]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Fix dirtying of journalled buffers in data=journal mode
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240
AT
62static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
ac27a0ec
DK
64/*
65 * Test whether an inode is a fast symlink.
66 */
617ba13b 67static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 68{
617ba13b 69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73}
74
ac27a0ec
DK
75/*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79static unsigned long blocks_for_truncate(struct inode *inode)
80{
725d26d3 81 ext4_lblk_t needed;
ac27a0ec
DK
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
617ba13b 88 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
617ba13b
MC
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 98
617ba13b 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
100}
101
102/*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112static handle_t *start_transaction(struct inode *inode)
113{
114 handle_t *result;
115
617ba13b 116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
117 if (!IS_ERR(result))
118 return result;
119
617ba13b 120 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
121 return result;
122}
123
124/*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131{
0390131b
FM
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 135 return 0;
617ba13b 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
137 return 0;
138 return 1;
139}
140
141/*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
fa5d1113 146int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 147 int nblocks)
ac27a0ec 148{
487caeef
JK
149 int ret;
150
151 /*
e35fd660 152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
0390131b 157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 158 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 162 ext4_discard_preallocations(inode);
487caeef
JK
163
164 return ret;
ac27a0ec
DK
165}
166
167/*
168 * Called at the last iput() if i_nlink is zero.
169 */
af5bc92d 170void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
171{
172 handle_t *handle;
bc965ab3 173 int err;
ac27a0ec 174
907f4554 175 if (!is_bad_inode(inode))
871a2931 176 dquot_initialize(inode);
907f4554 177
678aaf48
JK
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
bc965ab3 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 186 if (IS_ERR(handle)) {
bc965ab3 187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
617ba13b 193 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
0390131b 198 ext4_handle_sync(handle);
ac27a0ec 199 inode->i_size = 0;
bc965ab3
TT
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
ac27a0ec 206 if (inode->i_blocks)
617ba13b 207 ext4_truncate(inode);
bc965ab3
TT
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
0390131b 215 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
12062ddd 220 ext4_warning(inode->i_sb,
bc965ab3
TT
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
45388219 224 ext4_orphan_del(NULL, inode);
bc965ab3
TT
225 goto no_delete;
226 }
227 }
228
ac27a0ec 229 /*
617ba13b 230 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 231 * AKPM: I think this can be inside the above `if'.
617ba13b 232 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 233 * deletion of a non-existent orphan - this is because we don't
617ba13b 234 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
235 * (Well, we could do this if we need to, but heck - it works)
236 */
617ba13b
MC
237 ext4_orphan_del(handle, inode);
238 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
239
240 /*
241 * One subtle ordering requirement: if anything has gone wrong
242 * (transaction abort, IO errors, whatever), then we can still
243 * do these next steps (the fs will already have been marked as
244 * having errors), but we can't free the inode if the mark_dirty
245 * fails.
246 */
617ba13b 247 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
248 /* If that failed, just do the required in-core inode clear. */
249 clear_inode(inode);
250 else
617ba13b
MC
251 ext4_free_inode(handle, inode);
252 ext4_journal_stop(handle);
ac27a0ec
DK
253 return;
254no_delete:
255 clear_inode(inode); /* We must guarantee clearing of inode... */
256}
257
258typedef struct {
259 __le32 *p;
260 __le32 key;
261 struct buffer_head *bh;
262} Indirect;
263
264static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
265{
266 p->key = *(p->p = v);
267 p->bh = bh;
268}
269
ac27a0ec 270/**
617ba13b 271 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
272 * @inode: inode in question (we are only interested in its superblock)
273 * @i_block: block number to be parsed
274 * @offsets: array to store the offsets in
8c55e204
DK
275 * @boundary: set this non-zero if the referred-to block is likely to be
276 * followed (on disk) by an indirect block.
ac27a0ec 277 *
617ba13b 278 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
279 * for UNIX filesystems - tree of pointers anchored in the inode, with
280 * data blocks at leaves and indirect blocks in intermediate nodes.
281 * This function translates the block number into path in that tree -
282 * return value is the path length and @offsets[n] is the offset of
283 * pointer to (n+1)th node in the nth one. If @block is out of range
284 * (negative or too large) warning is printed and zero returned.
285 *
286 * Note: function doesn't find node addresses, so no IO is needed. All
287 * we need to know is the capacity of indirect blocks (taken from the
288 * inode->i_sb).
289 */
290
291/*
292 * Portability note: the last comparison (check that we fit into triple
293 * indirect block) is spelled differently, because otherwise on an
294 * architecture with 32-bit longs and 8Kb pages we might get into trouble
295 * if our filesystem had 8Kb blocks. We might use long long, but that would
296 * kill us on x86. Oh, well, at least the sign propagation does not matter -
297 * i_block would have to be negative in the very beginning, so we would not
298 * get there at all.
299 */
300
617ba13b 301static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
302 ext4_lblk_t i_block,
303 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 304{
617ba13b
MC
305 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
306 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
307 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
308 indirect_blocks = ptrs,
309 double_blocks = (1 << (ptrs_bits * 2));
310 int n = 0;
311 int final = 0;
312
c333e073 313 if (i_block < direct_blocks) {
ac27a0ec
DK
314 offsets[n++] = i_block;
315 final = direct_blocks;
af5bc92d 316 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 317 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
318 offsets[n++] = i_block;
319 final = ptrs;
320 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 321 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
322 offsets[n++] = i_block >> ptrs_bits;
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 326 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
327 offsets[n++] = i_block >> (ptrs_bits * 2);
328 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
329 offsets[n++] = i_block & (ptrs - 1);
330 final = ptrs;
331 } else {
12062ddd 332 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
333 i_block + direct_blocks +
334 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
335 }
336 if (boundary)
337 *boundary = final - 1 - (i_block & (ptrs - 1));
338 return n;
339}
340
c398eda0
TT
341static int __ext4_check_blockref(const char *function, unsigned int line,
342 struct inode *inode,
6fd058f7
TT
343 __le32 *p, unsigned int max)
344{
1c13d5c0 345 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
f73953c0 346 __le32 *bref = p;
6fd058f7
TT
347 unsigned int blk;
348
fe2c8191 349 while (bref < p+max) {
6fd058f7 350 blk = le32_to_cpu(*bref++);
de9a55b8
TT
351 if (blk &&
352 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 353 blk, 1))) {
1c13d5c0 354 es->s_last_error_block = cpu_to_le64(blk);
c398eda0
TT
355 ext4_error_inode(inode, function, line, blk,
356 "invalid block");
de9a55b8
TT
357 return -EIO;
358 }
359 }
360 return 0;
fe2c8191
TN
361}
362
363
364#define ext4_check_indirect_blockref(inode, bh) \
c398eda0
TT
365 __ext4_check_blockref(__func__, __LINE__, inode, \
366 (__le32 *)(bh)->b_data, \
fe2c8191
TN
367 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
368
369#define ext4_check_inode_blockref(inode) \
c398eda0
TT
370 __ext4_check_blockref(__func__, __LINE__, inode, \
371 EXT4_I(inode)->i_data, \
fe2c8191
TN
372 EXT4_NDIR_BLOCKS)
373
ac27a0ec 374/**
617ba13b 375 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
376 * @inode: inode in question
377 * @depth: depth of the chain (1 - direct pointer, etc.)
378 * @offsets: offsets of pointers in inode/indirect blocks
379 * @chain: place to store the result
380 * @err: here we store the error value
381 *
382 * Function fills the array of triples <key, p, bh> and returns %NULL
383 * if everything went OK or the pointer to the last filled triple
384 * (incomplete one) otherwise. Upon the return chain[i].key contains
385 * the number of (i+1)-th block in the chain (as it is stored in memory,
386 * i.e. little-endian 32-bit), chain[i].p contains the address of that
387 * number (it points into struct inode for i==0 and into the bh->b_data
388 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
389 * block for i>0 and NULL for i==0. In other words, it holds the block
390 * numbers of the chain, addresses they were taken from (and where we can
391 * verify that chain did not change) and buffer_heads hosting these
392 * numbers.
393 *
394 * Function stops when it stumbles upon zero pointer (absent block)
395 * (pointer to last triple returned, *@err == 0)
396 * or when it gets an IO error reading an indirect block
397 * (ditto, *@err == -EIO)
ac27a0ec
DK
398 * or when it reads all @depth-1 indirect blocks successfully and finds
399 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
400 *
401 * Need to be called with
0e855ac8 402 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 403 */
725d26d3
AK
404static Indirect *ext4_get_branch(struct inode *inode, int depth,
405 ext4_lblk_t *offsets,
ac27a0ec
DK
406 Indirect chain[4], int *err)
407{
408 struct super_block *sb = inode->i_sb;
409 Indirect *p = chain;
410 struct buffer_head *bh;
411
412 *err = 0;
413 /* i_data is not going away, no lock needed */
af5bc92d 414 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
415 if (!p->key)
416 goto no_block;
417 while (--depth) {
fe2c8191
TN
418 bh = sb_getblk(sb, le32_to_cpu(p->key));
419 if (unlikely(!bh))
ac27a0ec 420 goto failure;
de9a55b8 421
fe2c8191
TN
422 if (!bh_uptodate_or_lock(bh)) {
423 if (bh_submit_read(bh) < 0) {
424 put_bh(bh);
425 goto failure;
426 }
427 /* validate block references */
428 if (ext4_check_indirect_blockref(inode, bh)) {
429 put_bh(bh);
430 goto failure;
431 }
432 }
de9a55b8 433
af5bc92d 434 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
435 /* Reader: end */
436 if (!p->key)
437 goto no_block;
438 }
439 return NULL;
440
ac27a0ec
DK
441failure:
442 *err = -EIO;
443no_block:
444 return p;
445}
446
447/**
617ba13b 448 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
449 * @inode: owner
450 * @ind: descriptor of indirect block.
451 *
1cc8dcf5 452 * This function returns the preferred place for block allocation.
ac27a0ec
DK
453 * It is used when heuristic for sequential allocation fails.
454 * Rules are:
455 * + if there is a block to the left of our position - allocate near it.
456 * + if pointer will live in indirect block - allocate near that block.
457 * + if pointer will live in inode - allocate in the same
458 * cylinder group.
459 *
460 * In the latter case we colour the starting block by the callers PID to
461 * prevent it from clashing with concurrent allocations for a different inode
462 * in the same block group. The PID is used here so that functionally related
463 * files will be close-by on-disk.
464 *
465 * Caller must make sure that @ind is valid and will stay that way.
466 */
617ba13b 467static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 468{
617ba13b 469 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 470 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 471 __le32 *p;
617ba13b 472 ext4_fsblk_t bg_start;
74d3487f 473 ext4_fsblk_t last_block;
617ba13b 474 ext4_grpblk_t colour;
a4912123
TT
475 ext4_group_t block_group;
476 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
477
478 /* Try to find previous block */
479 for (p = ind->p - 1; p >= start; p--) {
480 if (*p)
481 return le32_to_cpu(*p);
482 }
483
484 /* No such thing, so let's try location of indirect block */
485 if (ind->bh)
486 return ind->bh->b_blocknr;
487
488 /*
489 * It is going to be referred to from the inode itself? OK, just put it
490 * into the same cylinder group then.
491 */
a4912123
TT
492 block_group = ei->i_block_group;
493 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
494 block_group &= ~(flex_size-1);
495 if (S_ISREG(inode->i_mode))
496 block_group++;
497 }
498 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
499 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
500
a4912123
TT
501 /*
502 * If we are doing delayed allocation, we don't need take
503 * colour into account.
504 */
505 if (test_opt(inode->i_sb, DELALLOC))
506 return bg_start;
507
74d3487f
VC
508 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
509 colour = (current->pid % 16) *
617ba13b 510 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
511 else
512 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
513 return bg_start + colour;
514}
515
516/**
1cc8dcf5 517 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
518 * @inode: owner
519 * @block: block we want
ac27a0ec 520 * @partial: pointer to the last triple within a chain
ac27a0ec 521 *
1cc8dcf5 522 * Normally this function find the preferred place for block allocation,
fb01bfda 523 * returns it.
fb0a387d
ES
524 * Because this is only used for non-extent files, we limit the block nr
525 * to 32 bits.
ac27a0ec 526 */
725d26d3 527static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 528 Indirect *partial)
ac27a0ec 529{
fb0a387d
ES
530 ext4_fsblk_t goal;
531
ac27a0ec 532 /*
c2ea3fde 533 * XXX need to get goal block from mballoc's data structures
ac27a0ec 534 */
ac27a0ec 535
fb0a387d
ES
536 goal = ext4_find_near(inode, partial);
537 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
538 return goal;
ac27a0ec
DK
539}
540
541/**
617ba13b 542 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
543 * of direct blocks need to be allocated for the given branch.
544 *
545 * @branch: chain of indirect blocks
546 * @k: number of blocks need for indirect blocks
547 * @blks: number of data blocks to be mapped.
548 * @blocks_to_boundary: the offset in the indirect block
549 *
550 * return the total number of blocks to be allocate, including the
551 * direct and indirect blocks.
552 */
498e5f24 553static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 554 int blocks_to_boundary)
ac27a0ec 555{
498e5f24 556 unsigned int count = 0;
ac27a0ec
DK
557
558 /*
559 * Simple case, [t,d]Indirect block(s) has not allocated yet
560 * then it's clear blocks on that path have not allocated
561 */
562 if (k > 0) {
563 /* right now we don't handle cross boundary allocation */
564 if (blks < blocks_to_boundary + 1)
565 count += blks;
566 else
567 count += blocks_to_boundary + 1;
568 return count;
569 }
570
571 count++;
572 while (count < blks && count <= blocks_to_boundary &&
573 le32_to_cpu(*(branch[0].p + count)) == 0) {
574 count++;
575 }
576 return count;
577}
578
579/**
617ba13b 580 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
581 * @indirect_blks: the number of blocks need to allocate for indirect
582 * blocks
583 *
584 * @new_blocks: on return it will store the new block numbers for
585 * the indirect blocks(if needed) and the first direct block,
586 * @blks: on return it will store the total number of allocated
587 * direct blocks
588 */
617ba13b 589static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
590 ext4_lblk_t iblock, ext4_fsblk_t goal,
591 int indirect_blks, int blks,
592 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 593{
815a1130 594 struct ext4_allocation_request ar;
ac27a0ec 595 int target, i;
7061eba7 596 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 597 int index = 0;
617ba13b 598 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
599 int ret = 0;
600
601 /*
602 * Here we try to allocate the requested multiple blocks at once,
603 * on a best-effort basis.
604 * To build a branch, we should allocate blocks for
605 * the indirect blocks(if not allocated yet), and at least
606 * the first direct block of this branch. That's the
607 * minimum number of blocks need to allocate(required)
608 */
7061eba7
AK
609 /* first we try to allocate the indirect blocks */
610 target = indirect_blks;
611 while (target > 0) {
ac27a0ec
DK
612 count = target;
613 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
614 current_block = ext4_new_meta_blocks(handle, inode,
615 goal, &count, err);
ac27a0ec
DK
616 if (*err)
617 goto failed_out;
618
273df556
FM
619 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
620 EXT4_ERROR_INODE(inode,
621 "current_block %llu + count %lu > %d!",
622 current_block, count,
623 EXT4_MAX_BLOCK_FILE_PHYS);
624 *err = -EIO;
625 goto failed_out;
626 }
fb0a387d 627
ac27a0ec
DK
628 target -= count;
629 /* allocate blocks for indirect blocks */
630 while (index < indirect_blks && count) {
631 new_blocks[index++] = current_block++;
632 count--;
633 }
7061eba7
AK
634 if (count > 0) {
635 /*
636 * save the new block number
637 * for the first direct block
638 */
639 new_blocks[index] = current_block;
640 printk(KERN_INFO "%s returned more blocks than "
641 "requested\n", __func__);
642 WARN_ON(1);
ac27a0ec 643 break;
7061eba7 644 }
ac27a0ec
DK
645 }
646
7061eba7
AK
647 target = blks - count ;
648 blk_allocated = count;
649 if (!target)
650 goto allocated;
651 /* Now allocate data blocks */
815a1130
TT
652 memset(&ar, 0, sizeof(ar));
653 ar.inode = inode;
654 ar.goal = goal;
655 ar.len = target;
656 ar.logical = iblock;
657 if (S_ISREG(inode->i_mode))
658 /* enable in-core preallocation only for regular files */
659 ar.flags = EXT4_MB_HINT_DATA;
660
661 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
662 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
663 EXT4_ERROR_INODE(inode,
664 "current_block %llu + ar.len %d > %d!",
665 current_block, ar.len,
666 EXT4_MAX_BLOCK_FILE_PHYS);
667 *err = -EIO;
668 goto failed_out;
669 }
815a1130 670
7061eba7
AK
671 if (*err && (target == blks)) {
672 /*
673 * if the allocation failed and we didn't allocate
674 * any blocks before
675 */
676 goto failed_out;
677 }
678 if (!*err) {
679 if (target == blks) {
de9a55b8
TT
680 /*
681 * save the new block number
682 * for the first direct block
683 */
7061eba7
AK
684 new_blocks[index] = current_block;
685 }
815a1130 686 blk_allocated += ar.len;
7061eba7
AK
687 }
688allocated:
ac27a0ec 689 /* total number of blocks allocated for direct blocks */
7061eba7 690 ret = blk_allocated;
ac27a0ec
DK
691 *err = 0;
692 return ret;
693failed_out:
af5bc92d 694 for (i = 0; i < index; i++)
e6362609 695 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
696 return ret;
697}
698
699/**
617ba13b 700 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
701 * @inode: owner
702 * @indirect_blks: number of allocated indirect blocks
703 * @blks: number of allocated direct blocks
704 * @offsets: offsets (in the blocks) to store the pointers to next.
705 * @branch: place to store the chain in.
706 *
707 * This function allocates blocks, zeroes out all but the last one,
708 * links them into chain and (if we are synchronous) writes them to disk.
709 * In other words, it prepares a branch that can be spliced onto the
710 * inode. It stores the information about that chain in the branch[], in
617ba13b 711 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
712 * we had read the existing part of chain and partial points to the last
713 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 714 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
715 * place chain is disconnected - *branch->p is still zero (we did not
716 * set the last link), but branch->key contains the number that should
717 * be placed into *branch->p to fill that gap.
718 *
719 * If allocation fails we free all blocks we've allocated (and forget
720 * their buffer_heads) and return the error value the from failed
617ba13b 721 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
722 * as described above and return 0.
723 */
617ba13b 724static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
725 ext4_lblk_t iblock, int indirect_blks,
726 int *blks, ext4_fsblk_t goal,
727 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
728{
729 int blocksize = inode->i_sb->s_blocksize;
730 int i, n = 0;
731 int err = 0;
732 struct buffer_head *bh;
733 int num;
617ba13b
MC
734 ext4_fsblk_t new_blocks[4];
735 ext4_fsblk_t current_block;
ac27a0ec 736
7061eba7 737 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
738 *blks, new_blocks, &err);
739 if (err)
740 return err;
741
742 branch[0].key = cpu_to_le32(new_blocks[0]);
743 /*
744 * metadata blocks and data blocks are allocated.
745 */
746 for (n = 1; n <= indirect_blks; n++) {
747 /*
748 * Get buffer_head for parent block, zero it out
749 * and set the pointer to new one, then send
750 * parent to disk.
751 */
752 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
753 branch[n].bh = bh;
754 lock_buffer(bh);
755 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 756 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 757 if (err) {
6487a9d3
CW
758 /* Don't brelse(bh) here; it's done in
759 * ext4_journal_forget() below */
ac27a0ec 760 unlock_buffer(bh);
ac27a0ec
DK
761 goto failed;
762 }
763
764 memset(bh->b_data, 0, blocksize);
765 branch[n].p = (__le32 *) bh->b_data + offsets[n];
766 branch[n].key = cpu_to_le32(new_blocks[n]);
767 *branch[n].p = branch[n].key;
af5bc92d 768 if (n == indirect_blks) {
ac27a0ec
DK
769 current_block = new_blocks[n];
770 /*
771 * End of chain, update the last new metablock of
772 * the chain to point to the new allocated
773 * data blocks numbers
774 */
de9a55b8 775 for (i = 1; i < num; i++)
ac27a0ec
DK
776 *(branch[n].p + i) = cpu_to_le32(++current_block);
777 }
778 BUFFER_TRACE(bh, "marking uptodate");
779 set_buffer_uptodate(bh);
780 unlock_buffer(bh);
781
0390131b
FM
782 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
783 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
784 if (err)
785 goto failed;
786 }
787 *blks = num;
788 return err;
789failed:
790 /* Allocation failed, free what we already allocated */
e6362609 791 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 792 for (i = 1; i <= n ; i++) {
60e6679e 793 /*
e6362609
TT
794 * branch[i].bh is newly allocated, so there is no
795 * need to revoke the block, which is why we don't
796 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 797 */
e6362609
TT
798 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
799 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 800 }
e6362609
TT
801 for (i = n+1; i < indirect_blks; i++)
802 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 803
e6362609 804 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
805
806 return err;
807}
808
809/**
617ba13b 810 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
811 * @inode: owner
812 * @block: (logical) number of block we are adding
813 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 814 * ext4_alloc_branch)
ac27a0ec
DK
815 * @where: location of missing link
816 * @num: number of indirect blocks we are adding
817 * @blks: number of direct blocks we are adding
818 *
819 * This function fills the missing link and does all housekeeping needed in
820 * inode (->i_blocks, etc.). In case of success we end up with the full
821 * chain to new block and return 0.
822 */
617ba13b 823static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
824 ext4_lblk_t block, Indirect *where, int num,
825 int blks)
ac27a0ec
DK
826{
827 int i;
828 int err = 0;
617ba13b 829 ext4_fsblk_t current_block;
ac27a0ec 830
ac27a0ec
DK
831 /*
832 * If we're splicing into a [td]indirect block (as opposed to the
833 * inode) then we need to get write access to the [td]indirect block
834 * before the splice.
835 */
836 if (where->bh) {
837 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 838 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
839 if (err)
840 goto err_out;
841 }
842 /* That's it */
843
844 *where->p = where->key;
845
846 /*
847 * Update the host buffer_head or inode to point to more just allocated
848 * direct blocks blocks
849 */
850 if (num == 0 && blks > 1) {
851 current_block = le32_to_cpu(where->key) + 1;
852 for (i = 1; i < blks; i++)
af5bc92d 853 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
854 }
855
ac27a0ec 856 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
857 /* had we spliced it onto indirect block? */
858 if (where->bh) {
859 /*
860 * If we spliced it onto an indirect block, we haven't
861 * altered the inode. Note however that if it is being spliced
862 * onto an indirect block at the very end of the file (the
863 * file is growing) then we *will* alter the inode to reflect
864 * the new i_size. But that is not done here - it is done in
617ba13b 865 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
866 */
867 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
868 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
869 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
870 if (err)
871 goto err_out;
872 } else {
873 /*
874 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 875 */
41591750 876 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
877 jbd_debug(5, "splicing direct\n");
878 }
879 return err;
880
881err_out:
882 for (i = 1; i <= num; i++) {
60e6679e 883 /*
e6362609
TT
884 * branch[i].bh is newly allocated, so there is no
885 * need to revoke the block, which is why we don't
886 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 887 */
e6362609
TT
888 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
889 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 890 }
e6362609
TT
891 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
892 blks, 0);
ac27a0ec
DK
893
894 return err;
895}
896
897/*
e35fd660 898 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 899 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 900 * scheme) for ext4_map_blocks().
b920c755 901 *
ac27a0ec
DK
902 * Allocation strategy is simple: if we have to allocate something, we will
903 * have to go the whole way to leaf. So let's do it before attaching anything
904 * to tree, set linkage between the newborn blocks, write them if sync is
905 * required, recheck the path, free and repeat if check fails, otherwise
906 * set the last missing link (that will protect us from any truncate-generated
907 * removals - all blocks on the path are immune now) and possibly force the
908 * write on the parent block.
909 * That has a nice additional property: no special recovery from the failed
910 * allocations is needed - we simply release blocks and do not touch anything
911 * reachable from inode.
912 *
913 * `handle' can be NULL if create == 0.
914 *
ac27a0ec
DK
915 * return > 0, # of blocks mapped or allocated.
916 * return = 0, if plain lookup failed.
917 * return < 0, error case.
c278bfec 918 *
b920c755
TT
919 * The ext4_ind_get_blocks() function should be called with
920 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
921 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
922 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
923 * blocks.
ac27a0ec 924 */
e35fd660
TT
925static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
926 struct ext4_map_blocks *map,
de9a55b8 927 int flags)
ac27a0ec
DK
928{
929 int err = -EIO;
725d26d3 930 ext4_lblk_t offsets[4];
ac27a0ec
DK
931 Indirect chain[4];
932 Indirect *partial;
617ba13b 933 ext4_fsblk_t goal;
ac27a0ec
DK
934 int indirect_blks;
935 int blocks_to_boundary = 0;
936 int depth;
ac27a0ec 937 int count = 0;
617ba13b 938 ext4_fsblk_t first_block = 0;
ac27a0ec 939
12e9b892 940 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 941 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 942 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 943 &blocks_to_boundary);
ac27a0ec
DK
944
945 if (depth == 0)
946 goto out;
947
617ba13b 948 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
949
950 /* Simplest case - block found, no allocation needed */
951 if (!partial) {
952 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
953 count++;
954 /*map more blocks*/
e35fd660 955 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 956 ext4_fsblk_t blk;
ac27a0ec 957
ac27a0ec
DK
958 blk = le32_to_cpu(*(chain[depth-1].p + count));
959
960 if (blk == first_block + count)
961 count++;
962 else
963 break;
964 }
c278bfec 965 goto got_it;
ac27a0ec
DK
966 }
967
968 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 969 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
970 goto cleanup;
971
ac27a0ec 972 /*
c2ea3fde 973 * Okay, we need to do block allocation.
ac27a0ec 974 */
e35fd660 975 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
976
977 /* the number of blocks need to allocate for [d,t]indirect blocks */
978 indirect_blks = (chain + depth) - partial - 1;
979
980 /*
981 * Next look up the indirect map to count the totoal number of
982 * direct blocks to allocate for this branch.
983 */
617ba13b 984 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 985 map->m_len, blocks_to_boundary);
ac27a0ec 986 /*
617ba13b 987 * Block out ext4_truncate while we alter the tree
ac27a0ec 988 */
e35fd660 989 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
990 &count, goal,
991 offsets + (partial - chain), partial);
ac27a0ec
DK
992
993 /*
617ba13b 994 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
995 * on the new chain if there is a failure, but that risks using
996 * up transaction credits, especially for bitmaps where the
997 * credits cannot be returned. Can we handle this somehow? We
998 * may need to return -EAGAIN upwards in the worst case. --sct
999 */
1000 if (!err)
e35fd660 1001 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1002 partial, indirect_blks, count);
2bba702d 1003 if (err)
ac27a0ec
DK
1004 goto cleanup;
1005
e35fd660 1006 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1007
1008 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1009got_it:
e35fd660
TT
1010 map->m_flags |= EXT4_MAP_MAPPED;
1011 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1012 map->m_len = count;
ac27a0ec 1013 if (count > blocks_to_boundary)
e35fd660 1014 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1015 err = count;
1016 /* Clean up and exit */
1017 partial = chain + depth - 1; /* the whole chain */
1018cleanup:
1019 while (partial > chain) {
1020 BUFFER_TRACE(partial->bh, "call brelse");
1021 brelse(partial->bh);
1022 partial--;
1023 }
ac27a0ec
DK
1024out:
1025 return err;
1026}
1027
a9e7f447
DM
1028#ifdef CONFIG_QUOTA
1029qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1030{
a9e7f447 1031 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1032}
a9e7f447 1033#endif
9d0be502 1034
12219aea
AK
1035/*
1036 * Calculate the number of metadata blocks need to reserve
9d0be502 1037 * to allocate a new block at @lblocks for non extent file based file
12219aea 1038 */
9d0be502
TT
1039static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1040 sector_t lblock)
12219aea 1041{
9d0be502 1042 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1043 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1044 int blk_bits;
12219aea 1045
9d0be502
TT
1046 if (lblock < EXT4_NDIR_BLOCKS)
1047 return 0;
12219aea 1048
9d0be502 1049 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1050
9d0be502
TT
1051 if (ei->i_da_metadata_calc_len &&
1052 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1053 ei->i_da_metadata_calc_len++;
1054 return 0;
1055 }
1056 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1057 ei->i_da_metadata_calc_len = 1;
d330a5be 1058 blk_bits = order_base_2(lblock);
9d0be502 1059 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1060}
1061
1062/*
1063 * Calculate the number of metadata blocks need to reserve
9d0be502 1064 * to allocate a block located at @lblock
12219aea 1065 */
9d0be502 1066static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1067{
12e9b892 1068 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1069 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1070
9d0be502 1071 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1072}
1073
0637c6f4
TT
1074/*
1075 * Called with i_data_sem down, which is important since we can call
1076 * ext4_discard_preallocations() from here.
1077 */
5f634d06
AK
1078void ext4_da_update_reserve_space(struct inode *inode,
1079 int used, int quota_claim)
12219aea
AK
1080{
1081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1082 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1083
1084 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1085 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1086 if (unlikely(used > ei->i_reserved_data_blocks)) {
1087 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1088 "with only %d reserved data blocks\n",
1089 __func__, inode->i_ino, used,
1090 ei->i_reserved_data_blocks);
1091 WARN_ON(1);
1092 used = ei->i_reserved_data_blocks;
1093 }
12219aea 1094
0637c6f4
TT
1095 /* Update per-inode reservations */
1096 ei->i_reserved_data_blocks -= used;
0637c6f4 1097 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1099 used + ei->i_allocated_meta_blocks);
0637c6f4 1100 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1101
0637c6f4
TT
1102 if (ei->i_reserved_data_blocks == 0) {
1103 /*
1104 * We can release all of the reserved metadata blocks
1105 * only when we have written all of the delayed
1106 * allocation blocks.
1107 */
72b8ab9d
ES
1108 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1109 ei->i_reserved_meta_blocks);
ee5f4d9c 1110 ei->i_reserved_meta_blocks = 0;
9d0be502 1111 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1112 }
12219aea 1113 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1114
72b8ab9d
ES
1115 /* Update quota subsystem for data blocks */
1116 if (quota_claim)
5dd4056d 1117 dquot_claim_block(inode, used);
72b8ab9d 1118 else {
5f634d06
AK
1119 /*
1120 * We did fallocate with an offset that is already delayed
1121 * allocated. So on delayed allocated writeback we should
72b8ab9d 1122 * not re-claim the quota for fallocated blocks.
5f634d06 1123 */
72b8ab9d 1124 dquot_release_reservation_block(inode, used);
5f634d06 1125 }
d6014301
AK
1126
1127 /*
1128 * If we have done all the pending block allocations and if
1129 * there aren't any writers on the inode, we can discard the
1130 * inode's preallocations.
1131 */
0637c6f4
TT
1132 if ((ei->i_reserved_data_blocks == 0) &&
1133 (atomic_read(&inode->i_writecount) == 0))
d6014301 1134 ext4_discard_preallocations(inode);
12219aea
AK
1135}
1136
e29136f8 1137static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1138 unsigned int line,
1139 struct ext4_map_blocks *map)
6fd058f7 1140{
24676da4
TT
1141 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1142 map->m_len)) {
c398eda0
TT
1143 ext4_error_inode(inode, func, line, map->m_pblk,
1144 "lblock %lu mapped to illegal pblock "
1145 "(length %d)", (unsigned long) map->m_lblk,
1146 map->m_len);
6fd058f7
TT
1147 return -EIO;
1148 }
1149 return 0;
1150}
1151
e29136f8 1152#define check_block_validity(inode, map) \
c398eda0 1153 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1154
55138e0b 1155/*
1f94533d
TT
1156 * Return the number of contiguous dirty pages in a given inode
1157 * starting at page frame idx.
55138e0b
TT
1158 */
1159static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1160 unsigned int max_pages)
1161{
1162 struct address_space *mapping = inode->i_mapping;
1163 pgoff_t index;
1164 struct pagevec pvec;
1165 pgoff_t num = 0;
1166 int i, nr_pages, done = 0;
1167
1168 if (max_pages == 0)
1169 return 0;
1170 pagevec_init(&pvec, 0);
1171 while (!done) {
1172 index = idx;
1173 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1174 PAGECACHE_TAG_DIRTY,
1175 (pgoff_t)PAGEVEC_SIZE);
1176 if (nr_pages == 0)
1177 break;
1178 for (i = 0; i < nr_pages; i++) {
1179 struct page *page = pvec.pages[i];
1180 struct buffer_head *bh, *head;
1181
1182 lock_page(page);
1183 if (unlikely(page->mapping != mapping) ||
1184 !PageDirty(page) ||
1185 PageWriteback(page) ||
1186 page->index != idx) {
1187 done = 1;
1188 unlock_page(page);
1189 break;
1190 }
1f94533d
TT
1191 if (page_has_buffers(page)) {
1192 bh = head = page_buffers(page);
1193 do {
1194 if (!buffer_delay(bh) &&
1195 !buffer_unwritten(bh))
1196 done = 1;
1197 bh = bh->b_this_page;
1198 } while (!done && (bh != head));
1199 }
55138e0b
TT
1200 unlock_page(page);
1201 if (done)
1202 break;
1203 idx++;
1204 num++;
1205 if (num >= max_pages)
1206 break;
1207 }
1208 pagevec_release(&pvec);
1209 }
1210 return num;
1211}
1212
f5ab0d1f 1213/*
e35fd660 1214 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1215 * and returns if the blocks are already mapped.
f5ab0d1f 1216 *
f5ab0d1f
MC
1217 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1218 * and store the allocated blocks in the result buffer head and mark it
1219 * mapped.
1220 *
e35fd660
TT
1221 * If file type is extents based, it will call ext4_ext_map_blocks(),
1222 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1223 * based files
1224 *
1225 * On success, it returns the number of blocks being mapped or allocate.
1226 * if create==0 and the blocks are pre-allocated and uninitialized block,
1227 * the result buffer head is unmapped. If the create ==1, it will make sure
1228 * the buffer head is mapped.
1229 *
1230 * It returns 0 if plain look up failed (blocks have not been allocated), in
1231 * that casem, buffer head is unmapped
1232 *
1233 * It returns the error in case of allocation failure.
1234 */
e35fd660
TT
1235int ext4_map_blocks(handle_t *handle, struct inode *inode,
1236 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1237{
1238 int retval;
f5ab0d1f 1239
e35fd660
TT
1240 map->m_flags = 0;
1241 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1242 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1243 (unsigned long) map->m_lblk);
4df3d265 1244 /*
b920c755
TT
1245 * Try to see if we can get the block without requesting a new
1246 * file system block.
4df3d265
AK
1247 */
1248 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1249 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1250 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1251 } else {
e35fd660 1252 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1253 }
4df3d265 1254 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1255
e35fd660 1256 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1257 int ret = check_block_validity(inode, map);
6fd058f7
TT
1258 if (ret != 0)
1259 return ret;
1260 }
1261
f5ab0d1f 1262 /* If it is only a block(s) look up */
c2177057 1263 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1264 return retval;
1265
1266 /*
1267 * Returns if the blocks have already allocated
1268 *
1269 * Note that if blocks have been preallocated
1270 * ext4_ext_get_block() returns th create = 0
1271 * with buffer head unmapped.
1272 */
e35fd660 1273 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1274 return retval;
1275
2a8964d6
AK
1276 /*
1277 * When we call get_blocks without the create flag, the
1278 * BH_Unwritten flag could have gotten set if the blocks
1279 * requested were part of a uninitialized extent. We need to
1280 * clear this flag now that we are committed to convert all or
1281 * part of the uninitialized extent to be an initialized
1282 * extent. This is because we need to avoid the combination
1283 * of BH_Unwritten and BH_Mapped flags being simultaneously
1284 * set on the buffer_head.
1285 */
e35fd660 1286 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1287
4df3d265 1288 /*
f5ab0d1f
MC
1289 * New blocks allocate and/or writing to uninitialized extent
1290 * will possibly result in updating i_data, so we take
1291 * the write lock of i_data_sem, and call get_blocks()
1292 * with create == 1 flag.
4df3d265
AK
1293 */
1294 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1295
1296 /*
1297 * if the caller is from delayed allocation writeout path
1298 * we have already reserved fs blocks for allocation
1299 * let the underlying get_block() function know to
1300 * avoid double accounting
1301 */
c2177057 1302 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1303 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1304 /*
1305 * We need to check for EXT4 here because migrate
1306 * could have changed the inode type in between
1307 */
12e9b892 1308 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1309 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1310 } else {
e35fd660 1311 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1312
e35fd660 1313 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1314 /*
1315 * We allocated new blocks which will result in
1316 * i_data's format changing. Force the migrate
1317 * to fail by clearing migrate flags
1318 */
19f5fb7a 1319 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1320 }
d2a17637 1321
5f634d06
AK
1322 /*
1323 * Update reserved blocks/metadata blocks after successful
1324 * block allocation which had been deferred till now. We don't
1325 * support fallocate for non extent files. So we can update
1326 * reserve space here.
1327 */
1328 if ((retval > 0) &&
1296cc85 1329 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1330 ext4_da_update_reserve_space(inode, retval, 1);
1331 }
2ac3b6e0 1332 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1333 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1334
4df3d265 1335 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1336 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1337 int ret = check_block_validity(inode, map);
6fd058f7
TT
1338 if (ret != 0)
1339 return ret;
1340 }
0e855ac8
AK
1341 return retval;
1342}
1343
f3bd1f3f
MC
1344/* Maximum number of blocks we map for direct IO at once. */
1345#define DIO_MAX_BLOCKS 4096
1346
2ed88685
TT
1347static int _ext4_get_block(struct inode *inode, sector_t iblock,
1348 struct buffer_head *bh, int flags)
ac27a0ec 1349{
3e4fdaf8 1350 handle_t *handle = ext4_journal_current_handle();
2ed88685 1351 struct ext4_map_blocks map;
7fb5409d 1352 int ret = 0, started = 0;
f3bd1f3f 1353 int dio_credits;
ac27a0ec 1354
2ed88685
TT
1355 map.m_lblk = iblock;
1356 map.m_len = bh->b_size >> inode->i_blkbits;
1357
1358 if (flags && !handle) {
7fb5409d 1359 /* Direct IO write... */
2ed88685
TT
1360 if (map.m_len > DIO_MAX_BLOCKS)
1361 map.m_len = DIO_MAX_BLOCKS;
1362 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1363 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1364 if (IS_ERR(handle)) {
ac27a0ec 1365 ret = PTR_ERR(handle);
2ed88685 1366 return ret;
ac27a0ec 1367 }
7fb5409d 1368 started = 1;
ac27a0ec
DK
1369 }
1370
2ed88685 1371 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1372 if (ret > 0) {
2ed88685
TT
1373 map_bh(bh, inode->i_sb, map.m_pblk);
1374 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1375 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1376 ret = 0;
ac27a0ec 1377 }
7fb5409d
JK
1378 if (started)
1379 ext4_journal_stop(handle);
ac27a0ec
DK
1380 return ret;
1381}
1382
2ed88685
TT
1383int ext4_get_block(struct inode *inode, sector_t iblock,
1384 struct buffer_head *bh, int create)
1385{
1386 return _ext4_get_block(inode, iblock, bh,
1387 create ? EXT4_GET_BLOCKS_CREATE : 0);
1388}
1389
ac27a0ec
DK
1390/*
1391 * `handle' can be NULL if create is zero
1392 */
617ba13b 1393struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1394 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1395{
2ed88685
TT
1396 struct ext4_map_blocks map;
1397 struct buffer_head *bh;
ac27a0ec
DK
1398 int fatal = 0, err;
1399
1400 J_ASSERT(handle != NULL || create == 0);
1401
2ed88685
TT
1402 map.m_lblk = block;
1403 map.m_len = 1;
1404 err = ext4_map_blocks(handle, inode, &map,
1405 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1406
2ed88685
TT
1407 if (err < 0)
1408 *errp = err;
1409 if (err <= 0)
1410 return NULL;
1411 *errp = 0;
1412
1413 bh = sb_getblk(inode->i_sb, map.m_pblk);
1414 if (!bh) {
1415 *errp = -EIO;
1416 return NULL;
ac27a0ec 1417 }
2ed88685
TT
1418 if (map.m_flags & EXT4_MAP_NEW) {
1419 J_ASSERT(create != 0);
1420 J_ASSERT(handle != NULL);
ac27a0ec 1421
2ed88685
TT
1422 /*
1423 * Now that we do not always journal data, we should
1424 * keep in mind whether this should always journal the
1425 * new buffer as metadata. For now, regular file
1426 * writes use ext4_get_block instead, so it's not a
1427 * problem.
1428 */
1429 lock_buffer(bh);
1430 BUFFER_TRACE(bh, "call get_create_access");
1431 fatal = ext4_journal_get_create_access(handle, bh);
1432 if (!fatal && !buffer_uptodate(bh)) {
1433 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1434 set_buffer_uptodate(bh);
ac27a0ec 1435 }
2ed88685
TT
1436 unlock_buffer(bh);
1437 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1438 err = ext4_handle_dirty_metadata(handle, inode, bh);
1439 if (!fatal)
1440 fatal = err;
1441 } else {
1442 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1443 }
2ed88685
TT
1444 if (fatal) {
1445 *errp = fatal;
1446 brelse(bh);
1447 bh = NULL;
1448 }
1449 return bh;
ac27a0ec
DK
1450}
1451
617ba13b 1452struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1453 ext4_lblk_t block, int create, int *err)
ac27a0ec 1454{
af5bc92d 1455 struct buffer_head *bh;
ac27a0ec 1456
617ba13b 1457 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1458 if (!bh)
1459 return bh;
1460 if (buffer_uptodate(bh))
1461 return bh;
1462 ll_rw_block(READ_META, 1, &bh);
1463 wait_on_buffer(bh);
1464 if (buffer_uptodate(bh))
1465 return bh;
1466 put_bh(bh);
1467 *err = -EIO;
1468 return NULL;
1469}
1470
af5bc92d
TT
1471static int walk_page_buffers(handle_t *handle,
1472 struct buffer_head *head,
1473 unsigned from,
1474 unsigned to,
1475 int *partial,
1476 int (*fn)(handle_t *handle,
1477 struct buffer_head *bh))
ac27a0ec
DK
1478{
1479 struct buffer_head *bh;
1480 unsigned block_start, block_end;
1481 unsigned blocksize = head->b_size;
1482 int err, ret = 0;
1483 struct buffer_head *next;
1484
af5bc92d
TT
1485 for (bh = head, block_start = 0;
1486 ret == 0 && (bh != head || !block_start);
de9a55b8 1487 block_start = block_end, bh = next) {
ac27a0ec
DK
1488 next = bh->b_this_page;
1489 block_end = block_start + blocksize;
1490 if (block_end <= from || block_start >= to) {
1491 if (partial && !buffer_uptodate(bh))
1492 *partial = 1;
1493 continue;
1494 }
1495 err = (*fn)(handle, bh);
1496 if (!ret)
1497 ret = err;
1498 }
1499 return ret;
1500}
1501
1502/*
1503 * To preserve ordering, it is essential that the hole instantiation and
1504 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1505 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1506 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1507 * prepare_write() is the right place.
1508 *
617ba13b
MC
1509 * Also, this function can nest inside ext4_writepage() ->
1510 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1511 * has generated enough buffer credits to do the whole page. So we won't
1512 * block on the journal in that case, which is good, because the caller may
1513 * be PF_MEMALLOC.
1514 *
617ba13b 1515 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1516 * quota file writes. If we were to commit the transaction while thus
1517 * reentered, there can be a deadlock - we would be holding a quota
1518 * lock, and the commit would never complete if another thread had a
1519 * transaction open and was blocking on the quota lock - a ranking
1520 * violation.
1521 *
dab291af 1522 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1523 * will _not_ run commit under these circumstances because handle->h_ref
1524 * is elevated. We'll still have enough credits for the tiny quotafile
1525 * write.
1526 */
1527static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1528 struct buffer_head *bh)
ac27a0ec 1529{
56d35a4c
JK
1530 int dirty = buffer_dirty(bh);
1531 int ret;
1532
ac27a0ec
DK
1533 if (!buffer_mapped(bh) || buffer_freed(bh))
1534 return 0;
56d35a4c
JK
1535 /*
1536 * __block_prepare_write() could have dirtied some buffers. Clean
1537 * the dirty bit as jbd2_journal_get_write_access() could complain
1538 * otherwise about fs integrity issues. Setting of the dirty bit
1539 * by __block_prepare_write() isn't a real problem here as we clear
1540 * the bit before releasing a page lock and thus writeback cannot
1541 * ever write the buffer.
1542 */
1543 if (dirty)
1544 clear_buffer_dirty(bh);
1545 ret = ext4_journal_get_write_access(handle, bh);
1546 if (!ret && dirty)
1547 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1548 return ret;
ac27a0ec
DK
1549}
1550
b9a4207d
JK
1551/*
1552 * Truncate blocks that were not used by write. We have to truncate the
1553 * pagecache as well so that corresponding buffers get properly unmapped.
1554 */
1555static void ext4_truncate_failed_write(struct inode *inode)
1556{
1557 truncate_inode_pages(inode->i_mapping, inode->i_size);
1558 ext4_truncate(inode);
1559}
1560
744692dc
JZ
1561static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1562 struct buffer_head *bh_result, int create);
bfc1af65 1563static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1564 loff_t pos, unsigned len, unsigned flags,
1565 struct page **pagep, void **fsdata)
ac27a0ec 1566{
af5bc92d 1567 struct inode *inode = mapping->host;
1938a150 1568 int ret, needed_blocks;
ac27a0ec
DK
1569 handle_t *handle;
1570 int retries = 0;
af5bc92d 1571 struct page *page;
de9a55b8 1572 pgoff_t index;
af5bc92d 1573 unsigned from, to;
bfc1af65 1574
9bffad1e 1575 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1576 /*
1577 * Reserve one block more for addition to orphan list in case
1578 * we allocate blocks but write fails for some reason
1579 */
1580 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1581 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1582 from = pos & (PAGE_CACHE_SIZE - 1);
1583 to = from + len;
ac27a0ec
DK
1584
1585retry:
af5bc92d
TT
1586 handle = ext4_journal_start(inode, needed_blocks);
1587 if (IS_ERR(handle)) {
1588 ret = PTR_ERR(handle);
1589 goto out;
7479d2b9 1590 }
ac27a0ec 1591
ebd3610b
JK
1592 /* We cannot recurse into the filesystem as the transaction is already
1593 * started */
1594 flags |= AOP_FLAG_NOFS;
1595
54566b2c 1596 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1597 if (!page) {
1598 ext4_journal_stop(handle);
1599 ret = -ENOMEM;
1600 goto out;
1601 }
1602 *pagep = page;
1603
744692dc
JZ
1604 if (ext4_should_dioread_nolock(inode))
1605 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1606 fsdata, ext4_get_block_write);
1607 else
1608 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1609 fsdata, ext4_get_block);
bfc1af65
NP
1610
1611 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1612 ret = walk_page_buffers(handle, page_buffers(page),
1613 from, to, NULL, do_journal_get_write_access);
1614 }
bfc1af65
NP
1615
1616 if (ret) {
af5bc92d 1617 unlock_page(page);
af5bc92d 1618 page_cache_release(page);
ae4d5372
AK
1619 /*
1620 * block_write_begin may have instantiated a few blocks
1621 * outside i_size. Trim these off again. Don't need
1622 * i_size_read because we hold i_mutex.
1938a150
AK
1623 *
1624 * Add inode to orphan list in case we crash before
1625 * truncate finishes
ae4d5372 1626 */
ffacfa7a 1627 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1628 ext4_orphan_add(handle, inode);
1629
1630 ext4_journal_stop(handle);
1631 if (pos + len > inode->i_size) {
b9a4207d 1632 ext4_truncate_failed_write(inode);
de9a55b8 1633 /*
ffacfa7a 1634 * If truncate failed early the inode might
1938a150
AK
1635 * still be on the orphan list; we need to
1636 * make sure the inode is removed from the
1637 * orphan list in that case.
1638 */
1639 if (inode->i_nlink)
1640 ext4_orphan_del(NULL, inode);
1641 }
bfc1af65
NP
1642 }
1643
617ba13b 1644 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1645 goto retry;
7479d2b9 1646out:
ac27a0ec
DK
1647 return ret;
1648}
1649
bfc1af65
NP
1650/* For write_end() in data=journal mode */
1651static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1652{
1653 if (!buffer_mapped(bh) || buffer_freed(bh))
1654 return 0;
1655 set_buffer_uptodate(bh);
0390131b 1656 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1657}
1658
f8514083 1659static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1660 struct address_space *mapping,
1661 loff_t pos, unsigned len, unsigned copied,
1662 struct page *page, void *fsdata)
f8514083
AK
1663{
1664 int i_size_changed = 0;
1665 struct inode *inode = mapping->host;
1666 handle_t *handle = ext4_journal_current_handle();
1667
1668 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1669
1670 /*
1671 * No need to use i_size_read() here, the i_size
1672 * cannot change under us because we hold i_mutex.
1673 *
1674 * But it's important to update i_size while still holding page lock:
1675 * page writeout could otherwise come in and zero beyond i_size.
1676 */
1677 if (pos + copied > inode->i_size) {
1678 i_size_write(inode, pos + copied);
1679 i_size_changed = 1;
1680 }
1681
1682 if (pos + copied > EXT4_I(inode)->i_disksize) {
1683 /* We need to mark inode dirty even if
1684 * new_i_size is less that inode->i_size
1685 * bu greater than i_disksize.(hint delalloc)
1686 */
1687 ext4_update_i_disksize(inode, (pos + copied));
1688 i_size_changed = 1;
1689 }
1690 unlock_page(page);
1691 page_cache_release(page);
1692
1693 /*
1694 * Don't mark the inode dirty under page lock. First, it unnecessarily
1695 * makes the holding time of page lock longer. Second, it forces lock
1696 * ordering of page lock and transaction start for journaling
1697 * filesystems.
1698 */
1699 if (i_size_changed)
1700 ext4_mark_inode_dirty(handle, inode);
1701
1702 return copied;
1703}
1704
ac27a0ec
DK
1705/*
1706 * We need to pick up the new inode size which generic_commit_write gave us
1707 * `file' can be NULL - eg, when called from page_symlink().
1708 *
617ba13b 1709 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1710 * buffers are managed internally.
1711 */
bfc1af65 1712static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1713 struct address_space *mapping,
1714 loff_t pos, unsigned len, unsigned copied,
1715 struct page *page, void *fsdata)
ac27a0ec 1716{
617ba13b 1717 handle_t *handle = ext4_journal_current_handle();
cf108bca 1718 struct inode *inode = mapping->host;
ac27a0ec
DK
1719 int ret = 0, ret2;
1720
9bffad1e 1721 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1722 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1723
1724 if (ret == 0) {
f8514083 1725 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1726 page, fsdata);
f8a87d89 1727 copied = ret2;
ffacfa7a 1728 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1729 /* if we have allocated more blocks and copied
1730 * less. We will have blocks allocated outside
1731 * inode->i_size. So truncate them
1732 */
1733 ext4_orphan_add(handle, inode);
f8a87d89
RK
1734 if (ret2 < 0)
1735 ret = ret2;
ac27a0ec 1736 }
617ba13b 1737 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1738 if (!ret)
1739 ret = ret2;
bfc1af65 1740
f8514083 1741 if (pos + len > inode->i_size) {
b9a4207d 1742 ext4_truncate_failed_write(inode);
de9a55b8 1743 /*
ffacfa7a 1744 * If truncate failed early the inode might still be
f8514083
AK
1745 * on the orphan list; we need to make sure the inode
1746 * is removed from the orphan list in that case.
1747 */
1748 if (inode->i_nlink)
1749 ext4_orphan_del(NULL, inode);
1750 }
1751
1752
bfc1af65 1753 return ret ? ret : copied;
ac27a0ec
DK
1754}
1755
bfc1af65 1756static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1757 struct address_space *mapping,
1758 loff_t pos, unsigned len, unsigned copied,
1759 struct page *page, void *fsdata)
ac27a0ec 1760{
617ba13b 1761 handle_t *handle = ext4_journal_current_handle();
cf108bca 1762 struct inode *inode = mapping->host;
ac27a0ec 1763 int ret = 0, ret2;
ac27a0ec 1764
9bffad1e 1765 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1766 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1767 page, fsdata);
f8a87d89 1768 copied = ret2;
ffacfa7a 1769 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1770 /* if we have allocated more blocks and copied
1771 * less. We will have blocks allocated outside
1772 * inode->i_size. So truncate them
1773 */
1774 ext4_orphan_add(handle, inode);
1775
f8a87d89
RK
1776 if (ret2 < 0)
1777 ret = ret2;
ac27a0ec 1778
617ba13b 1779 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1780 if (!ret)
1781 ret = ret2;
bfc1af65 1782
f8514083 1783 if (pos + len > inode->i_size) {
b9a4207d 1784 ext4_truncate_failed_write(inode);
de9a55b8 1785 /*
ffacfa7a 1786 * If truncate failed early the inode might still be
f8514083
AK
1787 * on the orphan list; we need to make sure the inode
1788 * is removed from the orphan list in that case.
1789 */
1790 if (inode->i_nlink)
1791 ext4_orphan_del(NULL, inode);
1792 }
1793
bfc1af65 1794 return ret ? ret : copied;
ac27a0ec
DK
1795}
1796
bfc1af65 1797static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1798 struct address_space *mapping,
1799 loff_t pos, unsigned len, unsigned copied,
1800 struct page *page, void *fsdata)
ac27a0ec 1801{
617ba13b 1802 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1803 struct inode *inode = mapping->host;
ac27a0ec
DK
1804 int ret = 0, ret2;
1805 int partial = 0;
bfc1af65 1806 unsigned from, to;
cf17fea6 1807 loff_t new_i_size;
ac27a0ec 1808
9bffad1e 1809 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1810 from = pos & (PAGE_CACHE_SIZE - 1);
1811 to = from + len;
1812
1813 if (copied < len) {
1814 if (!PageUptodate(page))
1815 copied = 0;
1816 page_zero_new_buffers(page, from+copied, to);
1817 }
ac27a0ec
DK
1818
1819 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1820 to, &partial, write_end_fn);
ac27a0ec
DK
1821 if (!partial)
1822 SetPageUptodate(page);
cf17fea6
AK
1823 new_i_size = pos + copied;
1824 if (new_i_size > inode->i_size)
bfc1af65 1825 i_size_write(inode, pos+copied);
19f5fb7a 1826 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1827 if (new_i_size > EXT4_I(inode)->i_disksize) {
1828 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1829 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1830 if (!ret)
1831 ret = ret2;
1832 }
bfc1af65 1833
cf108bca 1834 unlock_page(page);
f8514083 1835 page_cache_release(page);
ffacfa7a 1836 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1837 /* if we have allocated more blocks and copied
1838 * less. We will have blocks allocated outside
1839 * inode->i_size. So truncate them
1840 */
1841 ext4_orphan_add(handle, inode);
1842
617ba13b 1843 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1844 if (!ret)
1845 ret = ret2;
f8514083 1846 if (pos + len > inode->i_size) {
b9a4207d 1847 ext4_truncate_failed_write(inode);
de9a55b8 1848 /*
ffacfa7a 1849 * If truncate failed early the inode might still be
f8514083
AK
1850 * on the orphan list; we need to make sure the inode
1851 * is removed from the orphan list in that case.
1852 */
1853 if (inode->i_nlink)
1854 ext4_orphan_del(NULL, inode);
1855 }
bfc1af65
NP
1856
1857 return ret ? ret : copied;
ac27a0ec 1858}
d2a17637 1859
9d0be502
TT
1860/*
1861 * Reserve a single block located at lblock
1862 */
1863static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1864{
030ba6bc 1865 int retries = 0;
60e58e0f 1866 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1867 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1868 unsigned long md_needed;
5dd4056d 1869 int ret;
d2a17637
MC
1870
1871 /*
1872 * recalculate the amount of metadata blocks to reserve
1873 * in order to allocate nrblocks
1874 * worse case is one extent per block
1875 */
030ba6bc 1876repeat:
0637c6f4 1877 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1878 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1879 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1880 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1881
60e58e0f 1882 /*
72b8ab9d
ES
1883 * We will charge metadata quota at writeout time; this saves
1884 * us from metadata over-estimation, though we may go over by
1885 * a small amount in the end. Here we just reserve for data.
60e58e0f 1886 */
72b8ab9d 1887 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1888 if (ret)
1889 return ret;
72b8ab9d
ES
1890 /*
1891 * We do still charge estimated metadata to the sb though;
1892 * we cannot afford to run out of free blocks.
1893 */
9d0be502 1894 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1895 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1896 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1897 yield();
1898 goto repeat;
1899 }
d2a17637
MC
1900 return -ENOSPC;
1901 }
0637c6f4 1902 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1903 ei->i_reserved_data_blocks++;
0637c6f4
TT
1904 ei->i_reserved_meta_blocks += md_needed;
1905 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1906
d2a17637
MC
1907 return 0; /* success */
1908}
1909
12219aea 1910static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1911{
1912 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1913 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1914
cd213226
MC
1915 if (!to_free)
1916 return; /* Nothing to release, exit */
1917
d2a17637 1918 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1919
5a58ec87 1920 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1921 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1922 /*
0637c6f4
TT
1923 * if there aren't enough reserved blocks, then the
1924 * counter is messed up somewhere. Since this
1925 * function is called from invalidate page, it's
1926 * harmless to return without any action.
cd213226 1927 */
0637c6f4
TT
1928 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1929 "ino %lu, to_free %d with only %d reserved "
1930 "data blocks\n", inode->i_ino, to_free,
1931 ei->i_reserved_data_blocks);
1932 WARN_ON(1);
1933 to_free = ei->i_reserved_data_blocks;
cd213226 1934 }
0637c6f4 1935 ei->i_reserved_data_blocks -= to_free;
cd213226 1936
0637c6f4
TT
1937 if (ei->i_reserved_data_blocks == 0) {
1938 /*
1939 * We can release all of the reserved metadata blocks
1940 * only when we have written all of the delayed
1941 * allocation blocks.
1942 */
72b8ab9d
ES
1943 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1944 ei->i_reserved_meta_blocks);
ee5f4d9c 1945 ei->i_reserved_meta_blocks = 0;
9d0be502 1946 ei->i_da_metadata_calc_len = 0;
0637c6f4 1947 }
d2a17637 1948
72b8ab9d 1949 /* update fs dirty data blocks counter */
0637c6f4 1950 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1951
d2a17637 1952 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1953
5dd4056d 1954 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1955}
1956
1957static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1958 unsigned long offset)
d2a17637
MC
1959{
1960 int to_release = 0;
1961 struct buffer_head *head, *bh;
1962 unsigned int curr_off = 0;
1963
1964 head = page_buffers(page);
1965 bh = head;
1966 do {
1967 unsigned int next_off = curr_off + bh->b_size;
1968
1969 if ((offset <= curr_off) && (buffer_delay(bh))) {
1970 to_release++;
1971 clear_buffer_delay(bh);
1972 }
1973 curr_off = next_off;
1974 } while ((bh = bh->b_this_page) != head);
12219aea 1975 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1976}
ac27a0ec 1977
64769240
AT
1978/*
1979 * Delayed allocation stuff
1980 */
1981
64769240
AT
1982/*
1983 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1984 * them with writepage() call back
64769240
AT
1985 *
1986 * @mpd->inode: inode
1987 * @mpd->first_page: first page of the extent
1988 * @mpd->next_page: page after the last page of the extent
64769240
AT
1989 *
1990 * By the time mpage_da_submit_io() is called we expect all blocks
1991 * to be allocated. this may be wrong if allocation failed.
1992 *
1993 * As pages are already locked by write_cache_pages(), we can't use it
1994 */
1995static int mpage_da_submit_io(struct mpage_da_data *mpd)
1996{
22208ded 1997 long pages_skipped;
791b7f08
AK
1998 struct pagevec pvec;
1999 unsigned long index, end;
2000 int ret = 0, err, nr_pages, i;
2001 struct inode *inode = mpd->inode;
2002 struct address_space *mapping = inode->i_mapping;
64769240
AT
2003
2004 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
2005 /*
2006 * We need to start from the first_page to the next_page - 1
2007 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 2008 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
2009 * at the currently mapped buffer_heads.
2010 */
64769240
AT
2011 index = mpd->first_page;
2012 end = mpd->next_page - 1;
2013
791b7f08 2014 pagevec_init(&pvec, 0);
64769240 2015 while (index <= end) {
791b7f08 2016 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2017 if (nr_pages == 0)
2018 break;
2019 for (i = 0; i < nr_pages; i++) {
2020 struct page *page = pvec.pages[i];
2021
791b7f08
AK
2022 index = page->index;
2023 if (index > end)
2024 break;
2025 index++;
2026
2027 BUG_ON(!PageLocked(page));
2028 BUG_ON(PageWriteback(page));
2029
22208ded 2030 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 2031 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
2032 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2033 /*
2034 * have successfully written the page
2035 * without skipping the same
2036 */
a1d6cc56 2037 mpd->pages_written++;
64769240
AT
2038 /*
2039 * In error case, we have to continue because
2040 * remaining pages are still locked
2041 * XXX: unlock and re-dirty them?
2042 */
2043 if (ret == 0)
2044 ret = err;
2045 }
2046 pagevec_release(&pvec);
2047 }
64769240
AT
2048 return ret;
2049}
2050
2051/*
2052 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2053 *
64769240 2054 * the function goes through all passed space and put actual disk
29fa89d0 2055 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240 2056 */
2ed88685
TT
2057static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2058 struct ext4_map_blocks *map)
64769240
AT
2059{
2060 struct inode *inode = mpd->inode;
2061 struct address_space *mapping = inode->i_mapping;
2ed88685
TT
2062 int blocks = map->m_len;
2063 sector_t pblock = map->m_pblk, cur_logical;
64769240 2064 struct buffer_head *head, *bh;
a1d6cc56 2065 pgoff_t index, end;
64769240
AT
2066 struct pagevec pvec;
2067 int nr_pages, i;
2068
2ed88685
TT
2069 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2070 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
64769240
AT
2071 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2072
2073 pagevec_init(&pvec, 0);
2074
2075 while (index <= end) {
2076 /* XXX: optimize tail */
2077 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2078 if (nr_pages == 0)
2079 break;
2080 for (i = 0; i < nr_pages; i++) {
2081 struct page *page = pvec.pages[i];
2082
2083 index = page->index;
2084 if (index > end)
2085 break;
2086 index++;
2087
2088 BUG_ON(!PageLocked(page));
2089 BUG_ON(PageWriteback(page));
2090 BUG_ON(!page_has_buffers(page));
2091
2092 bh = page_buffers(page);
2093 head = bh;
2094
2095 /* skip blocks out of the range */
2096 do {
2ed88685 2097 if (cur_logical >= map->m_lblk)
64769240
AT
2098 break;
2099 cur_logical++;
2100 } while ((bh = bh->b_this_page) != head);
2101
2102 do {
2ed88685 2103 if (cur_logical >= map->m_lblk + blocks)
64769240 2104 break;
29fa89d0 2105
2ed88685 2106 if (buffer_delay(bh) || buffer_unwritten(bh)) {
29fa89d0
AK
2107
2108 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2109
2110 if (buffer_delay(bh)) {
2111 clear_buffer_delay(bh);
2112 bh->b_blocknr = pblock;
2113 } else {
2114 /*
2115 * unwritten already should have
2116 * blocknr assigned. Verify that
2117 */
2118 clear_buffer_unwritten(bh);
2119 BUG_ON(bh->b_blocknr != pblock);
2120 }
2121
61628a3f 2122 } else if (buffer_mapped(bh))
64769240 2123 BUG_ON(bh->b_blocknr != pblock);
64769240 2124
2ed88685 2125 if (map->m_flags & EXT4_MAP_UNINIT)
744692dc 2126 set_buffer_uninit(bh);
64769240
AT
2127 cur_logical++;
2128 pblock++;
2129 } while ((bh = bh->b_this_page) != head);
2130 }
2131 pagevec_release(&pvec);
2132 }
2133}
2134
2135
c4a0c46e
AK
2136static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2137 sector_t logical, long blk_cnt)
2138{
2139 int nr_pages, i;
2140 pgoff_t index, end;
2141 struct pagevec pvec;
2142 struct inode *inode = mpd->inode;
2143 struct address_space *mapping = inode->i_mapping;
2144
2145 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2146 end = (logical + blk_cnt - 1) >>
2147 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2148 while (index <= end) {
2149 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2150 if (nr_pages == 0)
2151 break;
2152 for (i = 0; i < nr_pages; i++) {
2153 struct page *page = pvec.pages[i];
9b1d0998 2154 if (page->index > end)
c4a0c46e 2155 break;
c4a0c46e
AK
2156 BUG_ON(!PageLocked(page));
2157 BUG_ON(PageWriteback(page));
2158 block_invalidatepage(page, 0);
2159 ClearPageUptodate(page);
2160 unlock_page(page);
2161 }
9b1d0998
JK
2162 index = pvec.pages[nr_pages - 1]->index + 1;
2163 pagevec_release(&pvec);
c4a0c46e
AK
2164 }
2165 return;
2166}
2167
df22291f
AK
2168static void ext4_print_free_blocks(struct inode *inode)
2169{
2170 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2171 printk(KERN_CRIT "Total free blocks count %lld\n",
2172 ext4_count_free_blocks(inode->i_sb));
2173 printk(KERN_CRIT "Free/Dirty block details\n");
2174 printk(KERN_CRIT "free_blocks=%lld\n",
2175 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2176 printk(KERN_CRIT "dirty_blocks=%lld\n",
2177 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2178 printk(KERN_CRIT "Block reservation details\n");
2179 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2180 EXT4_I(inode)->i_reserved_data_blocks);
2181 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2182 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2183 return;
2184}
2185
64769240
AT
2186/*
2187 * mpage_da_map_blocks - go through given space
2188 *
8dc207c0 2189 * @mpd - bh describing space
64769240
AT
2190 *
2191 * The function skips space we know is already mapped to disk blocks.
2192 *
64769240 2193 */
ed5bde0b 2194static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2195{
2ac3b6e0 2196 int err, blks, get_blocks_flags;
2ed88685 2197 struct ext4_map_blocks map;
2fa3cdfb
TT
2198 sector_t next = mpd->b_blocknr;
2199 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2200 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2201 handle_t *handle = NULL;
64769240
AT
2202
2203 /*
2204 * We consider only non-mapped and non-allocated blocks
2205 */
8dc207c0 2206 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2207 !(mpd->b_state & (1 << BH_Delay)) &&
2208 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2209 return 0;
2fa3cdfb
TT
2210
2211 /*
2212 * If we didn't accumulate anything to write simply return
2213 */
2214 if (!mpd->b_size)
2215 return 0;
2216
2217 handle = ext4_journal_current_handle();
2218 BUG_ON(!handle);
2219
79ffab34 2220 /*
79e83036 2221 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
2222 * blocks, or to convert an uninitialized extent to be
2223 * initialized (in the case where we have written into
2224 * one or more preallocated blocks).
2225 *
2226 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2227 * indicate that we are on the delayed allocation path. This
2228 * affects functions in many different parts of the allocation
2229 * call path. This flag exists primarily because we don't
79e83036 2230 * want to change *many* call functions, so ext4_map_blocks()
2ac3b6e0
TT
2231 * will set the magic i_delalloc_reserved_flag once the
2232 * inode's allocation semaphore is taken.
2233 *
2234 * If the blocks in questions were delalloc blocks, set
2235 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2236 * variables are updated after the blocks have been allocated.
79ffab34 2237 */
2ed88685
TT
2238 map.m_lblk = next;
2239 map.m_len = max_blocks;
1296cc85 2240 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2241 if (ext4_should_dioread_nolock(mpd->inode))
2242 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2243 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2244 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2245
2ed88685 2246 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 2247 if (blks < 0) {
e3570639
ES
2248 struct super_block *sb = mpd->inode->i_sb;
2249
2fa3cdfb 2250 err = blks;
ed5bde0b
TT
2251 /*
2252 * If get block returns with error we simply
2253 * return. Later writepage will redirty the page and
2254 * writepages will find the dirty page again
c4a0c46e
AK
2255 */
2256 if (err == -EAGAIN)
2257 return 0;
df22291f
AK
2258
2259 if (err == -ENOSPC &&
e3570639 2260 ext4_count_free_blocks(sb)) {
df22291f
AK
2261 mpd->retval = err;
2262 return 0;
2263 }
2264
c4a0c46e 2265 /*
ed5bde0b
TT
2266 * get block failure will cause us to loop in
2267 * writepages, because a_ops->writepage won't be able
2268 * to make progress. The page will be redirtied by
2269 * writepage and writepages will again try to write
2270 * the same.
c4a0c46e 2271 */
e3570639
ES
2272 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2273 ext4_msg(sb, KERN_CRIT,
2274 "delayed block allocation failed for inode %lu "
2275 "at logical offset %llu with max blocks %zd "
2276 "with error %d", mpd->inode->i_ino,
2277 (unsigned long long) next,
2278 mpd->b_size >> mpd->inode->i_blkbits, err);
2279 ext4_msg(sb, KERN_CRIT,
2280 "This should not happen!! Data will be lost\n");
2281 if (err == -ENOSPC)
2282 ext4_print_free_blocks(mpd->inode);
030ba6bc 2283 }
2fa3cdfb 2284 /* invalidate all the pages */
c4a0c46e 2285 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2286 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2287 return err;
2288 }
2fa3cdfb
TT
2289 BUG_ON(blks == 0);
2290
2ed88685
TT
2291 if (map.m_flags & EXT4_MAP_NEW) {
2292 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2293 int i;
64769240 2294
2ed88685
TT
2295 for (i = 0; i < map.m_len; i++)
2296 unmap_underlying_metadata(bdev, map.m_pblk + i);
2297 }
64769240 2298
a1d6cc56
AK
2299 /*
2300 * If blocks are delayed marked, we need to
2301 * put actual blocknr and drop delayed bit
2302 */
8dc207c0
TT
2303 if ((mpd->b_state & (1 << BH_Delay)) ||
2304 (mpd->b_state & (1 << BH_Unwritten)))
2ed88685 2305 mpage_put_bnr_to_bhs(mpd, &map);
64769240 2306
2fa3cdfb
TT
2307 if (ext4_should_order_data(mpd->inode)) {
2308 err = ext4_jbd2_file_inode(handle, mpd->inode);
2309 if (err)
2310 return err;
2311 }
2312
2313 /*
03f5d8bc 2314 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2315 */
2316 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2317 if (disksize > i_size_read(mpd->inode))
2318 disksize = i_size_read(mpd->inode);
2319 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2320 ext4_update_i_disksize(mpd->inode, disksize);
2321 return ext4_mark_inode_dirty(handle, mpd->inode);
2322 }
2323
c4a0c46e 2324 return 0;
64769240
AT
2325}
2326
bf068ee2
AK
2327#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2328 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2329
2330/*
2331 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2332 *
2333 * @mpd->lbh - extent of blocks
2334 * @logical - logical number of the block in the file
2335 * @bh - bh of the block (used to access block's state)
2336 *
2337 * the function is used to collect contig. blocks in same state
2338 */
2339static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2340 sector_t logical, size_t b_size,
2341 unsigned long b_state)
64769240 2342{
64769240 2343 sector_t next;
8dc207c0 2344 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2345
c445e3e0
ES
2346 /*
2347 * XXX Don't go larger than mballoc is willing to allocate
2348 * This is a stopgap solution. We eventually need to fold
2349 * mpage_da_submit_io() into this function and then call
79e83036 2350 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
2351 */
2352 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2353 goto flush_it;
2354
525f4ed8 2355 /* check if thereserved journal credits might overflow */
12e9b892 2356 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2357 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2358 /*
2359 * With non-extent format we are limited by the journal
2360 * credit available. Total credit needed to insert
2361 * nrblocks contiguous blocks is dependent on the
2362 * nrblocks. So limit nrblocks.
2363 */
2364 goto flush_it;
2365 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2366 EXT4_MAX_TRANS_DATA) {
2367 /*
2368 * Adding the new buffer_head would make it cross the
2369 * allowed limit for which we have journal credit
2370 * reserved. So limit the new bh->b_size
2371 */
2372 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2373 mpd->inode->i_blkbits;
2374 /* we will do mpage_da_submit_io in the next loop */
2375 }
2376 }
64769240
AT
2377 /*
2378 * First block in the extent
2379 */
8dc207c0
TT
2380 if (mpd->b_size == 0) {
2381 mpd->b_blocknr = logical;
2382 mpd->b_size = b_size;
2383 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2384 return;
2385 }
2386
8dc207c0 2387 next = mpd->b_blocknr + nrblocks;
64769240
AT
2388 /*
2389 * Can we merge the block to our big extent?
2390 */
8dc207c0
TT
2391 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2392 mpd->b_size += b_size;
64769240
AT
2393 return;
2394 }
2395
525f4ed8 2396flush_it:
64769240
AT
2397 /*
2398 * We couldn't merge the block to our extent, so we
2399 * need to flush current extent and start new one
2400 */
c4a0c46e
AK
2401 if (mpage_da_map_blocks(mpd) == 0)
2402 mpage_da_submit_io(mpd);
a1d6cc56
AK
2403 mpd->io_done = 1;
2404 return;
64769240
AT
2405}
2406
c364b22c 2407static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2408{
c364b22c 2409 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2410}
2411
64769240
AT
2412/*
2413 * __mpage_da_writepage - finds extent of pages and blocks
2414 *
2415 * @page: page to consider
2416 * @wbc: not used, we just follow rules
2417 * @data: context
2418 *
2419 * The function finds extents of pages and scan them for all blocks.
2420 */
2421static int __mpage_da_writepage(struct page *page,
2422 struct writeback_control *wbc, void *data)
2423{
2424 struct mpage_da_data *mpd = data;
2425 struct inode *inode = mpd->inode;
8dc207c0 2426 struct buffer_head *bh, *head;
64769240
AT
2427 sector_t logical;
2428
2429 /*
2430 * Can we merge this page to current extent?
2431 */
2432 if (mpd->next_page != page->index) {
2433 /*
2434 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2435 * and start IO on them using writepage()
64769240
AT
2436 */
2437 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2438 if (mpage_da_map_blocks(mpd) == 0)
2439 mpage_da_submit_io(mpd);
a1d6cc56
AK
2440 /*
2441 * skip rest of the page in the page_vec
2442 */
2443 mpd->io_done = 1;
2444 redirty_page_for_writepage(wbc, page);
2445 unlock_page(page);
2446 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2447 }
2448
2449 /*
2450 * Start next extent of pages ...
2451 */
2452 mpd->first_page = page->index;
2453
2454 /*
2455 * ... and blocks
2456 */
8dc207c0
TT
2457 mpd->b_size = 0;
2458 mpd->b_state = 0;
2459 mpd->b_blocknr = 0;
64769240
AT
2460 }
2461
2462 mpd->next_page = page->index + 1;
2463 logical = (sector_t) page->index <<
2464 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2465
2466 if (!page_has_buffers(page)) {
8dc207c0
TT
2467 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2468 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2469 if (mpd->io_done)
2470 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2471 } else {
2472 /*
2473 * Page with regular buffer heads, just add all dirty ones
2474 */
2475 head = page_buffers(page);
2476 bh = head;
2477 do {
2478 BUG_ON(buffer_locked(bh));
791b7f08
AK
2479 /*
2480 * We need to try to allocate
2481 * unmapped blocks in the same page.
2482 * Otherwise we won't make progress
43ce1d23 2483 * with the page in ext4_writepage
791b7f08 2484 */
c364b22c 2485 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2486 mpage_add_bh_to_extent(mpd, logical,
2487 bh->b_size,
2488 bh->b_state);
a1d6cc56
AK
2489 if (mpd->io_done)
2490 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2491 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2492 /*
2493 * mapped dirty buffer. We need to update
2494 * the b_state because we look at
2495 * b_state in mpage_da_map_blocks. We don't
2496 * update b_size because if we find an
2497 * unmapped buffer_head later we need to
2498 * use the b_state flag of that buffer_head.
2499 */
8dc207c0
TT
2500 if (mpd->b_size == 0)
2501 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2502 }
64769240
AT
2503 logical++;
2504 } while ((bh = bh->b_this_page) != head);
2505 }
2506
2507 return 0;
2508}
2509
64769240 2510/*
b920c755
TT
2511 * This is a special get_blocks_t callback which is used by
2512 * ext4_da_write_begin(). It will either return mapped block or
2513 * reserve space for a single block.
29fa89d0
AK
2514 *
2515 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2516 * We also have b_blocknr = -1 and b_bdev initialized properly
2517 *
2518 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2519 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2520 * initialized properly.
64769240
AT
2521 */
2522static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2523 struct buffer_head *bh, int create)
64769240 2524{
2ed88685 2525 struct ext4_map_blocks map;
64769240 2526 int ret = 0;
33b9817e
AK
2527 sector_t invalid_block = ~((sector_t) 0xffff);
2528
2529 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2530 invalid_block = ~0;
64769240
AT
2531
2532 BUG_ON(create == 0);
2ed88685
TT
2533 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2534
2535 map.m_lblk = iblock;
2536 map.m_len = 1;
64769240
AT
2537
2538 /*
2539 * first, we need to know whether the block is allocated already
2540 * preallocated blocks are unmapped but should treated
2541 * the same as allocated blocks.
2542 */
2ed88685
TT
2543 ret = ext4_map_blocks(NULL, inode, &map, 0);
2544 if (ret < 0)
2545 return ret;
2546 if (ret == 0) {
2547 if (buffer_delay(bh))
2548 return 0; /* Not sure this could or should happen */
64769240
AT
2549 /*
2550 * XXX: __block_prepare_write() unmaps passed block,
2551 * is it OK?
2552 */
9d0be502 2553 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2554 if (ret)
2555 /* not enough space to reserve */
2556 return ret;
2557
2ed88685
TT
2558 map_bh(bh, inode->i_sb, invalid_block);
2559 set_buffer_new(bh);
2560 set_buffer_delay(bh);
2561 return 0;
64769240
AT
2562 }
2563
2ed88685
TT
2564 map_bh(bh, inode->i_sb, map.m_pblk);
2565 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2566
2567 if (buffer_unwritten(bh)) {
2568 /* A delayed write to unwritten bh should be marked
2569 * new and mapped. Mapped ensures that we don't do
2570 * get_block multiple times when we write to the same
2571 * offset and new ensures that we do proper zero out
2572 * for partial write.
2573 */
2574 set_buffer_new(bh);
2575 set_buffer_mapped(bh);
2576 }
2577 return 0;
64769240 2578}
61628a3f 2579
b920c755
TT
2580/*
2581 * This function is used as a standard get_block_t calback function
2582 * when there is no desire to allocate any blocks. It is used as a
206f7ab4
CH
2583 * callback function for block_prepare_write() and block_write_full_page().
2584 * These functions should only try to map a single block at a time.
b920c755
TT
2585 *
2586 * Since this function doesn't do block allocations even if the caller
2587 * requests it by passing in create=1, it is critically important that
2588 * any caller checks to make sure that any buffer heads are returned
2589 * by this function are either all already mapped or marked for
206f7ab4
CH
2590 * delayed allocation before calling block_write_full_page(). Otherwise,
2591 * b_blocknr could be left unitialized, and the page write functions will
2592 * be taken by surprise.
b920c755
TT
2593 */
2594static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2595 struct buffer_head *bh_result, int create)
2596{
a2dc52b5 2597 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2598 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2599}
2600
62e086be
AK
2601static int bget_one(handle_t *handle, struct buffer_head *bh)
2602{
2603 get_bh(bh);
2604 return 0;
2605}
2606
2607static int bput_one(handle_t *handle, struct buffer_head *bh)
2608{
2609 put_bh(bh);
2610 return 0;
2611}
2612
2613static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2614 unsigned int len)
2615{
2616 struct address_space *mapping = page->mapping;
2617 struct inode *inode = mapping->host;
2618 struct buffer_head *page_bufs;
2619 handle_t *handle = NULL;
2620 int ret = 0;
2621 int err;
2622
2623 page_bufs = page_buffers(page);
2624 BUG_ON(!page_bufs);
2625 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2626 /* As soon as we unlock the page, it can go away, but we have
2627 * references to buffers so we are safe */
2628 unlock_page(page);
2629
2630 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2631 if (IS_ERR(handle)) {
2632 ret = PTR_ERR(handle);
2633 goto out;
2634 }
2635
2636 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2637 do_journal_get_write_access);
2638
2639 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2640 write_end_fn);
2641 if (ret == 0)
2642 ret = err;
2643 err = ext4_journal_stop(handle);
2644 if (!ret)
2645 ret = err;
2646
2647 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2648 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2649out:
2650 return ret;
2651}
2652
744692dc
JZ
2653static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2654static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2655
61628a3f 2656/*
43ce1d23
AK
2657 * Note that we don't need to start a transaction unless we're journaling data
2658 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2659 * need to file the inode to the transaction's list in ordered mode because if
2660 * we are writing back data added by write(), the inode is already there and if
2661 * we are writing back data modified via mmap(), noone guarantees in which
2662 * transaction the data will hit the disk. In case we are journaling data, we
2663 * cannot start transaction directly because transaction start ranks above page
2664 * lock so we have to do some magic.
2665 *
b920c755
TT
2666 * This function can get called via...
2667 * - ext4_da_writepages after taking page lock (have journal handle)
2668 * - journal_submit_inode_data_buffers (no journal handle)
2669 * - shrink_page_list via pdflush (no journal handle)
2670 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2671 *
2672 * We don't do any block allocation in this function. If we have page with
2673 * multiple blocks we need to write those buffer_heads that are mapped. This
2674 * is important for mmaped based write. So if we do with blocksize 1K
2675 * truncate(f, 1024);
2676 * a = mmap(f, 0, 4096);
2677 * a[0] = 'a';
2678 * truncate(f, 4096);
2679 * we have in the page first buffer_head mapped via page_mkwrite call back
2680 * but other bufer_heads would be unmapped but dirty(dirty done via the
2681 * do_wp_page). So writepage should write the first block. If we modify
2682 * the mmap area beyond 1024 we will again get a page_fault and the
2683 * page_mkwrite callback will do the block allocation and mark the
2684 * buffer_heads mapped.
2685 *
2686 * We redirty the page if we have any buffer_heads that is either delay or
2687 * unwritten in the page.
2688 *
2689 * We can get recursively called as show below.
2690 *
2691 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2692 * ext4_writepage()
2693 *
2694 * But since we don't do any block allocation we should not deadlock.
2695 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2696 */
43ce1d23 2697static int ext4_writepage(struct page *page,
62e086be 2698 struct writeback_control *wbc)
64769240 2699{
64769240 2700 int ret = 0;
61628a3f 2701 loff_t size;
498e5f24 2702 unsigned int len;
744692dc 2703 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2704 struct inode *inode = page->mapping->host;
2705
43ce1d23 2706 trace_ext4_writepage(inode, page);
f0e6c985
AK
2707 size = i_size_read(inode);
2708 if (page->index == size >> PAGE_CACHE_SHIFT)
2709 len = size & ~PAGE_CACHE_MASK;
2710 else
2711 len = PAGE_CACHE_SIZE;
64769240 2712
f0e6c985 2713 if (page_has_buffers(page)) {
61628a3f 2714 page_bufs = page_buffers(page);
f0e6c985 2715 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2716 ext4_bh_delay_or_unwritten)) {
61628a3f 2717 /*
f0e6c985
AK
2718 * We don't want to do block allocation
2719 * So redirty the page and return
cd1aac32
AK
2720 * We may reach here when we do a journal commit
2721 * via journal_submit_inode_data_buffers.
2722 * If we don't have mapping block we just ignore
f0e6c985
AK
2723 * them. We can also reach here via shrink_page_list
2724 */
2725 redirty_page_for_writepage(wbc, page);
2726 unlock_page(page);
2727 return 0;
2728 }
2729 } else {
2730 /*
2731 * The test for page_has_buffers() is subtle:
2732 * We know the page is dirty but it lost buffers. That means
2733 * that at some moment in time after write_begin()/write_end()
2734 * has been called all buffers have been clean and thus they
2735 * must have been written at least once. So they are all
2736 * mapped and we can happily proceed with mapping them
2737 * and writing the page.
2738 *
2739 * Try to initialize the buffer_heads and check whether
2740 * all are mapped and non delay. We don't want to
2741 * do block allocation here.
2742 */
b767e78a 2743 ret = block_prepare_write(page, 0, len,
b920c755 2744 noalloc_get_block_write);
f0e6c985
AK
2745 if (!ret) {
2746 page_bufs = page_buffers(page);
2747 /* check whether all are mapped and non delay */
2748 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2749 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2750 redirty_page_for_writepage(wbc, page);
2751 unlock_page(page);
2752 return 0;
2753 }
2754 } else {
2755 /*
2756 * We can't do block allocation here
2757 * so just redity the page and unlock
2758 * and return
61628a3f 2759 */
61628a3f
MC
2760 redirty_page_for_writepage(wbc, page);
2761 unlock_page(page);
2762 return 0;
2763 }
ed9b3e33 2764 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2765 block_commit_write(page, 0, len);
64769240
AT
2766 }
2767
43ce1d23
AK
2768 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2769 /*
2770 * It's mmapped pagecache. Add buffers and journal it. There
2771 * doesn't seem much point in redirtying the page here.
2772 */
2773 ClearPageChecked(page);
3f0ca309 2774 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2775 }
2776
206f7ab4 2777 if (page_bufs && buffer_uninit(page_bufs)) {
744692dc
JZ
2778 ext4_set_bh_endio(page_bufs, inode);
2779 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2780 wbc, ext4_end_io_buffer_write);
2781 } else
b920c755
TT
2782 ret = block_write_full_page(page, noalloc_get_block_write,
2783 wbc);
64769240 2784
64769240
AT
2785 return ret;
2786}
2787
61628a3f 2788/*
525f4ed8
MC
2789 * This is called via ext4_da_writepages() to
2790 * calulate the total number of credits to reserve to fit
2791 * a single extent allocation into a single transaction,
2792 * ext4_da_writpeages() will loop calling this before
2793 * the block allocation.
61628a3f 2794 */
525f4ed8
MC
2795
2796static int ext4_da_writepages_trans_blocks(struct inode *inode)
2797{
2798 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2799
2800 /*
2801 * With non-extent format the journal credit needed to
2802 * insert nrblocks contiguous block is dependent on
2803 * number of contiguous block. So we will limit
2804 * number of contiguous block to a sane value
2805 */
12e9b892 2806 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2807 (max_blocks > EXT4_MAX_TRANS_DATA))
2808 max_blocks = EXT4_MAX_TRANS_DATA;
2809
2810 return ext4_chunk_trans_blocks(inode, max_blocks);
2811}
61628a3f 2812
8e48dcfb
TT
2813/*
2814 * write_cache_pages_da - walk the list of dirty pages of the given
2815 * address space and call the callback function (which usually writes
2816 * the pages).
2817 *
2818 * This is a forked version of write_cache_pages(). Differences:
2819 * Range cyclic is ignored.
2820 * no_nrwrite_index_update is always presumed true
2821 */
2822static int write_cache_pages_da(struct address_space *mapping,
2823 struct writeback_control *wbc,
2824 struct mpage_da_data *mpd)
2825{
2826 int ret = 0;
2827 int done = 0;
2828 struct pagevec pvec;
2829 int nr_pages;
2830 pgoff_t index;
2831 pgoff_t end; /* Inclusive */
2832 long nr_to_write = wbc->nr_to_write;
2833
2834 pagevec_init(&pvec, 0);
2835 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2836 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2837
2838 while (!done && (index <= end)) {
2839 int i;
2840
2841 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2842 PAGECACHE_TAG_DIRTY,
2843 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2844 if (nr_pages == 0)
2845 break;
2846
2847 for (i = 0; i < nr_pages; i++) {
2848 struct page *page = pvec.pages[i];
2849
2850 /*
2851 * At this point, the page may be truncated or
2852 * invalidated (changing page->mapping to NULL), or
2853 * even swizzled back from swapper_space to tmpfs file
2854 * mapping. However, page->index will not change
2855 * because we have a reference on the page.
2856 */
2857 if (page->index > end) {
2858 done = 1;
2859 break;
2860 }
2861
2862 lock_page(page);
2863
2864 /*
2865 * Page truncated or invalidated. We can freely skip it
2866 * then, even for data integrity operations: the page
2867 * has disappeared concurrently, so there could be no
2868 * real expectation of this data interity operation
2869 * even if there is now a new, dirty page at the same
2870 * pagecache address.
2871 */
2872 if (unlikely(page->mapping != mapping)) {
2873continue_unlock:
2874 unlock_page(page);
2875 continue;
2876 }
2877
2878 if (!PageDirty(page)) {
2879 /* someone wrote it for us */
2880 goto continue_unlock;
2881 }
2882
2883 if (PageWriteback(page)) {
2884 if (wbc->sync_mode != WB_SYNC_NONE)
2885 wait_on_page_writeback(page);
2886 else
2887 goto continue_unlock;
2888 }
2889
2890 BUG_ON(PageWriteback(page));
2891 if (!clear_page_dirty_for_io(page))
2892 goto continue_unlock;
2893
2894 ret = __mpage_da_writepage(page, wbc, mpd);
2895 if (unlikely(ret)) {
2896 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2897 unlock_page(page);
2898 ret = 0;
2899 } else {
2900 done = 1;
2901 break;
2902 }
2903 }
2904
2905 if (nr_to_write > 0) {
2906 nr_to_write--;
2907 if (nr_to_write == 0 &&
2908 wbc->sync_mode == WB_SYNC_NONE) {
2909 /*
2910 * We stop writing back only if we are
2911 * not doing integrity sync. In case of
2912 * integrity sync we have to keep going
2913 * because someone may be concurrently
2914 * dirtying pages, and we might have
2915 * synced a lot of newly appeared dirty
2916 * pages, but have not synced all of the
2917 * old dirty pages.
2918 */
2919 done = 1;
2920 break;
2921 }
2922 }
2923 }
2924 pagevec_release(&pvec);
2925 cond_resched();
2926 }
2927 return ret;
2928}
2929
2930
64769240 2931static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2932 struct writeback_control *wbc)
64769240 2933{
22208ded
AK
2934 pgoff_t index;
2935 int range_whole = 0;
61628a3f 2936 handle_t *handle = NULL;
df22291f 2937 struct mpage_da_data mpd;
5e745b04 2938 struct inode *inode = mapping->host;
498e5f24
TT
2939 int pages_written = 0;
2940 long pages_skipped;
55138e0b 2941 unsigned int max_pages;
2acf2c26 2942 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2943 int needed_blocks, ret = 0;
2944 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2945 loff_t range_start = wbc->range_start;
5e745b04 2946 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2947
9bffad1e 2948 trace_ext4_da_writepages(inode, wbc);
ba80b101 2949
61628a3f
MC
2950 /*
2951 * No pages to write? This is mainly a kludge to avoid starting
2952 * a transaction for special inodes like journal inode on last iput()
2953 * because that could violate lock ordering on umount
2954 */
a1d6cc56 2955 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2956 return 0;
2a21e37e
TT
2957
2958 /*
2959 * If the filesystem has aborted, it is read-only, so return
2960 * right away instead of dumping stack traces later on that
2961 * will obscure the real source of the problem. We test
4ab2f15b 2962 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2963 * the latter could be true if the filesystem is mounted
2964 * read-only, and in that case, ext4_da_writepages should
2965 * *never* be called, so if that ever happens, we would want
2966 * the stack trace.
2967 */
4ab2f15b 2968 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2969 return -EROFS;
2970
22208ded
AK
2971 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2972 range_whole = 1;
61628a3f 2973
2acf2c26
AK
2974 range_cyclic = wbc->range_cyclic;
2975 if (wbc->range_cyclic) {
22208ded 2976 index = mapping->writeback_index;
2acf2c26
AK
2977 if (index)
2978 cycled = 0;
2979 wbc->range_start = index << PAGE_CACHE_SHIFT;
2980 wbc->range_end = LLONG_MAX;
2981 wbc->range_cyclic = 0;
2982 } else
22208ded 2983 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2984
55138e0b
TT
2985 /*
2986 * This works around two forms of stupidity. The first is in
2987 * the writeback code, which caps the maximum number of pages
2988 * written to be 1024 pages. This is wrong on multiple
2989 * levels; different architectues have a different page size,
2990 * which changes the maximum amount of data which gets
2991 * written. Secondly, 4 megabytes is way too small. XFS
2992 * forces this value to be 16 megabytes by multiplying
2993 * nr_to_write parameter by four, and then relies on its
2994 * allocator to allocate larger extents to make them
2995 * contiguous. Unfortunately this brings us to the second
2996 * stupidity, which is that ext4's mballoc code only allocates
2997 * at most 2048 blocks. So we force contiguous writes up to
2998 * the number of dirty blocks in the inode, or
2999 * sbi->max_writeback_mb_bump whichever is smaller.
3000 */
3001 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3002 if (!range_cyclic && range_whole)
3003 desired_nr_to_write = wbc->nr_to_write * 8;
3004 else
3005 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3006 max_pages);
3007 if (desired_nr_to_write > max_pages)
3008 desired_nr_to_write = max_pages;
3009
3010 if (wbc->nr_to_write < desired_nr_to_write) {
3011 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3012 wbc->nr_to_write = desired_nr_to_write;
3013 }
3014
df22291f
AK
3015 mpd.wbc = wbc;
3016 mpd.inode = mapping->host;
3017
22208ded
AK
3018 pages_skipped = wbc->pages_skipped;
3019
2acf2c26 3020retry:
22208ded 3021 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
3022
3023 /*
3024 * we insert one extent at a time. So we need
3025 * credit needed for single extent allocation.
3026 * journalled mode is currently not supported
3027 * by delalloc
3028 */
3029 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3030 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3031
61628a3f
MC
3032 /* start a new transaction*/
3033 handle = ext4_journal_start(inode, needed_blocks);
3034 if (IS_ERR(handle)) {
3035 ret = PTR_ERR(handle);
1693918e 3036 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3037 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3038 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3039 goto out_writepages;
3040 }
f63e6005
TT
3041
3042 /*
3043 * Now call __mpage_da_writepage to find the next
3044 * contiguous region of logical blocks that need
3045 * blocks to be allocated by ext4. We don't actually
3046 * submit the blocks for I/O here, even though
3047 * write_cache_pages thinks it will, and will set the
3048 * pages as clean for write before calling
3049 * __mpage_da_writepage().
3050 */
3051 mpd.b_size = 0;
3052 mpd.b_state = 0;
3053 mpd.b_blocknr = 0;
3054 mpd.first_page = 0;
3055 mpd.next_page = 0;
3056 mpd.io_done = 0;
3057 mpd.pages_written = 0;
3058 mpd.retval = 0;
8e48dcfb 3059 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3060 /*
af901ca1 3061 * If we have a contiguous extent of pages and we
f63e6005
TT
3062 * haven't done the I/O yet, map the blocks and submit
3063 * them for I/O.
3064 */
3065 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3066 if (mpage_da_map_blocks(&mpd) == 0)
3067 mpage_da_submit_io(&mpd);
3068 mpd.io_done = 1;
3069 ret = MPAGE_DA_EXTENT_TAIL;
3070 }
b3a3ca8c 3071 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3072 wbc->nr_to_write -= mpd.pages_written;
df22291f 3073
61628a3f 3074 ext4_journal_stop(handle);
df22291f 3075
8f64b32e 3076 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3077 /* commit the transaction which would
3078 * free blocks released in the transaction
3079 * and try again
3080 */
df22291f 3081 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3082 wbc->pages_skipped = pages_skipped;
3083 ret = 0;
3084 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3085 /*
3086 * got one extent now try with
3087 * rest of the pages
3088 */
22208ded
AK
3089 pages_written += mpd.pages_written;
3090 wbc->pages_skipped = pages_skipped;
a1d6cc56 3091 ret = 0;
2acf2c26 3092 io_done = 1;
22208ded 3093 } else if (wbc->nr_to_write)
61628a3f
MC
3094 /*
3095 * There is no more writeout needed
3096 * or we requested for a noblocking writeout
3097 * and we found the device congested
3098 */
61628a3f 3099 break;
a1d6cc56 3100 }
2acf2c26
AK
3101 if (!io_done && !cycled) {
3102 cycled = 1;
3103 index = 0;
3104 wbc->range_start = index << PAGE_CACHE_SHIFT;
3105 wbc->range_end = mapping->writeback_index - 1;
3106 goto retry;
3107 }
22208ded 3108 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3109 ext4_msg(inode->i_sb, KERN_CRIT,
3110 "This should not happen leaving %s "
fbe845dd 3111 "with nr_to_write = %ld ret = %d",
1693918e 3112 __func__, wbc->nr_to_write, ret);
22208ded
AK
3113
3114 /* Update index */
3115 index += pages_written;
2acf2c26 3116 wbc->range_cyclic = range_cyclic;
22208ded
AK
3117 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3118 /*
3119 * set the writeback_index so that range_cyclic
3120 * mode will write it back later
3121 */
3122 mapping->writeback_index = index;
a1d6cc56 3123
61628a3f 3124out_writepages:
2faf2e19 3125 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3126 wbc->range_start = range_start;
9bffad1e 3127 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3128 return ret;
64769240
AT
3129}
3130
79f0be8d
AK
3131#define FALL_BACK_TO_NONDELALLOC 1
3132static int ext4_nonda_switch(struct super_block *sb)
3133{
3134 s64 free_blocks, dirty_blocks;
3135 struct ext4_sb_info *sbi = EXT4_SB(sb);
3136
3137 /*
3138 * switch to non delalloc mode if we are running low
3139 * on free block. The free block accounting via percpu
179f7ebf 3140 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3141 * accumulated on each CPU without updating global counters
3142 * Delalloc need an accurate free block accounting. So switch
3143 * to non delalloc when we are near to error range.
3144 */
3145 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3146 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3147 if (2 * free_blocks < 3 * dirty_blocks ||
3148 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3149 /*
c8afb446
ES
3150 * free block count is less than 150% of dirty blocks
3151 * or free blocks is less than watermark
79f0be8d
AK
3152 */
3153 return 1;
3154 }
c8afb446
ES
3155 /*
3156 * Even if we don't switch but are nearing capacity,
3157 * start pushing delalloc when 1/2 of free blocks are dirty.
3158 */
3159 if (free_blocks < 2 * dirty_blocks)
3160 writeback_inodes_sb_if_idle(sb);
3161
79f0be8d
AK
3162 return 0;
3163}
3164
64769240 3165static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3166 loff_t pos, unsigned len, unsigned flags,
3167 struct page **pagep, void **fsdata)
64769240 3168{
72b8ab9d 3169 int ret, retries = 0;
64769240
AT
3170 struct page *page;
3171 pgoff_t index;
64769240
AT
3172 struct inode *inode = mapping->host;
3173 handle_t *handle;
3174
3175 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3176
3177 if (ext4_nonda_switch(inode->i_sb)) {
3178 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3179 return ext4_write_begin(file, mapping, pos,
3180 len, flags, pagep, fsdata);
3181 }
3182 *fsdata = (void *)0;
9bffad1e 3183 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3184retry:
64769240
AT
3185 /*
3186 * With delayed allocation, we don't log the i_disksize update
3187 * if there is delayed block allocation. But we still need
3188 * to journalling the i_disksize update if writes to the end
3189 * of file which has an already mapped buffer.
3190 */
3191 handle = ext4_journal_start(inode, 1);
3192 if (IS_ERR(handle)) {
3193 ret = PTR_ERR(handle);
3194 goto out;
3195 }
ebd3610b
JK
3196 /* We cannot recurse into the filesystem as the transaction is already
3197 * started */
3198 flags |= AOP_FLAG_NOFS;
64769240 3199
54566b2c 3200 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3201 if (!page) {
3202 ext4_journal_stop(handle);
3203 ret = -ENOMEM;
3204 goto out;
3205 }
64769240
AT
3206 *pagep = page;
3207
3208 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3209 ext4_da_get_block_prep);
64769240
AT
3210 if (ret < 0) {
3211 unlock_page(page);
3212 ext4_journal_stop(handle);
3213 page_cache_release(page);
ae4d5372
AK
3214 /*
3215 * block_write_begin may have instantiated a few blocks
3216 * outside i_size. Trim these off again. Don't need
3217 * i_size_read because we hold i_mutex.
3218 */
3219 if (pos + len > inode->i_size)
b9a4207d 3220 ext4_truncate_failed_write(inode);
64769240
AT
3221 }
3222
d2a17637
MC
3223 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3224 goto retry;
64769240
AT
3225out:
3226 return ret;
3227}
3228
632eaeab
MC
3229/*
3230 * Check if we should update i_disksize
3231 * when write to the end of file but not require block allocation
3232 */
3233static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3234 unsigned long offset)
632eaeab
MC
3235{
3236 struct buffer_head *bh;
3237 struct inode *inode = page->mapping->host;
3238 unsigned int idx;
3239 int i;
3240
3241 bh = page_buffers(page);
3242 idx = offset >> inode->i_blkbits;
3243
af5bc92d 3244 for (i = 0; i < idx; i++)
632eaeab
MC
3245 bh = bh->b_this_page;
3246
29fa89d0 3247 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3248 return 0;
3249 return 1;
3250}
3251
64769240 3252static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3253 struct address_space *mapping,
3254 loff_t pos, unsigned len, unsigned copied,
3255 struct page *page, void *fsdata)
64769240
AT
3256{
3257 struct inode *inode = mapping->host;
3258 int ret = 0, ret2;
3259 handle_t *handle = ext4_journal_current_handle();
3260 loff_t new_i_size;
632eaeab 3261 unsigned long start, end;
79f0be8d
AK
3262 int write_mode = (int)(unsigned long)fsdata;
3263
3264 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3265 if (ext4_should_order_data(inode)) {
3266 return ext4_ordered_write_end(file, mapping, pos,
3267 len, copied, page, fsdata);
3268 } else if (ext4_should_writeback_data(inode)) {
3269 return ext4_writeback_write_end(file, mapping, pos,
3270 len, copied, page, fsdata);
3271 } else {
3272 BUG();
3273 }
3274 }
632eaeab 3275
9bffad1e 3276 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3277 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3278 end = start + copied - 1;
64769240
AT
3279
3280 /*
3281 * generic_write_end() will run mark_inode_dirty() if i_size
3282 * changes. So let's piggyback the i_disksize mark_inode_dirty
3283 * into that.
3284 */
3285
3286 new_i_size = pos + copied;
632eaeab
MC
3287 if (new_i_size > EXT4_I(inode)->i_disksize) {
3288 if (ext4_da_should_update_i_disksize(page, end)) {
3289 down_write(&EXT4_I(inode)->i_data_sem);
3290 if (new_i_size > EXT4_I(inode)->i_disksize) {
3291 /*
3292 * Updating i_disksize when extending file
3293 * without needing block allocation
3294 */
3295 if (ext4_should_order_data(inode))
3296 ret = ext4_jbd2_file_inode(handle,
3297 inode);
64769240 3298
632eaeab
MC
3299 EXT4_I(inode)->i_disksize = new_i_size;
3300 }
3301 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3302 /* We need to mark inode dirty even if
3303 * new_i_size is less that inode->i_size
3304 * bu greater than i_disksize.(hint delalloc)
3305 */
3306 ext4_mark_inode_dirty(handle, inode);
64769240 3307 }
632eaeab 3308 }
64769240
AT
3309 ret2 = generic_write_end(file, mapping, pos, len, copied,
3310 page, fsdata);
3311 copied = ret2;
3312 if (ret2 < 0)
3313 ret = ret2;
3314 ret2 = ext4_journal_stop(handle);
3315 if (!ret)
3316 ret = ret2;
3317
3318 return ret ? ret : copied;
3319}
3320
3321static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3322{
64769240
AT
3323 /*
3324 * Drop reserved blocks
3325 */
3326 BUG_ON(!PageLocked(page));
3327 if (!page_has_buffers(page))
3328 goto out;
3329
d2a17637 3330 ext4_da_page_release_reservation(page, offset);
64769240
AT
3331
3332out:
3333 ext4_invalidatepage(page, offset);
3334
3335 return;
3336}
3337
ccd2506b
TT
3338/*
3339 * Force all delayed allocation blocks to be allocated for a given inode.
3340 */
3341int ext4_alloc_da_blocks(struct inode *inode)
3342{
fb40ba0d
TT
3343 trace_ext4_alloc_da_blocks(inode);
3344
ccd2506b
TT
3345 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3346 !EXT4_I(inode)->i_reserved_meta_blocks)
3347 return 0;
3348
3349 /*
3350 * We do something simple for now. The filemap_flush() will
3351 * also start triggering a write of the data blocks, which is
3352 * not strictly speaking necessary (and for users of
3353 * laptop_mode, not even desirable). However, to do otherwise
3354 * would require replicating code paths in:
de9a55b8 3355 *
ccd2506b
TT
3356 * ext4_da_writepages() ->
3357 * write_cache_pages() ---> (via passed in callback function)
3358 * __mpage_da_writepage() -->
3359 * mpage_add_bh_to_extent()
3360 * mpage_da_map_blocks()
3361 *
3362 * The problem is that write_cache_pages(), located in
3363 * mm/page-writeback.c, marks pages clean in preparation for
3364 * doing I/O, which is not desirable if we're not planning on
3365 * doing I/O at all.
3366 *
3367 * We could call write_cache_pages(), and then redirty all of
3368 * the pages by calling redirty_page_for_writeback() but that
3369 * would be ugly in the extreme. So instead we would need to
3370 * replicate parts of the code in the above functions,
3371 * simplifying them becuase we wouldn't actually intend to
3372 * write out the pages, but rather only collect contiguous
3373 * logical block extents, call the multi-block allocator, and
3374 * then update the buffer heads with the block allocations.
de9a55b8 3375 *
ccd2506b
TT
3376 * For now, though, we'll cheat by calling filemap_flush(),
3377 * which will map the blocks, and start the I/O, but not
3378 * actually wait for the I/O to complete.
3379 */
3380 return filemap_flush(inode->i_mapping);
3381}
64769240 3382
ac27a0ec
DK
3383/*
3384 * bmap() is special. It gets used by applications such as lilo and by
3385 * the swapper to find the on-disk block of a specific piece of data.
3386 *
3387 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3388 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3389 * filesystem and enables swap, then they may get a nasty shock when the
3390 * data getting swapped to that swapfile suddenly gets overwritten by
3391 * the original zero's written out previously to the journal and
3392 * awaiting writeback in the kernel's buffer cache.
3393 *
3394 * So, if we see any bmap calls here on a modified, data-journaled file,
3395 * take extra steps to flush any blocks which might be in the cache.
3396 */
617ba13b 3397static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3398{
3399 struct inode *inode = mapping->host;
3400 journal_t *journal;
3401 int err;
3402
64769240
AT
3403 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3404 test_opt(inode->i_sb, DELALLOC)) {
3405 /*
3406 * With delalloc we want to sync the file
3407 * so that we can make sure we allocate
3408 * blocks for file
3409 */
3410 filemap_write_and_wait(mapping);
3411 }
3412
19f5fb7a
TT
3413 if (EXT4_JOURNAL(inode) &&
3414 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3415 /*
3416 * This is a REALLY heavyweight approach, but the use of
3417 * bmap on dirty files is expected to be extremely rare:
3418 * only if we run lilo or swapon on a freshly made file
3419 * do we expect this to happen.
3420 *
3421 * (bmap requires CAP_SYS_RAWIO so this does not
3422 * represent an unprivileged user DOS attack --- we'd be
3423 * in trouble if mortal users could trigger this path at
3424 * will.)
3425 *
617ba13b 3426 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3427 * regular files. If somebody wants to bmap a directory
3428 * or symlink and gets confused because the buffer
3429 * hasn't yet been flushed to disk, they deserve
3430 * everything they get.
3431 */
3432
19f5fb7a 3433 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3434 journal = EXT4_JOURNAL(inode);
dab291af
MC
3435 jbd2_journal_lock_updates(journal);
3436 err = jbd2_journal_flush(journal);
3437 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3438
3439 if (err)
3440 return 0;
3441 }
3442
af5bc92d 3443 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3444}
3445
617ba13b 3446static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3447{
617ba13b 3448 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3449}
3450
3451static int
617ba13b 3452ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3453 struct list_head *pages, unsigned nr_pages)
3454{
617ba13b 3455 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3456}
3457
744692dc
JZ
3458static void ext4_free_io_end(ext4_io_end_t *io)
3459{
3460 BUG_ON(!io);
3461 if (io->page)
3462 put_page(io->page);
3463 iput(io->inode);
3464 kfree(io);
3465}
3466
3467static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3468{
3469 struct buffer_head *head, *bh;
3470 unsigned int curr_off = 0;
3471
3472 if (!page_has_buffers(page))
3473 return;
3474 head = bh = page_buffers(page);
3475 do {
3476 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3477 && bh->b_private) {
3478 ext4_free_io_end(bh->b_private);
3479 bh->b_private = NULL;
3480 bh->b_end_io = NULL;
3481 }
3482 curr_off = curr_off + bh->b_size;
3483 bh = bh->b_this_page;
3484 } while (bh != head);
3485}
3486
617ba13b 3487static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3488{
617ba13b 3489 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3490
744692dc
JZ
3491 /*
3492 * free any io_end structure allocated for buffers to be discarded
3493 */
3494 if (ext4_should_dioread_nolock(page->mapping->host))
3495 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3496 /*
3497 * If it's a full truncate we just forget about the pending dirtying
3498 */
3499 if (offset == 0)
3500 ClearPageChecked(page);
3501
0390131b
FM
3502 if (journal)
3503 jbd2_journal_invalidatepage(journal, page, offset);
3504 else
3505 block_invalidatepage(page, offset);
ac27a0ec
DK
3506}
3507
617ba13b 3508static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3509{
617ba13b 3510 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3511
3512 WARN_ON(PageChecked(page));
3513 if (!page_has_buffers(page))
3514 return 0;
0390131b
FM
3515 if (journal)
3516 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3517 else
3518 return try_to_free_buffers(page);
ac27a0ec
DK
3519}
3520
3521/*
4c0425ff
MC
3522 * O_DIRECT for ext3 (or indirect map) based files
3523 *
ac27a0ec
DK
3524 * If the O_DIRECT write will extend the file then add this inode to the
3525 * orphan list. So recovery will truncate it back to the original size
3526 * if the machine crashes during the write.
3527 *
3528 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3529 * crashes then stale disk data _may_ be exposed inside the file. But current
3530 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3531 */
4c0425ff 3532static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3533 const struct iovec *iov, loff_t offset,
3534 unsigned long nr_segs)
ac27a0ec
DK
3535{
3536 struct file *file = iocb->ki_filp;
3537 struct inode *inode = file->f_mapping->host;
617ba13b 3538 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3539 handle_t *handle;
ac27a0ec
DK
3540 ssize_t ret;
3541 int orphan = 0;
3542 size_t count = iov_length(iov, nr_segs);
fbbf6945 3543 int retries = 0;
ac27a0ec
DK
3544
3545 if (rw == WRITE) {
3546 loff_t final_size = offset + count;
3547
ac27a0ec 3548 if (final_size > inode->i_size) {
7fb5409d
JK
3549 /* Credits for sb + inode write */
3550 handle = ext4_journal_start(inode, 2);
3551 if (IS_ERR(handle)) {
3552 ret = PTR_ERR(handle);
3553 goto out;
3554 }
617ba13b 3555 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3556 if (ret) {
3557 ext4_journal_stop(handle);
3558 goto out;
3559 }
ac27a0ec
DK
3560 orphan = 1;
3561 ei->i_disksize = inode->i_size;
7fb5409d 3562 ext4_journal_stop(handle);
ac27a0ec
DK
3563 }
3564 }
3565
fbbf6945 3566retry:
b7adc1f3
JZ
3567 if (rw == READ && ext4_should_dioread_nolock(inode))
3568 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3569 inode->i_sb->s_bdev, iov,
3570 offset, nr_segs,
3571 ext4_get_block, NULL);
3572 else
3573 ret = blockdev_direct_IO(rw, iocb, inode,
3574 inode->i_sb->s_bdev, iov,
ac27a0ec 3575 offset, nr_segs,
617ba13b 3576 ext4_get_block, NULL);
fbbf6945
ES
3577 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3578 goto retry;
ac27a0ec 3579
7fb5409d 3580 if (orphan) {
ac27a0ec
DK
3581 int err;
3582
7fb5409d
JK
3583 /* Credits for sb + inode write */
3584 handle = ext4_journal_start(inode, 2);
3585 if (IS_ERR(handle)) {
3586 /* This is really bad luck. We've written the data
3587 * but cannot extend i_size. Bail out and pretend
3588 * the write failed... */
3589 ret = PTR_ERR(handle);
da1dafca
DM
3590 if (inode->i_nlink)
3591 ext4_orphan_del(NULL, inode);
3592
7fb5409d
JK
3593 goto out;
3594 }
3595 if (inode->i_nlink)
617ba13b 3596 ext4_orphan_del(handle, inode);
7fb5409d 3597 if (ret > 0) {
ac27a0ec
DK
3598 loff_t end = offset + ret;
3599 if (end > inode->i_size) {
3600 ei->i_disksize = end;
3601 i_size_write(inode, end);
3602 /*
3603 * We're going to return a positive `ret'
3604 * here due to non-zero-length I/O, so there's
3605 * no way of reporting error returns from
617ba13b 3606 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3607 * ignore it.
3608 */
617ba13b 3609 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3610 }
3611 }
617ba13b 3612 err = ext4_journal_stop(handle);
ac27a0ec
DK
3613 if (ret == 0)
3614 ret = err;
3615 }
3616out:
3617 return ret;
3618}
3619
2ed88685
TT
3620/*
3621 * ext4_get_block used when preparing for a DIO write or buffer write.
3622 * We allocate an uinitialized extent if blocks haven't been allocated.
3623 * The extent will be converted to initialized after the IO is complete.
3624 */
c7064ef1 3625static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3626 struct buffer_head *bh_result, int create)
3627{
c7064ef1 3628 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3629 inode->i_ino, create);
2ed88685
TT
3630 return _ext4_get_block(inode, iblock, bh_result,
3631 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3632}
3633
c7064ef1 3634static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3635{
3636#ifdef EXT4_DEBUG
3637 struct list_head *cur, *before, *after;
3638 ext4_io_end_t *io, *io0, *io1;
744692dc 3639 unsigned long flags;
8d5d02e6 3640
c7064ef1
JZ
3641 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3642 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3643 return;
3644 }
3645
c7064ef1 3646 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3647 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3648 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3649 cur = &io->list;
3650 before = cur->prev;
3651 io0 = container_of(before, ext4_io_end_t, list);
3652 after = cur->next;
3653 io1 = container_of(after, ext4_io_end_t, list);
3654
3655 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3656 io, inode->i_ino, io0, io1);
3657 }
744692dc 3658 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3659#endif
3660}
4c0425ff
MC
3661
3662/*
4c0425ff
MC
3663 * check a range of space and convert unwritten extents to written.
3664 */
c7064ef1 3665static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3666{
4c0425ff
MC
3667 struct inode *inode = io->inode;
3668 loff_t offset = io->offset;
a1de02dc 3669 ssize_t size = io->size;
4c0425ff 3670 int ret = 0;
4c0425ff 3671
c7064ef1 3672 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3673 "list->prev 0x%p\n",
3674 io, inode->i_ino, io->list.next, io->list.prev);
3675
3676 if (list_empty(&io->list))
3677 return ret;
3678
c7064ef1 3679 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3680 return ret;
3681
744692dc 3682 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3683 if (ret < 0) {
4c0425ff 3684 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3685 "extents to written extents, error is %d"
3686 " io is still on inode %lu aio dio list\n",
3687 __func__, ret, inode->i_ino);
3688 return ret;
3689 }
4c0425ff 3690
5b3ff237
JZ
3691 if (io->iocb)
3692 aio_complete(io->iocb, io->result, 0);
8d5d02e6
MC
3693 /* clear the DIO AIO unwritten flag */
3694 io->flag = 0;
3695 return ret;
4c0425ff 3696}
c7064ef1 3697
8d5d02e6
MC
3698/*
3699 * work on completed aio dio IO, to convert unwritten extents to extents
3700 */
c7064ef1 3701static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3702{
744692dc
JZ
3703 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3704 struct inode *inode = io->inode;
3705 struct ext4_inode_info *ei = EXT4_I(inode);
3706 unsigned long flags;
3707 int ret;
4c0425ff 3708
8d5d02e6 3709 mutex_lock(&inode->i_mutex);
c7064ef1 3710 ret = ext4_end_io_nolock(io);
744692dc
JZ
3711 if (ret < 0) {
3712 mutex_unlock(&inode->i_mutex);
3713 return;
8d5d02e6 3714 }
744692dc
JZ
3715
3716 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3717 if (!list_empty(&io->list))
3718 list_del_init(&io->list);
3719 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3720 mutex_unlock(&inode->i_mutex);
744692dc 3721 ext4_free_io_end(io);
8d5d02e6 3722}
c7064ef1 3723
8d5d02e6
MC
3724/*
3725 * This function is called from ext4_sync_file().
3726 *
c7064ef1
JZ
3727 * When IO is completed, the work to convert unwritten extents to
3728 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3729 * scheduled. When fsync is called, we need to ensure the
3730 * conversion is complete before fsync returns.
c7064ef1
JZ
3731 * The inode keeps track of a list of pending/completed IO that
3732 * might needs to do the conversion. This function walks through
3733 * the list and convert the related unwritten extents for completed IO
3734 * to written.
3735 * The function return the number of pending IOs on success.
8d5d02e6 3736 */
c7064ef1 3737int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3738{
3739 ext4_io_end_t *io;
744692dc
JZ
3740 struct ext4_inode_info *ei = EXT4_I(inode);
3741 unsigned long flags;
8d5d02e6
MC
3742 int ret = 0;
3743 int ret2 = 0;
3744
744692dc 3745 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3746 return ret;
3747
c7064ef1 3748 dump_completed_IO(inode);
744692dc
JZ
3749 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3750 while (!list_empty(&ei->i_completed_io_list)){
3751 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3752 ext4_io_end_t, list);
3753 /*
c7064ef1 3754 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3755 * IO to written.
3756 *
3757 * When ext4_sync_file() is called, run_queue() may already
3758 * about to flush the work corresponding to this io structure.
3759 * It will be upset if it founds the io structure related
3760 * to the work-to-be schedule is freed.
3761 *
3762 * Thus we need to keep the io structure still valid here after
3763 * convertion finished. The io structure has a flag to
3764 * avoid double converting from both fsync and background work
3765 * queue work.
3766 */
744692dc 3767 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3768 ret = ext4_end_io_nolock(io);
744692dc 3769 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3770 if (ret < 0)
3771 ret2 = ret;
3772 else
3773 list_del_init(&io->list);
3774 }
744692dc 3775 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3776 return (ret2 < 0) ? ret2 : 0;
3777}
3778
744692dc 3779static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3780{
3781 ext4_io_end_t *io = NULL;
3782
744692dc 3783 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3784
3785 if (io) {
8d5d02e6 3786 igrab(inode);
4c0425ff 3787 io->inode = inode;
8d5d02e6 3788 io->flag = 0;
4c0425ff
MC
3789 io->offset = 0;
3790 io->size = 0;
744692dc 3791 io->page = NULL;
5b3ff237
JZ
3792 io->iocb = NULL;
3793 io->result = 0;
c7064ef1 3794 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3795 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3796 }
3797
3798 return io;
3799}
3800
3801static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3802 ssize_t size, void *private, int ret,
3803 bool is_async)
4c0425ff
MC
3804{
3805 ext4_io_end_t *io_end = iocb->private;
3806 struct workqueue_struct *wq;
744692dc
JZ
3807 unsigned long flags;
3808 struct ext4_inode_info *ei;
4c0425ff 3809
4b70df18
M
3810 /* if not async direct IO or dio with 0 bytes write, just return */
3811 if (!io_end || !size)
552ef802 3812 goto out;
4b70df18 3813
8d5d02e6
MC
3814 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3815 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3816 iocb->private, io_end->inode->i_ino, iocb, offset,
3817 size);
8d5d02e6
MC
3818
3819 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3820 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3821 ext4_free_io_end(io_end);
3822 iocb->private = NULL;
5b3ff237
JZ
3823out:
3824 if (is_async)
3825 aio_complete(iocb, ret, 0);
3826 return;
8d5d02e6
MC
3827 }
3828
4c0425ff
MC
3829 io_end->offset = offset;
3830 io_end->size = size;
5b3ff237
JZ
3831 if (is_async) {
3832 io_end->iocb = iocb;
3833 io_end->result = ret;
3834 }
4c0425ff
MC
3835 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3836
8d5d02e6 3837 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3838 queue_work(wq, &io_end->work);
3839
8d5d02e6 3840 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3841 ei = EXT4_I(io_end->inode);
3842 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3843 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3844 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
4c0425ff
MC
3845 iocb->private = NULL;
3846}
c7064ef1 3847
744692dc
JZ
3848static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3849{
3850 ext4_io_end_t *io_end = bh->b_private;
3851 struct workqueue_struct *wq;
3852 struct inode *inode;
3853 unsigned long flags;
3854
3855 if (!test_clear_buffer_uninit(bh) || !io_end)
3856 goto out;
3857
3858 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3859 printk("sb umounted, discard end_io request for inode %lu\n",
3860 io_end->inode->i_ino);
3861 ext4_free_io_end(io_end);
3862 goto out;
3863 }
3864
3865 io_end->flag = EXT4_IO_UNWRITTEN;
3866 inode = io_end->inode;
3867
3868 /* Add the io_end to per-inode completed io list*/
3869 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3870 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3871 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3872
3873 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3874 /* queue the work to convert unwritten extents to written */
3875 queue_work(wq, &io_end->work);
3876out:
3877 bh->b_private = NULL;
3878 bh->b_end_io = NULL;
3879 clear_buffer_uninit(bh);
3880 end_buffer_async_write(bh, uptodate);
3881}
3882
3883static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3884{
3885 ext4_io_end_t *io_end;
3886 struct page *page = bh->b_page;
3887 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3888 size_t size = bh->b_size;
3889
3890retry:
3891 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3892 if (!io_end) {
3893 if (printk_ratelimit())
3894 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3895 schedule();
3896 goto retry;
3897 }
3898 io_end->offset = offset;
3899 io_end->size = size;
3900 /*
3901 * We need to hold a reference to the page to make sure it
3902 * doesn't get evicted before ext4_end_io_work() has a chance
3903 * to convert the extent from written to unwritten.
3904 */
3905 io_end->page = page;
3906 get_page(io_end->page);
3907
3908 bh->b_private = io_end;
3909 bh->b_end_io = ext4_end_io_buffer_write;
3910 return 0;
3911}
3912
4c0425ff
MC
3913/*
3914 * For ext4 extent files, ext4 will do direct-io write to holes,
3915 * preallocated extents, and those write extend the file, no need to
3916 * fall back to buffered IO.
3917 *
3918 * For holes, we fallocate those blocks, mark them as unintialized
3919 * If those blocks were preallocated, we mark sure they are splited, but
3920 * still keep the range to write as unintialized.
3921 *
8d5d02e6
MC
3922 * The unwrritten extents will be converted to written when DIO is completed.
3923 * For async direct IO, since the IO may still pending when return, we
3924 * set up an end_io call back function, which will do the convertion
3925 * when async direct IO completed.
4c0425ff
MC
3926 *
3927 * If the O_DIRECT write will extend the file then add this inode to the
3928 * orphan list. So recovery will truncate it back to the original size
3929 * if the machine crashes during the write.
3930 *
3931 */
3932static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3933 const struct iovec *iov, loff_t offset,
3934 unsigned long nr_segs)
3935{
3936 struct file *file = iocb->ki_filp;
3937 struct inode *inode = file->f_mapping->host;
3938 ssize_t ret;
3939 size_t count = iov_length(iov, nr_segs);
3940
3941 loff_t final_size = offset + count;
3942 if (rw == WRITE && final_size <= inode->i_size) {
3943 /*
8d5d02e6
MC
3944 * We could direct write to holes and fallocate.
3945 *
3946 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3947 * to prevent paralel buffered read to expose the stale data
3948 * before DIO complete the data IO.
8d5d02e6
MC
3949 *
3950 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3951 * will just simply mark the buffer mapped but still
3952 * keep the extents uninitialized.
3953 *
8d5d02e6
MC
3954 * for non AIO case, we will convert those unwritten extents
3955 * to written after return back from blockdev_direct_IO.
3956 *
3957 * for async DIO, the conversion needs to be defered when
3958 * the IO is completed. The ext4 end_io callback function
3959 * will be called to take care of the conversion work.
3960 * Here for async case, we allocate an io_end structure to
3961 * hook to the iocb.
4c0425ff 3962 */
8d5d02e6
MC
3963 iocb->private = NULL;
3964 EXT4_I(inode)->cur_aio_dio = NULL;
3965 if (!is_sync_kiocb(iocb)) {
744692dc 3966 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3967 if (!iocb->private)
3968 return -ENOMEM;
3969 /*
3970 * we save the io structure for current async
79e83036 3971 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3972 * could flag the io structure whether there
3973 * is a unwritten extents needs to be converted
3974 * when IO is completed.
3975 */
3976 EXT4_I(inode)->cur_aio_dio = iocb->private;
3977 }
3978
4c0425ff
MC
3979 ret = blockdev_direct_IO(rw, iocb, inode,
3980 inode->i_sb->s_bdev, iov,
3981 offset, nr_segs,
c7064ef1 3982 ext4_get_block_write,
4c0425ff 3983 ext4_end_io_dio);
8d5d02e6
MC
3984 if (iocb->private)
3985 EXT4_I(inode)->cur_aio_dio = NULL;
3986 /*
3987 * The io_end structure takes a reference to the inode,
3988 * that structure needs to be destroyed and the
3989 * reference to the inode need to be dropped, when IO is
3990 * complete, even with 0 byte write, or failed.
3991 *
3992 * In the successful AIO DIO case, the io_end structure will be
3993 * desctroyed and the reference to the inode will be dropped
3994 * after the end_io call back function is called.
3995 *
3996 * In the case there is 0 byte write, or error case, since
3997 * VFS direct IO won't invoke the end_io call back function,
3998 * we need to free the end_io structure here.
3999 */
4000 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
4001 ext4_free_io_end(iocb->private);
4002 iocb->private = NULL;
19f5fb7a
TT
4003 } else if (ret > 0 && ext4_test_inode_state(inode,
4004 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 4005 int err;
8d5d02e6
MC
4006 /*
4007 * for non AIO case, since the IO is already
4008 * completed, we could do the convertion right here
4009 */
109f5565
M
4010 err = ext4_convert_unwritten_extents(inode,
4011 offset, ret);
4012 if (err < 0)
4013 ret = err;
19f5fb7a 4014 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 4015 }
4c0425ff
MC
4016 return ret;
4017 }
8d5d02e6
MC
4018
4019 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
4020 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4021}
4022
4023static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4024 const struct iovec *iov, loff_t offset,
4025 unsigned long nr_segs)
4026{
4027 struct file *file = iocb->ki_filp;
4028 struct inode *inode = file->f_mapping->host;
4029
12e9b892 4030 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
4031 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4032
4033 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4034}
4035
ac27a0ec 4036/*
617ba13b 4037 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4038 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4039 * much here because ->set_page_dirty is called under VFS locks. The page is
4040 * not necessarily locked.
4041 *
4042 * We cannot just dirty the page and leave attached buffers clean, because the
4043 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4044 * or jbddirty because all the journalling code will explode.
4045 *
4046 * So what we do is to mark the page "pending dirty" and next time writepage
4047 * is called, propagate that into the buffers appropriately.
4048 */
617ba13b 4049static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4050{
4051 SetPageChecked(page);
4052 return __set_page_dirty_nobuffers(page);
4053}
4054
617ba13b 4055static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4056 .readpage = ext4_readpage,
4057 .readpages = ext4_readpages,
43ce1d23 4058 .writepage = ext4_writepage,
8ab22b9a
HH
4059 .sync_page = block_sync_page,
4060 .write_begin = ext4_write_begin,
4061 .write_end = ext4_ordered_write_end,
4062 .bmap = ext4_bmap,
4063 .invalidatepage = ext4_invalidatepage,
4064 .releasepage = ext4_releasepage,
4065 .direct_IO = ext4_direct_IO,
4066 .migratepage = buffer_migrate_page,
4067 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4068 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4069};
4070
617ba13b 4071static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4072 .readpage = ext4_readpage,
4073 .readpages = ext4_readpages,
43ce1d23 4074 .writepage = ext4_writepage,
8ab22b9a
HH
4075 .sync_page = block_sync_page,
4076 .write_begin = ext4_write_begin,
4077 .write_end = ext4_writeback_write_end,
4078 .bmap = ext4_bmap,
4079 .invalidatepage = ext4_invalidatepage,
4080 .releasepage = ext4_releasepage,
4081 .direct_IO = ext4_direct_IO,
4082 .migratepage = buffer_migrate_page,
4083 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4084 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4085};
4086
617ba13b 4087static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4088 .readpage = ext4_readpage,
4089 .readpages = ext4_readpages,
43ce1d23 4090 .writepage = ext4_writepage,
8ab22b9a
HH
4091 .sync_page = block_sync_page,
4092 .write_begin = ext4_write_begin,
4093 .write_end = ext4_journalled_write_end,
4094 .set_page_dirty = ext4_journalled_set_page_dirty,
4095 .bmap = ext4_bmap,
4096 .invalidatepage = ext4_invalidatepage,
4097 .releasepage = ext4_releasepage,
4098 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4099 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4100};
4101
64769240 4102static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4103 .readpage = ext4_readpage,
4104 .readpages = ext4_readpages,
43ce1d23 4105 .writepage = ext4_writepage,
8ab22b9a
HH
4106 .writepages = ext4_da_writepages,
4107 .sync_page = block_sync_page,
4108 .write_begin = ext4_da_write_begin,
4109 .write_end = ext4_da_write_end,
4110 .bmap = ext4_bmap,
4111 .invalidatepage = ext4_da_invalidatepage,
4112 .releasepage = ext4_releasepage,
4113 .direct_IO = ext4_direct_IO,
4114 .migratepage = buffer_migrate_page,
4115 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4116 .error_remove_page = generic_error_remove_page,
64769240
AT
4117};
4118
617ba13b 4119void ext4_set_aops(struct inode *inode)
ac27a0ec 4120{
cd1aac32
AK
4121 if (ext4_should_order_data(inode) &&
4122 test_opt(inode->i_sb, DELALLOC))
4123 inode->i_mapping->a_ops = &ext4_da_aops;
4124 else if (ext4_should_order_data(inode))
617ba13b 4125 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4126 else if (ext4_should_writeback_data(inode) &&
4127 test_opt(inode->i_sb, DELALLOC))
4128 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4129 else if (ext4_should_writeback_data(inode))
4130 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4131 else
617ba13b 4132 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4133}
4134
4135/*
617ba13b 4136 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4137 * up to the end of the block which corresponds to `from'.
4138 * This required during truncate. We need to physically zero the tail end
4139 * of that block so it doesn't yield old data if the file is later grown.
4140 */
cf108bca 4141int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4142 struct address_space *mapping, loff_t from)
4143{
617ba13b 4144 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4145 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4146 unsigned blocksize, length, pos;
4147 ext4_lblk_t iblock;
ac27a0ec
DK
4148 struct inode *inode = mapping->host;
4149 struct buffer_head *bh;
cf108bca 4150 struct page *page;
ac27a0ec 4151 int err = 0;
ac27a0ec 4152
f4a01017
TT
4153 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4154 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4155 if (!page)
4156 return -EINVAL;
4157
ac27a0ec
DK
4158 blocksize = inode->i_sb->s_blocksize;
4159 length = blocksize - (offset & (blocksize - 1));
4160 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4161
ac27a0ec
DK
4162 if (!page_has_buffers(page))
4163 create_empty_buffers(page, blocksize, 0);
4164
4165 /* Find the buffer that contains "offset" */
4166 bh = page_buffers(page);
4167 pos = blocksize;
4168 while (offset >= pos) {
4169 bh = bh->b_this_page;
4170 iblock++;
4171 pos += blocksize;
4172 }
4173
4174 err = 0;
4175 if (buffer_freed(bh)) {
4176 BUFFER_TRACE(bh, "freed: skip");
4177 goto unlock;
4178 }
4179
4180 if (!buffer_mapped(bh)) {
4181 BUFFER_TRACE(bh, "unmapped");
617ba13b 4182 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4183 /* unmapped? It's a hole - nothing to do */
4184 if (!buffer_mapped(bh)) {
4185 BUFFER_TRACE(bh, "still unmapped");
4186 goto unlock;
4187 }
4188 }
4189
4190 /* Ok, it's mapped. Make sure it's up-to-date */
4191 if (PageUptodate(page))
4192 set_buffer_uptodate(bh);
4193
4194 if (!buffer_uptodate(bh)) {
4195 err = -EIO;
4196 ll_rw_block(READ, 1, &bh);
4197 wait_on_buffer(bh);
4198 /* Uhhuh. Read error. Complain and punt. */
4199 if (!buffer_uptodate(bh))
4200 goto unlock;
4201 }
4202
617ba13b 4203 if (ext4_should_journal_data(inode)) {
ac27a0ec 4204 BUFFER_TRACE(bh, "get write access");
617ba13b 4205 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4206 if (err)
4207 goto unlock;
4208 }
4209
eebd2aa3 4210 zero_user(page, offset, length);
ac27a0ec
DK
4211
4212 BUFFER_TRACE(bh, "zeroed end of block");
4213
4214 err = 0;
617ba13b 4215 if (ext4_should_journal_data(inode)) {
0390131b 4216 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4217 } else {
617ba13b 4218 if (ext4_should_order_data(inode))
678aaf48 4219 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4220 mark_buffer_dirty(bh);
4221 }
4222
4223unlock:
4224 unlock_page(page);
4225 page_cache_release(page);
4226 return err;
4227}
4228
4229/*
4230 * Probably it should be a library function... search for first non-zero word
4231 * or memcmp with zero_page, whatever is better for particular architecture.
4232 * Linus?
4233 */
4234static inline int all_zeroes(__le32 *p, __le32 *q)
4235{
4236 while (p < q)
4237 if (*p++)
4238 return 0;
4239 return 1;
4240}
4241
4242/**
617ba13b 4243 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4244 * @inode: inode in question
4245 * @depth: depth of the affected branch
617ba13b 4246 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4247 * @chain: place to store the pointers to partial indirect blocks
4248 * @top: place to the (detached) top of branch
4249 *
617ba13b 4250 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4251 *
4252 * When we do truncate() we may have to clean the ends of several
4253 * indirect blocks but leave the blocks themselves alive. Block is
4254 * partially truncated if some data below the new i_size is refered
4255 * from it (and it is on the path to the first completely truncated
4256 * data block, indeed). We have to free the top of that path along
4257 * with everything to the right of the path. Since no allocation
617ba13b 4258 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4259 * finishes, we may safely do the latter, but top of branch may
4260 * require special attention - pageout below the truncation point
4261 * might try to populate it.
4262 *
4263 * We atomically detach the top of branch from the tree, store the
4264 * block number of its root in *@top, pointers to buffer_heads of
4265 * partially truncated blocks - in @chain[].bh and pointers to
4266 * their last elements that should not be removed - in
4267 * @chain[].p. Return value is the pointer to last filled element
4268 * of @chain.
4269 *
4270 * The work left to caller to do the actual freeing of subtrees:
4271 * a) free the subtree starting from *@top
4272 * b) free the subtrees whose roots are stored in
4273 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4274 * c) free the subtrees growing from the inode past the @chain[0].
4275 * (no partially truncated stuff there). */
4276
617ba13b 4277static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4278 ext4_lblk_t offsets[4], Indirect chain[4],
4279 __le32 *top)
ac27a0ec
DK
4280{
4281 Indirect *partial, *p;
4282 int k, err;
4283
4284 *top = 0;
bf48aabb 4285 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4286 for (k = depth; k > 1 && !offsets[k-1]; k--)
4287 ;
617ba13b 4288 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4289 /* Writer: pointers */
4290 if (!partial)
4291 partial = chain + k-1;
4292 /*
4293 * If the branch acquired continuation since we've looked at it -
4294 * fine, it should all survive and (new) top doesn't belong to us.
4295 */
4296 if (!partial->key && *partial->p)
4297 /* Writer: end */
4298 goto no_top;
af5bc92d 4299 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4300 ;
4301 /*
4302 * OK, we've found the last block that must survive. The rest of our
4303 * branch should be detached before unlocking. However, if that rest
4304 * of branch is all ours and does not grow immediately from the inode
4305 * it's easier to cheat and just decrement partial->p.
4306 */
4307 if (p == chain + k - 1 && p > chain) {
4308 p->p--;
4309 } else {
4310 *top = *p->p;
617ba13b 4311 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4312#if 0
4313 *p->p = 0;
4314#endif
4315 }
4316 /* Writer: end */
4317
af5bc92d 4318 while (partial > p) {
ac27a0ec
DK
4319 brelse(partial->bh);
4320 partial--;
4321 }
4322no_top:
4323 return partial;
4324}
4325
4326/*
4327 * Zero a number of block pointers in either an inode or an indirect block.
4328 * If we restart the transaction we must again get write access to the
4329 * indirect block for further modification.
4330 *
4331 * We release `count' blocks on disk, but (last - first) may be greater
4332 * than `count' because there can be holes in there.
4333 */
1f2acb60
TT
4334static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4335 struct buffer_head *bh,
4336 ext4_fsblk_t block_to_free,
4337 unsigned long count, __le32 *first,
4338 __le32 *last)
ac27a0ec
DK
4339{
4340 __le32 *p;
1f2acb60 4341 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4342
4343 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4344 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4345
1f2acb60
TT
4346 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4347 count)) {
24676da4
TT
4348 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4349 "blocks %llu len %lu",
4350 (unsigned long long) block_to_free, count);
1f2acb60
TT
4351 return 1;
4352 }
4353
ac27a0ec
DK
4354 if (try_to_extend_transaction(handle, inode)) {
4355 if (bh) {
0390131b
FM
4356 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4357 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4358 }
617ba13b 4359 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4360 ext4_truncate_restart_trans(handle, inode,
4361 blocks_for_truncate(inode));
ac27a0ec
DK
4362 if (bh) {
4363 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4364 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4365 }
4366 }
4367
e6362609
TT
4368 for (p = first; p < last; p++)
4369 *p = 0;
ac27a0ec 4370
e6362609 4371 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4372 return 0;
ac27a0ec
DK
4373}
4374
4375/**
617ba13b 4376 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4377 * @handle: handle for this transaction
4378 * @inode: inode we are dealing with
4379 * @this_bh: indirect buffer_head which contains *@first and *@last
4380 * @first: array of block numbers
4381 * @last: points immediately past the end of array
4382 *
4383 * We are freeing all blocks refered from that array (numbers are stored as
4384 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4385 *
4386 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4387 * blocks are contiguous then releasing them at one time will only affect one
4388 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4389 * actually use a lot of journal space.
4390 *
4391 * @this_bh will be %NULL if @first and @last point into the inode's direct
4392 * block pointers.
4393 */
617ba13b 4394static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4395 struct buffer_head *this_bh,
4396 __le32 *first, __le32 *last)
4397{
617ba13b 4398 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4399 unsigned long count = 0; /* Number of blocks in the run */
4400 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4401 corresponding to
4402 block_to_free */
617ba13b 4403 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4404 __le32 *p; /* Pointer into inode/ind
4405 for current block */
4406 int err;
4407
4408 if (this_bh) { /* For indirect block */
4409 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4410 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4411 /* Important: if we can't update the indirect pointers
4412 * to the blocks, we can't free them. */
4413 if (err)
4414 return;
4415 }
4416
4417 for (p = first; p < last; p++) {
4418 nr = le32_to_cpu(*p);
4419 if (nr) {
4420 /* accumulate blocks to free if they're contiguous */
4421 if (count == 0) {
4422 block_to_free = nr;
4423 block_to_free_p = p;
4424 count = 1;
4425 } else if (nr == block_to_free + count) {
4426 count++;
4427 } else {
1f2acb60
TT
4428 if (ext4_clear_blocks(handle, inode, this_bh,
4429 block_to_free, count,
4430 block_to_free_p, p))
4431 break;
ac27a0ec
DK
4432 block_to_free = nr;
4433 block_to_free_p = p;
4434 count = 1;
4435 }
4436 }
4437 }
4438
4439 if (count > 0)
617ba13b 4440 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4441 count, block_to_free_p, p);
4442
4443 if (this_bh) {
0390131b 4444 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4445
4446 /*
4447 * The buffer head should have an attached journal head at this
4448 * point. However, if the data is corrupted and an indirect
4449 * block pointed to itself, it would have been detached when
4450 * the block was cleared. Check for this instead of OOPSing.
4451 */
e7f07968 4452 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4453 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4454 else
24676da4
TT
4455 EXT4_ERROR_INODE(inode,
4456 "circular indirect block detected at "
4457 "block %llu",
4458 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4459 }
4460}
4461
4462/**
617ba13b 4463 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4464 * @handle: JBD handle for this transaction
4465 * @inode: inode we are dealing with
4466 * @parent_bh: the buffer_head which contains *@first and *@last
4467 * @first: array of block numbers
4468 * @last: pointer immediately past the end of array
4469 * @depth: depth of the branches to free
4470 *
4471 * We are freeing all blocks refered from these branches (numbers are
4472 * stored as little-endian 32-bit) and updating @inode->i_blocks
4473 * appropriately.
4474 */
617ba13b 4475static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4476 struct buffer_head *parent_bh,
4477 __le32 *first, __le32 *last, int depth)
4478{
617ba13b 4479 ext4_fsblk_t nr;
ac27a0ec
DK
4480 __le32 *p;
4481
0390131b 4482 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4483 return;
4484
4485 if (depth--) {
4486 struct buffer_head *bh;
617ba13b 4487 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4488 p = last;
4489 while (--p >= first) {
4490 nr = le32_to_cpu(*p);
4491 if (!nr)
4492 continue; /* A hole */
4493
1f2acb60
TT
4494 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4495 nr, 1)) {
24676da4
TT
4496 EXT4_ERROR_INODE(inode,
4497 "invalid indirect mapped "
4498 "block %lu (level %d)",
4499 (unsigned long) nr, depth);
1f2acb60
TT
4500 break;
4501 }
4502
ac27a0ec
DK
4503 /* Go read the buffer for the next level down */
4504 bh = sb_bread(inode->i_sb, nr);
4505
4506 /*
4507 * A read failure? Report error and clear slot
4508 * (should be rare).
4509 */
4510 if (!bh) {
c398eda0
TT
4511 EXT4_ERROR_INODE_BLOCK(inode, nr,
4512 "Read failure");
ac27a0ec
DK
4513 continue;
4514 }
4515
4516 /* This zaps the entire block. Bottom up. */
4517 BUFFER_TRACE(bh, "free child branches");
617ba13b 4518 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4519 (__le32 *) bh->b_data,
4520 (__le32 *) bh->b_data + addr_per_block,
4521 depth);
ac27a0ec 4522
ac27a0ec
DK
4523 /*
4524 * Everything below this this pointer has been
4525 * released. Now let this top-of-subtree go.
4526 *
4527 * We want the freeing of this indirect block to be
4528 * atomic in the journal with the updating of the
4529 * bitmap block which owns it. So make some room in
4530 * the journal.
4531 *
4532 * We zero the parent pointer *after* freeing its
4533 * pointee in the bitmaps, so if extend_transaction()
4534 * for some reason fails to put the bitmap changes and
4535 * the release into the same transaction, recovery
4536 * will merely complain about releasing a free block,
4537 * rather than leaking blocks.
4538 */
0390131b 4539 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4540 return;
4541 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4542 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4543 ext4_truncate_restart_trans(handle, inode,
4544 blocks_for_truncate(inode));
ac27a0ec
DK
4545 }
4546
40389687
A
4547 /*
4548 * The forget flag here is critical because if
4549 * we are journaling (and not doing data
4550 * journaling), we have to make sure a revoke
4551 * record is written to prevent the journal
4552 * replay from overwriting the (former)
4553 * indirect block if it gets reallocated as a
4554 * data block. This must happen in the same
4555 * transaction where the data blocks are
4556 * actually freed.
4557 */
e6362609 4558 ext4_free_blocks(handle, inode, 0, nr, 1,
40389687
A
4559 EXT4_FREE_BLOCKS_METADATA|
4560 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4561
4562 if (parent_bh) {
4563 /*
4564 * The block which we have just freed is
4565 * pointed to by an indirect block: journal it
4566 */
4567 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4568 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4569 parent_bh)){
4570 *p = 0;
4571 BUFFER_TRACE(parent_bh,
0390131b
FM
4572 "call ext4_handle_dirty_metadata");
4573 ext4_handle_dirty_metadata(handle,
4574 inode,
4575 parent_bh);
ac27a0ec
DK
4576 }
4577 }
4578 }
4579 } else {
4580 /* We have reached the bottom of the tree. */
4581 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4582 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4583 }
4584}
4585
91ef4caf
DG
4586int ext4_can_truncate(struct inode *inode)
4587{
4588 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4589 return 0;
4590 if (S_ISREG(inode->i_mode))
4591 return 1;
4592 if (S_ISDIR(inode->i_mode))
4593 return 1;
4594 if (S_ISLNK(inode->i_mode))
4595 return !ext4_inode_is_fast_symlink(inode);
4596 return 0;
4597}
4598
ac27a0ec 4599/*
617ba13b 4600 * ext4_truncate()
ac27a0ec 4601 *
617ba13b
MC
4602 * We block out ext4_get_block() block instantiations across the entire
4603 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4604 * simultaneously on behalf of the same inode.
4605 *
4606 * As we work through the truncate and commmit bits of it to the journal there
4607 * is one core, guiding principle: the file's tree must always be consistent on
4608 * disk. We must be able to restart the truncate after a crash.
4609 *
4610 * The file's tree may be transiently inconsistent in memory (although it
4611 * probably isn't), but whenever we close off and commit a journal transaction,
4612 * the contents of (the filesystem + the journal) must be consistent and
4613 * restartable. It's pretty simple, really: bottom up, right to left (although
4614 * left-to-right works OK too).
4615 *
4616 * Note that at recovery time, journal replay occurs *before* the restart of
4617 * truncate against the orphan inode list.
4618 *
4619 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4620 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4621 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4622 * ext4_truncate() to have another go. So there will be instantiated blocks
4623 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4624 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4625 * ext4_truncate() run will find them and release them.
ac27a0ec 4626 */
617ba13b 4627void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4628{
4629 handle_t *handle;
617ba13b 4630 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4631 __le32 *i_data = ei->i_data;
617ba13b 4632 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4633 struct address_space *mapping = inode->i_mapping;
725d26d3 4634 ext4_lblk_t offsets[4];
ac27a0ec
DK
4635 Indirect chain[4];
4636 Indirect *partial;
4637 __le32 nr = 0;
4638 int n;
725d26d3 4639 ext4_lblk_t last_block;
ac27a0ec 4640 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4641
91ef4caf 4642 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4643 return;
4644
12e9b892 4645 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4646
5534fb5b 4647 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4648 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4649
12e9b892 4650 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4651 ext4_ext_truncate(inode);
1d03ec98
AK
4652 return;
4653 }
a86c6181 4654
ac27a0ec 4655 handle = start_transaction(inode);
cf108bca 4656 if (IS_ERR(handle))
ac27a0ec 4657 return; /* AKPM: return what? */
ac27a0ec
DK
4658
4659 last_block = (inode->i_size + blocksize-1)
617ba13b 4660 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4661
cf108bca
JK
4662 if (inode->i_size & (blocksize - 1))
4663 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4664 goto out_stop;
ac27a0ec 4665
617ba13b 4666 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4667 if (n == 0)
4668 goto out_stop; /* error */
4669
4670 /*
4671 * OK. This truncate is going to happen. We add the inode to the
4672 * orphan list, so that if this truncate spans multiple transactions,
4673 * and we crash, we will resume the truncate when the filesystem
4674 * recovers. It also marks the inode dirty, to catch the new size.
4675 *
4676 * Implication: the file must always be in a sane, consistent
4677 * truncatable state while each transaction commits.
4678 */
617ba13b 4679 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4680 goto out_stop;
4681
632eaeab
MC
4682 /*
4683 * From here we block out all ext4_get_block() callers who want to
4684 * modify the block allocation tree.
4685 */
4686 down_write(&ei->i_data_sem);
b4df2030 4687
c2ea3fde 4688 ext4_discard_preallocations(inode);
b4df2030 4689
ac27a0ec
DK
4690 /*
4691 * The orphan list entry will now protect us from any crash which
4692 * occurs before the truncate completes, so it is now safe to propagate
4693 * the new, shorter inode size (held for now in i_size) into the
4694 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4695 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4696 */
4697 ei->i_disksize = inode->i_size;
4698
ac27a0ec 4699 if (n == 1) { /* direct blocks */
617ba13b
MC
4700 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4701 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4702 goto do_indirects;
4703 }
4704
617ba13b 4705 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4706 /* Kill the top of shared branch (not detached) */
4707 if (nr) {
4708 if (partial == chain) {
4709 /* Shared branch grows from the inode */
617ba13b 4710 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4711 &nr, &nr+1, (chain+n-1) - partial);
4712 *partial->p = 0;
4713 /*
4714 * We mark the inode dirty prior to restart,
4715 * and prior to stop. No need for it here.
4716 */
4717 } else {
4718 /* Shared branch grows from an indirect block */
4719 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4720 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4721 partial->p,
4722 partial->p+1, (chain+n-1) - partial);
4723 }
4724 }
4725 /* Clear the ends of indirect blocks on the shared branch */
4726 while (partial > chain) {
617ba13b 4727 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4728 (__le32*)partial->bh->b_data+addr_per_block,
4729 (chain+n-1) - partial);
4730 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4731 brelse(partial->bh);
ac27a0ec
DK
4732 partial--;
4733 }
4734do_indirects:
4735 /* Kill the remaining (whole) subtrees */
4736 switch (offsets[0]) {
4737 default:
617ba13b 4738 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4739 if (nr) {
617ba13b
MC
4740 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4741 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4742 }
617ba13b
MC
4743 case EXT4_IND_BLOCK:
4744 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4745 if (nr) {
617ba13b
MC
4746 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4747 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4748 }
617ba13b
MC
4749 case EXT4_DIND_BLOCK:
4750 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4751 if (nr) {
617ba13b
MC
4752 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4753 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4754 }
617ba13b 4755 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4756 ;
4757 }
4758
0e855ac8 4759 up_write(&ei->i_data_sem);
ef7f3835 4760 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4761 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4762
4763 /*
4764 * In a multi-transaction truncate, we only make the final transaction
4765 * synchronous
4766 */
4767 if (IS_SYNC(inode))
0390131b 4768 ext4_handle_sync(handle);
ac27a0ec
DK
4769out_stop:
4770 /*
4771 * If this was a simple ftruncate(), and the file will remain alive
4772 * then we need to clear up the orphan record which we created above.
4773 * However, if this was a real unlink then we were called by
617ba13b 4774 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4775 * orphan info for us.
4776 */
4777 if (inode->i_nlink)
617ba13b 4778 ext4_orphan_del(handle, inode);
ac27a0ec 4779
617ba13b 4780 ext4_journal_stop(handle);
ac27a0ec
DK
4781}
4782
ac27a0ec 4783/*
617ba13b 4784 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4785 * underlying buffer_head on success. If 'in_mem' is true, we have all
4786 * data in memory that is needed to recreate the on-disk version of this
4787 * inode.
4788 */
617ba13b
MC
4789static int __ext4_get_inode_loc(struct inode *inode,
4790 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4791{
240799cd
TT
4792 struct ext4_group_desc *gdp;
4793 struct buffer_head *bh;
4794 struct super_block *sb = inode->i_sb;
4795 ext4_fsblk_t block;
4796 int inodes_per_block, inode_offset;
4797
3a06d778 4798 iloc->bh = NULL;
240799cd
TT
4799 if (!ext4_valid_inum(sb, inode->i_ino))
4800 return -EIO;
ac27a0ec 4801
240799cd
TT
4802 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4803 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4804 if (!gdp)
ac27a0ec
DK
4805 return -EIO;
4806
240799cd
TT
4807 /*
4808 * Figure out the offset within the block group inode table
4809 */
4810 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4811 inode_offset = ((inode->i_ino - 1) %
4812 EXT4_INODES_PER_GROUP(sb));
4813 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4814 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4815
4816 bh = sb_getblk(sb, block);
ac27a0ec 4817 if (!bh) {
c398eda0
TT
4818 EXT4_ERROR_INODE_BLOCK(inode, block,
4819 "unable to read itable block");
ac27a0ec
DK
4820 return -EIO;
4821 }
4822 if (!buffer_uptodate(bh)) {
4823 lock_buffer(bh);
9c83a923
HK
4824
4825 /*
4826 * If the buffer has the write error flag, we have failed
4827 * to write out another inode in the same block. In this
4828 * case, we don't have to read the block because we may
4829 * read the old inode data successfully.
4830 */
4831 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4832 set_buffer_uptodate(bh);
4833
ac27a0ec
DK
4834 if (buffer_uptodate(bh)) {
4835 /* someone brought it uptodate while we waited */
4836 unlock_buffer(bh);
4837 goto has_buffer;
4838 }
4839
4840 /*
4841 * If we have all information of the inode in memory and this
4842 * is the only valid inode in the block, we need not read the
4843 * block.
4844 */
4845 if (in_mem) {
4846 struct buffer_head *bitmap_bh;
240799cd 4847 int i, start;
ac27a0ec 4848
240799cd 4849 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4850
240799cd
TT
4851 /* Is the inode bitmap in cache? */
4852 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4853 if (!bitmap_bh)
4854 goto make_io;
4855
4856 /*
4857 * If the inode bitmap isn't in cache then the
4858 * optimisation may end up performing two reads instead
4859 * of one, so skip it.
4860 */
4861 if (!buffer_uptodate(bitmap_bh)) {
4862 brelse(bitmap_bh);
4863 goto make_io;
4864 }
240799cd 4865 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4866 if (i == inode_offset)
4867 continue;
617ba13b 4868 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4869 break;
4870 }
4871 brelse(bitmap_bh);
240799cd 4872 if (i == start + inodes_per_block) {
ac27a0ec
DK
4873 /* all other inodes are free, so skip I/O */
4874 memset(bh->b_data, 0, bh->b_size);
4875 set_buffer_uptodate(bh);
4876 unlock_buffer(bh);
4877 goto has_buffer;
4878 }
4879 }
4880
4881make_io:
240799cd
TT
4882 /*
4883 * If we need to do any I/O, try to pre-readahead extra
4884 * blocks from the inode table.
4885 */
4886 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4887 ext4_fsblk_t b, end, table;
4888 unsigned num;
4889
4890 table = ext4_inode_table(sb, gdp);
b713a5ec 4891 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4892 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4893 if (table > b)
4894 b = table;
4895 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4896 num = EXT4_INODES_PER_GROUP(sb);
4897 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4898 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4899 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4900 table += num / inodes_per_block;
4901 if (end > table)
4902 end = table;
4903 while (b <= end)
4904 sb_breadahead(sb, b++);
4905 }
4906
ac27a0ec
DK
4907 /*
4908 * There are other valid inodes in the buffer, this inode
4909 * has in-inode xattrs, or we don't have this inode in memory.
4910 * Read the block from disk.
4911 */
4912 get_bh(bh);
4913 bh->b_end_io = end_buffer_read_sync;
4914 submit_bh(READ_META, bh);
4915 wait_on_buffer(bh);
4916 if (!buffer_uptodate(bh)) {
c398eda0
TT
4917 EXT4_ERROR_INODE_BLOCK(inode, block,
4918 "unable to read itable block");
ac27a0ec
DK
4919 brelse(bh);
4920 return -EIO;
4921 }
4922 }
4923has_buffer:
4924 iloc->bh = bh;
4925 return 0;
4926}
4927
617ba13b 4928int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4929{
4930 /* We have all inode data except xattrs in memory here. */
617ba13b 4931 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4932 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4933}
4934
617ba13b 4935void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4936{
617ba13b 4937 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4938
4939 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4940 if (flags & EXT4_SYNC_FL)
ac27a0ec 4941 inode->i_flags |= S_SYNC;
617ba13b 4942 if (flags & EXT4_APPEND_FL)
ac27a0ec 4943 inode->i_flags |= S_APPEND;
617ba13b 4944 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4945 inode->i_flags |= S_IMMUTABLE;
617ba13b 4946 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4947 inode->i_flags |= S_NOATIME;
617ba13b 4948 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4949 inode->i_flags |= S_DIRSYNC;
4950}
4951
ff9ddf7e
JK
4952/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4953void ext4_get_inode_flags(struct ext4_inode_info *ei)
4954{
84a8dce2
DM
4955 unsigned int vfs_fl;
4956 unsigned long old_fl, new_fl;
4957
4958 do {
4959 vfs_fl = ei->vfs_inode.i_flags;
4960 old_fl = ei->i_flags;
4961 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4962 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4963 EXT4_DIRSYNC_FL);
4964 if (vfs_fl & S_SYNC)
4965 new_fl |= EXT4_SYNC_FL;
4966 if (vfs_fl & S_APPEND)
4967 new_fl |= EXT4_APPEND_FL;
4968 if (vfs_fl & S_IMMUTABLE)
4969 new_fl |= EXT4_IMMUTABLE_FL;
4970 if (vfs_fl & S_NOATIME)
4971 new_fl |= EXT4_NOATIME_FL;
4972 if (vfs_fl & S_DIRSYNC)
4973 new_fl |= EXT4_DIRSYNC_FL;
4974 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4975}
de9a55b8 4976
0fc1b451 4977static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4978 struct ext4_inode_info *ei)
0fc1b451
AK
4979{
4980 blkcnt_t i_blocks ;
8180a562
AK
4981 struct inode *inode = &(ei->vfs_inode);
4982 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4983
4984 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4985 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4986 /* we are using combined 48 bit field */
4987 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4988 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4989 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4990 /* i_blocks represent file system block size */
4991 return i_blocks << (inode->i_blkbits - 9);
4992 } else {
4993 return i_blocks;
4994 }
0fc1b451
AK
4995 } else {
4996 return le32_to_cpu(raw_inode->i_blocks_lo);
4997 }
4998}
ff9ddf7e 4999
1d1fe1ee 5000struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 5001{
617ba13b
MC
5002 struct ext4_iloc iloc;
5003 struct ext4_inode *raw_inode;
1d1fe1ee 5004 struct ext4_inode_info *ei;
1d1fe1ee 5005 struct inode *inode;
b436b9be 5006 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 5007 long ret;
ac27a0ec
DK
5008 int block;
5009
1d1fe1ee
DH
5010 inode = iget_locked(sb, ino);
5011 if (!inode)
5012 return ERR_PTR(-ENOMEM);
5013 if (!(inode->i_state & I_NEW))
5014 return inode;
5015
5016 ei = EXT4_I(inode);
567f3e9a 5017 iloc.bh = 0;
ac27a0ec 5018
1d1fe1ee
DH
5019 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5020 if (ret < 0)
ac27a0ec 5021 goto bad_inode;
617ba13b 5022 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
5023 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5024 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5025 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 5026 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5027 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5028 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5029 }
5030 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5031
19f5fb7a 5032 ei->i_state_flags = 0;
ac27a0ec
DK
5033 ei->i_dir_start_lookup = 0;
5034 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5035 /* We now have enough fields to check if the inode was active or not.
5036 * This is needed because nfsd might try to access dead inodes
5037 * the test is that same one that e2fsck uses
5038 * NeilBrown 1999oct15
5039 */
5040 if (inode->i_nlink == 0) {
5041 if (inode->i_mode == 0 ||
617ba13b 5042 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5043 /* this inode is deleted */
1d1fe1ee 5044 ret = -ESTALE;
ac27a0ec
DK
5045 goto bad_inode;
5046 }
5047 /* The only unlinked inodes we let through here have
5048 * valid i_mode and are being read by the orphan
5049 * recovery code: that's fine, we're about to complete
5050 * the process of deleting those. */
5051 }
ac27a0ec 5052 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5053 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5054 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5055 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5056 ei->i_file_acl |=
5057 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5058 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5059 ei->i_disksize = inode->i_size;
a9e7f447
DM
5060#ifdef CONFIG_QUOTA
5061 ei->i_reserved_quota = 0;
5062#endif
ac27a0ec
DK
5063 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5064 ei->i_block_group = iloc.block_group;
a4912123 5065 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5066 /*
5067 * NOTE! The in-memory inode i_data array is in little-endian order
5068 * even on big-endian machines: we do NOT byteswap the block numbers!
5069 */
617ba13b 5070 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5071 ei->i_data[block] = raw_inode->i_block[block];
5072 INIT_LIST_HEAD(&ei->i_orphan);
5073
b436b9be
JK
5074 /*
5075 * Set transaction id's of transactions that have to be committed
5076 * to finish f[data]sync. We set them to currently running transaction
5077 * as we cannot be sure that the inode or some of its metadata isn't
5078 * part of the transaction - the inode could have been reclaimed and
5079 * now it is reread from disk.
5080 */
5081 if (journal) {
5082 transaction_t *transaction;
5083 tid_t tid;
5084
a931da6a 5085 read_lock(&journal->j_state_lock);
b436b9be
JK
5086 if (journal->j_running_transaction)
5087 transaction = journal->j_running_transaction;
5088 else
5089 transaction = journal->j_committing_transaction;
5090 if (transaction)
5091 tid = transaction->t_tid;
5092 else
5093 tid = journal->j_commit_sequence;
a931da6a 5094 read_unlock(&journal->j_state_lock);
b436b9be
JK
5095 ei->i_sync_tid = tid;
5096 ei->i_datasync_tid = tid;
5097 }
5098
0040d987 5099 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5100 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5101 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5102 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5103 ret = -EIO;
ac27a0ec 5104 goto bad_inode;
e5d2861f 5105 }
ac27a0ec
DK
5106 if (ei->i_extra_isize == 0) {
5107 /* The extra space is currently unused. Use it. */
617ba13b
MC
5108 ei->i_extra_isize = sizeof(struct ext4_inode) -
5109 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5110 } else {
5111 __le32 *magic = (void *)raw_inode +
617ba13b 5112 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5113 ei->i_extra_isize;
617ba13b 5114 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5115 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5116 }
5117 } else
5118 ei->i_extra_isize = 0;
5119
ef7f3835
KS
5120 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5121 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5122 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5123 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5124
25ec56b5
JNC
5125 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5126 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5127 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5128 inode->i_version |=
5129 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5130 }
5131
c4b5a614 5132 ret = 0;
485c26ec 5133 if (ei->i_file_acl &&
1032988c 5134 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5135 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5136 ei->i_file_acl);
485c26ec
TT
5137 ret = -EIO;
5138 goto bad_inode;
07a03824 5139 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5140 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5141 (S_ISLNK(inode->i_mode) &&
5142 !ext4_inode_is_fast_symlink(inode)))
5143 /* Validate extent which is part of inode */
5144 ret = ext4_ext_check_inode(inode);
de9a55b8 5145 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5146 (S_ISLNK(inode->i_mode) &&
5147 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5148 /* Validate block references which are part of inode */
fe2c8191
TN
5149 ret = ext4_check_inode_blockref(inode);
5150 }
567f3e9a 5151 if (ret)
de9a55b8 5152 goto bad_inode;
7a262f7c 5153
ac27a0ec 5154 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5155 inode->i_op = &ext4_file_inode_operations;
5156 inode->i_fop = &ext4_file_operations;
5157 ext4_set_aops(inode);
ac27a0ec 5158 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5159 inode->i_op = &ext4_dir_inode_operations;
5160 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5161 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5162 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5163 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5164 nd_terminate_link(ei->i_data, inode->i_size,
5165 sizeof(ei->i_data) - 1);
5166 } else {
617ba13b
MC
5167 inode->i_op = &ext4_symlink_inode_operations;
5168 ext4_set_aops(inode);
ac27a0ec 5169 }
563bdd61
TT
5170 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5171 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5172 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5173 if (raw_inode->i_block[0])
5174 init_special_inode(inode, inode->i_mode,
5175 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5176 else
5177 init_special_inode(inode, inode->i_mode,
5178 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5179 } else {
563bdd61 5180 ret = -EIO;
24676da4 5181 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5182 goto bad_inode;
ac27a0ec 5183 }
af5bc92d 5184 brelse(iloc.bh);
617ba13b 5185 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5186 unlock_new_inode(inode);
5187 return inode;
ac27a0ec
DK
5188
5189bad_inode:
567f3e9a 5190 brelse(iloc.bh);
1d1fe1ee
DH
5191 iget_failed(inode);
5192 return ERR_PTR(ret);
ac27a0ec
DK
5193}
5194
0fc1b451
AK
5195static int ext4_inode_blocks_set(handle_t *handle,
5196 struct ext4_inode *raw_inode,
5197 struct ext4_inode_info *ei)
5198{
5199 struct inode *inode = &(ei->vfs_inode);
5200 u64 i_blocks = inode->i_blocks;
5201 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5202
5203 if (i_blocks <= ~0U) {
5204 /*
5205 * i_blocks can be represnted in a 32 bit variable
5206 * as multiple of 512 bytes
5207 */
8180a562 5208 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5209 raw_inode->i_blocks_high = 0;
84a8dce2 5210 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5211 return 0;
5212 }
5213 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5214 return -EFBIG;
5215
5216 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5217 /*
5218 * i_blocks can be represented in a 48 bit variable
5219 * as multiple of 512 bytes
5220 */
8180a562 5221 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5222 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5223 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5224 } else {
84a8dce2 5225 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5226 /* i_block is stored in file system block size */
5227 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5228 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5229 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5230 }
f287a1a5 5231 return 0;
0fc1b451
AK
5232}
5233
ac27a0ec
DK
5234/*
5235 * Post the struct inode info into an on-disk inode location in the
5236 * buffer-cache. This gobbles the caller's reference to the
5237 * buffer_head in the inode location struct.
5238 *
5239 * The caller must have write access to iloc->bh.
5240 */
617ba13b 5241static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5242 struct inode *inode,
830156c7 5243 struct ext4_iloc *iloc)
ac27a0ec 5244{
617ba13b
MC
5245 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5246 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5247 struct buffer_head *bh = iloc->bh;
5248 int err = 0, rc, block;
5249
5250 /* For fields not not tracking in the in-memory inode,
5251 * initialise them to zero for new inodes. */
19f5fb7a 5252 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5253 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5254
ff9ddf7e 5255 ext4_get_inode_flags(ei);
ac27a0ec 5256 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5257 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5258 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5259 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5260/*
5261 * Fix up interoperability with old kernels. Otherwise, old inodes get
5262 * re-used with the upper 16 bits of the uid/gid intact
5263 */
af5bc92d 5264 if (!ei->i_dtime) {
ac27a0ec
DK
5265 raw_inode->i_uid_high =
5266 cpu_to_le16(high_16_bits(inode->i_uid));
5267 raw_inode->i_gid_high =
5268 cpu_to_le16(high_16_bits(inode->i_gid));
5269 } else {
5270 raw_inode->i_uid_high = 0;
5271 raw_inode->i_gid_high = 0;
5272 }
5273 } else {
5274 raw_inode->i_uid_low =
5275 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5276 raw_inode->i_gid_low =
5277 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5278 raw_inode->i_uid_high = 0;
5279 raw_inode->i_gid_high = 0;
5280 }
5281 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5282
5283 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5284 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5285 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5286 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5287
0fc1b451
AK
5288 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5289 goto out_brelse;
ac27a0ec 5290 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5291 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5292 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5293 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5294 raw_inode->i_file_acl_high =
5295 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5296 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5297 ext4_isize_set(raw_inode, ei->i_disksize);
5298 if (ei->i_disksize > 0x7fffffffULL) {
5299 struct super_block *sb = inode->i_sb;
5300 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5301 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5302 EXT4_SB(sb)->s_es->s_rev_level ==
5303 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5304 /* If this is the first large file
5305 * created, add a flag to the superblock.
5306 */
5307 err = ext4_journal_get_write_access(handle,
5308 EXT4_SB(sb)->s_sbh);
5309 if (err)
5310 goto out_brelse;
5311 ext4_update_dynamic_rev(sb);
5312 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5313 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5314 sb->s_dirt = 1;
0390131b 5315 ext4_handle_sync(handle);
73b50c1c 5316 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5317 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5318 }
5319 }
5320 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5321 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5322 if (old_valid_dev(inode->i_rdev)) {
5323 raw_inode->i_block[0] =
5324 cpu_to_le32(old_encode_dev(inode->i_rdev));
5325 raw_inode->i_block[1] = 0;
5326 } else {
5327 raw_inode->i_block[0] = 0;
5328 raw_inode->i_block[1] =
5329 cpu_to_le32(new_encode_dev(inode->i_rdev));
5330 raw_inode->i_block[2] = 0;
5331 }
de9a55b8
TT
5332 } else
5333 for (block = 0; block < EXT4_N_BLOCKS; block++)
5334 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5335
25ec56b5
JNC
5336 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5337 if (ei->i_extra_isize) {
5338 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5339 raw_inode->i_version_hi =
5340 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5341 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5342 }
5343
830156c7 5344 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5345 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5346 if (!err)
5347 err = rc;
19f5fb7a 5348 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5349
b436b9be 5350 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5351out_brelse:
af5bc92d 5352 brelse(bh);
617ba13b 5353 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5354 return err;
5355}
5356
5357/*
617ba13b 5358 * ext4_write_inode()
ac27a0ec
DK
5359 *
5360 * We are called from a few places:
5361 *
5362 * - Within generic_file_write() for O_SYNC files.
5363 * Here, there will be no transaction running. We wait for any running
5364 * trasnaction to commit.
5365 *
5366 * - Within sys_sync(), kupdate and such.
5367 * We wait on commit, if tol to.
5368 *
5369 * - Within prune_icache() (PF_MEMALLOC == true)
5370 * Here we simply return. We can't afford to block kswapd on the
5371 * journal commit.
5372 *
5373 * In all cases it is actually safe for us to return without doing anything,
5374 * because the inode has been copied into a raw inode buffer in
617ba13b 5375 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5376 * knfsd.
5377 *
5378 * Note that we are absolutely dependent upon all inode dirtiers doing the
5379 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5380 * which we are interested.
5381 *
5382 * It would be a bug for them to not do this. The code:
5383 *
5384 * mark_inode_dirty(inode)
5385 * stuff();
5386 * inode->i_size = expr;
5387 *
5388 * is in error because a kswapd-driven write_inode() could occur while
5389 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5390 * will no longer be on the superblock's dirty inode list.
5391 */
a9185b41 5392int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5393{
91ac6f43
FM
5394 int err;
5395
ac27a0ec
DK
5396 if (current->flags & PF_MEMALLOC)
5397 return 0;
5398
91ac6f43
FM
5399 if (EXT4_SB(inode->i_sb)->s_journal) {
5400 if (ext4_journal_current_handle()) {
5401 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5402 dump_stack();
5403 return -EIO;
5404 }
ac27a0ec 5405
a9185b41 5406 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5407 return 0;
5408
5409 err = ext4_force_commit(inode->i_sb);
5410 } else {
5411 struct ext4_iloc iloc;
ac27a0ec 5412
8b472d73 5413 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5414 if (err)
5415 return err;
a9185b41 5416 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5417 sync_dirty_buffer(iloc.bh);
5418 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5419 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5420 "IO error syncing inode");
830156c7
FM
5421 err = -EIO;
5422 }
fd2dd9fb 5423 brelse(iloc.bh);
91ac6f43
FM
5424 }
5425 return err;
ac27a0ec
DK
5426}
5427
5428/*
617ba13b 5429 * ext4_setattr()
ac27a0ec
DK
5430 *
5431 * Called from notify_change.
5432 *
5433 * We want to trap VFS attempts to truncate the file as soon as
5434 * possible. In particular, we want to make sure that when the VFS
5435 * shrinks i_size, we put the inode on the orphan list and modify
5436 * i_disksize immediately, so that during the subsequent flushing of
5437 * dirty pages and freeing of disk blocks, we can guarantee that any
5438 * commit will leave the blocks being flushed in an unused state on
5439 * disk. (On recovery, the inode will get truncated and the blocks will
5440 * be freed, so we have a strong guarantee that no future commit will
5441 * leave these blocks visible to the user.)
5442 *
678aaf48
JK
5443 * Another thing we have to assure is that if we are in ordered mode
5444 * and inode is still attached to the committing transaction, we must
5445 * we start writeout of all the dirty pages which are being truncated.
5446 * This way we are sure that all the data written in the previous
5447 * transaction are already on disk (truncate waits for pages under
5448 * writeback).
5449 *
5450 * Called with inode->i_mutex down.
ac27a0ec 5451 */
617ba13b 5452int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5453{
5454 struct inode *inode = dentry->d_inode;
5455 int error, rc = 0;
5456 const unsigned int ia_valid = attr->ia_valid;
5457
5458 error = inode_change_ok(inode, attr);
5459 if (error)
5460 return error;
5461
12755627 5462 if (is_quota_modification(inode, attr))
871a2931 5463 dquot_initialize(inode);
ac27a0ec
DK
5464 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5465 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5466 handle_t *handle;
5467
5468 /* (user+group)*(old+new) structure, inode write (sb,
5469 * inode block, ? - but truncate inode update has it) */
5aca07eb 5470 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5471 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5472 if (IS_ERR(handle)) {
5473 error = PTR_ERR(handle);
5474 goto err_out;
5475 }
b43fa828 5476 error = dquot_transfer(inode, attr);
ac27a0ec 5477 if (error) {
617ba13b 5478 ext4_journal_stop(handle);
ac27a0ec
DK
5479 return error;
5480 }
5481 /* Update corresponding info in inode so that everything is in
5482 * one transaction */
5483 if (attr->ia_valid & ATTR_UID)
5484 inode->i_uid = attr->ia_uid;
5485 if (attr->ia_valid & ATTR_GID)
5486 inode->i_gid = attr->ia_gid;
617ba13b
MC
5487 error = ext4_mark_inode_dirty(handle, inode);
5488 ext4_journal_stop(handle);
ac27a0ec
DK
5489 }
5490
e2b46574 5491 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5492 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5493 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5494
0c095c7f
TT
5495 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5496 return -EFBIG;
e2b46574
ES
5497 }
5498 }
5499
ac27a0ec 5500 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5501 attr->ia_valid & ATTR_SIZE &&
5502 (attr->ia_size < inode->i_size ||
12e9b892 5503 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5504 handle_t *handle;
5505
617ba13b 5506 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5507 if (IS_ERR(handle)) {
5508 error = PTR_ERR(handle);
5509 goto err_out;
5510 }
5511
617ba13b
MC
5512 error = ext4_orphan_add(handle, inode);
5513 EXT4_I(inode)->i_disksize = attr->ia_size;
5514 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5515 if (!error)
5516 error = rc;
617ba13b 5517 ext4_journal_stop(handle);
678aaf48
JK
5518
5519 if (ext4_should_order_data(inode)) {
5520 error = ext4_begin_ordered_truncate(inode,
5521 attr->ia_size);
5522 if (error) {
5523 /* Do as much error cleanup as possible */
5524 handle = ext4_journal_start(inode, 3);
5525 if (IS_ERR(handle)) {
5526 ext4_orphan_del(NULL, inode);
5527 goto err_out;
5528 }
5529 ext4_orphan_del(handle, inode);
5530 ext4_journal_stop(handle);
5531 goto err_out;
5532 }
5533 }
c8d46e41 5534 /* ext4_truncate will clear the flag */
12e9b892 5535 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5536 ext4_truncate(inode);
ac27a0ec
DK
5537 }
5538
5539 rc = inode_setattr(inode, attr);
5540
617ba13b 5541 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5542 * transaction handle at all, we need to clean up the in-core
5543 * orphan list manually. */
5544 if (inode->i_nlink)
617ba13b 5545 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5546
5547 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5548 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5549
5550err_out:
617ba13b 5551 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5552 if (!error)
5553 error = rc;
5554 return error;
5555}
5556
3e3398a0
MC
5557int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5558 struct kstat *stat)
5559{
5560 struct inode *inode;
5561 unsigned long delalloc_blocks;
5562
5563 inode = dentry->d_inode;
5564 generic_fillattr(inode, stat);
5565
5566 /*
5567 * We can't update i_blocks if the block allocation is delayed
5568 * otherwise in the case of system crash before the real block
5569 * allocation is done, we will have i_blocks inconsistent with
5570 * on-disk file blocks.
5571 * We always keep i_blocks updated together with real
5572 * allocation. But to not confuse with user, stat
5573 * will return the blocks that include the delayed allocation
5574 * blocks for this file.
5575 */
5576 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5577 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5579
5580 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5581 return 0;
5582}
ac27a0ec 5583
a02908f1
MC
5584static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5585 int chunk)
5586{
5587 int indirects;
5588
5589 /* if nrblocks are contiguous */
5590 if (chunk) {
5591 /*
5592 * With N contiguous data blocks, it need at most
5593 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5594 * 2 dindirect blocks
5595 * 1 tindirect block
5596 */
5597 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5598 return indirects + 3;
5599 }
5600 /*
5601 * if nrblocks are not contiguous, worse case, each block touch
5602 * a indirect block, and each indirect block touch a double indirect
5603 * block, plus a triple indirect block
5604 */
5605 indirects = nrblocks * 2 + 1;
5606 return indirects;
5607}
5608
5609static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5610{
12e9b892 5611 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5612 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5613 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5614}
ac51d837 5615
ac27a0ec 5616/*
a02908f1
MC
5617 * Account for index blocks, block groups bitmaps and block group
5618 * descriptor blocks if modify datablocks and index blocks
5619 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5620 *
a02908f1 5621 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5622 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5623 * they could still across block group boundary.
ac27a0ec 5624 *
a02908f1
MC
5625 * Also account for superblock, inode, quota and xattr blocks
5626 */
5627int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5628{
8df9675f
TT
5629 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5630 int gdpblocks;
a02908f1
MC
5631 int idxblocks;
5632 int ret = 0;
5633
5634 /*
5635 * How many index blocks need to touch to modify nrblocks?
5636 * The "Chunk" flag indicating whether the nrblocks is
5637 * physically contiguous on disk
5638 *
5639 * For Direct IO and fallocate, they calls get_block to allocate
5640 * one single extent at a time, so they could set the "Chunk" flag
5641 */
5642 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5643
5644 ret = idxblocks;
5645
5646 /*
5647 * Now let's see how many group bitmaps and group descriptors need
5648 * to account
5649 */
5650 groups = idxblocks;
5651 if (chunk)
5652 groups += 1;
5653 else
5654 groups += nrblocks;
5655
5656 gdpblocks = groups;
8df9675f
TT
5657 if (groups > ngroups)
5658 groups = ngroups;
a02908f1
MC
5659 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5660 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5661
5662 /* bitmaps and block group descriptor blocks */
5663 ret += groups + gdpblocks;
5664
5665 /* Blocks for super block, inode, quota and xattr blocks */
5666 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5667
5668 return ret;
5669}
5670
5671/*
5672 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5673 * the modification of a single pages into a single transaction,
5674 * which may include multiple chunks of block allocations.
ac27a0ec 5675 *
525f4ed8 5676 * This could be called via ext4_write_begin()
ac27a0ec 5677 *
525f4ed8 5678 * We need to consider the worse case, when
a02908f1 5679 * one new block per extent.
ac27a0ec 5680 */
a86c6181 5681int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5682{
617ba13b 5683 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5684 int ret;
5685
a02908f1 5686 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5687
a02908f1 5688 /* Account for data blocks for journalled mode */
617ba13b 5689 if (ext4_should_journal_data(inode))
a02908f1 5690 ret += bpp;
ac27a0ec
DK
5691 return ret;
5692}
f3bd1f3f
MC
5693
5694/*
5695 * Calculate the journal credits for a chunk of data modification.
5696 *
5697 * This is called from DIO, fallocate or whoever calling
79e83036 5698 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5699 *
5700 * journal buffers for data blocks are not included here, as DIO
5701 * and fallocate do no need to journal data buffers.
5702 */
5703int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5704{
5705 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5706}
5707
ac27a0ec 5708/*
617ba13b 5709 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5710 * Give this, we know that the caller already has write access to iloc->bh.
5711 */
617ba13b 5712int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5713 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5714{
5715 int err = 0;
5716
25ec56b5
JNC
5717 if (test_opt(inode->i_sb, I_VERSION))
5718 inode_inc_iversion(inode);
5719
ac27a0ec
DK
5720 /* the do_update_inode consumes one bh->b_count */
5721 get_bh(iloc->bh);
5722
dab291af 5723 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5724 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5725 put_bh(iloc->bh);
5726 return err;
5727}
5728
5729/*
5730 * On success, We end up with an outstanding reference count against
5731 * iloc->bh. This _must_ be cleaned up later.
5732 */
5733
5734int
617ba13b
MC
5735ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5736 struct ext4_iloc *iloc)
ac27a0ec 5737{
0390131b
FM
5738 int err;
5739
5740 err = ext4_get_inode_loc(inode, iloc);
5741 if (!err) {
5742 BUFFER_TRACE(iloc->bh, "get_write_access");
5743 err = ext4_journal_get_write_access(handle, iloc->bh);
5744 if (err) {
5745 brelse(iloc->bh);
5746 iloc->bh = NULL;
ac27a0ec
DK
5747 }
5748 }
617ba13b 5749 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5750 return err;
5751}
5752
6dd4ee7c
KS
5753/*
5754 * Expand an inode by new_extra_isize bytes.
5755 * Returns 0 on success or negative error number on failure.
5756 */
1d03ec98
AK
5757static int ext4_expand_extra_isize(struct inode *inode,
5758 unsigned int new_extra_isize,
5759 struct ext4_iloc iloc,
5760 handle_t *handle)
6dd4ee7c
KS
5761{
5762 struct ext4_inode *raw_inode;
5763 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5764
5765 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5766 return 0;
5767
5768 raw_inode = ext4_raw_inode(&iloc);
5769
5770 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5771
5772 /* No extended attributes present */
19f5fb7a
TT
5773 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5774 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5775 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5776 new_extra_isize);
5777 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5778 return 0;
5779 }
5780
5781 /* try to expand with EAs present */
5782 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5783 raw_inode, handle);
5784}
5785
ac27a0ec
DK
5786/*
5787 * What we do here is to mark the in-core inode as clean with respect to inode
5788 * dirtiness (it may still be data-dirty).
5789 * This means that the in-core inode may be reaped by prune_icache
5790 * without having to perform any I/O. This is a very good thing,
5791 * because *any* task may call prune_icache - even ones which
5792 * have a transaction open against a different journal.
5793 *
5794 * Is this cheating? Not really. Sure, we haven't written the
5795 * inode out, but prune_icache isn't a user-visible syncing function.
5796 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5797 * we start and wait on commits.
5798 *
5799 * Is this efficient/effective? Well, we're being nice to the system
5800 * by cleaning up our inodes proactively so they can be reaped
5801 * without I/O. But we are potentially leaving up to five seconds'
5802 * worth of inodes floating about which prune_icache wants us to
5803 * write out. One way to fix that would be to get prune_icache()
5804 * to do a write_super() to free up some memory. It has the desired
5805 * effect.
5806 */
617ba13b 5807int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5808{
617ba13b 5809 struct ext4_iloc iloc;
6dd4ee7c
KS
5810 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5811 static unsigned int mnt_count;
5812 int err, ret;
ac27a0ec
DK
5813
5814 might_sleep();
617ba13b 5815 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5816 if (ext4_handle_valid(handle) &&
5817 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5818 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5819 /*
5820 * We need extra buffer credits since we may write into EA block
5821 * with this same handle. If journal_extend fails, then it will
5822 * only result in a minor loss of functionality for that inode.
5823 * If this is felt to be critical, then e2fsck should be run to
5824 * force a large enough s_min_extra_isize.
5825 */
5826 if ((jbd2_journal_extend(handle,
5827 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5828 ret = ext4_expand_extra_isize(inode,
5829 sbi->s_want_extra_isize,
5830 iloc, handle);
5831 if (ret) {
19f5fb7a
TT
5832 ext4_set_inode_state(inode,
5833 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5834 if (mnt_count !=
5835 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5836 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5837 "Unable to expand inode %lu. Delete"
5838 " some EAs or run e2fsck.",
5839 inode->i_ino);
c1bddad9
AK
5840 mnt_count =
5841 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5842 }
5843 }
5844 }
5845 }
ac27a0ec 5846 if (!err)
617ba13b 5847 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5848 return err;
5849}
5850
5851/*
617ba13b 5852 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5853 *
5854 * We're really interested in the case where a file is being extended.
5855 * i_size has been changed by generic_commit_write() and we thus need
5856 * to include the updated inode in the current transaction.
5857 *
5dd4056d 5858 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5859 * are allocated to the file.
5860 *
5861 * If the inode is marked synchronous, we don't honour that here - doing
5862 * so would cause a commit on atime updates, which we don't bother doing.
5863 * We handle synchronous inodes at the highest possible level.
5864 */
617ba13b 5865void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5866{
ac27a0ec
DK
5867 handle_t *handle;
5868
617ba13b 5869 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5870 if (IS_ERR(handle))
5871 goto out;
f3dc272f 5872
f3dc272f
CW
5873 ext4_mark_inode_dirty(handle, inode);
5874
617ba13b 5875 ext4_journal_stop(handle);
ac27a0ec
DK
5876out:
5877 return;
5878}
5879
5880#if 0
5881/*
5882 * Bind an inode's backing buffer_head into this transaction, to prevent
5883 * it from being flushed to disk early. Unlike
617ba13b 5884 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5885 * returns no iloc structure, so the caller needs to repeat the iloc
5886 * lookup to mark the inode dirty later.
5887 */
617ba13b 5888static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5889{
617ba13b 5890 struct ext4_iloc iloc;
ac27a0ec
DK
5891
5892 int err = 0;
5893 if (handle) {
617ba13b 5894 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5895 if (!err) {
5896 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5897 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5898 if (!err)
0390131b 5899 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5900 NULL,
0390131b 5901 iloc.bh);
ac27a0ec
DK
5902 brelse(iloc.bh);
5903 }
5904 }
617ba13b 5905 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5906 return err;
5907}
5908#endif
5909
617ba13b 5910int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5911{
5912 journal_t *journal;
5913 handle_t *handle;
5914 int err;
5915
5916 /*
5917 * We have to be very careful here: changing a data block's
5918 * journaling status dynamically is dangerous. If we write a
5919 * data block to the journal, change the status and then delete
5920 * that block, we risk forgetting to revoke the old log record
5921 * from the journal and so a subsequent replay can corrupt data.
5922 * So, first we make sure that the journal is empty and that
5923 * nobody is changing anything.
5924 */
5925
617ba13b 5926 journal = EXT4_JOURNAL(inode);
0390131b
FM
5927 if (!journal)
5928 return 0;
d699594d 5929 if (is_journal_aborted(journal))
ac27a0ec
DK
5930 return -EROFS;
5931
dab291af
MC
5932 jbd2_journal_lock_updates(journal);
5933 jbd2_journal_flush(journal);
ac27a0ec
DK
5934
5935 /*
5936 * OK, there are no updates running now, and all cached data is
5937 * synced to disk. We are now in a completely consistent state
5938 * which doesn't have anything in the journal, and we know that
5939 * no filesystem updates are running, so it is safe to modify
5940 * the inode's in-core data-journaling state flag now.
5941 */
5942
5943 if (val)
12e9b892 5944 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5945 else
12e9b892 5946 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5947 ext4_set_aops(inode);
ac27a0ec 5948
dab291af 5949 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5950
5951 /* Finally we can mark the inode as dirty. */
5952
617ba13b 5953 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5954 if (IS_ERR(handle))
5955 return PTR_ERR(handle);
5956
617ba13b 5957 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5958 ext4_handle_sync(handle);
617ba13b
MC
5959 ext4_journal_stop(handle);
5960 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5961
5962 return err;
5963}
2e9ee850
AK
5964
5965static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5966{
5967 return !buffer_mapped(bh);
5968}
5969
c2ec175c 5970int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5971{
c2ec175c 5972 struct page *page = vmf->page;
2e9ee850
AK
5973 loff_t size;
5974 unsigned long len;
5975 int ret = -EINVAL;
79f0be8d 5976 void *fsdata;
2e9ee850
AK
5977 struct file *file = vma->vm_file;
5978 struct inode *inode = file->f_path.dentry->d_inode;
5979 struct address_space *mapping = inode->i_mapping;
5980
5981 /*
5982 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5983 * get i_mutex because we are already holding mmap_sem.
5984 */
5985 down_read(&inode->i_alloc_sem);
5986 size = i_size_read(inode);
5987 if (page->mapping != mapping || size <= page_offset(page)
5988 || !PageUptodate(page)) {
5989 /* page got truncated from under us? */
5990 goto out_unlock;
5991 }
5992 ret = 0;
5993 if (PageMappedToDisk(page))
5994 goto out_unlock;
5995
5996 if (page->index == size >> PAGE_CACHE_SHIFT)
5997 len = size & ~PAGE_CACHE_MASK;
5998 else
5999 len = PAGE_CACHE_SIZE;
6000
a827eaff
AK
6001 lock_page(page);
6002 /*
6003 * return if we have all the buffers mapped. This avoid
6004 * the need to call write_begin/write_end which does a
6005 * journal_start/journal_stop which can block and take
6006 * long time
6007 */
2e9ee850 6008 if (page_has_buffers(page)) {
2e9ee850 6009 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
6010 ext4_bh_unmapped)) {
6011 unlock_page(page);
2e9ee850 6012 goto out_unlock;
a827eaff 6013 }
2e9ee850 6014 }
a827eaff 6015 unlock_page(page);
2e9ee850
AK
6016 /*
6017 * OK, we need to fill the hole... Do write_begin write_end
6018 * to do block allocation/reservation.We are not holding
6019 * inode.i__mutex here. That allow * parallel write_begin,
6020 * write_end call. lock_page prevent this from happening
6021 * on the same page though
6022 */
6023 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 6024 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
6025 if (ret < 0)
6026 goto out_unlock;
6027 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 6028 len, len, page, fsdata);
2e9ee850
AK
6029 if (ret < 0)
6030 goto out_unlock;
6031 ret = 0;
6032out_unlock:
c2ec175c
NP
6033 if (ret)
6034 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6035 up_read(&inode->i_alloc_sem);
6036 return ret;
6037}