375 __le32 *p, unsigned int max) {
fe2c8191
TN
376
377 unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
f73953c0 378 __le32 *bref = p;
fe2c8191 379 while (bref < p+max) {
f73953c0 380 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
fe2c8191
TN
381 ext4_error(inode->i_sb, function,
382 "block reference %u >= max (%u) "
383 "in inode #%lu, offset=%d",
f73953c0 384 le32_to_cpu(*bref), maxblocks,
fe2c8191
TN
385 inode->i_ino, (int)(bref-p));
386 return -EIO;
387 }
388 bref++;
389 }
390 return 0;
391}
392
393
394#define ext4_check_indirect_blockref(inode, bh) \
395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
396 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398#define ext4_check_inode_blockref(inode) \
399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
400 EXT4_NDIR_BLOCKS)
401
ac27a0ec 402/**
617ba13b 403 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
404 * @inode: inode in question
405 * @depth: depth of the chain (1 - direct pointer, etc.)
406 * @offsets: offsets of pointers in inode/indirect blocks
407 * @chain: place to store the result
408 * @err: here we store the error value
409 *
410 * Function fills the array of triples <key, p, bh> and returns %NULL
411 * if everything went OK or the pointer to the last filled triple
412 * (incomplete one) otherwise. Upon the return chain[i].key contains
413 * the number of (i+1)-th block in the chain (as it is stored in memory,
414 * i.e. little-endian 32-bit), chain[i].p contains the address of that
415 * number (it points into struct inode for i==0 and into the bh->b_data
416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417 * block for i>0 and NULL for i==0. In other words, it holds the block
418 * numbers of the chain, addresses they were taken from (and where we can
419 * verify that chain did not change) and buffer_heads hosting these
420 * numbers.
421 *
422 * Function stops when it stumbles upon zero pointer (absent block)
423 * (pointer to last triple returned, *@err == 0)
424 * or when it gets an IO error reading an indirect block
425 * (ditto, *@err == -EIO)
ac27a0ec
DK
426 * or when it reads all @depth-1 indirect blocks successfully and finds
427 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
428 *
429 * Need to be called with
0e855ac8 430 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 431 */
725d26d3
AK
432static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 ext4_lblk_t *offsets,
ac27a0ec
DK
434 Indirect chain[4], int *err)
435{
436 struct super_block *sb = inode->i_sb;
437 Indirect *p = chain;
438 struct buffer_head *bh;
439
440 *err = 0;
441 /* i_data is not going away, no lock needed */
af5bc92d 442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
443 if (!p->key)
444 goto no_block;
445 while (--depth) {
fe2c8191
TN
446 bh = sb_getblk(sb, le32_to_cpu(p->key));
447 if (unlikely(!bh))
ac27a0ec 448 goto failure;
fe2c8191
TN
449
450 if (!bh_uptodate_or_lock(bh)) {
451 if (bh_submit_read(bh) < 0) {
452 put_bh(bh);
453 goto failure;
454 }
455 /* validate block references */
456 if (ext4_check_indirect_blockref(inode, bh)) {
457 put_bh(bh);
458 goto failure;
459 }
460 }
461
af5bc92d 462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
463 /* Reader: end */
464 if (!p->key)
465 goto no_block;
466 }
467 return NULL;
468
ac27a0ec
DK
469failure:
470 *err = -EIO;
471no_block:
472 return p;
473}
474
475/**
617ba13b 476 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
477 * @inode: owner
478 * @ind: descriptor of indirect block.
479 *
1cc8dcf5 480 * This function returns the preferred place for block allocation.
ac27a0ec
DK
481 * It is used when heuristic for sequential allocation fails.
482 * Rules are:
483 * + if there is a block to the left of our position - allocate near it.
484 * + if pointer will live in indirect block - allocate near that block.
485 * + if pointer will live in inode - allocate in the same
486 * cylinder group.
487 *
488 * In the latter case we colour the starting block by the callers PID to
489 * prevent it from clashing with concurrent allocations for a different inode
490 * in the same block group. The PID is used here so that functionally related
491 * files will be close-by on-disk.
492 *
493 * Caller must make sure that @ind is valid and will stay that way.
494 */
617ba13b 495static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 496{
617ba13b 497 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 499 __le32 *p;
617ba13b 500 ext4_fsblk_t bg_start;
74d3487f 501 ext4_fsblk_t last_block;
617ba13b 502 ext4_grpblk_t colour;
a4912123
TT
503 ext4_group_t block_group;
504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
505
506 /* Try to find previous block */
507 for (p = ind->p - 1; p >= start; p--) {
508 if (*p)
509 return le32_to_cpu(*p);
510 }
511
512 /* No such thing, so let's try location of indirect block */
513 if (ind->bh)
514 return ind->bh->b_blocknr;
515
516 /*
517 * It is going to be referred to from the inode itself? OK, just put it
518 * into the same cylinder group then.
519 */
a4912123
TT
520 block_group = ei->i_block_group;
521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 block_group &= ~(flex_size-1);
523 if (S_ISREG(inode->i_mode))
524 block_group++;
525 }
526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
a4912123
TT
529 /*
530 * If we are doing delayed allocation, we don't need take
531 * colour into account.
532 */
533 if (test_opt(inode->i_sb, DELALLOC))
534 return bg_start;
535
74d3487f
VC
536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 colour = (current->pid % 16) *
617ba13b 538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
539 else
540 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
541 return bg_start + colour;
542}
543
544/**
1cc8dcf5 545 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
546 * @inode: owner
547 * @block: block we want
ac27a0ec 548 * @partial: pointer to the last triple within a chain
ac27a0ec 549 *
1cc8dcf5 550 * Normally this function find the preferred place for block allocation,
fb01bfda 551 * returns it.
ac27a0ec 552 */
725d26d3 553static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 554 Indirect *partial)
ac27a0ec 555{
ac27a0ec 556 /*
c2ea3fde 557 * XXX need to get goal block from mballoc's data structures
ac27a0ec 558 */
ac27a0ec 559
617ba13b 560 return ext4_find_near(inode, partial);
ac27a0ec
DK
561}
562
563/**
617ba13b 564 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
498e5f24 575static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
576 int blocks_to_boundary)
577{
498e5f24 578 unsigned int count = 0;
ac27a0ec
DK
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599}
600
601/**
617ba13b 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
603 * @indirect_blks: the number of blocks need to allocate for indirect
604 * blocks
605 *
606 * @new_blocks: on return it will store the new block numbers for
607 * the indirect blocks(if needed) and the first direct block,
608 * @blks: on return it will store the total number of allocated
609 * direct blocks
610 */
617ba13b 611static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
612 ext4_lblk_t iblock, ext4_fsblk_t goal,
613 int indirect_blks, int blks,
614 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 615{
815a1130 616 struct ext4_allocation_request ar;
ac27a0ec 617 int target, i;
7061eba7 618 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 619 int index = 0;
617ba13b 620 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
621 int ret = 0;
622
623 /*
624 * Here we try to allocate the requested multiple blocks at once,
625 * on a best-effort basis.
626 * To build a branch, we should allocate blocks for
627 * the indirect blocks(if not allocated yet), and at least
628 * the first direct block of this branch. That's the
629 * minimum number of blocks need to allocate(required)
630 */
7061eba7
AK
631 /* first we try to allocate the indirect blocks */
632 target = indirect_blks;
633 while (target > 0) {
ac27a0ec
DK
634 count = target;
635 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
636 current_block = ext4_new_meta_blocks(handle, inode,
637 goal, &count, err);
ac27a0ec
DK
638 if (*err)
639 goto failed_out;
640
641 target -= count;
642 /* allocate blocks for indirect blocks */
643 while (index < indirect_blks && count) {
644 new_blocks[index++] = current_block++;
645 count--;
646 }
7061eba7
AK
647 if (count > 0) {
648 /*
649 * save the new block number
650 * for the first direct block
651 */
652 new_blocks[index] = current_block;
653 printk(KERN_INFO "%s returned more blocks than "
654 "requested\n", __func__);
655 WARN_ON(1);
ac27a0ec 656 break;
7061eba7 657 }
ac27a0ec
DK
658 }
659
7061eba7
AK
660 target = blks - count ;
661 blk_allocated = count;
662 if (!target)
663 goto allocated;
664 /* Now allocate data blocks */
815a1130
TT
665 memset(&ar, 0, sizeof(ar));
666 ar.inode = inode;
667 ar.goal = goal;
668 ar.len = target;
669 ar.logical = iblock;
670 if (S_ISREG(inode->i_mode))
671 /* enable in-core preallocation only for regular files */
672 ar.flags = EXT4_MB_HINT_DATA;
673
674 current_block = ext4_mb_new_blocks(handle, &ar, err);
675
7061eba7
AK
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
685 /*
686 * save the new block number
687 * for the first direct block
688 */
689 new_blocks[index] = current_block;
690 }
815a1130 691 blk_allocated += ar.len;
7061eba7
AK
692 }
693allocated:
ac27a0ec 694 /* total number of blocks allocated for direct blocks */
7061eba7 695 ret = blk_allocated;
ac27a0ec
DK
696 *err = 0;
697 return ret;
698failed_out:
af5bc92d 699 for (i = 0; i < index; i++)
c9de560d 700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
701 return ret;
702}
703
704/**
617ba13b 705 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
617ba13b 716 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 719 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
617ba13b 726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
727 * as described above and return 0.
728 */
617ba13b 729static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
733{
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
617ba13b
MC
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
ac27a0ec 741
7061eba7 742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 761 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
762 if (err) {
763 unlock_buffer(bh);
764 brelse(bh);
765 goto failed;
766 }
767
768 memset(bh->b_data, 0, blocksize);
769 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 branch[n].key = cpu_to_le32(new_blocks[n]);
771 *branch[n].p = branch[n].key;
af5bc92d 772 if (n == indirect_blks) {
ac27a0ec
DK
773 current_block = new_blocks[n];
774 /*
775 * End of chain, update the last new metablock of
776 * the chain to point to the new allocated
777 * data blocks numbers
778 */
779 for (i=1; i < num; i++)
780 *(branch[n].p + i) = cpu_to_le32(++current_block);
781 }
782 BUFFER_TRACE(bh, "marking uptodate");
783 set_buffer_uptodate(bh);
784 unlock_buffer(bh);
785
0390131b
FM
786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
788 if (err)
789 goto failed;
790 }
791 *blks = num;
792 return err;
793failed:
794 /* Allocation failed, free what we already allocated */
795 for (i = 1; i <= n ; i++) {
dab291af 796 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 797 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 798 }
af5bc92d 799 for (i = 0; i < indirect_blks; i++)
c9de560d 800 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 801
c9de560d 802 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
803
804 return err;
805}
806
807/**
617ba13b 808 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
809 * @inode: owner
810 * @block: (logical) number of block we are adding
811 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 812 * ext4_alloc_branch)
ac27a0ec
DK
813 * @where: location of missing link
814 * @num: number of indirect blocks we are adding
815 * @blks: number of direct blocks we are adding
816 *
817 * This function fills the missing link and does all housekeeping needed in
818 * inode (->i_blocks, etc.). In case of success we end up with the full
819 * chain to new block and return 0.
820 */
617ba13b 821static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 822 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
823{
824 int i;
825 int err = 0;
617ba13b 826 ext4_fsblk_t current_block;
ac27a0ec 827
ac27a0ec
DK
828 /*
829 * If we're splicing into a [td]indirect block (as opposed to the
830 * inode) then we need to get write access to the [td]indirect block
831 * before the splice.
832 */
833 if (where->bh) {
834 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 835 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
836 if (err)
837 goto err_out;
838 }
839 /* That's it */
840
841 *where->p = where->key;
842
843 /*
844 * Update the host buffer_head or inode to point to more just allocated
845 * direct blocks blocks
846 */
847 if (num == 0 && blks > 1) {
848 current_block = le32_to_cpu(where->key) + 1;
849 for (i = 1; i < blks; i++)
af5bc92d 850 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
851 }
852
ac27a0ec
DK
853 /* We are done with atomic stuff, now do the rest of housekeeping */
854
ef7f3835 855 inode->i_ctime = ext4_current_time(inode);
617ba13b 856 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
857
858 /* had we spliced it onto indirect block? */
859 if (where->bh) {
860 /*
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
617ba13b 866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
867 */
868 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
871 if (err)
872 goto err_out;
873 } else {
874 /*
875 * OK, we spliced it into the inode itself on a direct block.
876 * Inode was dirtied above.
877 */
878 jbd_debug(5, "splicing direct\n");
879 }
880 return err;
881
882err_out:
883 for (i = 1; i <= num; i++) {
dab291af 884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 885 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
886 ext4_free_blocks(handle, inode,
887 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 888 }
c9de560d 889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
890
891 return err;
892}
893
894/*
b920c755
TT
895 * The ext4_ind_get_blocks() function handles non-extents inodes
896 * (i.e., using the traditional indirect/double-indirect i_blocks
897 * scheme) for ext4_get_blocks().
898 *
ac27a0ec
DK
899 * Allocation strategy is simple: if we have to allocate something, we will
900 * have to go the whole way to leaf. So let's do it before attaching anything
901 * to tree, set linkage between the newborn blocks, write them if sync is
902 * required, recheck the path, free and repeat if check fails, otherwise
903 * set the last missing link (that will protect us from any truncate-generated
904 * removals - all blocks on the path are immune now) and possibly force the
905 * write on the parent block.
906 * That has a nice additional property: no special recovery from the failed
907 * allocations is needed - we simply release blocks and do not touch anything
908 * reachable from inode.
909 *
910 * `handle' can be NULL if create == 0.
911 *
ac27a0ec
DK
912 * return > 0, # of blocks mapped or allocated.
913 * return = 0, if plain lookup failed.
914 * return < 0, error case.
c278bfec 915 *
b920c755
TT
916 * The ext4_ind_get_blocks() function should be called with
917 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920 * blocks.
ac27a0ec 921 */
e4d996ca 922static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
498e5f24
TT
923 ext4_lblk_t iblock, unsigned int maxblocks,
924 struct buffer_head *bh_result,
c2177057 925 int flags)
ac27a0ec
DK
926{
927 int err = -EIO;
725d26d3 928 ext4_lblk_t offsets[4];
ac27a0ec
DK
929 Indirect chain[4];
930 Indirect *partial;
617ba13b 931 ext4_fsblk_t goal;
ac27a0ec
DK
932 int indirect_blks;
933 int blocks_to_boundary = 0;
934 int depth;
617ba13b 935 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 936 int count = 0;
617ba13b 937 ext4_fsblk_t first_block = 0;
61628a3f 938 loff_t disksize;
ac27a0ec
DK
939
940
a86c6181 941 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 942 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3
AK
943 depth = ext4_block_to_path(inode, iblock, offsets,
944 &blocks_to_boundary);
ac27a0ec
DK
945
946 if (depth == 0)
947 goto out;
948
617ba13b 949 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
950
951 /* Simplest case - block found, no allocation needed */
952 if (!partial) {
953 first_block = le32_to_cpu(chain[depth - 1].key);
954 clear_buffer_new(bh_result);
955 count++;
956 /*map more blocks*/
957 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 958 ext4_fsblk_t blk;
ac27a0ec 959
ac27a0ec
DK
960 blk = le32_to_cpu(*(chain[depth-1].p + count));
961
962 if (blk == first_block + count)
963 count++;
964 else
965 break;
966 }
c278bfec 967 goto got_it;
ac27a0ec
DK
968 }
969
970 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 971 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
972 goto cleanup;
973
ac27a0ec 974 /*
c2ea3fde 975 * Okay, we need to do block allocation.
ac27a0ec 976 */
fb01bfda 977 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
978
979 /* the number of blocks need to allocate for [d,t]indirect blocks */
980 indirect_blks = (chain + depth) - partial - 1;
981
982 /*
983 * Next look up the indirect map to count the totoal number of
984 * direct blocks to allocate for this branch.
985 */
617ba13b 986 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
987 maxblocks, blocks_to_boundary);
988 /*
617ba13b 989 * Block out ext4_truncate while we alter the tree
ac27a0ec 990 */
7061eba7
AK
991 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
992 &count, goal,
993 offsets + (partial - chain), partial);
ac27a0ec
DK
994
995 /*
617ba13b 996 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
997 * on the new chain if there is a failure, but that risks using
998 * up transaction credits, especially for bitmaps where the
999 * credits cannot be returned. Can we handle this somehow? We
1000 * may need to return -EAGAIN upwards in the worst case. --sct
1001 */
1002 if (!err)
617ba13b 1003 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
1004 partial, indirect_blks, count);
1005 /*
0e855ac8 1006 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 1007 * protect it if you're about to implement concurrent
617ba13b 1008 * ext4_get_block() -bzzz
ac27a0ec 1009 */
c2177057 1010 if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
61628a3f
MC
1011 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1012 if (disksize > i_size_read(inode))
1013 disksize = i_size_read(inode);
1014 if (disksize > ei->i_disksize)
1015 ei->i_disksize = disksize;
1016 }
ac27a0ec
DK
1017 if (err)
1018 goto cleanup;
1019
1020 set_buffer_new(bh_result);
1021got_it:
1022 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1023 if (count > blocks_to_boundary)
1024 set_buffer_boundary(bh_result);
1025 err = count;
1026 /* Clean up and exit */
1027 partial = chain + depth - 1; /* the whole chain */
1028cleanup:
1029 while (partial > chain) {
1030 BUFFER_TRACE(partial->bh, "call brelse");
1031 brelse(partial->bh);
1032 partial--;
1033 }
1034 BUFFER_TRACE(bh_result, "returned");
1035out:
1036 return err;
1037}
1038
60e58e0f
MC
1039qsize_t ext4_get_reserved_space(struct inode *inode)
1040{
1041 unsigned long long total;
1042
1043 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044 total = EXT4_I(inode)->i_reserved_data_blocks +
1045 EXT4_I(inode)->i_reserved_meta_blocks;
1046 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047
1048 return total;
1049}
12219aea
AK
1050/*
1051 * Calculate the number of metadata blocks need to reserve
1052 * to allocate @blocks for non extent file based file
1053 */
1054static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1055{
1056 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1057 int ind_blks, dind_blks, tind_blks;
1058
1059 /* number of new indirect blocks needed */
1060 ind_blks = (blocks + icap - 1) / icap;
1061
1062 dind_blks = (ind_blks + icap - 1) / icap;
1063
1064 tind_blks = 1;
1065
1066 return ind_blks + dind_blks + tind_blks;
1067}
1068
1069/*
1070 * Calculate the number of metadata blocks need to reserve
1071 * to allocate given number of blocks
1072 */
1073static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1074{
cd213226
MC
1075 if (!blocks)
1076 return 0;
1077
12219aea
AK
1078 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1079 return ext4_ext_calc_metadata_amount(inode, blocks);
1080
1081 return ext4_indirect_calc_metadata_amount(inode, blocks);
1082}
1083
1084static void ext4_da_update_reserve_space(struct inode *inode, int used)
1085{
1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 int total, mdb, mdb_free;
1088
1089 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1090 /* recalculate the number of metablocks still need to be reserved */
1091 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1092 mdb = ext4_calc_metadata_amount(inode, total);
1093
1094 /* figure out how many metablocks to release */
1095 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1096 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1097
6bc6e63f
AK
1098 if (mdb_free) {
1099 /* Account for allocated meta_blocks */
1100 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1101
1102 /* update fs dirty blocks counter */
1103 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1104 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1105 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1106 }
12219aea
AK
1107
1108 /* update per-inode reservations */
1109 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1110 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1111 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1112
1113 /*
1114 * free those over-booking quota for metadata blocks
1115 */
60e58e0f
MC
1116 if (mdb_free)
1117 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1118
1119 /*
1120 * If we have done all the pending block allocations and if
1121 * there aren't any writers on the inode, we can discard the
1122 * inode's preallocations.
1123 */
1124 if (!total && (atomic_read(&inode->i_writecount) == 0))
1125 ext4_discard_preallocations(inode);
12219aea
AK
1126}
1127
f5ab0d1f 1128/*
12b7ac17 1129 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1130 * and returns if the blocks are already mapped.
f5ab0d1f 1131 *
f5ab0d1f
MC
1132 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133 * and store the allocated blocks in the result buffer head and mark it
1134 * mapped.
1135 *
1136 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1137 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1138 * based files
1139 *
1140 * On success, it returns the number of blocks being mapped or allocate.
1141 * if create==0 and the blocks are pre-allocated and uninitialized block,
1142 * the result buffer head is unmapped. If the create ==1, it will make sure
1143 * the buffer head is mapped.
1144 *
1145 * It returns 0 if plain look up failed (blocks have not been allocated), in
1146 * that casem, buffer head is unmapped
1147 *
1148 * It returns the error in case of allocation failure.
1149 */
12b7ac17
TT
1150int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1151 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1152 int flags)
0e855ac8
AK
1153{
1154 int retval;
f5ab0d1f
MC
1155
1156 clear_buffer_mapped(bh);
2a8964d6 1157 clear_buffer_unwritten(bh);
f5ab0d1f 1158
4df3d265 1159 /*
b920c755
TT
1160 * Try to see if we can get the block without requesting a new
1161 * file system block.
4df3d265
AK
1162 */
1163 down_read((&EXT4_I(inode)->i_data_sem));
1164 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1165 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1166 bh, 0);
0e855ac8 1167 } else {
e4d996ca 1168 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1169 bh, 0);
0e855ac8 1170 }
4df3d265 1171 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1172
1173 /* If it is only a block(s) look up */
c2177057 1174 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1175 return retval;
1176
1177 /*
1178 * Returns if the blocks have already allocated
1179 *
1180 * Note that if blocks have been preallocated
1181 * ext4_ext_get_block() returns th create = 0
1182 * with buffer head unmapped.
1183 */
1184 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1185 return retval;
1186
2a8964d6
AK
1187 /*
1188 * When we call get_blocks without the create flag, the
1189 * BH_Unwritten flag could have gotten set if the blocks
1190 * requested were part of a uninitialized extent. We need to
1191 * clear this flag now that we are committed to convert all or
1192 * part of the uninitialized extent to be an initialized
1193 * extent. This is because we need to avoid the combination
1194 * of BH_Unwritten and BH_Mapped flags being simultaneously
1195 * set on the buffer_head.
1196 */
1197 clear_buffer_unwritten(bh);
1198
4df3d265 1199 /*
f5ab0d1f
MC
1200 * New blocks allocate and/or writing to uninitialized extent
1201 * will possibly result in updating i_data, so we take
1202 * the write lock of i_data_sem, and call get_blocks()
1203 * with create == 1 flag.
4df3d265
AK
1204 */
1205 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1206
1207 /*
1208 * if the caller is from delayed allocation writeout path
1209 * we have already reserved fs blocks for allocation
1210 * let the underlying get_block() function know to
1211 * avoid double accounting
1212 */
c2177057 1213 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1214 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1215 /*
1216 * We need to check for EXT4 here because migrate
1217 * could have changed the inode type in between
1218 */
0e855ac8
AK
1219 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1220 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1221 bh, flags);
0e855ac8 1222 } else {
e4d996ca 1223 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1224 max_blocks, bh, flags);
267e4db9
AK
1225
1226 if (retval > 0 && buffer_new(bh)) {
1227 /*
1228 * We allocated new blocks which will result in
1229 * i_data's format changing. Force the migrate
1230 * to fail by clearing migrate flags
1231 */
1232 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1233 ~EXT4_EXT_MIGRATE;
1234 }
0e855ac8 1235 }
d2a17637 1236
c2177057 1237 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
d2a17637
MC
1238 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1239 /*
1240 * Update reserved blocks/metadata blocks
1241 * after successful block allocation
1242 * which were deferred till now
1243 */
1244 if ((retval > 0) && buffer_delay(bh))
12219aea 1245 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1246 }
1247
4df3d265 1248 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1249 return retval;
1250}
1251
f3bd1f3f
MC
1252/* Maximum number of blocks we map for direct IO at once. */
1253#define DIO_MAX_BLOCKS 4096
1254
6873fa0d
ES
1255int ext4_get_block(struct inode *inode, sector_t iblock,
1256 struct buffer_head *bh_result, int create)
ac27a0ec 1257{
3e4fdaf8 1258 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1259 int ret = 0, started = 0;
ac27a0ec 1260 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1261 int dio_credits;
ac27a0ec 1262
7fb5409d
JK
1263 if (create && !handle) {
1264 /* Direct IO write... */
1265 if (max_blocks > DIO_MAX_BLOCKS)
1266 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1267 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1268 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1269 if (IS_ERR(handle)) {
ac27a0ec 1270 ret = PTR_ERR(handle);
7fb5409d 1271 goto out;
ac27a0ec 1272 }
7fb5409d 1273 started = 1;
ac27a0ec
DK
1274 }
1275
12b7ac17 1276 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1277 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1278 if (ret > 0) {
1279 bh_result->b_size = (ret << inode->i_blkbits);
1280 ret = 0;
ac27a0ec 1281 }
7fb5409d
JK
1282 if (started)
1283 ext4_journal_stop(handle);
1284out:
ac27a0ec
DK
1285 return ret;
1286}
1287
1288/*
1289 * `handle' can be NULL if create is zero
1290 */
617ba13b 1291struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1292 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1293{
1294 struct buffer_head dummy;
1295 int fatal = 0, err;
c2177057 1296 int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
ac27a0ec
DK
1297
1298 J_ASSERT(handle != NULL || create == 0);
1299
1300 dummy.b_state = 0;
1301 dummy.b_blocknr = -1000;
1302 buffer_trace_init(&dummy.b_history);
c2177057
TT
1303 if (create)
1304 flags |= EXT4_GET_BLOCKS_CREATE;
1305 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1306 /*
c2177057
TT
1307 * ext4_get_blocks() returns number of blocks mapped. 0 in
1308 * case of a HOLE.
ac27a0ec
DK
1309 */
1310 if (err > 0) {
1311 if (err > 1)
1312 WARN_ON(1);
1313 err = 0;
1314 }
1315 *errp = err;
1316 if (!err && buffer_mapped(&dummy)) {
1317 struct buffer_head *bh;
1318 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1319 if (!bh) {
1320 *errp = -EIO;
1321 goto err;
1322 }
1323 if (buffer_new(&dummy)) {
1324 J_ASSERT(create != 0);
ac39849d 1325 J_ASSERT(handle != NULL);
ac27a0ec
DK
1326
1327 /*
1328 * Now that we do not always journal data, we should
1329 * keep in mind whether this should always journal the
1330 * new buffer as metadata. For now, regular file
617ba13b 1331 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1332 * problem.
1333 */
1334 lock_buffer(bh);
1335 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1336 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1337 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1338 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1339 set_buffer_uptodate(bh);
1340 }
1341 unlock_buffer(bh);
0390131b
FM
1342 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1343 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1344 if (!fatal)
1345 fatal = err;
1346 } else {
1347 BUFFER_TRACE(bh, "not a new buffer");
1348 }
1349 if (fatal) {
1350 *errp = fatal;
1351 brelse(bh);
1352 bh = NULL;
1353 }
1354 return bh;
1355 }
1356err:
1357 return NULL;
1358}
1359
617ba13b 1360struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1361 ext4_lblk_t block, int create, int *err)
ac27a0ec 1362{
af5bc92d 1363 struct buffer_head *bh;
ac27a0ec 1364
617ba13b 1365 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1366 if (!bh)
1367 return bh;
1368 if (buffer_uptodate(bh))
1369 return bh;
1370 ll_rw_block(READ_META, 1, &bh);
1371 wait_on_buffer(bh);
1372 if (buffer_uptodate(bh))
1373 return bh;
1374 put_bh(bh);
1375 *err = -EIO;
1376 return NULL;
1377}
1378
af5bc92d
TT
1379static int walk_page_buffers(handle_t *handle,
1380 struct buffer_head *head,
1381 unsigned from,
1382 unsigned to,
1383 int *partial,
1384 int (*fn)(handle_t *handle,
1385 struct buffer_head *bh))
ac27a0ec
DK
1386{
1387 struct buffer_head *bh;
1388 unsigned block_start, block_end;
1389 unsigned blocksize = head->b_size;
1390 int err, ret = 0;
1391 struct buffer_head *next;
1392
af5bc92d
TT
1393 for (bh = head, block_start = 0;
1394 ret == 0 && (bh != head || !block_start);
1395 block_start = block_end, bh = next)
ac27a0ec
DK
1396 {
1397 next = bh->b_this_page;
1398 block_end = block_start + blocksize;
1399 if (block_end <= from || block_start >= to) {
1400 if (partial && !buffer_uptodate(bh))
1401 *partial = 1;
1402 continue;
1403 }
1404 err = (*fn)(handle, bh);
1405 if (!ret)
1406 ret = err;
1407 }
1408 return ret;
1409}
1410
1411/*
1412 * To preserve ordering, it is essential that the hole instantiation and
1413 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1414 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1415 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1416 * prepare_write() is the right place.
1417 *
617ba13b
MC
1418 * Also, this function can nest inside ext4_writepage() ->
1419 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1420 * has generated enough buffer credits to do the whole page. So we won't
1421 * block on the journal in that case, which is good, because the caller may
1422 * be PF_MEMALLOC.
1423 *
617ba13b 1424 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1425 * quota file writes. If we were to commit the transaction while thus
1426 * reentered, there can be a deadlock - we would be holding a quota
1427 * lock, and the commit would never complete if another thread had a
1428 * transaction open and was blocking on the quota lock - a ranking
1429 * violation.
1430 *
dab291af 1431 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1432 * will _not_ run commit under these circumstances because handle->h_ref
1433 * is elevated. We'll still have enough credits for the tiny quotafile
1434 * write.
1435 */
1436static int do_journal_get_write_access(handle_t *handle,
1437 struct buffer_head *bh)
1438{
1439 if (!buffer_mapped(bh) || buffer_freed(bh))
1440 return 0;
617ba13b 1441 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1442}
1443
bfc1af65
NP
1444static int ext4_write_begin(struct file *file, struct address_space *mapping,
1445 loff_t pos, unsigned len, unsigned flags,
1446 struct page **pagep, void **fsdata)
ac27a0ec 1447{
af5bc92d 1448 struct inode *inode = mapping->host;
7479d2b9 1449 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1450 handle_t *handle;
1451 int retries = 0;
af5bc92d 1452 struct page *page;
bfc1af65 1453 pgoff_t index;
af5bc92d 1454 unsigned from, to;
bfc1af65 1455
ba80b101
TT
1456 trace_mark(ext4_write_begin,
1457 "dev %s ino %lu pos %llu len %u flags %u",
1458 inode->i_sb->s_id, inode->i_ino,
1459 (unsigned long long) pos, len, flags);
bfc1af65 1460 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1461 from = pos & (PAGE_CACHE_SIZE - 1);
1462 to = from + len;
ac27a0ec
DK
1463
1464retry:
af5bc92d
TT
1465 handle = ext4_journal_start(inode, needed_blocks);
1466 if (IS_ERR(handle)) {
1467 ret = PTR_ERR(handle);
1468 goto out;
7479d2b9 1469 }
ac27a0ec 1470
ebd3610b
JK
1471 /* We cannot recurse into the filesystem as the transaction is already
1472 * started */
1473 flags |= AOP_FLAG_NOFS;
1474
54566b2c 1475 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1476 if (!page) {
1477 ext4_journal_stop(handle);
1478 ret = -ENOMEM;
1479 goto out;
1480 }
1481 *pagep = page;
1482
bfc1af65 1483 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1484 ext4_get_block);
bfc1af65
NP
1485
1486 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1487 ret = walk_page_buffers(handle, page_buffers(page),
1488 from, to, NULL, do_journal_get_write_access);
1489 }
bfc1af65
NP
1490
1491 if (ret) {
af5bc92d 1492 unlock_page(page);
cf108bca 1493 ext4_journal_stop(handle);
af5bc92d 1494 page_cache_release(page);
ae4d5372
AK
1495 /*
1496 * block_write_begin may have instantiated a few blocks
1497 * outside i_size. Trim these off again. Don't need
1498 * i_size_read because we hold i_mutex.
1499 */
1500 if (pos + len > inode->i_size)
1501 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1502 }
1503
617ba13b 1504 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1505 goto retry;
7479d2b9 1506out:
ac27a0ec
DK
1507 return ret;
1508}
1509
bfc1af65
NP
1510/* For write_end() in data=journal mode */
1511static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1512{
1513 if (!buffer_mapped(bh) || buffer_freed(bh))
1514 return 0;
1515 set_buffer_uptodate(bh);
0390131b 1516 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1517}
1518
1519/*
1520 * We need to pick up the new inode size which generic_commit_write gave us
1521 * `file' can be NULL - eg, when called from page_symlink().
1522 *
617ba13b 1523 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1524 * buffers are managed internally.
1525 */
bfc1af65
NP
1526static int ext4_ordered_write_end(struct file *file,
1527 struct address_space *mapping,
1528 loff_t pos, unsigned len, unsigned copied,
1529 struct page *page, void *fsdata)
ac27a0ec 1530{
617ba13b 1531 handle_t *handle = ext4_journal_current_handle();
cf108bca 1532 struct inode *inode = mapping->host;
ac27a0ec
DK
1533 int ret = 0, ret2;
1534
ba80b101
TT
1535 trace_mark(ext4_ordered_write_end,
1536 "dev %s ino %lu pos %llu len %u copied %u",
1537 inode->i_sb->s_id, inode->i_ino,
1538 (unsigned long long) pos, len, copied);
678aaf48 1539 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1540
1541 if (ret == 0) {
ac27a0ec
DK
1542 loff_t new_i_size;
1543
bfc1af65 1544 new_i_size = pos + copied;
cf17fea6
AK
1545 if (new_i_size > EXT4_I(inode)->i_disksize) {
1546 ext4_update_i_disksize(inode, new_i_size);
1547 /* We need to mark inode dirty even if
1548 * new_i_size is less that inode->i_size
1549 * bu greater than i_disksize.(hint delalloc)
1550 */
1551 ext4_mark_inode_dirty(handle, inode);
1552 }
1553
cf108bca 1554 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1555 page, fsdata);
f8a87d89
RK
1556 copied = ret2;
1557 if (ret2 < 0)
1558 ret = ret2;
ac27a0ec 1559 }
617ba13b 1560 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1561 if (!ret)
1562 ret = ret2;
bfc1af65
NP
1563
1564 return ret ? ret : copied;
ac27a0ec
DK
1565}
1566
bfc1af65
NP
1567static int ext4_writeback_write_end(struct file *file,
1568 struct address_space *mapping,
1569 loff_t pos, unsigned len, unsigned copied,
1570 struct page *page, void *fsdata)
ac27a0ec 1571{
617ba13b 1572 handle_t *handle = ext4_journal_current_handle();
cf108bca 1573 struct inode *inode = mapping->host;
ac27a0ec
DK
1574 int ret = 0, ret2;
1575 loff_t new_i_size;
1576
ba80b101
TT
1577 trace_mark(ext4_writeback_write_end,
1578 "dev %s ino %lu pos %llu len %u copied %u",
1579 inode->i_sb->s_id, inode->i_ino,
1580 (unsigned long long) pos, len, copied);
bfc1af65 1581 new_i_size = pos + copied;
cf17fea6
AK
1582 if (new_i_size > EXT4_I(inode)->i_disksize) {
1583 ext4_update_i_disksize(inode, new_i_size);
1584 /* We need to mark inode dirty even if
1585 * new_i_size is less that inode->i_size
1586 * bu greater than i_disksize.(hint delalloc)
1587 */
1588 ext4_mark_inode_dirty(handle, inode);
1589 }
ac27a0ec 1590
cf108bca 1591 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1592 page, fsdata);
f8a87d89
RK
1593 copied = ret2;
1594 if (ret2 < 0)
1595 ret = ret2;
ac27a0ec 1596
617ba13b 1597 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1598 if (!ret)
1599 ret = ret2;
bfc1af65
NP
1600
1601 return ret ? ret : copied;
ac27a0ec
DK
1602}
1603
bfc1af65
NP
1604static int ext4_journalled_write_end(struct file *file,
1605 struct address_space *mapping,
1606 loff_t pos, unsigned len, unsigned copied,
1607 struct page *page, void *fsdata)
ac27a0ec 1608{
617ba13b 1609 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1610 struct inode *inode = mapping->host;
ac27a0ec
DK
1611 int ret = 0, ret2;
1612 int partial = 0;
bfc1af65 1613 unsigned from, to;
cf17fea6 1614 loff_t new_i_size;
ac27a0ec 1615
ba80b101
TT
1616 trace_mark(ext4_journalled_write_end,
1617 "dev %s ino %lu pos %llu len %u copied %u",
1618 inode->i_sb->s_id, inode->i_ino,
1619 (unsigned long long) pos, len, copied);
bfc1af65
NP
1620 from = pos & (PAGE_CACHE_SIZE - 1);
1621 to = from + len;
1622
1623 if (copied < len) {
1624 if (!PageUptodate(page))
1625 copied = 0;
1626 page_zero_new_buffers(page, from+copied, to);
1627 }
ac27a0ec
DK
1628
1629 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1630 to, &partial, write_end_fn);
ac27a0ec
DK
1631 if (!partial)
1632 SetPageUptodate(page);
cf17fea6
AK
1633 new_i_size = pos + copied;
1634 if (new_i_size > inode->i_size)
bfc1af65 1635 i_size_write(inode, pos+copied);
617ba13b 1636 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1637 if (new_i_size > EXT4_I(inode)->i_disksize) {
1638 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1639 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1640 if (!ret)
1641 ret = ret2;
1642 }
bfc1af65 1643
cf108bca 1644 unlock_page(page);
617ba13b 1645 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1646 if (!ret)
1647 ret = ret2;
bfc1af65
NP
1648 page_cache_release(page);
1649
1650 return ret ? ret : copied;
ac27a0ec 1651}
d2a17637
MC
1652
1653static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1654{
030ba6bc 1655 int retries = 0;
60e58e0f
MC
1656 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1657 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1658
1659 /*
1660 * recalculate the amount of metadata blocks to reserve
1661 * in order to allocate nrblocks
1662 * worse case is one extent per block
1663 */
030ba6bc 1664repeat:
d2a17637
MC
1665 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1666 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1667 mdblocks = ext4_calc_metadata_amount(inode, total);
1668 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1669
1670 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1671 total = md_needed + nrblocks;
1672
60e58e0f
MC
1673 /*
1674 * Make quota reservation here to prevent quota overflow
1675 * later. Real quota accounting is done at pages writeout
1676 * time.
1677 */
1678 if (vfs_dq_reserve_block(inode, total)) {
1679 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1680 return -EDQUOT;
1681 }
1682
a30d542a 1683 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1684 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1685 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1686 yield();
1687 goto repeat;
1688 }
60e58e0f 1689 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1690 return -ENOSPC;
1691 }
d2a17637
MC
1692 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1693 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1694
1695 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1696 return 0; /* success */
1697}
1698
12219aea 1699static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1700{
1701 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1702 int total, mdb, mdb_free, release;
1703
cd213226
MC
1704 if (!to_free)
1705 return; /* Nothing to release, exit */
1706
d2a17637 1707 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1708
1709 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1710 /*
1711 * if there is no reserved blocks, but we try to free some
1712 * then the counter is messed up somewhere.
1713 * but since this function is called from invalidate
1714 * page, it's harmless to return without any action
1715 */
1716 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1717 "blocks for inode %lu, but there is no reserved "
1718 "data blocks\n", to_free, inode->i_ino);
1719 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1720 return;
1721 }
1722
d2a17637 1723 /* recalculate the number of metablocks still need to be reserved */
12219aea 1724 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1725 mdb = ext4_calc_metadata_amount(inode, total);
1726
1727 /* figure out how many metablocks to release */
1728 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1729 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1730
d2a17637
MC
1731 release = to_free + mdb_free;
1732
6bc6e63f
AK
1733 /* update fs dirty blocks counter for truncate case */
1734 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1735
1736 /* update per-inode reservations */
12219aea
AK
1737 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1738 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1739
1740 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1741 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1742 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1743
1744 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1745}
1746
1747static void ext4_da_page_release_reservation(struct page *page,
1748 unsigned long offset)
1749{
1750 int to_release = 0;
1751 struct buffer_head *head, *bh;
1752 unsigned int curr_off = 0;
1753
1754 head = page_buffers(page);
1755 bh = head;
1756 do {
1757 unsigned int next_off = curr_off + bh->b_size;
1758
1759 if ((offset <= curr_off) && (buffer_delay(bh))) {
1760 to_release++;
1761 clear_buffer_delay(bh);
1762 }
1763 curr_off = next_off;
1764 } while ((bh = bh->b_this_page) != head);
12219aea 1765 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1766}
ac27a0ec 1767
64769240
AT
1768/*
1769 * Delayed allocation stuff
1770 */
1771
1772struct mpage_da_data {
1773 struct inode *inode;
8dc207c0
TT
1774 sector_t b_blocknr; /* start block number of extent */
1775 size_t b_size; /* size of extent */
1776 unsigned long b_state; /* state of the extent */
64769240 1777 unsigned long first_page, next_page; /* extent of pages */
64769240 1778 struct writeback_control *wbc;
a1d6cc56 1779 int io_done;
498e5f24 1780 int pages_written;
df22291f 1781 int retval;
64769240
AT
1782};
1783
1784/*
1785 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1786 * them with writepage() call back
64769240
AT
1787 *
1788 * @mpd->inode: inode
1789 * @mpd->first_page: first page of the extent
1790 * @mpd->next_page: page after the last page of the extent
64769240
AT
1791 *
1792 * By the time mpage_da_submit_io() is called we expect all blocks
1793 * to be allocated. this may be wrong if allocation failed.
1794 *
1795 * As pages are already locked by write_cache_pages(), we can't use it
1796 */
1797static int mpage_da_submit_io(struct mpage_da_data *mpd)
1798{
22208ded 1799 long pages_skipped;
791b7f08
AK
1800 struct pagevec pvec;
1801 unsigned long index, end;
1802 int ret = 0, err, nr_pages, i;
1803 struct inode *inode = mpd->inode;
1804 struct address_space *mapping = inode->i_mapping;
64769240
AT
1805
1806 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1807 /*
1808 * We need to start from the first_page to the next_page - 1
1809 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1810 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1811 * at the currently mapped buffer_heads.
1812 */
64769240
AT
1813 index = mpd->first_page;
1814 end = mpd->next_page - 1;
1815
791b7f08 1816 pagevec_init(&pvec, 0);
64769240 1817 while (index <= end) {
791b7f08 1818 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1819 if (nr_pages == 0)
1820 break;
1821 for (i = 0; i < nr_pages; i++) {
1822 struct page *page = pvec.pages[i];
1823
791b7f08
AK
1824 index = page->index;
1825 if (index > end)
1826 break;
1827 index++;
1828
1829 BUG_ON(!PageLocked(page));
1830 BUG_ON(PageWriteback(page));
1831
22208ded 1832 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1833 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1834 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1835 /*
1836 * have successfully written the page
1837 * without skipping the same
1838 */
a1d6cc56 1839 mpd->pages_written++;
64769240
AT
1840 /*
1841 * In error case, we have to continue because
1842 * remaining pages are still locked
1843 * XXX: unlock and re-dirty them?
1844 */
1845 if (ret == 0)
1846 ret = err;
1847 }
1848 pagevec_release(&pvec);
1849 }
64769240
AT
1850 return ret;
1851}
1852
1853/*
1854 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1855 *
1856 * @mpd->inode - inode to walk through
1857 * @exbh->b_blocknr - first block on a disk
1858 * @exbh->b_size - amount of space in bytes
1859 * @logical - first logical block to start assignment with
1860 *
1861 * the function goes through all passed space and put actual disk
29fa89d0 1862 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
1863 */
1864static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1865 struct buffer_head *exbh)
1866{
1867 struct inode *inode = mpd->inode;
1868 struct address_space *mapping = inode->i_mapping;
1869 int blocks = exbh->b_size >> inode->i_blkbits;
1870 sector_t pblock = exbh->b_blocknr, cur_logical;
1871 struct buffer_head *head, *bh;
a1d6cc56 1872 pgoff_t index, end;
64769240
AT
1873 struct pagevec pvec;
1874 int nr_pages, i;
1875
1876 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1877 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1878 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1879
1880 pagevec_init(&pvec, 0);
1881
1882 while (index <= end) {
1883 /* XXX: optimize tail */
1884 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1885 if (nr_pages == 0)
1886 break;
1887 for (i = 0; i < nr_pages; i++) {
1888 struct page *page = pvec.pages[i];
1889
1890 index = page->index;
1891 if (index > end)
1892 break;
1893 index++;
1894
1895 BUG_ON(!PageLocked(page));
1896 BUG_ON(PageWriteback(page));
1897 BUG_ON(!page_has_buffers(page));
1898
1899 bh = page_buffers(page);
1900 head = bh;
1901
1902 /* skip blocks out of the range */
1903 do {
1904 if (cur_logical >= logical)
1905 break;
1906 cur_logical++;
1907 } while ((bh = bh->b_this_page) != head);
1908
1909 do {
1910 if (cur_logical >= logical + blocks)
1911 break;
29fa89d0
AK
1912
1913 if (buffer_delay(bh) ||
1914 buffer_unwritten(bh)) {
1915
1916 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1917
1918 if (buffer_delay(bh)) {
1919 clear_buffer_delay(bh);
1920 bh->b_blocknr = pblock;
1921 } else {
1922 /*
1923 * unwritten already should have
1924 * blocknr assigned. Verify that
1925 */
1926 clear_buffer_unwritten(bh);
1927 BUG_ON(bh->b_blocknr != pblock);
1928 }
1929
61628a3f 1930 } else if (buffer_mapped(bh))
64769240 1931 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1932
1933 cur_logical++;
1934 pblock++;
1935 } while ((bh = bh->b_this_page) != head);
1936 }
1937 pagevec_release(&pvec);
1938 }
1939}
1940
1941
1942/*
1943 * __unmap_underlying_blocks - just a helper function to unmap
1944 * set of blocks described by @bh
1945 */
1946static inline void __unmap_underlying_blocks(struct inode *inode,
1947 struct buffer_head *bh)
1948{
1949 struct block_device *bdev = inode->i_sb->s_bdev;
1950 int blocks, i;
1951
1952 blocks = bh->b_size >> inode->i_blkbits;
1953 for (i = 0; i < blocks; i++)
1954 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1955}
1956
c4a0c46e
AK
1957static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1958 sector_t logical, long blk_cnt)
1959{
1960 int nr_pages, i;
1961 pgoff_t index, end;
1962 struct pagevec pvec;
1963 struct inode *inode = mpd->inode;
1964 struct address_space *mapping = inode->i_mapping;
1965
1966 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1967 end = (logical + blk_cnt - 1) >>
1968 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1969 while (index <= end) {
1970 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1971 if (nr_pages == 0)
1972 break;
1973 for (i = 0; i < nr_pages; i++) {
1974 struct page *page = pvec.pages[i];
1975 index = page->index;
1976 if (index > end)
1977 break;
1978 index++;
1979
1980 BUG_ON(!PageLocked(page));
1981 BUG_ON(PageWriteback(page));
1982 block_invalidatepage(page, 0);
1983 ClearPageUptodate(page);
1984 unlock_page(page);
1985 }
1986 }
1987 return;
1988}
1989
df22291f
AK
1990static void ext4_print_free_blocks(struct inode *inode)
1991{
1992 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1993 printk(KERN_EMERG "Total free blocks count %lld\n",
1994 ext4_count_free_blocks(inode->i_sb));
1995 printk(KERN_EMERG "Free/Dirty block details\n");
1996 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 1997 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 1998 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 1999 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 2000 printk(KERN_EMERG "Block reservation details\n");
498e5f24 2001 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 2002 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 2003 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
2004 EXT4_I(inode)->i_reserved_meta_blocks);
2005 return;
2006}
2007
b920c755
TT
2008/*
2009 * This function is used by mpage_da_map_blocks(). We separate it out
2010 * as a separate function just to make life easier, and because
2011 * mpage_da_map_blocks() used to be a generic function that took a
2012 * get_block_t.
2013 */
ed5bde0b 2014static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
f888e652 2015 struct buffer_head *bh_result)
ed5bde0b
TT
2016{
2017 int ret;
2018 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2019 loff_t disksize = EXT4_I(inode)->i_disksize;
2020 handle_t *handle = NULL;
2021
2022 handle = ext4_journal_current_handle();
2023 BUG_ON(!handle);
12b7ac17 2024 ret = ext4_get_blocks(handle, inode, iblock, max_blocks,
c2177057
TT
2025 bh_result, EXT4_GET_BLOCKS_CREATE|
2026 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
ed5bde0b
TT
2027 if (ret <= 0)
2028 return ret;
2029
2030 bh_result->b_size = (ret << inode->i_blkbits);
2031
2032 if (ext4_should_order_data(inode)) {
2033 int retval;
2034 retval = ext4_jbd2_file_inode(handle, inode);
2035 if (retval)
2036 /*
2037 * Failed to add inode for ordered mode. Don't
2038 * update file size
2039 */
2040 return retval;
2041 }
2042
2043 /*
2044 * Update on-disk size along with block allocation we don't
b920c755
TT
2045 * use EXT4_GET_BLOCKS_EXTEND_DISKSIZE as size may change
2046 * within already allocated block -bzzz
ed5bde0b
TT
2047 */
2048 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2049 if (disksize > i_size_read(inode))
2050 disksize = i_size_read(inode);
2051 if (disksize > EXT4_I(inode)->i_disksize) {
2052 ext4_update_i_disksize(inode, disksize);
2053 ret = ext4_mark_inode_dirty(handle, inode);
2054 return ret;
2055 }
2056 return 0;
2057}
2058
64769240
AT
2059/*
2060 * mpage_da_map_blocks - go through given space
2061 *
8dc207c0 2062 * @mpd - bh describing space
64769240
AT
2063 *
2064 * The function skips space we know is already mapped to disk blocks.
2065 *
64769240 2066 */
ed5bde0b 2067static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2068{
a1d6cc56 2069 int err = 0;
030ba6bc 2070 struct buffer_head new;
df22291f 2071 sector_t next;
64769240
AT
2072
2073 /*
2074 * We consider only non-mapped and non-allocated blocks
2075 */
8dc207c0 2076 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2077 !(mpd->b_state & (1 << BH_Delay)) &&
2078 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2079 return 0;
79ffab34
AK
2080 /*
2081 * We need to make sure the BH_Delay flag is passed down to
c2177057
TT
2082 * ext4_da_get_block_write(), since it calls ext4_get_blocks()
2083 * with the EXT4_GET_BLOCKS_DELALLOC_RESERVE flag. This flag
2084 * causes ext4_get_blocks() to call
79ffab34
AK
2085 * ext4_da_update_reserve_space() if the passed buffer head
2086 * has the BH_Delay flag set. In the future, once we clean up
c2177057
TT
2087 * the interfaces to ext4_get_blocks(), we should pass in a
2088 * separate flag which requests that the delayed allocation
79ffab34
AK
2089 * statistics should be updated, instead of depending on the
2090 * state information getting passed down via the map_bh's
c2177057
TT
2091 * state bitmasks plus the magic
2092 * EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.
79ffab34
AK
2093 */
2094 new.b_state = mpd->b_state & (1 << BH_Delay);
a1d6cc56 2095 new.b_blocknr = 0;
8dc207c0
TT
2096 new.b_size = mpd->b_size;
2097 next = mpd->b_blocknr;
a1d6cc56
AK
2098 /*
2099 * If we didn't accumulate anything
2100 * to write simply return
2101 */
2102 if (!new.b_size)
c4a0c46e 2103 return 0;
c4a0c46e 2104
f888e652 2105 err = ext4_da_get_block_write(mpd->inode, next, &new);
ed5bde0b
TT
2106 if (err) {
2107 /*
2108 * If get block returns with error we simply
2109 * return. Later writepage will redirty the page and
2110 * writepages will find the dirty page again
c4a0c46e
AK
2111 */
2112 if (err == -EAGAIN)
2113 return 0;
df22291f
AK
2114
2115 if (err == -ENOSPC &&
ed5bde0b 2116 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2117 mpd->retval = err;
2118 return 0;
2119 }
2120
c4a0c46e 2121 /*
ed5bde0b
TT
2122 * get block failure will cause us to loop in
2123 * writepages, because a_ops->writepage won't be able
2124 * to make progress. The page will be redirtied by
2125 * writepage and writepages will again try to write
2126 * the same.
c4a0c46e
AK
2127 */
2128 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2129 "at logical offset %llu with max blocks "
2130 "%zd with error %d\n",
2131 __func__, mpd->inode->i_ino,
2132 (unsigned long long)next,
8dc207c0 2133 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2134 printk(KERN_EMERG "This should not happen.!! "
2135 "Data will be lost\n");
030ba6bc 2136 if (err == -ENOSPC) {
df22291f 2137 ext4_print_free_blocks(mpd->inode);
030ba6bc 2138 }
c4a0c46e
AK
2139 /* invlaidate all the pages */
2140 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2141 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2142 return err;
2143 }
a1d6cc56 2144 BUG_ON(new.b_size == 0);
64769240 2145
a1d6cc56
AK
2146 if (buffer_new(&new))
2147 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2148
a1d6cc56
AK
2149 /*
2150 * If blocks are delayed marked, we need to
2151 * put actual blocknr and drop delayed bit
2152 */
8dc207c0
TT
2153 if ((mpd->b_state & (1 << BH_Delay)) ||
2154 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2155 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2156
c4a0c46e 2157 return 0;
64769240
AT
2158}
2159
bf068ee2
AK
2160#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2161 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2162
2163/*
2164 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2165 *
2166 * @mpd->lbh - extent of blocks
2167 * @logical - logical number of the block in the file
2168 * @bh - bh of the block (used to access block's state)
2169 *
2170 * the function is used to collect contig. blocks in same state
2171 */
2172static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2173 sector_t logical, size_t b_size,
2174 unsigned long b_state)
64769240 2175{
64769240 2176 sector_t next;
8dc207c0 2177 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2178
525f4ed8
MC
2179 /* check if thereserved journal credits might overflow */
2180 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2181 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2182 /*
2183 * With non-extent format we are limited by the journal
2184 * credit available. Total credit needed to insert
2185 * nrblocks contiguous blocks is dependent on the
2186 * nrblocks. So limit nrblocks.
2187 */
2188 goto flush_it;
2189 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2190 EXT4_MAX_TRANS_DATA) {
2191 /*
2192 * Adding the new buffer_head would make it cross the
2193 * allowed limit for which we have journal credit
2194 * reserved. So limit the new bh->b_size
2195 */
2196 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2197 mpd->inode->i_blkbits;
2198 /* we will do mpage_da_submit_io in the next loop */
2199 }
2200 }
64769240
AT
2201 /*
2202 * First block in the extent
2203 */
8dc207c0
TT
2204 if (mpd->b_size == 0) {
2205 mpd->b_blocknr = logical;
2206 mpd->b_size = b_size;
2207 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2208 return;
2209 }
2210
8dc207c0 2211 next = mpd->b_blocknr + nrblocks;
64769240
AT
2212 /*
2213 * Can we merge the block to our big extent?
2214 */
8dc207c0
TT
2215 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2216 mpd->b_size += b_size;
64769240
AT
2217 return;
2218 }
2219
525f4ed8 2220flush_it:
64769240
AT
2221 /*
2222 * We couldn't merge the block to our extent, so we
2223 * need to flush current extent and start new one
2224 */
c4a0c46e
AK
2225 if (mpage_da_map_blocks(mpd) == 0)
2226 mpage_da_submit_io(mpd);
a1d6cc56
AK
2227 mpd->io_done = 1;
2228 return;
64769240
AT
2229}
2230
29fa89d0
AK
2231static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2232{
2233 /*
2234 * unmapped buffer is possible for holes.
2235 * delay buffer is possible with delayed allocation.
2236 * We also need to consider unwritten buffer as unmapped.
2237 */
2238 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2239 buffer_unwritten(bh)) && buffer_dirty(bh);
2240}
2241
64769240
AT
2242/*
2243 * __mpage_da_writepage - finds extent of pages and blocks
2244 *
2245 * @page: page to consider
2246 * @wbc: not used, we just follow rules
2247 * @data: context
2248 *
2249 * The function finds extents of pages and scan them for all blocks.
2250 */
2251static int __mpage_da_writepage(struct page *page,
2252 struct writeback_control *wbc, void *data)
2253{
2254 struct mpage_da_data *mpd = data;
2255 struct inode *inode = mpd->inode;
8dc207c0 2256 struct buffer_head *bh, *head;
64769240
AT
2257 sector_t logical;
2258
a1d6cc56
AK
2259 if (mpd->io_done) {
2260 /*
2261 * Rest of the page in the page_vec
2262 * redirty then and skip then. We will
2263 * try to to write them again after
2264 * starting a new transaction
2265 */
2266 redirty_page_for_writepage(wbc, page);
2267 unlock_page(page);
2268 return MPAGE_DA_EXTENT_TAIL;
2269 }
64769240
AT
2270 /*
2271 * Can we merge this page to current extent?
2272 */
2273 if (mpd->next_page != page->index) {
2274 /*
2275 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2276 * and start IO on them using writepage()
64769240
AT
2277 */
2278 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2279 if (mpage_da_map_blocks(mpd) == 0)
2280 mpage_da_submit_io(mpd);
a1d6cc56
AK
2281 /*
2282 * skip rest of the page in the page_vec
2283 */
2284 mpd->io_done = 1;
2285 redirty_page_for_writepage(wbc, page);
2286 unlock_page(page);
2287 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2288 }
2289
2290 /*
2291 * Start next extent of pages ...
2292 */
2293 mpd->first_page = page->index;
2294
2295 /*
2296 * ... and blocks
2297 */
8dc207c0
TT
2298 mpd->b_size = 0;
2299 mpd->b_state = 0;
2300 mpd->b_blocknr = 0;
64769240
AT
2301 }
2302
2303 mpd->next_page = page->index + 1;
2304 logical = (sector_t) page->index <<
2305 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2306
2307 if (!page_has_buffers(page)) {
8dc207c0
TT
2308 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2309 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2310 if (mpd->io_done)
2311 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2312 } else {
2313 /*
2314 * Page with regular buffer heads, just add all dirty ones
2315 */
2316 head = page_buffers(page);
2317 bh = head;
2318 do {
2319 BUG_ON(buffer_locked(bh));
791b7f08
AK
2320 /*
2321 * We need to try to allocate
2322 * unmapped blocks in the same page.
2323 * Otherwise we won't make progress
2324 * with the page in ext4_da_writepage
2325 */
29fa89d0 2326 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
8dc207c0
TT
2327 mpage_add_bh_to_extent(mpd, logical,
2328 bh->b_size,
2329 bh->b_state);
a1d6cc56
AK
2330 if (mpd->io_done)
2331 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2332 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2333 /*
2334 * mapped dirty buffer. We need to update
2335 * the b_state because we look at
2336 * b_state in mpage_da_map_blocks. We don't
2337 * update b_size because if we find an
2338 * unmapped buffer_head later we need to
2339 * use the b_state flag of that buffer_head.
2340 */
8dc207c0
TT
2341 if (mpd->b_size == 0)
2342 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2343 }
64769240
AT
2344 logical++;
2345 } while ((bh = bh->b_this_page) != head);
2346 }
2347
2348 return 0;
2349}
2350
64769240 2351/*
b920c755
TT
2352 * This is a special get_blocks_t callback which is used by
2353 * ext4_da_write_begin(). It will either return mapped block or
2354 * reserve space for a single block.
29fa89d0
AK
2355 *
2356 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2357 * We also have b_blocknr = -1 and b_bdev initialized properly
2358 *
2359 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2360 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2361 * initialized properly.
64769240
AT
2362 */
2363static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2364 struct buffer_head *bh_result, int create)
2365{
2366 int ret = 0;
33b9817e
AK
2367 sector_t invalid_block = ~((sector_t) 0xffff);
2368
2369 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2370 invalid_block = ~0;
64769240
AT
2371
2372 BUG_ON(create == 0);
2373 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2374
2375 /*
2376 * first, we need to know whether the block is allocated already
2377 * preallocated blocks are unmapped but should treated
2378 * the same as allocated blocks.
2379 */
c2177057 2380 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2381 if ((ret == 0) && !buffer_delay(bh_result)) {
2382 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2383 /*
2384 * XXX: __block_prepare_write() unmaps passed block,
2385 * is it OK?
2386 */
d2a17637
MC
2387 ret = ext4_da_reserve_space(inode, 1);
2388 if (ret)
2389 /* not enough space to reserve */
2390 return ret;
2391
33b9817e 2392 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2393 set_buffer_new(bh_result);
2394 set_buffer_delay(bh_result);
2395 } else if (ret > 0) {
2396 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2397 if (buffer_unwritten(bh_result)) {
2398 /* A delayed write to unwritten bh should
2399 * be marked new and mapped. Mapped ensures
2400 * that we don't do get_block multiple times
2401 * when we write to the same offset and new
2402 * ensures that we do proper zero out for
2403 * partial write.
2404 */
9c1ee184 2405 set_buffer_new(bh_result);
29fa89d0
AK
2406 set_buffer_mapped(bh_result);
2407 }
64769240
AT
2408 ret = 0;
2409 }
2410
2411 return ret;
2412}
61628a3f 2413
b920c755
TT
2414/*
2415 * This function is used as a standard get_block_t calback function
2416 * when there is no desire to allocate any blocks. It is used as a
2417 * callback function for block_prepare_write(), nobh_writepage(), and
2418 * block_write_full_page(). These functions should only try to map a
2419 * single block at a time.
2420 *
2421 * Since this function doesn't do block allocations even if the caller
2422 * requests it by passing in create=1, it is critically important that
2423 * any caller checks to make sure that any buffer heads are returned
2424 * by this function are either all already mapped or marked for
2425 * delayed allocation before calling nobh_writepage() or
2426 * block_write_full_page(). Otherwise, b_blocknr could be left
2427 * unitialized, and the page write functions will be taken by
2428 * surprise.
2429 */
2430static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2431 struct buffer_head *bh_result, int create)
2432{
2433 int ret = 0;
2434 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2435
2436 /*
2437 * we don't want to do block allocation in writepage
2438 * so call get_block_wrap with create = 0
2439 */
c2177057 2440 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2441 if (ret > 0) {
2442 bh_result->b_size = (ret << inode->i_blkbits);
2443 ret = 0;
2444 }
2445 return ret;
61628a3f
MC
2446}
2447
61628a3f 2448/*
b920c755
TT
2449 * This function can get called via...
2450 * - ext4_da_writepages after taking page lock (have journal handle)
2451 * - journal_submit_inode_data_buffers (no journal handle)
2452 * - shrink_page_list via pdflush (no journal handle)
2453 * - grab_page_cache when doing write_begin (have journal handle)
61628a3f 2454 */
64769240
AT
2455static int ext4_da_writepage(struct page *page,
2456 struct writeback_control *wbc)
2457{
64769240 2458 int ret = 0;
61628a3f 2459 loff_t size;
498e5f24 2460 unsigned int len;
61628a3f
MC
2461 struct buffer_head *page_bufs;
2462 struct inode *inode = page->mapping->host;
2463
ba80b101
TT
2464 trace_mark(ext4_da_writepage,
2465 "dev %s ino %lu page_index %lu",
2466 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2467 size = i_size_read(inode);
2468 if (page->index == size >> PAGE_CACHE_SHIFT)
2469 len = size & ~PAGE_CACHE_MASK;
2470 else
2471 len = PAGE_CACHE_SIZE;
64769240 2472
f0e6c985 2473 if (page_has_buffers(page)) {
61628a3f 2474 page_bufs = page_buffers(page);
f0e6c985
AK
2475 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2476 ext4_bh_unmapped_or_delay)) {
61628a3f 2477 /*
f0e6c985
AK
2478 * We don't want to do block allocation
2479 * So redirty the page and return
cd1aac32
AK
2480 * We may reach here when we do a journal commit
2481 * via journal_submit_inode_data_buffers.
2482 * If we don't have mapping block we just ignore
f0e6c985
AK
2483 * them. We can also reach here via shrink_page_list
2484 */
2485 redirty_page_for_writepage(wbc, page);
2486 unlock_page(page);
2487 return 0;
2488 }
2489 } else {
2490 /*
2491 * The test for page_has_buffers() is subtle:
2492 * We know the page is dirty but it lost buffers. That means
2493 * that at some moment in time after write_begin()/write_end()
2494 * has been called all buffers have been clean and thus they
2495 * must have been written at least once. So they are all
2496 * mapped and we can happily proceed with mapping them
2497 * and writing the page.
2498 *
2499 * Try to initialize the buffer_heads and check whether
2500 * all are mapped and non delay. We don't want to
2501 * do block allocation here.
2502 */
2503 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
b920c755 2504 noalloc_get_block_write);
f0e6c985
AK
2505 if (!ret) {
2506 page_bufs = page_buffers(page);
2507 /* check whether all are mapped and non delay */
2508 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2509 ext4_bh_unmapped_or_delay)) {
2510 redirty_page_for_writepage(wbc, page);
2511 unlock_page(page);
2512 return 0;
2513 }
2514 } else {
2515 /*
2516 * We can't do block allocation here
2517 * so just redity the page and unlock
2518 * and return
61628a3f 2519 */
61628a3f
MC
2520 redirty_page_for_writepage(wbc, page);
2521 unlock_page(page);
2522 return 0;
2523 }
ed9b3e33
AK
2524 /* now mark the buffer_heads as dirty and uptodate */
2525 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2526 }
2527
2528 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2529 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2530 else
b920c755
TT
2531 ret = block_write_full_page(page, noalloc_get_block_write,
2532 wbc);
64769240 2533
64769240
AT
2534 return ret;
2535}
2536
61628a3f 2537/*
525f4ed8
MC
2538 * This is called via ext4_da_writepages() to
2539 * calulate the total number of credits to reserve to fit
2540 * a single extent allocation into a single transaction,
2541 * ext4_da_writpeages() will loop calling this before
2542 * the block allocation.
61628a3f 2543 */
525f4ed8
MC
2544
2545static int ext4_da_writepages_trans_blocks(struct inode *inode)
2546{
2547 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2548
2549 /*
2550 * With non-extent format the journal credit needed to
2551 * insert nrblocks contiguous block is dependent on
2552 * number of contiguous block. So we will limit
2553 * number of contiguous block to a sane value
2554 */
2555 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2556 (max_blocks > EXT4_MAX_TRANS_DATA))
2557 max_blocks = EXT4_MAX_TRANS_DATA;
2558
2559 return ext4_chunk_trans_blocks(inode, max_blocks);
2560}
61628a3f 2561
64769240 2562static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2563 struct writeback_control *wbc)
64769240 2564{
22208ded
AK
2565 pgoff_t index;
2566 int range_whole = 0;
61628a3f 2567 handle_t *handle = NULL;
df22291f 2568 struct mpage_da_data mpd;
5e745b04 2569 struct inode *inode = mapping->host;
22208ded 2570 int no_nrwrite_index_update;
498e5f24
TT
2571 int pages_written = 0;
2572 long pages_skipped;
2acf2c26 2573 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2574 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2575 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2576
ba80b101
TT
2577 trace_mark(ext4_da_writepages,
2578 "dev %s ino %lu nr_t_write %ld "
2579 "pages_skipped %ld range_start %llu "
2580 "range_end %llu nonblocking %d "
2581 "for_kupdate %d for_reclaim %d "
2582 "for_writepages %d range_cyclic %d",
2583 inode->i_sb->s_id, inode->i_ino,
2584 wbc->nr_to_write, wbc->pages_skipped,
2585 (unsigned long long) wbc->range_start,
2586 (unsigned long long) wbc->range_end,
2587 wbc->nonblocking, wbc->for_kupdate,
2588 wbc->for_reclaim, wbc->for_writepages,
2589 wbc->range_cyclic);
2590
61628a3f
MC
2591 /*
2592 * No pages to write? This is mainly a kludge to avoid starting
2593 * a transaction for special inodes like journal inode on last iput()
2594 * because that could violate lock ordering on umount
2595 */
a1d6cc56 2596 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2597 return 0;
2a21e37e
TT
2598
2599 /*
2600 * If the filesystem has aborted, it is read-only, so return
2601 * right away instead of dumping stack traces later on that
2602 * will obscure the real source of the problem. We test
2603 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2604 * the latter could be true if the filesystem is mounted
2605 * read-only, and in that case, ext4_da_writepages should
2606 * *never* be called, so if that ever happens, we would want
2607 * the stack trace.
2608 */
2609 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2610 return -EROFS;
2611
5e745b04
AK
2612 /*
2613 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2614 * This make sure small files blocks are allocated in
2615 * single attempt. This ensure that small files
2616 * get less fragmented.
2617 */
2618 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2619 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2620 wbc->nr_to_write = sbi->s_mb_stream_request;
2621 }
22208ded
AK
2622 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2623 range_whole = 1;
61628a3f 2624
2acf2c26
AK
2625 range_cyclic = wbc->range_cyclic;
2626 if (wbc->range_cyclic) {
22208ded 2627 index = mapping->writeback_index;
2acf2c26
AK
2628 if (index)
2629 cycled = 0;
2630 wbc->range_start = index << PAGE_CACHE_SHIFT;
2631 wbc->range_end = LLONG_MAX;
2632 wbc->range_cyclic = 0;
2633 } else
22208ded 2634 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2635
df22291f
AK
2636 mpd.wbc = wbc;
2637 mpd.inode = mapping->host;
2638
22208ded
AK
2639 /*
2640 * we don't want write_cache_pages to update
2641 * nr_to_write and writeback_index
2642 */
2643 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2644 wbc->no_nrwrite_index_update = 1;
2645 pages_skipped = wbc->pages_skipped;
2646
2acf2c26 2647retry:
22208ded 2648 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2649
2650 /*
2651 * we insert one extent at a time. So we need
2652 * credit needed for single extent allocation.
2653 * journalled mode is currently not supported
2654 * by delalloc
2655 */
2656 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2657 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2658
61628a3f
MC
2659 /* start a new transaction*/
2660 handle = ext4_journal_start(inode, needed_blocks);
2661 if (IS_ERR(handle)) {
2662 ret = PTR_ERR(handle);
2a21e37e 2663 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2664 "%ld pages, ino %lu; err %d\n", __func__,
2665 wbc->nr_to_write, inode->i_ino, ret);
2666 dump_stack();
61628a3f
MC
2667 goto out_writepages;
2668 }
f63e6005
TT
2669
2670 /*
2671 * Now call __mpage_da_writepage to find the next
2672 * contiguous region of logical blocks that need
2673 * blocks to be allocated by ext4. We don't actually
2674 * submit the blocks for I/O here, even though
2675 * write_cache_pages thinks it will, and will set the
2676 * pages as clean for write before calling
2677 * __mpage_da_writepage().
2678 */
2679 mpd.b_size = 0;
2680 mpd.b_state = 0;
2681 mpd.b_blocknr = 0;
2682 mpd.first_page = 0;
2683 mpd.next_page = 0;
2684 mpd.io_done = 0;
2685 mpd.pages_written = 0;
2686 mpd.retval = 0;
2687 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2688 &mpd);
2689 /*
2690 * If we have a contigous extent of pages and we
2691 * haven't done the I/O yet, map the blocks and submit
2692 * them for I/O.
2693 */
2694 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2695 if (mpage_da_map_blocks(&mpd) == 0)
2696 mpage_da_submit_io(&mpd);
2697 mpd.io_done = 1;
2698 ret = MPAGE_DA_EXTENT_TAIL;
2699 }
2700 wbc->nr_to_write -= mpd.pages_written;
df22291f 2701
61628a3f 2702 ext4_journal_stop(handle);
df22291f 2703
8f64b32e 2704 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2705 /* commit the transaction which would
2706 * free blocks released in the transaction
2707 * and try again
2708 */
df22291f 2709 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2710 wbc->pages_skipped = pages_skipped;
2711 ret = 0;
2712 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2713 /*
2714 * got one extent now try with
2715 * rest of the pages
2716 */
22208ded
AK
2717 pages_written += mpd.pages_written;
2718 wbc->pages_skipped = pages_skipped;
a1d6cc56 2719 ret = 0;
2acf2c26 2720 io_done = 1;
22208ded 2721 } else if (wbc->nr_to_write)
61628a3f
MC
2722 /*
2723 * There is no more writeout needed
2724 * or we requested for a noblocking writeout
2725 * and we found the device congested
2726 */
61628a3f 2727 break;
a1d6cc56 2728 }
2acf2c26
AK
2729 if (!io_done && !cycled) {
2730 cycled = 1;
2731 index = 0;
2732 wbc->range_start = index << PAGE_CACHE_SHIFT;
2733 wbc->range_end = mapping->writeback_index - 1;
2734 goto retry;
2735 }
22208ded
AK
2736 if (pages_skipped != wbc->pages_skipped)
2737 printk(KERN_EMERG "This should not happen leaving %s "
2738 "with nr_to_write = %ld ret = %d\n",
2739 __func__, wbc->nr_to_write, ret);
2740
2741 /* Update index */
2742 index += pages_written;
2acf2c26 2743 wbc->range_cyclic = range_cyclic;
22208ded
AK
2744 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2745 /*
2746 * set the writeback_index so that range_cyclic
2747 * mode will write it back later
2748 */
2749 mapping->writeback_index = index;
a1d6cc56 2750
61628a3f 2751out_writepages:
22208ded
AK
2752 if (!no_nrwrite_index_update)
2753 wbc->no_nrwrite_index_update = 0;
2754 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2755 trace_mark(ext4_da_writepage_result,
2756 "dev %s ino %lu ret %d pages_written %d "
2757 "pages_skipped %ld congestion %d "
2758 "more_io %d no_nrwrite_index_update %d",
2759 inode->i_sb->s_id, inode->i_ino, ret,
2760 pages_written, wbc->pages_skipped,
2761 wbc->encountered_congestion, wbc->more_io,
2762 wbc->no_nrwrite_index_update);
61628a3f 2763 return ret;
64769240
AT
2764}
2765
79f0be8d
AK
2766#define FALL_BACK_TO_NONDELALLOC 1
2767static int ext4_nonda_switch(struct super_block *sb)
2768{
2769 s64 free_blocks, dirty_blocks;
2770 struct ext4_sb_info *sbi = EXT4_SB(sb);
2771
2772 /*
2773 * switch to non delalloc mode if we are running low
2774 * on free block. The free block accounting via percpu
179f7ebf 2775 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2776 * accumulated on each CPU without updating global counters
2777 * Delalloc need an accurate free block accounting. So switch
2778 * to non delalloc when we are near to error range.
2779 */
2780 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2781 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2782 if (2 * free_blocks < 3 * dirty_blocks ||
2783 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2784 /*
2785 * free block count is less that 150% of dirty blocks
2786 * or free blocks is less that watermark
2787 */
2788 return 1;
2789 }
2790 return 0;
2791}
2792
64769240
AT
2793static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2794 loff_t pos, unsigned len, unsigned flags,
2795 struct page **pagep, void **fsdata)
2796{
d2a17637 2797 int ret, retries = 0;
64769240
AT
2798 struct page *page;
2799 pgoff_t index;
2800 unsigned from, to;
2801 struct inode *inode = mapping->host;
2802 handle_t *handle;
2803
2804 index = pos >> PAGE_CACHE_SHIFT;
2805 from = pos & (PAGE_CACHE_SIZE - 1);
2806 to = from + len;
79f0be8d
AK
2807
2808 if (ext4_nonda_switch(inode->i_sb)) {
2809 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2810 return ext4_write_begin(file, mapping, pos,
2811 len, flags, pagep, fsdata);
2812 }
2813 *fsdata = (void *)0;
ba80b101
TT
2814
2815 trace_mark(ext4_da_write_begin,
2816 "dev %s ino %lu pos %llu len %u flags %u",
2817 inode->i_sb->s_id, inode->i_ino,
2818 (unsigned long long) pos, len, flags);
d2a17637 2819retry:
64769240
AT
2820 /*
2821 * With delayed allocation, we don't log the i_disksize update
2822 * if there is delayed block allocation. But we still need
2823 * to journalling the i_disksize update if writes to the end
2824 * of file which has an already mapped buffer.
2825 */
2826 handle = ext4_journal_start(inode, 1);
2827 if (IS_ERR(handle)) {
2828 ret = PTR_ERR(handle);
2829 goto out;
2830 }
ebd3610b
JK
2831 /* We cannot recurse into the filesystem as the transaction is already
2832 * started */
2833 flags |= AOP_FLAG_NOFS;
64769240 2834
54566b2c 2835 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2836 if (!page) {
2837 ext4_journal_stop(handle);
2838 ret = -ENOMEM;
2839 goto out;
2840 }
64769240
AT
2841 *pagep = page;
2842
2843 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 2844 ext4_da_get_block_prep);
64769240
AT
2845 if (ret < 0) {
2846 unlock_page(page);
2847 ext4_journal_stop(handle);
2848 page_cache_release(page);
ae4d5372
AK
2849 /*
2850 * block_write_begin may have instantiated a few blocks
2851 * outside i_size. Trim these off again. Don't need
2852 * i_size_read because we hold i_mutex.
2853 */
2854 if (pos + len > inode->i_size)
2855 vmtruncate(inode, inode->i_size);
64769240
AT
2856 }
2857
d2a17637
MC
2858 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2859 goto retry;
64769240
AT
2860out:
2861 return ret;
2862}
2863
632eaeab
MC
2864/*
2865 * Check if we should update i_disksize
2866 * when write to the end of file but not require block allocation
2867 */
2868static int ext4_da_should_update_i_disksize(struct page *page,
2869 unsigned long offset)
2870{
2871 struct buffer_head *bh;
2872 struct inode *inode = page->mapping->host;
2873 unsigned int idx;
2874 int i;
2875
2876 bh = page_buffers(page);
2877 idx = offset >> inode->i_blkbits;
2878
af5bc92d 2879 for (i = 0; i < idx; i++)
632eaeab
MC
2880 bh = bh->b_this_page;
2881
29fa89d0 2882 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2883 return 0;
2884 return 1;
2885}
2886
64769240
AT
2887static int ext4_da_write_end(struct file *file,
2888 struct address_space *mapping,
2889 loff_t pos, unsigned len, unsigned copied,
2890 struct page *page, void *fsdata)
2891{
2892 struct inode *inode = mapping->host;
2893 int ret = 0, ret2;
2894 handle_t *handle = ext4_journal_current_handle();
2895 loff_t new_i_size;
632eaeab 2896 unsigned long start, end;
79f0be8d
AK
2897 int write_mode = (int)(unsigned long)fsdata;
2898
2899 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2900 if (ext4_should_order_data(inode)) {
2901 return ext4_ordered_write_end(file, mapping, pos,
2902 len, copied, page, fsdata);
2903 } else if (ext4_should_writeback_data(inode)) {
2904 return ext4_writeback_write_end(file, mapping, pos,
2905 len, copied, page, fsdata);
2906 } else {
2907 BUG();
2908 }
2909 }
632eaeab 2910
ba80b101
TT
2911 trace_mark(ext4_da_write_end,
2912 "dev %s ino %lu pos %llu len %u copied %u",
2913 inode->i_sb->s_id, inode->i_ino,
2914 (unsigned long long) pos, len, copied);
632eaeab 2915 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2916 end = start + copied - 1;
64769240
AT
2917
2918 /*
2919 * generic_write_end() will run mark_inode_dirty() if i_size
2920 * changes. So let's piggyback the i_disksize mark_inode_dirty
2921 * into that.
2922 */
2923
2924 new_i_size = pos + copied;
632eaeab
MC
2925 if (new_i_size > EXT4_I(inode)->i_disksize) {
2926 if (ext4_da_should_update_i_disksize(page, end)) {
2927 down_write(&EXT4_I(inode)->i_data_sem);
2928 if (new_i_size > EXT4_I(inode)->i_disksize) {
2929 /*
2930 * Updating i_disksize when extending file
2931 * without needing block allocation
2932 */
2933 if (ext4_should_order_data(inode))
2934 ret = ext4_jbd2_file_inode(handle,
2935 inode);
64769240 2936
632eaeab
MC
2937 EXT4_I(inode)->i_disksize = new_i_size;
2938 }
2939 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2940 /* We need to mark inode dirty even if
2941 * new_i_size is less that inode->i_size
2942 * bu greater than i_disksize.(hint delalloc)
2943 */
2944 ext4_mark_inode_dirty(handle, inode);
64769240 2945 }
632eaeab 2946 }
64769240
AT
2947 ret2 = generic_write_end(file, mapping, pos, len, copied,
2948 page, fsdata);
2949 copied = ret2;
2950 if (ret2 < 0)
2951 ret = ret2;
2952 ret2 = ext4_journal_stop(handle);
2953 if (!ret)
2954 ret = ret2;
2955
2956 return ret ? ret : copied;
2957}
2958
2959static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2960{
64769240
AT
2961 /*
2962 * Drop reserved blocks
2963 */
2964 BUG_ON(!PageLocked(page));
2965 if (!page_has_buffers(page))
2966 goto out;
2967
d2a17637 2968 ext4_da_page_release_reservation(page, offset);
64769240
AT
2969
2970out:
2971 ext4_invalidatepage(page, offset);
2972
2973 return;
2974}
2975
ccd2506b
TT
2976/*
2977 * Force all delayed allocation blocks to be allocated for a given inode.
2978 */
2979int ext4_alloc_da_blocks(struct inode *inode)
2980{
2981 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2982 !EXT4_I(inode)->i_reserved_meta_blocks)
2983 return 0;
2984
2985 /*
2986 * We do something simple for now. The filemap_flush() will
2987 * also start triggering a write of the data blocks, which is
2988 * not strictly speaking necessary (and for users of
2989 * laptop_mode, not even desirable). However, to do otherwise
2990 * would require replicating code paths in:
2991 *
2992 * ext4_da_writepages() ->
2993 * write_cache_pages() ---> (via passed in callback function)
2994 * __mpage_da_writepage() -->
2995 * mpage_add_bh_to_extent()
2996 * mpage_da_map_blocks()
2997 *
2998 * The problem is that write_cache_pages(), located in
2999 * mm/page-writeback.c, marks pages clean in preparation for
3000 * doing I/O, which is not desirable if we're not planning on
3001 * doing I/O at all.
3002 *
3003 * We could call write_cache_pages(), and then redirty all of
3004 * the pages by calling redirty_page_for_writeback() but that
3005 * would be ugly in the extreme. So instead we would need to
3006 * replicate parts of the code in the above functions,
3007 * simplifying them becuase we wouldn't actually intend to
3008 * write out the pages, but rather only collect contiguous
3009 * logical block extents, call the multi-block allocator, and
3010 * then update the buffer heads with the block allocations.
3011 *
3012 * For now, though, we'll cheat by calling filemap_flush(),
3013 * which will map the blocks, and start the I/O, but not
3014 * actually wait for the I/O to complete.
3015 */
3016 return filemap_flush(inode->i_mapping);
3017}
64769240 3018
ac27a0ec
DK
3019/*
3020 * bmap() is special. It gets used by applications such as lilo and by
3021 * the swapper to find the on-disk block of a specific piece of data.
3022 *
3023 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3024 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3025 * filesystem and enables swap, then they may get a nasty shock when the
3026 * data getting swapped to that swapfile suddenly gets overwritten by
3027 * the original zero's written out previously to the journal and
3028 * awaiting writeback in the kernel's buffer cache.
3029 *
3030 * So, if we see any bmap calls here on a modified, data-journaled file,
3031 * take extra steps to flush any blocks which might be in the cache.
3032 */
617ba13b 3033static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3034{
3035 struct inode *inode = mapping->host;
3036 journal_t *journal;
3037 int err;
3038
64769240
AT
3039 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3040 test_opt(inode->i_sb, DELALLOC)) {
3041 /*
3042 * With delalloc we want to sync the file
3043 * so that we can make sure we allocate
3044 * blocks for file
3045 */
3046 filemap_write_and_wait(mapping);
3047 }
3048
0390131b 3049 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3050 /*
3051 * This is a REALLY heavyweight approach, but the use of
3052 * bmap on dirty files is expected to be extremely rare:
3053 * only if we run lilo or swapon on a freshly made file
3054 * do we expect this to happen.
3055 *
3056 * (bmap requires CAP_SYS_RAWIO so this does not
3057 * represent an unprivileged user DOS attack --- we'd be
3058 * in trouble if mortal users could trigger this path at
3059 * will.)
3060 *
617ba13b 3061 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3062 * regular files. If somebody wants to bmap a directory
3063 * or symlink and gets confused because the buffer
3064 * hasn't yet been flushed to disk, they deserve
3065 * everything they get.
3066 */
3067
617ba13b
MC
3068 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3069 journal = EXT4_JOURNAL(inode);
dab291af
MC
3070 jbd2_journal_lock_updates(journal);
3071 err = jbd2_journal_flush(journal);
3072 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3073
3074 if (err)
3075 return 0;
3076 }
3077
af5bc92d 3078 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3079}
3080
3081static int bget_one(handle_t *handle, struct buffer_head *bh)
3082{
3083 get_bh(bh);
3084 return 0;
3085}
3086
3087static int bput_one(handle_t *handle, struct buffer_head *bh)
3088{
3089 put_bh(bh);
3090 return 0;
3091}
3092
ac27a0ec 3093/*
678aaf48
JK
3094 * Note that we don't need to start a transaction unless we're journaling data
3095 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3096 * need to file the inode to the transaction's list in ordered mode because if
3097 * we are writing back data added by write(), the inode is already there and if
3098 * we are writing back data modified via mmap(), noone guarantees in which
3099 * transaction the data will hit the disk. In case we are journaling data, we
3100 * cannot start transaction directly because transaction start ranks above page
3101 * lock so we have to do some magic.
ac27a0ec 3102 *
678aaf48 3103 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
3104 *
3105 * Problem:
3106 *
617ba13b
MC
3107 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3108 * ext4_writepage()
ac27a0ec
DK
3109 *
3110 * Similar for:
3111 *
617ba13b 3112 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 3113 *
617ba13b 3114 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 3115 * lock_journal and i_data_sem
ac27a0ec
DK
3116 *
3117 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3118 * allocations fail.
3119 *
3120 * 16May01: If we're reentered then journal_current_handle() will be
3121 * non-zero. We simply *return*.
3122 *
3123 * 1 July 2001: @@@ FIXME:
3124 * In journalled data mode, a data buffer may be metadata against the
3125 * current transaction. But the same file is part of a shared mapping
3126 * and someone does a writepage() on it.
3127 *
3128 * We will move the buffer onto the async_data list, but *after* it has
3129 * been dirtied. So there's a small window where we have dirty data on
3130 * BJ_Metadata.
3131 *
3132 * Note that this only applies to the last partial page in the file. The
3133 * bit which block_write_full_page() uses prepare/commit for. (That's
3134 * broken code anyway: it's wrong for msync()).
3135 *
3136 * It's a rare case: affects the final partial page, for journalled data
3137 * where the file is subject to bith write() and writepage() in the same
3138 * transction. To fix it we'll need a custom block_write_full_page().
3139 * We'll probably need that anyway for journalling writepage() output.
3140 *
3141 * We don't honour synchronous mounts for writepage(). That would be
3142 * disastrous. Any write() or metadata operation will sync the fs for
3143 * us.
3144 *
ac27a0ec 3145 */
678aaf48 3146static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
3147 struct writeback_control *wbc)
3148{
3149 struct inode *inode = page->mapping->host;
3150
3151 if (test_opt(inode->i_sb, NOBH))
b920c755 3152 return nobh_writepage(page, noalloc_get_block_write, wbc);
cf108bca 3153 else
b920c755
TT
3154 return block_write_full_page(page, noalloc_get_block_write,
3155 wbc);
cf108bca
JK
3156}
3157
678aaf48 3158static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
3159 struct writeback_control *wbc)
3160{
3161 struct inode *inode = page->mapping->host;
cf108bca
JK
3162 loff_t size = i_size_read(inode);
3163 loff_t len;
3164
ba80b101
TT
3165 trace_mark(ext4_normal_writepage,
3166 "dev %s ino %lu page_index %lu",
3167 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3168 J_ASSERT(PageLocked(page));
cf108bca
JK
3169 if (page->index == size >> PAGE_CACHE_SHIFT)
3170 len = size & ~PAGE_CACHE_MASK;
3171 else
3172 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3173
3174 if (page_has_buffers(page)) {
3175 /* if page has buffers it should all be mapped
3176 * and allocated. If there are not buffers attached
3177 * to the page we know the page is dirty but it lost
3178 * buffers. That means that at some moment in time
3179 * after write_begin() / write_end() has been called
3180 * all buffers have been clean and thus they must have been
3181 * written at least once. So they are all mapped and we can
3182 * happily proceed with mapping them and writing the page.
3183 */
3184 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3185 ext4_bh_unmapped_or_delay));
3186 }
cf108bca
JK
3187
3188 if (!ext4_journal_current_handle())
678aaf48 3189 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3190
3191 redirty_page_for_writepage(wbc, page);
3192 unlock_page(page);
3193 return 0;
3194}
3195
3196static int __ext4_journalled_writepage(struct page *page,
3197 struct writeback_control *wbc)
3198{
3199 struct address_space *mapping = page->mapping;
3200 struct inode *inode = mapping->host;
3201 struct buffer_head *page_bufs;
ac27a0ec
DK
3202 handle_t *handle = NULL;
3203 int ret = 0;
3204 int err;
3205
f0e6c985 3206 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
b920c755 3207 noalloc_get_block_write);
cf108bca
JK
3208 if (ret != 0)
3209 goto out_unlock;
3210
3211 page_bufs = page_buffers(page);
3212 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3213 bget_one);
3214 /* As soon as we unlock the page, it can go away, but we have
3215 * references to buffers so we are safe */
3216 unlock_page(page);
ac27a0ec 3217
617ba13b 3218 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3219 if (IS_ERR(handle)) {
3220 ret = PTR_ERR(handle);
cf108bca 3221 goto out;
ac27a0ec
DK
3222 }
3223
cf108bca
JK
3224 ret = walk_page_buffers(handle, page_bufs, 0,
3225 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3226
cf108bca
JK
3227 err = walk_page_buffers(handle, page_bufs, 0,
3228 PAGE_CACHE_SIZE, NULL, write_end_fn);
3229 if (ret == 0)
3230 ret = err;
617ba13b 3231 err = ext4_journal_stop(handle);
ac27a0ec
DK
3232 if (!ret)
3233 ret = err;
ac27a0ec 3234
cf108bca
JK
3235 walk_page_buffers(handle, page_bufs, 0,
3236 PAGE_CACHE_SIZE, NULL, bput_one);
3237 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3238 goto out;
3239
3240out_unlock:
ac27a0ec 3241 unlock_page(page);
cf108bca 3242out:
ac27a0ec
DK
3243 return ret;
3244}
3245
617ba13b 3246static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3247 struct writeback_control *wbc)
3248{
3249 struct inode *inode = page->mapping->host;
cf108bca
JK
3250 loff_t size = i_size_read(inode);
3251 loff_t len;
ac27a0ec 3252
ba80b101
TT
3253 trace_mark(ext4_journalled_writepage,
3254 "dev %s ino %lu page_index %lu",
3255 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3256 J_ASSERT(PageLocked(page));
cf108bca
JK
3257 if (page->index == size >> PAGE_CACHE_SHIFT)
3258 len = size & ~PAGE_CACHE_MASK;
3259 else
3260 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3261
3262 if (page_has_buffers(page)) {
3263 /* if page has buffers it should all be mapped
3264 * and allocated. If there are not buffers attached
3265 * to the page we know the page is dirty but it lost
3266 * buffers. That means that at some moment in time
3267 * after write_begin() / write_end() has been called
3268 * all buffers have been clean and thus they must have been
3269 * written at least once. So they are all mapped and we can
3270 * happily proceed with mapping them and writing the page.
3271 */
3272 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3273 ext4_bh_unmapped_or_delay));
3274 }
ac27a0ec 3275
cf108bca 3276 if (ext4_journal_current_handle())
ac27a0ec 3277 goto no_write;
ac27a0ec 3278
cf108bca 3279 if (PageChecked(page)) {
ac27a0ec
DK
3280 /*
3281 * It's mmapped pagecache. Add buffers and journal it. There
3282 * doesn't seem much point in redirtying the page here.
3283 */
3284 ClearPageChecked(page);
cf108bca 3285 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3286 } else {
3287 /*
3288 * It may be a page full of checkpoint-mode buffers. We don't
3289 * really know unless we go poke around in the buffer_heads.
3290 * But block_write_full_page will do the right thing.
3291 */
b920c755
TT
3292 return block_write_full_page(page, noalloc_get_block_write,
3293 wbc);
ac27a0ec 3294 }
ac27a0ec
DK
3295no_write:
3296 redirty_page_for_writepage(wbc, page);
ac27a0ec 3297 unlock_page(page);
cf108bca 3298 return 0;
ac27a0ec
DK
3299}
3300
617ba13b 3301static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3302{
617ba13b 3303 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3304}
3305
3306static int
617ba13b 3307ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3308 struct list_head *pages, unsigned nr_pages)
3309{
617ba13b 3310 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3311}
3312
617ba13b 3313static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3314{
617ba13b 3315 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3316
3317 /*
3318 * If it's a full truncate we just forget about the pending dirtying
3319 */
3320 if (offset == 0)
3321 ClearPageChecked(page);
3322
0390131b
FM
3323 if (journal)
3324 jbd2_journal_invalidatepage(journal, page, offset);
3325 else
3326 block_invalidatepage(page, offset);
ac27a0ec
DK
3327}
3328
617ba13b 3329static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3330{
617ba13b 3331 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3332
3333 WARN_ON(PageChecked(page));
3334 if (!page_has_buffers(page))
3335 return 0;
0390131b
FM
3336 if (journal)
3337 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3338 else
3339 return try_to_free_buffers(page);
ac27a0ec
DK
3340}
3341
3342/*
3343 * If the O_DIRECT write will extend the file then add this inode to the
3344 * orphan list. So recovery will truncate it back to the original size
3345 * if the machine crashes during the write.
3346 *
3347 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3348 * crashes then stale disk data _may_ be exposed inside the file. But current
3349 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3350 */
617ba13b 3351static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3352 const struct iovec *iov, loff_t offset,
3353 unsigned long nr_segs)
3354{
3355 struct file *file = iocb->ki_filp;
3356 struct inode *inode = file->f_mapping->host;
617ba13b 3357 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3358 handle_t *handle;
ac27a0ec
DK
3359 ssize_t ret;
3360 int orphan = 0;
3361 size_t count = iov_length(iov, nr_segs);
3362
3363 if (rw == WRITE) {
3364 loff_t final_size = offset + count;
3365
ac27a0ec 3366 if (final_size > inode->i_size) {
7fb5409d
JK
3367 /* Credits for sb + inode write */
3368 handle = ext4_journal_start(inode, 2);
3369 if (IS_ERR(handle)) {
3370 ret = PTR_ERR(handle);
3371 goto out;
3372 }
617ba13b 3373 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3374 if (ret) {
3375 ext4_journal_stop(handle);
3376 goto out;
3377 }
ac27a0ec
DK
3378 orphan = 1;
3379 ei->i_disksize = inode->i_size;
7fb5409d 3380 ext4_journal_stop(handle);
ac27a0ec
DK
3381 }
3382 }
3383
3384 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3385 offset, nr_segs,
617ba13b 3386 ext4_get_block, NULL);
ac27a0ec 3387
7fb5409d 3388 if (orphan) {
ac27a0ec
DK
3389 int err;
3390
7fb5409d
JK
3391 /* Credits for sb + inode write */
3392 handle = ext4_journal_start(inode, 2);
3393 if (IS_ERR(handle)) {
3394 /* This is really bad luck. We've written the data
3395 * but cannot extend i_size. Bail out and pretend
3396 * the write failed... */
3397 ret = PTR_ERR(handle);
3398 goto out;
3399 }
3400 if (inode->i_nlink)
617ba13b 3401 ext4_orphan_del(handle, inode);
7fb5409d 3402 if (ret > 0) {
ac27a0ec
DK
3403 loff_t end = offset + ret;
3404 if (end > inode->i_size) {
3405 ei->i_disksize = end;
3406 i_size_write(inode, end);
3407 /*
3408 * We're going to return a positive `ret'
3409 * here due to non-zero-length I/O, so there's
3410 * no way of reporting error returns from
617ba13b 3411 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3412 * ignore it.
3413 */
617ba13b 3414 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3415 }
3416 }
617ba13b 3417 err = ext4_journal_stop(handle);
ac27a0ec
DK
3418 if (ret == 0)
3419 ret = err;
3420 }
3421out:
3422 return ret;
3423}
3424
3425/*
617ba13b 3426 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3427 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3428 * much here because ->set_page_dirty is called under VFS locks. The page is
3429 * not necessarily locked.
3430 *
3431 * We cannot just dirty the page and leave attached buffers clean, because the
3432 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3433 * or jbddirty because all the journalling code will explode.
3434 *
3435 * So what we do is to mark the page "pending dirty" and next time writepage
3436 * is called, propagate that into the buffers appropriately.
3437 */
617ba13b 3438static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3439{
3440 SetPageChecked(page);
3441 return __set_page_dirty_nobuffers(page);
3442}
3443
617ba13b 3444static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3445 .readpage = ext4_readpage,
3446 .readpages = ext4_readpages,
3447 .writepage = ext4_normal_writepage,
3448 .sync_page = block_sync_page,
3449 .write_begin = ext4_write_begin,
3450 .write_end = ext4_ordered_write_end,
3451 .bmap = ext4_bmap,
3452 .invalidatepage = ext4_invalidatepage,
3453 .releasepage = ext4_releasepage,
3454 .direct_IO = ext4_direct_IO,
3455 .migratepage = buffer_migrate_page,
3456 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3457};
3458
617ba13b 3459static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3460 .readpage = ext4_readpage,
3461 .readpages = ext4_readpages,
3462 .writepage = ext4_normal_writepage,
3463 .sync_page = block_sync_page,
3464 .write_begin = ext4_write_begin,
3465 .write_end = ext4_writeback_write_end,
3466 .bmap = ext4_bmap,
3467 .invalidatepage = ext4_invalidatepage,
3468 .releasepage = ext4_releasepage,
3469 .direct_IO = ext4_direct_IO,
3470 .migratepage = buffer_migrate_page,
3471 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3472};
3473
617ba13b 3474static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3475 .readpage = ext4_readpage,
3476 .readpages = ext4_readpages,
3477 .writepage = ext4_journalled_writepage,
3478 .sync_page = block_sync_page,
3479 .write_begin = ext4_write_begin,
3480 .write_end = ext4_journalled_write_end,
3481 .set_page_dirty = ext4_journalled_set_page_dirty,
3482 .bmap = ext4_bmap,
3483 .invalidatepage = ext4_invalidatepage,
3484 .releasepage = ext4_releasepage,
3485 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3486};
3487
64769240 3488static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3489 .readpage = ext4_readpage,
3490 .readpages = ext4_readpages,
3491 .writepage = ext4_da_writepage,
3492 .writepages = ext4_da_writepages,
3493 .sync_page = block_sync_page,
3494 .write_begin = ext4_da_write_begin,
3495 .write_end = ext4_da_write_end,
3496 .bmap = ext4_bmap,
3497 .invalidatepage = ext4_da_invalidatepage,
3498 .releasepage = ext4_releasepage,
3499 .direct_IO = ext4_direct_IO,
3500 .migratepage = buffer_migrate_page,
3501 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3502};
3503
617ba13b 3504void ext4_set_aops(struct inode *inode)
ac27a0ec 3505{
cd1aac32
AK
3506 if (ext4_should_order_data(inode) &&
3507 test_opt(inode->i_sb, DELALLOC))
3508 inode->i_mapping->a_ops = &ext4_da_aops;
3509 else if (ext4_should_order_data(inode))
617ba13b 3510 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3511 else if (ext4_should_writeback_data(inode) &&
3512 test_opt(inode->i_sb, DELALLOC))
3513 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3514 else if (ext4_should_writeback_data(inode))
3515 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3516 else
617ba13b 3517 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3518}
3519
3520/*
617ba13b 3521 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3522 * up to the end of the block which corresponds to `from'.
3523 * This required during truncate. We need to physically zero the tail end
3524 * of that block so it doesn't yield old data if the file is later grown.
3525 */
cf108bca 3526int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3527 struct address_space *mapping, loff_t from)
3528{
617ba13b 3529 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3530 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3531 unsigned blocksize, length, pos;
3532 ext4_lblk_t iblock;
ac27a0ec
DK
3533 struct inode *inode = mapping->host;
3534 struct buffer_head *bh;
cf108bca 3535 struct page *page;
ac27a0ec 3536 int err = 0;
ac27a0ec 3537
cf108bca
JK
3538 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3539 if (!page)
3540 return -EINVAL;
3541
ac27a0ec
DK
3542 blocksize = inode->i_sb->s_blocksize;
3543 length = blocksize - (offset & (blocksize - 1));
3544 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3545
3546 /*
3547 * For "nobh" option, we can only work if we don't need to
3548 * read-in the page - otherwise we create buffers to do the IO.
3549 */
3550 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3551 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3552 zero_user(page, offset, length);
ac27a0ec
DK
3553 set_page_dirty(page);
3554 goto unlock;
3555 }
3556
3557 if (!page_has_buffers(page))
3558 create_empty_buffers(page, blocksize, 0);
3559
3560 /* Find the buffer that contains "offset" */
3561 bh = page_buffers(page);
3562 pos = blocksize;
3563 while (offset >= pos) {
3564 bh = bh->b_this_page;
3565 iblock++;
3566 pos += blocksize;
3567 }
3568
3569 err = 0;
3570 if (buffer_freed(bh)) {
3571 BUFFER_TRACE(bh, "freed: skip");
3572 goto unlock;
3573 }
3574
3575 if (!buffer_mapped(bh)) {
3576 BUFFER_TRACE(bh, "unmapped");
617ba13b 3577 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3578 /* unmapped? It's a hole - nothing to do */
3579 if (!buffer_mapped(bh)) {
3580 BUFFER_TRACE(bh, "still unmapped");
3581 goto unlock;
3582 }
3583 }
3584
3585 /* Ok, it's mapped. Make sure it's up-to-date */
3586 if (PageUptodate(page))
3587 set_buffer_uptodate(bh);
3588
3589 if (!buffer_uptodate(bh)) {
3590 err = -EIO;
3591 ll_rw_block(READ, 1, &bh);
3592 wait_on_buffer(bh);
3593 /* Uhhuh. Read error. Complain and punt. */
3594 if (!buffer_uptodate(bh))
3595 goto unlock;
3596 }
3597
617ba13b 3598 if (ext4_should_journal_data(inode)) {
ac27a0ec 3599 BUFFER_TRACE(bh, "get write access");
617ba13b 3600 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3601 if (err)
3602 goto unlock;
3603 }
3604
eebd2aa3 3605 zero_user(page, offset, length);
ac27a0ec
DK
3606
3607 BUFFER_TRACE(bh, "zeroed end of block");
3608
3609 err = 0;
617ba13b 3610 if (ext4_should_journal_data(inode)) {
0390131b 3611 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3612 } else {
617ba13b 3613 if (ext4_should_order_data(inode))
678aaf48 3614 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3615 mark_buffer_dirty(bh);
3616 }
3617
3618unlock:
3619 unlock_page(page);
3620 page_cache_release(page);
3621 return err;
3622}
3623
3624/*
3625 * Probably it should be a library function... search for first non-zero word
3626 * or memcmp with zero_page, whatever is better for particular architecture.
3627 * Linus?
3628 */
3629static inline int all_zeroes(__le32 *p, __le32 *q)
3630{
3631 while (p < q)
3632 if (*p++)
3633 return 0;
3634 return 1;
3635}
3636
3637/**
617ba13b 3638 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3639 * @inode: inode in question
3640 * @depth: depth of the affected branch
617ba13b 3641 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3642 * @chain: place to store the pointers to partial indirect blocks
3643 * @top: place to the (detached) top of branch
3644 *
617ba13b 3645 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3646 *
3647 * When we do truncate() we may have to clean the ends of several
3648 * indirect blocks but leave the blocks themselves alive. Block is
3649 * partially truncated if some data below the new i_size is refered
3650 * from it (and it is on the path to the first completely truncated
3651 * data block, indeed). We have to free the top of that path along
3652 * with everything to the right of the path. Since no allocation
617ba13b 3653 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3654 * finishes, we may safely do the latter, but top of branch may
3655 * require special attention - pageout below the truncation point
3656 * might try to populate it.
3657 *
3658 * We atomically detach the top of branch from the tree, store the
3659 * block number of its root in *@top, pointers to buffer_heads of
3660 * partially truncated blocks - in @chain[].bh and pointers to
3661 * their last elements that should not be removed - in
3662 * @chain[].p. Return value is the pointer to last filled element
3663 * of @chain.
3664 *
3665 * The work left to caller to do the actual freeing of subtrees:
3666 * a) free the subtree starting from *@top
3667 * b) free the subtrees whose roots are stored in
3668 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3669 * c) free the subtrees growing from the inode past the @chain[0].
3670 * (no partially truncated stuff there). */
3671
617ba13b 3672static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3673 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3674{
3675 Indirect *partial, *p;
3676 int k, err;
3677
3678 *top = 0;
3679 /* Make k index the deepest non-null offest + 1 */
3680 for (k = depth; k > 1 && !offsets[k-1]; k--)
3681 ;
617ba13b 3682 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3683 /* Writer: pointers */
3684 if (!partial)
3685 partial = chain + k-1;
3686 /*
3687 * If the branch acquired continuation since we've looked at it -
3688 * fine, it should all survive and (new) top doesn't belong to us.
3689 */
3690 if (!partial->key && *partial->p)
3691 /* Writer: end */
3692 goto no_top;
af5bc92d 3693 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3694 ;
3695 /*
3696 * OK, we've found the last block that must survive. The rest of our
3697 * branch should be detached before unlocking. However, if that rest
3698 * of branch is all ours and does not grow immediately from the inode
3699 * it's easier to cheat and just decrement partial->p.
3700 */
3701 if (p == chain + k - 1 && p > chain) {
3702 p->p--;
3703 } else {
3704 *top = *p->p;
617ba13b 3705 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3706#if 0
3707 *p->p = 0;
3708#endif
3709 }
3710 /* Writer: end */
3711
af5bc92d 3712 while (partial > p) {
ac27a0ec
DK
3713 brelse(partial->bh);
3714 partial--;
3715 }
3716no_top:
3717 return partial;
3718}
3719
3720/*
3721 * Zero a number of block pointers in either an inode or an indirect block.
3722 * If we restart the transaction we must again get write access to the
3723 * indirect block for further modification.
3724 *
3725 * We release `count' blocks on disk, but (last - first) may be greater
3726 * than `count' because there can be holes in there.
3727 */
617ba13b
MC
3728static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3729 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3730 unsigned long count, __le32 *first, __le32 *last)
3731{
3732 __le32 *p;
3733 if (try_to_extend_transaction(handle, inode)) {
3734 if (bh) {
0390131b
FM
3735 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3736 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3737 }
617ba13b
MC
3738 ext4_mark_inode_dirty(handle, inode);
3739 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3740 if (bh) {
3741 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3742 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3743 }
3744 }
3745
3746 /*
3747 * Any buffers which are on the journal will be in memory. We find
dab291af 3748 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3749 * on them. We've already detached each block from the file, so
dab291af 3750 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3751 *
dab291af 3752 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3753 */
3754 for (p = first; p < last; p++) {
3755 u32 nr = le32_to_cpu(*p);
3756 if (nr) {
1d03ec98 3757 struct buffer_head *tbh;
ac27a0ec
DK
3758
3759 *p = 0;
1d03ec98
AK
3760 tbh = sb_find_get_block(inode->i_sb, nr);
3761 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3762 }
3763 }
3764
c9de560d 3765 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3766}
3767
3768/**
617ba13b 3769 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3770 * @handle: handle for this transaction
3771 * @inode: inode we are dealing with
3772 * @this_bh: indirect buffer_head which contains *@first and *@last
3773 * @first: array of block numbers
3774 * @last: points immediately past the end of array
3775 *
3776 * We are freeing all blocks refered from that array (numbers are stored as
3777 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3778 *
3779 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3780 * blocks are contiguous then releasing them at one time will only affect one
3781 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3782 * actually use a lot of journal space.
3783 *
3784 * @this_bh will be %NULL if @first and @last point into the inode's direct
3785 * block pointers.
3786 */
617ba13b 3787static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3788 struct buffer_head *this_bh,
3789 __le32 *first, __le32 *last)
3790{
617ba13b 3791 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3792 unsigned long count = 0; /* Number of blocks in the run */
3793 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3794 corresponding to
3795 block_to_free */
617ba13b 3796 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3797 __le32 *p; /* Pointer into inode/ind
3798 for current block */
3799 int err;
3800
3801 if (this_bh) { /* For indirect block */
3802 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3803 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3804 /* Important: if we can't update the indirect pointers
3805 * to the blocks, we can't free them. */
3806 if (err)
3807 return;
3808 }
3809
3810 for (p = first; p < last; p++) {
3811 nr = le32_to_cpu(*p);
3812 if (nr) {
3813 /* accumulate blocks to free if they're contiguous */
3814 if (count == 0) {
3815 block_to_free = nr;
3816 block_to_free_p = p;
3817 count = 1;
3818 } else if (nr == block_to_free + count) {
3819 count++;
3820 } else {
617ba13b 3821 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3822 block_to_free,
3823 count, block_to_free_p, p);
3824 block_to_free = nr;
3825 block_to_free_p = p;
3826 count = 1;
3827 }
3828 }
3829 }
3830
3831 if (count > 0)
617ba13b 3832 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3833 count, block_to_free_p, p);
3834
3835 if (this_bh) {
0390131b 3836 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3837
3838 /*
3839 * The buffer head should have an attached journal head at this
3840 * point. However, if the data is corrupted and an indirect
3841 * block pointed to itself, it would have been detached when
3842 * the block was cleared. Check for this instead of OOPSing.
3843 */
e7f07968 3844 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3845 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3846 else
3847 ext4_error(inode->i_sb, __func__,
3848 "circular indirect block detected, "
3849 "inode=%lu, block=%llu",
3850 inode->i_ino,
3851 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3852 }
3853}
3854
3855/**
617ba13b 3856 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3857 * @handle: JBD handle for this transaction
3858 * @inode: inode we are dealing with
3859 * @parent_bh: the buffer_head which contains *@first and *@last
3860 * @first: array of block numbers
3861 * @last: pointer immediately past the end of array
3862 * @depth: depth of the branches to free
3863 *
3864 * We are freeing all blocks refered from these branches (numbers are
3865 * stored as little-endian 32-bit) and updating @inode->i_blocks
3866 * appropriately.
3867 */
617ba13b 3868static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3869 struct buffer_head *parent_bh,
3870 __le32 *first, __le32 *last, int depth)
3871{
617ba13b 3872 ext4_fsblk_t nr;
ac27a0ec
DK
3873 __le32 *p;
3874
0390131b 3875 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3876 return;
3877
3878 if (depth--) {
3879 struct buffer_head *bh;
617ba13b 3880 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3881 p = last;
3882 while (--p >= first) {
3883 nr = le32_to_cpu(*p);
3884 if (!nr)
3885 continue; /* A hole */
3886
3887 /* Go read the buffer for the next level down */
3888 bh = sb_bread(inode->i_sb, nr);
3889
3890 /*
3891 * A read failure? Report error and clear slot
3892 * (should be rare).
3893 */
3894 if (!bh) {
617ba13b 3895 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3896 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3897 inode->i_ino, nr);
3898 continue;
3899 }
3900
3901 /* This zaps the entire block. Bottom up. */
3902 BUFFER_TRACE(bh, "free child branches");
617ba13b 3903 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3904 (__le32 *) bh->b_data,
3905 (__le32 *) bh->b_data + addr_per_block,
3906 depth);
ac27a0ec
DK
3907
3908 /*
3909 * We've probably journalled the indirect block several
3910 * times during the truncate. But it's no longer
3911 * needed and we now drop it from the transaction via
dab291af 3912 * jbd2_journal_revoke().
ac27a0ec
DK
3913 *
3914 * That's easy if it's exclusively part of this
3915 * transaction. But if it's part of the committing
dab291af 3916 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3917 * brelse() it. That means that if the underlying
617ba13b 3918 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3919 * unmap_underlying_metadata() will find this block
3920 * and will try to get rid of it. damn, damn.
3921 *
3922 * If this block has already been committed to the
3923 * journal, a revoke record will be written. And
3924 * revoke records must be emitted *before* clearing
3925 * this block's bit in the bitmaps.
3926 */
617ba13b 3927 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3928
3929 /*
3930 * Everything below this this pointer has been
3931 * released. Now let this top-of-subtree go.
3932 *
3933 * We want the freeing of this indirect block to be
3934 * atomic in the journal with the updating of the
3935 * bitmap block which owns it. So make some room in
3936 * the journal.
3937 *
3938 * We zero the parent pointer *after* freeing its
3939 * pointee in the bitmaps, so if extend_transaction()
3940 * for some reason fails to put the bitmap changes and
3941 * the release into the same transaction, recovery
3942 * will merely complain about releasing a free block,
3943 * rather than leaking blocks.
3944 */
0390131b 3945 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3946 return;
3947 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3948 ext4_mark_inode_dirty(handle, inode);
3949 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3950 }
3951
c9de560d 3952 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3953
3954 if (parent_bh) {
3955 /*
3956 * The block which we have just freed is
3957 * pointed to by an indirect block: journal it
3958 */
3959 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3960 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3961 parent_bh)){
3962 *p = 0;
3963 BUFFER_TRACE(parent_bh,
0390131b
FM
3964 "call ext4_handle_dirty_metadata");
3965 ext4_handle_dirty_metadata(handle,
3966 inode,
3967 parent_bh);
ac27a0ec
DK
3968 }
3969 }
3970 }
3971 } else {
3972 /* We have reached the bottom of the tree. */
3973 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3974 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3975 }
3976}
3977
91ef4caf
DG
3978int ext4_can_truncate(struct inode *inode)
3979{
3980 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3981 return 0;
3982 if (S_ISREG(inode->i_mode))
3983 return 1;
3984 if (S_ISDIR(inode->i_mode))
3985 return 1;
3986 if (S_ISLNK(inode->i_mode))
3987 return !ext4_inode_is_fast_symlink(inode);
3988 return 0;
3989}
3990
ac27a0ec 3991/*
617ba13b 3992 * ext4_truncate()
ac27a0ec 3993 *
617ba13b
MC
3994 * We block out ext4_get_block() block instantiations across the entire
3995 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3996 * simultaneously on behalf of the same inode.
3997 *
3998 * As we work through the truncate and commmit bits of it to the journal there
3999 * is one core, guiding principle: the file's tree must always be consistent on
4000 * disk. We must be able to restart the truncate after a crash.
4001 *
4002 * The file's tree may be transiently inconsistent in memory (although it
4003 * probably isn't), but whenever we close off and commit a journal transaction,
4004 * the contents of (the filesystem + the journal) must be consistent and
4005 * restartable. It's pretty simple, really: bottom up, right to left (although
4006 * left-to-right works OK too).
4007 *
4008 * Note that at recovery time, journal replay occurs *before* the restart of
4009 * truncate against the orphan inode list.
4010 *
4011 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4012 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4013 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4014 * ext4_truncate() to have another go. So there will be instantiated blocks
4015 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4016 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4017 * ext4_truncate() run will find them and release them.
ac27a0ec 4018 */
617ba13b 4019void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4020{
4021 handle_t *handle;
617ba13b 4022 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4023 __le32 *i_data = ei->i_data;
617ba13b 4024 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4025 struct address_space *mapping = inode->i_mapping;
725d26d3 4026 ext4_lblk_t offsets[4];
ac27a0ec
DK
4027 Indirect chain[4];
4028 Indirect *partial;
4029 __le32 nr = 0;
4030 int n;
725d26d3 4031 ext4_lblk_t last_block;
ac27a0ec 4032 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4033
91ef4caf 4034 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4035 return;
4036
afd4672d 4037 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4038 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4039
1d03ec98 4040 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4041 ext4_ext_truncate(inode);
1d03ec98
AK
4042 return;
4043 }
a86c6181 4044
ac27a0ec 4045 handle = start_transaction(inode);
cf108bca 4046 if (IS_ERR(handle))
ac27a0ec 4047 return; /* AKPM: return what? */
ac27a0ec
DK
4048
4049 last_block = (inode->i_size + blocksize-1)
617ba13b 4050 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4051
cf108bca
JK
4052 if (inode->i_size & (blocksize - 1))
4053 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4054 goto out_stop;
ac27a0ec 4055
617ba13b 4056 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4057 if (n == 0)
4058 goto out_stop; /* error */
4059
4060 /*
4061 * OK. This truncate is going to happen. We add the inode to the
4062 * orphan list, so that if this truncate spans multiple transactions,
4063 * and we crash, we will resume the truncate when the filesystem
4064 * recovers. It also marks the inode dirty, to catch the new size.
4065 *
4066 * Implication: the file must always be in a sane, consistent
4067 * truncatable state while each transaction commits.
4068 */
617ba13b 4069 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4070 goto out_stop;
4071
632eaeab
MC
4072 /*
4073 * From here we block out all ext4_get_block() callers who want to
4074 * modify the block allocation tree.
4075 */
4076 down_write(&ei->i_data_sem);
b4df2030 4077
c2ea3fde 4078 ext4_discard_preallocations(inode);
b4df2030 4079
ac27a0ec
DK
4080 /*
4081 * The orphan list entry will now protect us from any crash which
4082 * occurs before the truncate completes, so it is now safe to propagate
4083 * the new, shorter inode size (held for now in i_size) into the
4084 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4085 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4086 */
4087 ei->i_disksize = inode->i_size;
4088
ac27a0ec 4089 if (n == 1) { /* direct blocks */
617ba13b
MC
4090 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4091 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4092 goto do_indirects;
4093 }
4094
617ba13b 4095 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4096 /* Kill the top of shared branch (not detached) */
4097 if (nr) {
4098 if (partial == chain) {
4099 /* Shared branch grows from the inode */
617ba13b 4100 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4101 &nr, &nr+1, (chain+n-1) - partial);
4102 *partial->p = 0;
4103 /*
4104 * We mark the inode dirty prior to restart,
4105 * and prior to stop. No need for it here.
4106 */
4107 } else {
4108 /* Shared branch grows from an indirect block */
4109 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4110 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4111 partial->p,
4112 partial->p+1, (chain+n-1) - partial);
4113 }
4114 }
4115 /* Clear the ends of indirect blocks on the shared branch */
4116 while (partial > chain) {
617ba13b 4117 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4118 (__le32*)partial->bh->b_data+addr_per_block,
4119 (chain+n-1) - partial);
4120 BUFFER_TRACE(partial->bh, "call brelse");
4121 brelse (partial->bh);
4122 partial--;
4123 }
4124do_indirects:
4125 /* Kill the remaining (whole) subtrees */
4126 switch (offsets[0]) {
4127 default:
617ba13b 4128 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4129 if (nr) {
617ba13b
MC
4130 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4131 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4132 }
617ba13b
MC
4133 case EXT4_IND_BLOCK:
4134 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4135 if (nr) {
617ba13b
MC
4136 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4137 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4138 }
617ba13b
MC
4139 case EXT4_DIND_BLOCK:
4140 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4141 if (nr) {
617ba13b
MC
4142 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4143 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4144 }
617ba13b 4145 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4146 ;
4147 }
4148
0e855ac8 4149 up_write(&ei->i_data_sem);
ef7f3835 4150 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4151 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4152
4153 /*
4154 * In a multi-transaction truncate, we only make the final transaction
4155 * synchronous
4156 */
4157 if (IS_SYNC(inode))
0390131b 4158 ext4_handle_sync(handle);
ac27a0ec
DK
4159out_stop:
4160 /*
4161 * If this was a simple ftruncate(), and the file will remain alive
4162 * then we need to clear up the orphan record which we created above.
4163 * However, if this was a real unlink then we were called by
617ba13b 4164 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4165 * orphan info for us.
4166 */
4167 if (inode->i_nlink)
617ba13b 4168 ext4_orphan_del(handle, inode);
ac27a0ec 4169
617ba13b 4170 ext4_journal_stop(handle);
ac27a0ec
DK
4171}
4172
ac27a0ec 4173/*
617ba13b 4174 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4175 * underlying buffer_head on success. If 'in_mem' is true, we have all
4176 * data in memory that is needed to recreate the on-disk version of this
4177 * inode.
4178 */
617ba13b
MC
4179static int __ext4_get_inode_loc(struct inode *inode,
4180 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4181{
240799cd
TT
4182 struct ext4_group_desc *gdp;
4183 struct buffer_head *bh;
4184 struct super_block *sb = inode->i_sb;
4185 ext4_fsblk_t block;
4186 int inodes_per_block, inode_offset;
4187
3a06d778 4188 iloc->bh = NULL;
240799cd
TT
4189 if (!ext4_valid_inum(sb, inode->i_ino))
4190 return -EIO;
ac27a0ec 4191
240799cd
TT
4192 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4193 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4194 if (!gdp)
ac27a0ec
DK
4195 return -EIO;
4196
240799cd
TT
4197 /*
4198 * Figure out the offset within the block group inode table
4199 */
4200 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4201 inode_offset = ((inode->i_ino - 1) %
4202 EXT4_INODES_PER_GROUP(sb));
4203 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4204 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4205
4206 bh = sb_getblk(sb, block);
ac27a0ec 4207 if (!bh) {
240799cd
TT
4208 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4209 "inode block - inode=%lu, block=%llu",
4210 inode->i_ino, block);
ac27a0ec
DK
4211 return -EIO;
4212 }
4213 if (!buffer_uptodate(bh)) {
4214 lock_buffer(bh);
9c83a923
HK
4215
4216 /*
4217 * If the buffer has the write error flag, we have failed
4218 * to write out another inode in the same block. In this
4219 * case, we don't have to read the block because we may
4220 * read the old inode data successfully.
4221 */
4222 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4223 set_buffer_uptodate(bh);
4224
ac27a0ec
DK
4225 if (buffer_uptodate(bh)) {
4226 /* someone brought it uptodate while we waited */
4227 unlock_buffer(bh);
4228 goto has_buffer;
4229 }
4230
4231 /*
4232 * If we have all information of the inode in memory and this
4233 * is the only valid inode in the block, we need not read the
4234 * block.
4235 */
4236 if (in_mem) {
4237 struct buffer_head *bitmap_bh;
240799cd 4238 int i, start;
ac27a0ec 4239
240799cd 4240 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4241
240799cd
TT
4242 /* Is the inode bitmap in cache? */
4243 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4244 if (!bitmap_bh)
4245 goto make_io;
4246
4247 /*
4248 * If the inode bitmap isn't in cache then the
4249 * optimisation may end up performing two reads instead
4250 * of one, so skip it.
4251 */
4252 if (!buffer_uptodate(bitmap_bh)) {
4253 brelse(bitmap_bh);
4254 goto make_io;
4255 }
240799cd 4256 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4257 if (i == inode_offset)
4258 continue;
617ba13b 4259 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4260 break;
4261 }
4262 brelse(bitmap_bh);
240799cd 4263 if (i == start + inodes_per_block) {
ac27a0ec
DK
4264 /* all other inodes are free, so skip I/O */
4265 memset(bh->b_data, 0, bh->b_size);
4266 set_buffer_uptodate(bh);
4267 unlock_buffer(bh);
4268 goto has_buffer;
4269 }
4270 }
4271
4272make_io:
240799cd
TT
4273 /*
4274 * If we need to do any I/O, try to pre-readahead extra
4275 * blocks from the inode table.
4276 */
4277 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4278 ext4_fsblk_t b, end, table;
4279 unsigned num;
4280
4281 table = ext4_inode_table(sb, gdp);
b713a5ec 4282 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4283 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4284 if (table > b)
4285 b = table;
4286 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4287 num = EXT4_INODES_PER_GROUP(sb);
4288 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4289 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4290 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4291 table += num / inodes_per_block;
4292 if (end > table)
4293 end = table;
4294 while (b <= end)
4295 sb_breadahead(sb, b++);
4296 }
4297
ac27a0ec
DK
4298 /*
4299 * There are other valid inodes in the buffer, this inode
4300 * has in-inode xattrs, or we don't have this inode in memory.
4301 * Read the block from disk.
4302 */
4303 get_bh(bh);
4304 bh->b_end_io = end_buffer_read_sync;
4305 submit_bh(READ_META, bh);
4306 wait_on_buffer(bh);
4307 if (!buffer_uptodate(bh)) {
240799cd
TT
4308 ext4_error(sb, __func__,
4309 "unable to read inode block - inode=%lu, "
4310 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4311 brelse(bh);
4312 return -EIO;
4313 }
4314 }
4315has_buffer:
4316 iloc->bh = bh;
4317 return 0;
4318}
4319
617ba13b 4320int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4321{
4322 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4323 return __ext4_get_inode_loc(inode, iloc,
4324 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4325}
4326
617ba13b 4327void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4328{
617ba13b 4329 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4330
4331 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4332 if (flags & EXT4_SYNC_FL)
ac27a0ec 4333 inode->i_flags |= S_SYNC;
617ba13b 4334 if (flags & EXT4_APPEND_FL)
ac27a0ec 4335 inode->i_flags |= S_APPEND;
617ba13b 4336 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4337 inode->i_flags |= S_IMMUTABLE;
617ba13b 4338 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4339 inode->i_flags |= S_NOATIME;
617ba13b 4340 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4341 inode->i_flags |= S_DIRSYNC;
4342}
4343
ff9ddf7e
JK
4344/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4345void ext4_get_inode_flags(struct ext4_inode_info *ei)
4346{
4347 unsigned int flags = ei->vfs_inode.i_flags;
4348
4349 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4350 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4351 if (flags & S_SYNC)
4352 ei->i_flags |= EXT4_SYNC_FL;
4353 if (flags & S_APPEND)
4354 ei->i_flags |= EXT4_APPEND_FL;
4355 if (flags & S_IMMUTABLE)
4356 ei->i_flags |= EXT4_IMMUTABLE_FL;
4357 if (flags & S_NOATIME)
4358 ei->i_flags |= EXT4_NOATIME_FL;
4359 if (flags & S_DIRSYNC)
4360 ei->i_flags |= EXT4_DIRSYNC_FL;
4361}
0fc1b451
AK
4362static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4363 struct ext4_inode_info *ei)
4364{
4365 blkcnt_t i_blocks ;
8180a562
AK
4366 struct inode *inode = &(ei->vfs_inode);
4367 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4368
4369 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4370 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4371 /* we are using combined 48 bit field */
4372 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4373 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4374 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4375 /* i_blocks represent file system block size */
4376 return i_blocks << (inode->i_blkbits - 9);
4377 } else {
4378 return i_blocks;
4379 }
0fc1b451
AK
4380 } else {
4381 return le32_to_cpu(raw_inode->i_blocks_lo);
4382 }
4383}
ff9ddf7e 4384
1d1fe1ee 4385struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4386{
617ba13b
MC
4387 struct ext4_iloc iloc;
4388 struct ext4_inode *raw_inode;
1d1fe1ee 4389 struct ext4_inode_info *ei;
ac27a0ec 4390 struct buffer_head *bh;
1d1fe1ee
DH
4391 struct inode *inode;
4392 long ret;
ac27a0ec
DK
4393 int block;
4394
1d1fe1ee
DH
4395 inode = iget_locked(sb, ino);
4396 if (!inode)
4397 return ERR_PTR(-ENOMEM);
4398 if (!(inode->i_state & I_NEW))
4399 return inode;
4400
4401 ei = EXT4_I(inode);
03010a33 4402#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4403 ei->i_acl = EXT4_ACL_NOT_CACHED;
4404 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4405#endif
ac27a0ec 4406
1d1fe1ee
DH
4407 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4408 if (ret < 0)
ac27a0ec
DK
4409 goto bad_inode;
4410 bh = iloc.bh;
617ba13b 4411 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4412 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4413 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4414 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4415 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4416 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4417 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4418 }
4419 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4420
4421 ei->i_state = 0;
4422 ei->i_dir_start_lookup = 0;
4423 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4424 /* We now have enough fields to check if the inode was active or not.
4425 * This is needed because nfsd might try to access dead inodes
4426 * the test is that same one that e2fsck uses
4427 * NeilBrown 1999oct15
4428 */
4429 if (inode->i_nlink == 0) {
4430 if (inode->i_mode == 0 ||
617ba13b 4431 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4432 /* this inode is deleted */
af5bc92d 4433 brelse(bh);
1d1fe1ee 4434 ret = -ESTALE;
ac27a0ec
DK
4435 goto bad_inode;
4436 }
4437 /* The only unlinked inodes we let through here have
4438 * valid i_mode and are being read by the orphan
4439 * recovery code: that's fine, we're about to complete
4440 * the process of deleting those. */
4441 }
ac27a0ec 4442 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4443 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4444 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4445 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4446 ei->i_file_acl |=
4447 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4448 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4449 ei->i_disksize = inode->i_size;
4450 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4451 ei->i_block_group = iloc.block_group;
a4912123 4452 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4453 /*
4454 * NOTE! The in-memory inode i_data array is in little-endian order
4455 * even on big-endian machines: we do NOT byteswap the block numbers!
4456 */
617ba13b 4457 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4458 ei->i_data[block] = raw_inode->i_block[block];
4459 INIT_LIST_HEAD(&ei->i_orphan);
4460
0040d987 4461 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4462 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4463 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4464 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4465 brelse(bh);
1d1fe1ee 4466 ret = -EIO;
ac27a0ec 4467 goto bad_inode;
e5d2861f 4468 }
ac27a0ec
DK
4469 if (ei->i_extra_isize == 0) {
4470 /* The extra space is currently unused. Use it. */
617ba13b
MC
4471 ei->i_extra_isize = sizeof(struct ext4_inode) -
4472 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4473 } else {
4474 __le32 *magic = (void *)raw_inode +
617ba13b 4475 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4476 ei->i_extra_isize;
617ba13b
MC
4477 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4478 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4479 }
4480 } else
4481 ei->i_extra_isize = 0;
4482
ef7f3835
KS
4483 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4484 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4485 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4486 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4487
25ec56b5
JNC
4488 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4489 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4490 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4491 inode->i_version |=
4492 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4493 }
4494
c4b5a614 4495 ret = 0;
485c26ec
TT
4496 if (ei->i_file_acl &&
4497 ((ei->i_file_acl <
4498 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4499 EXT4_SB(sb)->s_gdb_count)) ||
4500 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4501 ext4_error(sb, __func__,
4502 "bad extended attribute block %llu in inode #%lu",
4503 ei->i_file_acl, inode->i_ino);
4504 ret = -EIO;
4505 goto bad_inode;
4506 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4507 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4508 (S_ISLNK(inode->i_mode) &&
4509 !ext4_inode_is_fast_symlink(inode)))
4510 /* Validate extent which is part of inode */
4511 ret = ext4_ext_check_inode(inode);
fe2c8191
TN
4512 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4513 (S_ISLNK(inode->i_mode) &&
4514 !ext4_inode_is_fast_symlink(inode))) {
4515 /* Validate block references which are part of inode */
4516 ret = ext4_check_inode_blockref(inode);
4517 }
4518 if (ret) {
4519 brelse(bh);
4520 goto bad_inode;
7a262f7c
AK
4521 }
4522
ac27a0ec 4523 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4524 inode->i_op = &ext4_file_inode_operations;
4525 inode->i_fop = &ext4_file_operations;
4526 ext4_set_aops(inode);
ac27a0ec 4527 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4528 inode->i_op = &ext4_dir_inode_operations;
4529 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4530 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4531 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4532 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4533 nd_terminate_link(ei->i_data, inode->i_size,
4534 sizeof(ei->i_data) - 1);
4535 } else {
617ba13b
MC
4536 inode->i_op = &ext4_symlink_inode_operations;
4537 ext4_set_aops(inode);
ac27a0ec 4538 }
563bdd61
TT
4539 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4540 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4541 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4542 if (raw_inode->i_block[0])
4543 init_special_inode(inode, inode->i_mode,
4544 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4545 else
4546 init_special_inode(inode, inode->i_mode,
4547 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4548 } else {
4549 brelse(bh);
4550 ret = -EIO;
4551 ext4_error(inode->i_sb, __func__,
4552 "bogus i_mode (%o) for inode=%lu",
4553 inode->i_mode, inode->i_ino);
4554 goto bad_inode;
ac27a0ec 4555 }
af5bc92d 4556 brelse(iloc.bh);
617ba13b 4557 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4558 unlock_new_inode(inode);
4559 return inode;
ac27a0ec
DK
4560
4561bad_inode:
1d1fe1ee
DH
4562 iget_failed(inode);
4563 return ERR_PTR(ret);
ac27a0ec
DK
4564}
4565
0fc1b451
AK
4566static int ext4_inode_blocks_set(handle_t *handle,
4567 struct ext4_inode *raw_inode,
4568 struct ext4_inode_info *ei)
4569{
4570 struct inode *inode = &(ei->vfs_inode);
4571 u64 i_blocks = inode->i_blocks;
4572 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4573
4574 if (i_blocks <= ~0U) {
4575 /*
4576 * i_blocks can be represnted in a 32 bit variable
4577 * as multiple of 512 bytes
4578 */
8180a562 4579 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4580 raw_inode->i_blocks_high = 0;
8180a562 4581 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4582 return 0;
4583 }
4584 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4585 return -EFBIG;
4586
4587 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4588 /*
4589 * i_blocks can be represented in a 48 bit variable
4590 * as multiple of 512 bytes
4591 */
8180a562 4592 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4593 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4594 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4595 } else {
8180a562
AK
4596 ei->i_flags |= EXT4_HUGE_FILE_FL;
4597 /* i_block is stored in file system block size */
4598 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4599 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4600 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4601 }
f287a1a5 4602 return 0;
0fc1b451
AK
4603}
4604
ac27a0ec
DK
4605/*
4606 * Post the struct inode info into an on-disk inode location in the
4607 * buffer-cache. This gobbles the caller's reference to the
4608 * buffer_head in the inode location struct.
4609 *
4610 * The caller must have write access to iloc->bh.
4611 */
617ba13b 4612static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4613 struct inode *inode,
617ba13b 4614 struct ext4_iloc *iloc)
ac27a0ec 4615{
617ba13b
MC
4616 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4617 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4618 struct buffer_head *bh = iloc->bh;
4619 int err = 0, rc, block;
4620
4621 /* For fields not not tracking in the in-memory inode,
4622 * initialise them to zero for new inodes. */
617ba13b
MC
4623 if (ei->i_state & EXT4_STATE_NEW)
4624 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4625
ff9ddf7e 4626 ext4_get_inode_flags(ei);
ac27a0ec 4627 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4628 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4629 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4630 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4631/*
4632 * Fix up interoperability with old kernels. Otherwise, old inodes get
4633 * re-used with the upper 16 bits of the uid/gid intact
4634 */
af5bc92d 4635 if (!ei->i_dtime) {
ac27a0ec
DK
4636 raw_inode->i_uid_high =
4637 cpu_to_le16(high_16_bits(inode->i_uid));
4638 raw_inode->i_gid_high =
4639 cpu_to_le16(high_16_bits(inode->i_gid));
4640 } else {
4641 raw_inode->i_uid_high = 0;
4642 raw_inode->i_gid_high = 0;
4643 }
4644 } else {
4645 raw_inode->i_uid_low =
4646 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4647 raw_inode->i_gid_low =
4648 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4649 raw_inode->i_uid_high = 0;
4650 raw_inode->i_gid_high = 0;
4651 }
4652 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4653
4654 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4655 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4656 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4657 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4658
0fc1b451
AK
4659 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4660 goto out_brelse;
ac27a0ec 4661 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4662 /* clear the migrate flag in the raw_inode */
4663 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4664 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4665 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4666 raw_inode->i_file_acl_high =
4667 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4668 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4669 ext4_isize_set(raw_inode, ei->i_disksize);
4670 if (ei->i_disksize > 0x7fffffffULL) {
4671 struct super_block *sb = inode->i_sb;
4672 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4673 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4674 EXT4_SB(sb)->s_es->s_rev_level ==
4675 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4676 /* If this is the first large file
4677 * created, add a flag to the superblock.
4678 */
4679 err = ext4_journal_get_write_access(handle,
4680 EXT4_SB(sb)->s_sbh);
4681 if (err)
4682 goto out_brelse;
4683 ext4_update_dynamic_rev(sb);
4684 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4685 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4686 sb->s_dirt = 1;
0390131b
FM
4687 ext4_handle_sync(handle);
4688 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4689 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4690 }
4691 }
4692 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4693 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4694 if (old_valid_dev(inode->i_rdev)) {
4695 raw_inode->i_block[0] =
4696 cpu_to_le32(old_encode_dev(inode->i_rdev));
4697 raw_inode->i_block[1] = 0;
4698 } else {
4699 raw_inode->i_block[0] = 0;
4700 raw_inode->i_block[1] =
4701 cpu_to_le32(new_encode_dev(inode->i_rdev));
4702 raw_inode->i_block[2] = 0;
4703 }
617ba13b 4704 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4705 raw_inode->i_block[block] = ei->i_data[block];
4706
25ec56b5
JNC
4707 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4708 if (ei->i_extra_isize) {
4709 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4710 raw_inode->i_version_hi =
4711 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4712 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4713 }
4714
0390131b
FM
4715 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4716 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4717 if (!err)
4718 err = rc;
617ba13b 4719 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4720
4721out_brelse:
af5bc92d 4722 brelse(bh);
617ba13b 4723 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4724 return err;
4725}
4726
4727/*
617ba13b 4728 * ext4_write_inode()
ac27a0ec
DK
4729 *
4730 * We are called from a few places:
4731 *
4732 * - Within generic_file_write() for O_SYNC files.
4733 * Here, there will be no transaction running. We wait for any running
4734 * trasnaction to commit.
4735 *
4736 * - Within sys_sync(), kupdate and such.
4737 * We wait on commit, if tol to.
4738 *
4739 * - Within prune_icache() (PF_MEMALLOC == true)
4740 * Here we simply return. We can't afford to block kswapd on the
4741 * journal commit.
4742 *
4743 * In all cases it is actually safe for us to return without doing anything,
4744 * because the inode has been copied into a raw inode buffer in
617ba13b 4745 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4746 * knfsd.
4747 *
4748 * Note that we are absolutely dependent upon all inode dirtiers doing the
4749 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4750 * which we are interested.
4751 *
4752 * It would be a bug for them to not do this. The code:
4753 *
4754 * mark_inode_dirty(inode)
4755 * stuff();
4756 * inode->i_size = expr;
4757 *
4758 * is in error because a kswapd-driven write_inode() could occur while
4759 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4760 * will no longer be on the superblock's dirty inode list.
4761 */
617ba13b 4762int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4763{
4764 if (current->flags & PF_MEMALLOC)
4765 return 0;
4766
617ba13b 4767 if (ext4_journal_current_handle()) {
b38bd33a 4768 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4769 dump_stack();
4770 return -EIO;
4771 }
4772
4773 if (!wait)
4774 return 0;
4775
617ba13b 4776 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4777}
4778
0390131b
FM
4779int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4780{
4781 int err = 0;
4782
4783 mark_buffer_dirty(bh);
4784 if (inode && inode_needs_sync(inode)) {
4785 sync_dirty_buffer(bh);
4786 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4787 ext4_error(inode->i_sb, __func__,
4788 "IO error syncing inode, "
4789 "inode=%lu, block=%llu",
4790 inode->i_ino,
4791 (unsigned long long)bh->b_blocknr);
4792 err = -EIO;
4793 }
4794 }
4795 return err;
4796}
4797
ac27a0ec 4798/*
617ba13b 4799 * ext4_setattr()
ac27a0ec
DK
4800 *
4801 * Called from notify_change.
4802 *
4803 * We want to trap VFS attempts to truncate the file as soon as
4804 * possible. In particular, we want to make sure that when the VFS
4805 * shrinks i_size, we put the inode on the orphan list and modify
4806 * i_disksize immediately, so that during the subsequent flushing of
4807 * dirty pages and freeing of disk blocks, we can guarantee that any
4808 * commit will leave the blocks being flushed in an unused state on
4809 * disk. (On recovery, the inode will get truncated and the blocks will
4810 * be freed, so we have a strong guarantee that no future commit will
4811 * leave these blocks visible to the user.)
4812 *
678aaf48
JK
4813 * Another thing we have to assure is that if we are in ordered mode
4814 * and inode is still attached to the committing transaction, we must
4815 * we start writeout of all the dirty pages which are being truncated.
4816 * This way we are sure that all the data written in the previous
4817 * transaction are already on disk (truncate waits for pages under
4818 * writeback).
4819 *
4820 * Called with inode->i_mutex down.
ac27a0ec 4821 */
617ba13b 4822int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4823{
4824 struct inode *inode = dentry->d_inode;
4825 int error, rc = 0;
4826 const unsigned int ia_valid = attr->ia_valid;
4827
4828 error = inode_change_ok(inode, attr);
4829 if (error)
4830 return error;
4831
4832 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4833 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4834 handle_t *handle;
4835
4836 /* (user+group)*(old+new) structure, inode write (sb,
4837 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4838 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4839 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4840 if (IS_ERR(handle)) {
4841 error = PTR_ERR(handle);
4842 goto err_out;
4843 }
a269eb18 4844 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4845 if (error) {
617ba13b 4846 ext4_journal_stop(handle);
ac27a0ec
DK
4847 return error;
4848 }
4849 /* Update corresponding info in inode so that everything is in
4850 * one transaction */
4851 if (attr->ia_valid & ATTR_UID)
4852 inode->i_uid = attr->ia_uid;
4853 if (attr->ia_valid & ATTR_GID)
4854 inode->i_gid = attr->ia_gid;
617ba13b
MC
4855 error = ext4_mark_inode_dirty(handle, inode);
4856 ext4_journal_stop(handle);
ac27a0ec
DK
4857 }
4858
e2b46574
ES
4859 if (attr->ia_valid & ATTR_SIZE) {
4860 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4861 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4862
4863 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4864 error = -EFBIG;
4865 goto err_out;
4866 }
4867 }
4868 }
4869
ac27a0ec
DK
4870 if (S_ISREG(inode->i_mode) &&
4871 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4872 handle_t *handle;
4873
617ba13b 4874 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4875 if (IS_ERR(handle)) {
4876 error = PTR_ERR(handle);
4877 goto err_out;
4878 }
4879
617ba13b
MC
4880 error = ext4_orphan_add(handle, inode);
4881 EXT4_I(inode)->i_disksize = attr->ia_size;
4882 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4883 if (!error)
4884 error = rc;
617ba13b 4885 ext4_journal_stop(handle);
678aaf48
JK
4886
4887 if (ext4_should_order_data(inode)) {
4888 error = ext4_begin_ordered_truncate(inode,
4889 attr->ia_size);
4890 if (error) {
4891 /* Do as much error cleanup as possible */
4892 handle = ext4_journal_start(inode, 3);
4893 if (IS_ERR(handle)) {
4894 ext4_orphan_del(NULL, inode);
4895 goto err_out;
4896 }
4897 ext4_orphan_del(handle, inode);
4898 ext4_journal_stop(handle);
4899 goto err_out;
4900 }
4901 }
ac27a0ec
DK
4902 }
4903
4904 rc = inode_setattr(inode, attr);
4905
617ba13b 4906 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4907 * transaction handle at all, we need to clean up the in-core
4908 * orphan list manually. */
4909 if (inode->i_nlink)
617ba13b 4910 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4911
4912 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4913 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4914
4915err_out:
617ba13b 4916 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4917 if (!error)
4918 error = rc;
4919 return error;
4920}
4921
3e3398a0
MC
4922int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4923 struct kstat *stat)
4924{
4925 struct inode *inode;
4926 unsigned long delalloc_blocks;
4927
4928 inode = dentry->d_inode;
4929 generic_fillattr(inode, stat);
4930
4931 /*
4932 * We can't update i_blocks if the block allocation is delayed
4933 * otherwise in the case of system crash before the real block
4934 * allocation is done, we will have i_blocks inconsistent with
4935 * on-disk file blocks.
4936 * We always keep i_blocks updated together with real
4937 * allocation. But to not confuse with user, stat
4938 * will return the blocks that include the delayed allocation
4939 * blocks for this file.
4940 */
4941 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4942 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4943 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4944
4945 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4946 return 0;
4947}
ac27a0ec 4948
a02908f1
MC
4949static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4950 int chunk)
4951{
4952 int indirects;
4953
4954 /* if nrblocks are contiguous */
4955 if (chunk) {
4956 /*
4957 * With N contiguous data blocks, it need at most
4958 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4959 * 2 dindirect blocks
4960 * 1 tindirect block
4961 */
4962 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4963 return indirects + 3;
4964 }
4965 /*
4966 * if nrblocks are not contiguous, worse case, each block touch
4967 * a indirect block, and each indirect block touch a double indirect
4968 * block, plus a triple indirect block
4969 */
4970 indirects = nrblocks * 2 + 1;
4971 return indirects;
4972}
4973
4974static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4975{
4976 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4977 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4978 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4979}
ac51d837 4980
ac27a0ec 4981/*
a02908f1
MC
4982 * Account for index blocks, block groups bitmaps and block group
4983 * descriptor blocks if modify datablocks and index blocks
4984 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4985 *
a02908f1
MC
4986 * If datablocks are discontiguous, they are possible to spread over
4987 * different block groups too. If they are contiugous, with flexbg,
4988 * they could still across block group boundary.
ac27a0ec 4989 *
a02908f1
MC
4990 * Also account for superblock, inode, quota and xattr blocks
4991 */
4992int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4993{
8df9675f
TT
4994 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4995 int gdpblocks;
a02908f1
MC
4996 int idxblocks;
4997 int ret = 0;
4998
4999 /*
5000 * How many index blocks need to touch to modify nrblocks?
5001 * The "Chunk" flag indicating whether the nrblocks is
5002 * physically contiguous on disk
5003 *
5004 * For Direct IO and fallocate, they calls get_block to allocate
5005 * one single extent at a time, so they could set the "Chunk" flag
5006 */
5007 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5008
5009 ret = idxblocks;
5010
5011 /*
5012 * Now let's see how many group bitmaps and group descriptors need
5013 * to account
5014 */
5015 groups = idxblocks;
5016 if (chunk)
5017 groups += 1;
5018 else
5019 groups += nrblocks;
5020
5021 gdpblocks = groups;
8df9675f
TT
5022 if (groups > ngroups)
5023 groups = ngroups;
a02908f1
MC
5024 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5025 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5026
5027 /* bitmaps and block group descriptor blocks */
5028 ret += groups + gdpblocks;
5029
5030 /* Blocks for super block, inode, quota and xattr blocks */
5031 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5032
5033 return ret;
5034}
5035
5036/*
5037 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5038 * the modification of a single pages into a single transaction,
5039 * which may include multiple chunks of block allocations.
ac27a0ec 5040 *
525f4ed8 5041 * This could be called via ext4_write_begin()
ac27a0ec 5042 *
525f4ed8 5043 * We need to consider the worse case, when
a02908f1 5044 * one new block per extent.
ac27a0ec 5045 */
a86c6181 5046int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5047{
617ba13b 5048 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5049 int ret;
5050
a02908f1 5051 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5052
a02908f1 5053 /* Account for data blocks for journalled mode */
617ba13b 5054 if (ext4_should_journal_data(inode))
a02908f1 5055 ret += bpp;
ac27a0ec
DK
5056 return ret;
5057}
f3bd1f3f
MC
5058
5059/*
5060 * Calculate the journal credits for a chunk of data modification.
5061 *
5062 * This is called from DIO, fallocate or whoever calling
12b7ac17 5063 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5064 *
5065 * journal buffers for data blocks are not included here, as DIO
5066 * and fallocate do no need to journal data buffers.
5067 */
5068int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5069{
5070 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5071}
5072
ac27a0ec 5073/*
617ba13b 5074 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5075 * Give this, we know that the caller already has write access to iloc->bh.
5076 */
617ba13b
MC
5077int ext4_mark_iloc_dirty(handle_t *handle,
5078 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5079{
5080 int err = 0;
5081
25ec56b5
JNC
5082 if (test_opt(inode->i_sb, I_VERSION))
5083 inode_inc_iversion(inode);
5084
ac27a0ec
DK
5085 /* the do_update_inode consumes one bh->b_count */
5086 get_bh(iloc->bh);
5087
dab291af 5088 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 5089 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5090 put_bh(iloc->bh);
5091 return err;
5092}
5093
5094/*
5095 * On success, We end up with an outstanding reference count against
5096 * iloc->bh. This _must_ be cleaned up later.
5097 */
5098
5099int
617ba13b
MC
5100ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5101 struct ext4_iloc *iloc)
ac27a0ec 5102{
0390131b
FM
5103 int err;
5104
5105 err = ext4_get_inode_loc(inode, iloc);
5106 if (!err) {
5107 BUFFER_TRACE(iloc->bh, "get_write_access");
5108 err = ext4_journal_get_write_access(handle, iloc->bh);
5109 if (err) {
5110 brelse(iloc->bh);
5111 iloc->bh = NULL;
ac27a0ec
DK
5112 }
5113 }
617ba13b 5114 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5115 return err;
5116}
5117
6dd4ee7c
KS
5118/*
5119 * Expand an inode by new_extra_isize bytes.
5120 * Returns 0 on success or negative error number on failure.
5121 */
1d03ec98
AK
5122static int ext4_expand_extra_isize(struct inode *inode,
5123 unsigned int new_extra_isize,
5124 struct ext4_iloc iloc,
5125 handle_t *handle)
6dd4ee7c
KS
5126{
5127 struct ext4_inode *raw_inode;
5128 struct ext4_xattr_ibody_header *header;
5129 struct ext4_xattr_entry *entry;
5130
5131 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5132 return 0;
5133
5134 raw_inode = ext4_raw_inode(&iloc);
5135
5136 header = IHDR(inode, raw_inode);
5137 entry = IFIRST(header);
5138
5139 /* No extended attributes present */
5140 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5141 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5142 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5143 new_extra_isize);
5144 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5145 return 0;
5146 }
5147
5148 /* try to expand with EAs present */
5149 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5150 raw_inode, handle);
5151}
5152
ac27a0ec
DK
5153/*
5154 * What we do here is to mark the in-core inode as clean with respect to inode
5155 * dirtiness (it may still be data-dirty).
5156 * This means that the in-core inode may be reaped by prune_icache
5157 * without having to perform any I/O. This is a very good thing,
5158 * because *any* task may call prune_icache - even ones which
5159 * have a transaction open against a different journal.
5160 *
5161 * Is this cheating? Not really. Sure, we haven't written the
5162 * inode out, but prune_icache isn't a user-visible syncing function.
5163 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5164 * we start and wait on commits.
5165 *
5166 * Is this efficient/effective? Well, we're being nice to the system
5167 * by cleaning up our inodes proactively so they can be reaped
5168 * without I/O. But we are potentially leaving up to five seconds'
5169 * worth of inodes floating about which prune_icache wants us to
5170 * write out. One way to fix that would be to get prune_icache()
5171 * to do a write_super() to free up some memory. It has the desired
5172 * effect.
5173 */
617ba13b 5174int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5175{
617ba13b 5176 struct ext4_iloc iloc;
6dd4ee7c
KS
5177 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5178 static unsigned int mnt_count;
5179 int err, ret;
ac27a0ec
DK
5180
5181 might_sleep();
617ba13b 5182 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5183 if (ext4_handle_valid(handle) &&
5184 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5185 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5186 /*
5187 * We need extra buffer credits since we may write into EA block
5188 * with this same handle. If journal_extend fails, then it will
5189 * only result in a minor loss of functionality for that inode.
5190 * If this is felt to be critical, then e2fsck should be run to
5191 * force a large enough s_min_extra_isize.
5192 */
5193 if ((jbd2_journal_extend(handle,
5194 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5195 ret = ext4_expand_extra_isize(inode,
5196 sbi->s_want_extra_isize,
5197 iloc, handle);
5198 if (ret) {
5199 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5200 if (mnt_count !=
5201 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5202 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5203 "Unable to expand inode %lu. Delete"
5204 " some EAs or run e2fsck.",
5205 inode->i_ino);
c1bddad9
AK
5206 mnt_count =
5207 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5208 }
5209 }
5210 }
5211 }
ac27a0ec 5212 if (!err)
617ba13b 5213 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5214 return err;
5215}
5216
5217/*
617ba13b 5218 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5219 *
5220 * We're really interested in the case where a file is being extended.
5221 * i_size has been changed by generic_commit_write() and we thus need
5222 * to include the updated inode in the current transaction.
5223 *
a269eb18 5224 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5225 * are allocated to the file.
5226 *
5227 * If the inode is marked synchronous, we don't honour that here - doing
5228 * so would cause a commit on atime updates, which we don't bother doing.
5229 * We handle synchronous inodes at the highest possible level.
5230 */
617ba13b 5231void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5232{
617ba13b 5233 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5234 handle_t *handle;
5235
0390131b
FM
5236 if (!ext4_handle_valid(current_handle)) {
5237 ext4_mark_inode_dirty(current_handle, inode);
5238 return;
5239 }
5240
617ba13b 5241 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5242 if (IS_ERR(handle))
5243 goto out;
5244 if (current_handle &&
5245 current_handle->h_transaction != handle->h_transaction) {
5246 /* This task has a transaction open against a different fs */
5247 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5248 __func__);
ac27a0ec
DK
5249 } else {
5250 jbd_debug(5, "marking dirty. outer handle=%p\n",
5251 current_handle);
617ba13b 5252 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5253 }
617ba13b 5254 ext4_journal_stop(handle);
ac27a0ec
DK
5255out:
5256 return;
5257}
5258
5259#if 0
5260/*
5261 * Bind an inode's backing buffer_head into this transaction, to prevent
5262 * it from being flushed to disk early. Unlike
617ba13b 5263 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5264 * returns no iloc structure, so the caller needs to repeat the iloc
5265 * lookup to mark the inode dirty later.
5266 */
617ba13b 5267static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5268{
617ba13b 5269 struct ext4_iloc iloc;
ac27a0ec
DK
5270
5271 int err = 0;
5272 if (handle) {
617ba13b 5273 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5274 if (!err) {
5275 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5276 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5277 if (!err)
0390131b
FM
5278 err = ext4_handle_dirty_metadata(handle,
5279 inode,
5280 iloc.bh);
ac27a0ec
DK
5281 brelse(iloc.bh);
5282 }
5283 }
617ba13b 5284 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5285 return err;
5286}
5287#endif
5288
617ba13b 5289int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5290{
5291 journal_t *journal;
5292 handle_t *handle;
5293 int err;
5294
5295 /*
5296 * We have to be very careful here: changing a data block's
5297 * journaling status dynamically is dangerous. If we write a
5298 * data block to the journal, change the status and then delete
5299 * that block, we risk forgetting to revoke the old log record
5300 * from the journal and so a subsequent replay can corrupt data.
5301 * So, first we make sure that the journal is empty and that
5302 * nobody is changing anything.
5303 */
5304
617ba13b 5305 journal = EXT4_JOURNAL(inode);
0390131b
FM
5306 if (!journal)
5307 return 0;
d699594d 5308 if (is_journal_aborted(journal))
ac27a0ec
DK
5309 return -EROFS;
5310
dab291af
MC
5311 jbd2_journal_lock_updates(journal);
5312 jbd2_journal_flush(journal);
ac27a0ec
DK
5313
5314 /*
5315 * OK, there are no updates running now, and all cached data is
5316 * synced to disk. We are now in a completely consistent state
5317 * which doesn't have anything in the journal, and we know that
5318 * no filesystem updates are running, so it is safe to modify
5319 * the inode's in-core data-journaling state flag now.
5320 */
5321
5322 if (val)
617ba13b 5323 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5324 else
617ba13b
MC
5325 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5326 ext4_set_aops(inode);
ac27a0ec 5327
dab291af 5328 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5329
5330 /* Finally we can mark the inode as dirty. */
5331
617ba13b 5332 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5333 if (IS_ERR(handle))
5334 return PTR_ERR(handle);
5335
617ba13b 5336 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5337 ext4_handle_sync(handle);
617ba13b
MC
5338 ext4_journal_stop(handle);
5339 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5340
5341 return err;
5342}
2e9ee850
AK
5343
5344static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5345{
5346 return !buffer_mapped(bh);
5347}
5348
c2ec175c 5349int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5350{
c2ec175c 5351 struct page *page = vmf->page;
2e9ee850
AK
5352 loff_t size;
5353 unsigned long len;
5354 int ret = -EINVAL;
79f0be8d 5355 void *fsdata;
2e9ee850
AK
5356 struct file *file = vma->vm_file;
5357 struct inode *inode = file->f_path.dentry->d_inode;
5358 struct address_space *mapping = inode->i_mapping;
5359
5360 /*
5361 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5362 * get i_mutex because we are already holding mmap_sem.
5363 */
5364 down_read(&inode->i_alloc_sem);
5365 size = i_size_read(inode);
5366 if (page->mapping != mapping || size <= page_offset(page)
5367 || !PageUptodate(page)) {
5368 /* page got truncated from under us? */
5369 goto out_unlock;
5370 }
5371 ret = 0;
5372 if (PageMappedToDisk(page))
5373 goto out_unlock;
5374
5375 if (page->index == size >> PAGE_CACHE_SHIFT)
5376 len = size & ~PAGE_CACHE_MASK;
5377 else
5378 len = PAGE_CACHE_SIZE;
5379
5380 if (page_has_buffers(page)) {
5381 /* return if we have all the buffers mapped */
5382 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5383 ext4_bh_unmapped))
5384 goto out_unlock;
5385 }
5386 /*
5387 * OK, we need to fill the hole... Do write_begin write_end
5388 * to do block allocation/reservation.We are not holding
5389 * inode.i__mutex here. That allow * parallel write_begin,
5390 * write_end call. lock_page prevent this from happening
5391 * on the same page though
5392 */
5393 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5394 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5395 if (ret < 0)
5396 goto out_unlock;
5397 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5398 len, len, page, fsdata);
2e9ee850
AK
5399 if (ret < 0)
5400 goto out_unlock;
5401 ret = 0;
5402out_unlock:
c2ec175c
NP
5403 if (ret)
5404 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5405 up_read(&inode->i_alloc_sem);
5406 return ret;
5407}