]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Use a fake block number for delayed new buffer_head
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
fe2c8191 374static int __ext4_check_blockref(const char *function, struct inode *inode,
f73953c0 375 __le32 *p, unsigned int max) {
fe2c8191
TN
376
377 unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
f73953c0 378 __le32 *bref = p;
fe2c8191 379 while (bref < p+max) {
f73953c0 380 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
fe2c8191
TN
381 ext4_error(inode->i_sb, function,
382 "block reference %u >= max (%u) "
383 "in inode #%lu, offset=%d",
f73953c0 384 le32_to_cpu(*bref), maxblocks,
fe2c8191
TN
385 inode->i_ino, (int)(bref-p));
386 return -EIO;
387 }
388 bref++;
389 }
390 return 0;
391}
392
393
394#define ext4_check_indirect_blockref(inode, bh) \
395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
396 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398#define ext4_check_inode_blockref(inode) \
399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
400 EXT4_NDIR_BLOCKS)
401
ac27a0ec 402/**
617ba13b 403 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
404 * @inode: inode in question
405 * @depth: depth of the chain (1 - direct pointer, etc.)
406 * @offsets: offsets of pointers in inode/indirect blocks
407 * @chain: place to store the result
408 * @err: here we store the error value
409 *
410 * Function fills the array of triples <key, p, bh> and returns %NULL
411 * if everything went OK or the pointer to the last filled triple
412 * (incomplete one) otherwise. Upon the return chain[i].key contains
413 * the number of (i+1)-th block in the chain (as it is stored in memory,
414 * i.e. little-endian 32-bit), chain[i].p contains the address of that
415 * number (it points into struct inode for i==0 and into the bh->b_data
416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417 * block for i>0 and NULL for i==0. In other words, it holds the block
418 * numbers of the chain, addresses they were taken from (and where we can
419 * verify that chain did not change) and buffer_heads hosting these
420 * numbers.
421 *
422 * Function stops when it stumbles upon zero pointer (absent block)
423 * (pointer to last triple returned, *@err == 0)
424 * or when it gets an IO error reading an indirect block
425 * (ditto, *@err == -EIO)
ac27a0ec
DK
426 * or when it reads all @depth-1 indirect blocks successfully and finds
427 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
428 *
429 * Need to be called with
0e855ac8 430 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 431 */
725d26d3
AK
432static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 ext4_lblk_t *offsets,
ac27a0ec
DK
434 Indirect chain[4], int *err)
435{
436 struct super_block *sb = inode->i_sb;
437 Indirect *p = chain;
438 struct buffer_head *bh;
439
440 *err = 0;
441 /* i_data is not going away, no lock needed */
af5bc92d 442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
443 if (!p->key)
444 goto no_block;
445 while (--depth) {
fe2c8191
TN
446 bh = sb_getblk(sb, le32_to_cpu(p->key));
447 if (unlikely(!bh))
ac27a0ec 448 goto failure;
fe2c8191
TN
449
450 if (!bh_uptodate_or_lock(bh)) {
451 if (bh_submit_read(bh) < 0) {
452 put_bh(bh);
453 goto failure;
454 }
455 /* validate block references */
456 if (ext4_check_indirect_blockref(inode, bh)) {
457 put_bh(bh);
458 goto failure;
459 }
460 }
461
af5bc92d 462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
463 /* Reader: end */
464 if (!p->key)
465 goto no_block;
466 }
467 return NULL;
468
ac27a0ec
DK
469failure:
470 *err = -EIO;
471no_block:
472 return p;
473}
474
475/**
617ba13b 476 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
477 * @inode: owner
478 * @ind: descriptor of indirect block.
479 *
1cc8dcf5 480 * This function returns the preferred place for block allocation.
ac27a0ec
DK
481 * It is used when heuristic for sequential allocation fails.
482 * Rules are:
483 * + if there is a block to the left of our position - allocate near it.
484 * + if pointer will live in indirect block - allocate near that block.
485 * + if pointer will live in inode - allocate in the same
486 * cylinder group.
487 *
488 * In the latter case we colour the starting block by the callers PID to
489 * prevent it from clashing with concurrent allocations for a different inode
490 * in the same block group. The PID is used here so that functionally related
491 * files will be close-by on-disk.
492 *
493 * Caller must make sure that @ind is valid and will stay that way.
494 */
617ba13b 495static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 496{
617ba13b 497 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 499 __le32 *p;
617ba13b 500 ext4_fsblk_t bg_start;
74d3487f 501 ext4_fsblk_t last_block;
617ba13b 502 ext4_grpblk_t colour;
a4912123
TT
503 ext4_group_t block_group;
504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
505
506 /* Try to find previous block */
507 for (p = ind->p - 1; p >= start; p--) {
508 if (*p)
509 return le32_to_cpu(*p);
510 }
511
512 /* No such thing, so let's try location of indirect block */
513 if (ind->bh)
514 return ind->bh->b_blocknr;
515
516 /*
517 * It is going to be referred to from the inode itself? OK, just put it
518 * into the same cylinder group then.
519 */
a4912123
TT
520 block_group = ei->i_block_group;
521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 block_group &= ~(flex_size-1);
523 if (S_ISREG(inode->i_mode))
524 block_group++;
525 }
526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
a4912123
TT
529 /*
530 * If we are doing delayed allocation, we don't need take
531 * colour into account.
532 */
533 if (test_opt(inode->i_sb, DELALLOC))
534 return bg_start;
535
74d3487f
VC
536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 colour = (current->pid % 16) *
617ba13b 538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
539 else
540 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
541 return bg_start + colour;
542}
543
544/**
1cc8dcf5 545 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
546 * @inode: owner
547 * @block: block we want
ac27a0ec 548 * @partial: pointer to the last triple within a chain
ac27a0ec 549 *
1cc8dcf5 550 * Normally this function find the preferred place for block allocation,
fb01bfda 551 * returns it.
ac27a0ec 552 */
725d26d3 553static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 554 Indirect *partial)
ac27a0ec 555{
ac27a0ec 556 /*
c2ea3fde 557 * XXX need to get goal block from mballoc's data structures
ac27a0ec 558 */
ac27a0ec 559
617ba13b 560 return ext4_find_near(inode, partial);
ac27a0ec
DK
561}
562
563/**
617ba13b 564 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
498e5f24 575static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
576 int blocks_to_boundary)
577{
498e5f24 578 unsigned int count = 0;
ac27a0ec
DK
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599}
600
601/**
617ba13b 602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
603 * @indirect_blks: the number of blocks need to allocate for indirect
604 * blocks
605 *
606 * @new_blocks: on return it will store the new block numbers for
607 * the indirect blocks(if needed) and the first direct block,
608 * @blks: on return it will store the total number of allocated
609 * direct blocks
610 */
617ba13b 611static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
612 ext4_lblk_t iblock, ext4_fsblk_t goal,
613 int indirect_blks, int blks,
614 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 615{
815a1130 616 struct ext4_allocation_request ar;
ac27a0ec 617 int target, i;
7061eba7 618 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 619 int index = 0;
617ba13b 620 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
621 int ret = 0;
622
623 /*
624 * Here we try to allocate the requested multiple blocks at once,
625 * on a best-effort basis.
626 * To build a branch, we should allocate blocks for
627 * the indirect blocks(if not allocated yet), and at least
628 * the first direct block of this branch. That's the
629 * minimum number of blocks need to allocate(required)
630 */
7061eba7
AK
631 /* first we try to allocate the indirect blocks */
632 target = indirect_blks;
633 while (target > 0) {
ac27a0ec
DK
634 count = target;
635 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
636 current_block = ext4_new_meta_blocks(handle, inode,
637 goal, &count, err);
ac27a0ec
DK
638 if (*err)
639 goto failed_out;
640
641 target -= count;
642 /* allocate blocks for indirect blocks */
643 while (index < indirect_blks && count) {
644 new_blocks[index++] = current_block++;
645 count--;
646 }
7061eba7
AK
647 if (count > 0) {
648 /*
649 * save the new block number
650 * for the first direct block
651 */
652 new_blocks[index] = current_block;
653 printk(KERN_INFO "%s returned more blocks than "
654 "requested\n", __func__);
655 WARN_ON(1);
ac27a0ec 656 break;
7061eba7 657 }
ac27a0ec
DK
658 }
659
7061eba7
AK
660 target = blks - count ;
661 blk_allocated = count;
662 if (!target)
663 goto allocated;
664 /* Now allocate data blocks */
815a1130
TT
665 memset(&ar, 0, sizeof(ar));
666 ar.inode = inode;
667 ar.goal = goal;
668 ar.len = target;
669 ar.logical = iblock;
670 if (S_ISREG(inode->i_mode))
671 /* enable in-core preallocation only for regular files */
672 ar.flags = EXT4_MB_HINT_DATA;
673
674 current_block = ext4_mb_new_blocks(handle, &ar, err);
675
7061eba7
AK
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
685 /*
686 * save the new block number
687 * for the first direct block
688 */
689 new_blocks[index] = current_block;
690 }
815a1130 691 blk_allocated += ar.len;
7061eba7
AK
692 }
693allocated:
ac27a0ec 694 /* total number of blocks allocated for direct blocks */
7061eba7 695 ret = blk_allocated;
ac27a0ec
DK
696 *err = 0;
697 return ret;
698failed_out:
af5bc92d 699 for (i = 0; i < index; i++)
c9de560d 700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
701 return ret;
702}
703
704/**
617ba13b 705 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
617ba13b 716 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 719 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
617ba13b 726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
727 * as described above and return 0.
728 */
617ba13b 729static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
733{
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
617ba13b
MC
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
ac27a0ec 741
7061eba7 742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 761 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
762 if (err) {
763 unlock_buffer(bh);
764 brelse(bh);
765 goto failed;
766 }
767
768 memset(bh->b_data, 0, blocksize);
769 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 branch[n].key = cpu_to_le32(new_blocks[n]);
771 *branch[n].p = branch[n].key;
af5bc92d 772 if (n == indirect_blks) {
ac27a0ec
DK
773 current_block = new_blocks[n];
774 /*
775 * End of chain, update the last new metablock of
776 * the chain to point to the new allocated
777 * data blocks numbers
778 */
779 for (i=1; i < num; i++)
780 *(branch[n].p + i) = cpu_to_le32(++current_block);
781 }
782 BUFFER_TRACE(bh, "marking uptodate");
783 set_buffer_uptodate(bh);
784 unlock_buffer(bh);
785
0390131b
FM
786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
788 if (err)
789 goto failed;
790 }
791 *blks = num;
792 return err;
793failed:
794 /* Allocation failed, free what we already allocated */
795 for (i = 1; i <= n ; i++) {
dab291af 796 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 797 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 798 }
af5bc92d 799 for (i = 0; i < indirect_blks; i++)
c9de560d 800 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 801
c9de560d 802 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
803
804 return err;
805}
806
807/**
617ba13b 808 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
809 * @inode: owner
810 * @block: (logical) number of block we are adding
811 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 812 * ext4_alloc_branch)
ac27a0ec
DK
813 * @where: location of missing link
814 * @num: number of indirect blocks we are adding
815 * @blks: number of direct blocks we are adding
816 *
817 * This function fills the missing link and does all housekeeping needed in
818 * inode (->i_blocks, etc.). In case of success we end up with the full
819 * chain to new block and return 0.
820 */
617ba13b 821static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 822 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
823{
824 int i;
825 int err = 0;
617ba13b 826 ext4_fsblk_t current_block;
ac27a0ec 827
ac27a0ec
DK
828 /*
829 * If we're splicing into a [td]indirect block (as opposed to the
830 * inode) then we need to get write access to the [td]indirect block
831 * before the splice.
832 */
833 if (where->bh) {
834 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 835 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
836 if (err)
837 goto err_out;
838 }
839 /* That's it */
840
841 *where->p = where->key;
842
843 /*
844 * Update the host buffer_head or inode to point to more just allocated
845 * direct blocks blocks
846 */
847 if (num == 0 && blks > 1) {
848 current_block = le32_to_cpu(where->key) + 1;
849 for (i = 1; i < blks; i++)
af5bc92d 850 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
851 }
852
ac27a0ec
DK
853 /* We are done with atomic stuff, now do the rest of housekeeping */
854
ef7f3835 855 inode->i_ctime = ext4_current_time(inode);
617ba13b 856 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
857
858 /* had we spliced it onto indirect block? */
859 if (where->bh) {
860 /*
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
617ba13b 866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
867 */
868 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
871 if (err)
872 goto err_out;
873 } else {
874 /*
875 * OK, we spliced it into the inode itself on a direct block.
876 * Inode was dirtied above.
877 */
878 jbd_debug(5, "splicing direct\n");
879 }
880 return err;
881
882err_out:
883 for (i = 1; i <= num; i++) {
dab291af 884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 885 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
886 ext4_free_blocks(handle, inode,
887 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 888 }
c9de560d 889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
890
891 return err;
892}
893
894/*
895 * Allocation strategy is simple: if we have to allocate something, we will
896 * have to go the whole way to leaf. So let's do it before attaching anything
897 * to tree, set linkage between the newborn blocks, write them if sync is
898 * required, recheck the path, free and repeat if check fails, otherwise
899 * set the last missing link (that will protect us from any truncate-generated
900 * removals - all blocks on the path are immune now) and possibly force the
901 * write on the parent block.
902 * That has a nice additional property: no special recovery from the failed
903 * allocations is needed - we simply release blocks and do not touch anything
904 * reachable from inode.
905 *
906 * `handle' can be NULL if create == 0.
907 *
ac27a0ec
DK
908 * return > 0, # of blocks mapped or allocated.
909 * return = 0, if plain lookup failed.
910 * return < 0, error case.
c278bfec
AK
911 *
912 *
913 * Need to be called with
0e855ac8
AK
914 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 916 */
498e5f24
TT
917static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918 ext4_lblk_t iblock, unsigned int maxblocks,
919 struct buffer_head *bh_result,
920 int create, int extend_disksize)
ac27a0ec
DK
921{
922 int err = -EIO;
725d26d3 923 ext4_lblk_t offsets[4];
ac27a0ec
DK
924 Indirect chain[4];
925 Indirect *partial;
617ba13b 926 ext4_fsblk_t goal;
ac27a0ec
DK
927 int indirect_blks;
928 int blocks_to_boundary = 0;
929 int depth;
617ba13b 930 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 931 int count = 0;
617ba13b 932 ext4_fsblk_t first_block = 0;
61628a3f 933 loff_t disksize;
ac27a0ec
DK
934
935
a86c6181 936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 937 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
938 depth = ext4_block_to_path(inode, iblock, offsets,
939 &blocks_to_boundary);
ac27a0ec
DK
940
941 if (depth == 0)
942 goto out;
943
617ba13b 944 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
945
946 /* Simplest case - block found, no allocation needed */
947 if (!partial) {
948 first_block = le32_to_cpu(chain[depth - 1].key);
949 clear_buffer_new(bh_result);
950 count++;
951 /*map more blocks*/
952 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 953 ext4_fsblk_t blk;
ac27a0ec 954
ac27a0ec
DK
955 blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957 if (blk == first_block + count)
958 count++;
959 else
960 break;
961 }
c278bfec 962 goto got_it;
ac27a0ec
DK
963 }
964
965 /* Next simple case - plain lookup or failed read of indirect block */
966 if (!create || err == -EIO)
967 goto cleanup;
968
ac27a0ec 969 /*
c2ea3fde 970 * Okay, we need to do block allocation.
ac27a0ec 971 */
fb01bfda 972 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
973
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks = (chain + depth) - partial - 1;
976
977 /*
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
980 */
617ba13b 981 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
982 maxblocks, blocks_to_boundary);
983 /*
617ba13b 984 * Block out ext4_truncate while we alter the tree
ac27a0ec 985 */
7061eba7
AK
986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 &count, goal,
988 offsets + (partial - chain), partial);
ac27a0ec
DK
989
990 /*
617ba13b 991 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
996 */
997 if (!err)
617ba13b 998 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
999 partial, indirect_blks, count);
1000 /*
0e855ac8 1001 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 1002 * protect it if you're about to implement concurrent
617ba13b 1003 * ext4_get_block() -bzzz
ac27a0ec 1004 */
61628a3f
MC
1005 if (!err && extend_disksize) {
1006 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007 if (disksize > i_size_read(inode))
1008 disksize = i_size_read(inode);
1009 if (disksize > ei->i_disksize)
1010 ei->i_disksize = disksize;
1011 }
ac27a0ec
DK
1012 if (err)
1013 goto cleanup;
1014
1015 set_buffer_new(bh_result);
1016got_it:
1017 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018 if (count > blocks_to_boundary)
1019 set_buffer_boundary(bh_result);
1020 err = count;
1021 /* Clean up and exit */
1022 partial = chain + depth - 1; /* the whole chain */
1023cleanup:
1024 while (partial > chain) {
1025 BUFFER_TRACE(partial->bh, "call brelse");
1026 brelse(partial->bh);
1027 partial--;
1028 }
1029 BUFFER_TRACE(bh_result, "returned");
1030out:
1031 return err;
1032}
1033
60e58e0f
MC
1034qsize_t ext4_get_reserved_space(struct inode *inode)
1035{
1036 unsigned long long total;
1037
1038 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039 total = EXT4_I(inode)->i_reserved_data_blocks +
1040 EXT4_I(inode)->i_reserved_meta_blocks;
1041 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043 return total;
1044}
12219aea
AK
1045/*
1046 * Calculate the number of metadata blocks need to reserve
1047 * to allocate @blocks for non extent file based file
1048 */
1049static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050{
1051 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052 int ind_blks, dind_blks, tind_blks;
1053
1054 /* number of new indirect blocks needed */
1055 ind_blks = (blocks + icap - 1) / icap;
1056
1057 dind_blks = (ind_blks + icap - 1) / icap;
1058
1059 tind_blks = 1;
1060
1061 return ind_blks + dind_blks + tind_blks;
1062}
1063
1064/*
1065 * Calculate the number of metadata blocks need to reserve
1066 * to allocate given number of blocks
1067 */
1068static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069{
cd213226
MC
1070 if (!blocks)
1071 return 0;
1072
12219aea
AK
1073 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076 return ext4_indirect_calc_metadata_amount(inode, blocks);
1077}
1078
1079static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080{
1081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082 int total, mdb, mdb_free;
1083
1084 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085 /* recalculate the number of metablocks still need to be reserved */
1086 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087 mdb = ext4_calc_metadata_amount(inode, total);
1088
1089 /* figure out how many metablocks to release */
1090 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
6bc6e63f
AK
1093 if (mdb_free) {
1094 /* Account for allocated meta_blocks */
1095 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097 /* update fs dirty blocks counter */
1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101 }
12219aea
AK
1102
1103 /* update per-inode reservations */
1104 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1105 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1106 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1107
1108 /*
1109 * free those over-booking quota for metadata blocks
1110 */
60e58e0f
MC
1111 if (mdb_free)
1112 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1113
1114 /*
1115 * If we have done all the pending block allocations and if
1116 * there aren't any writers on the inode, we can discard the
1117 * inode's preallocations.
1118 */
1119 if (!total && (atomic_read(&inode->i_writecount) == 0))
1120 ext4_discard_preallocations(inode);
12219aea
AK
1121}
1122
f5ab0d1f 1123/*
2b2d6d01
TT
1124 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125 * and returns if the blocks are already mapped.
f5ab0d1f 1126 *
f5ab0d1f
MC
1127 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128 * and store the allocated blocks in the result buffer head and mark it
1129 * mapped.
1130 *
1131 * If file type is extents based, it will call ext4_ext_get_blocks(),
1132 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133 * based files
1134 *
1135 * On success, it returns the number of blocks being mapped or allocate.
1136 * if create==0 and the blocks are pre-allocated and uninitialized block,
1137 * the result buffer head is unmapped. If the create ==1, it will make sure
1138 * the buffer head is mapped.
1139 *
1140 * It returns 0 if plain look up failed (blocks have not been allocated), in
1141 * that casem, buffer head is unmapped
1142 *
1143 * It returns the error in case of allocation failure.
1144 */
0e855ac8 1145int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
498e5f24 1146 unsigned int max_blocks, struct buffer_head *bh,
d2a17637 1147 int create, int extend_disksize, int flag)
0e855ac8
AK
1148{
1149 int retval;
f5ab0d1f
MC
1150
1151 clear_buffer_mapped(bh);
1152
4df3d265
AK
1153 /*
1154 * Try to see if we can get the block without requesting
1155 * for new file system block.
1156 */
1157 down_read((&EXT4_I(inode)->i_data_sem));
1158 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1159 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1160 bh, 0, 0);
0e855ac8 1161 } else {
4df3d265
AK
1162 retval = ext4_get_blocks_handle(handle,
1163 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1164 }
4df3d265 1165 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1166
1167 /* If it is only a block(s) look up */
1168 if (!create)
1169 return retval;
1170
1171 /*
1172 * Returns if the blocks have already allocated
1173 *
1174 * Note that if blocks have been preallocated
1175 * ext4_ext_get_block() returns th create = 0
1176 * with buffer head unmapped.
1177 */
1178 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1179 return retval;
1180
1181 /*
f5ab0d1f
MC
1182 * New blocks allocate and/or writing to uninitialized extent
1183 * will possibly result in updating i_data, so we take
1184 * the write lock of i_data_sem, and call get_blocks()
1185 * with create == 1 flag.
4df3d265
AK
1186 */
1187 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1188
1189 /*
1190 * if the caller is from delayed allocation writeout path
1191 * we have already reserved fs blocks for allocation
1192 * let the underlying get_block() function know to
1193 * avoid double accounting
1194 */
1195 if (flag)
1196 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1197 /*
1198 * We need to check for EXT4 here because migrate
1199 * could have changed the inode type in between
1200 */
0e855ac8
AK
1201 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1202 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1203 bh, create, extend_disksize);
1204 } else {
1205 retval = ext4_get_blocks_handle(handle, inode, block,
1206 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1207
1208 if (retval > 0 && buffer_new(bh)) {
1209 /*
1210 * We allocated new blocks which will result in
1211 * i_data's format changing. Force the migrate
1212 * to fail by clearing migrate flags
1213 */
1214 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1215 ~EXT4_EXT_MIGRATE;
1216 }
0e855ac8 1217 }
d2a17637
MC
1218
1219 if (flag) {
1220 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1221 /*
1222 * Update reserved blocks/metadata blocks
1223 * after successful block allocation
1224 * which were deferred till now
1225 */
1226 if ((retval > 0) && buffer_delay(bh))
12219aea 1227 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1228 }
1229
4df3d265 1230 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1231 return retval;
1232}
1233
f3bd1f3f
MC
1234/* Maximum number of blocks we map for direct IO at once. */
1235#define DIO_MAX_BLOCKS 4096
1236
6873fa0d
ES
1237int ext4_get_block(struct inode *inode, sector_t iblock,
1238 struct buffer_head *bh_result, int create)
ac27a0ec 1239{
3e4fdaf8 1240 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1241 int ret = 0, started = 0;
ac27a0ec 1242 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1243 int dio_credits;
ac27a0ec 1244
7fb5409d
JK
1245 if (create && !handle) {
1246 /* Direct IO write... */
1247 if (max_blocks > DIO_MAX_BLOCKS)
1248 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1249 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1250 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1251 if (IS_ERR(handle)) {
ac27a0ec 1252 ret = PTR_ERR(handle);
7fb5409d 1253 goto out;
ac27a0ec 1254 }
7fb5409d 1255 started = 1;
ac27a0ec
DK
1256 }
1257
7fb5409d 1258 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1259 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1260 if (ret > 0) {
1261 bh_result->b_size = (ret << inode->i_blkbits);
1262 ret = 0;
ac27a0ec 1263 }
7fb5409d
JK
1264 if (started)
1265 ext4_journal_stop(handle);
1266out:
ac27a0ec
DK
1267 return ret;
1268}
1269
1270/*
1271 * `handle' can be NULL if create is zero
1272 */
617ba13b 1273struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1274 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1275{
1276 struct buffer_head dummy;
1277 int fatal = 0, err;
1278
1279 J_ASSERT(handle != NULL || create == 0);
1280
1281 dummy.b_state = 0;
1282 dummy.b_blocknr = -1000;
1283 buffer_trace_init(&dummy.b_history);
a86c6181 1284 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1285 &dummy, create, 1, 0);
ac27a0ec 1286 /*
617ba13b 1287 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1288 * mapped. 0 in case of a HOLE.
1289 */
1290 if (err > 0) {
1291 if (err > 1)
1292 WARN_ON(1);
1293 err = 0;
1294 }
1295 *errp = err;
1296 if (!err && buffer_mapped(&dummy)) {
1297 struct buffer_head *bh;
1298 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1299 if (!bh) {
1300 *errp = -EIO;
1301 goto err;
1302 }
1303 if (buffer_new(&dummy)) {
1304 J_ASSERT(create != 0);
ac39849d 1305 J_ASSERT(handle != NULL);
ac27a0ec
DK
1306
1307 /*
1308 * Now that we do not always journal data, we should
1309 * keep in mind whether this should always journal the
1310 * new buffer as metadata. For now, regular file
617ba13b 1311 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1312 * problem.
1313 */
1314 lock_buffer(bh);
1315 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1316 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1317 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1318 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1319 set_buffer_uptodate(bh);
1320 }
1321 unlock_buffer(bh);
0390131b
FM
1322 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1323 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1324 if (!fatal)
1325 fatal = err;
1326 } else {
1327 BUFFER_TRACE(bh, "not a new buffer");
1328 }
1329 if (fatal) {
1330 *errp = fatal;
1331 brelse(bh);
1332 bh = NULL;
1333 }
1334 return bh;
1335 }
1336err:
1337 return NULL;
1338}
1339
617ba13b 1340struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1341 ext4_lblk_t block, int create, int *err)
ac27a0ec 1342{
af5bc92d 1343 struct buffer_head *bh;
ac27a0ec 1344
617ba13b 1345 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1346 if (!bh)
1347 return bh;
1348 if (buffer_uptodate(bh))
1349 return bh;
1350 ll_rw_block(READ_META, 1, &bh);
1351 wait_on_buffer(bh);
1352 if (buffer_uptodate(bh))
1353 return bh;
1354 put_bh(bh);
1355 *err = -EIO;
1356 return NULL;
1357}
1358
af5bc92d
TT
1359static int walk_page_buffers(handle_t *handle,
1360 struct buffer_head *head,
1361 unsigned from,
1362 unsigned to,
1363 int *partial,
1364 int (*fn)(handle_t *handle,
1365 struct buffer_head *bh))
ac27a0ec
DK
1366{
1367 struct buffer_head *bh;
1368 unsigned block_start, block_end;
1369 unsigned blocksize = head->b_size;
1370 int err, ret = 0;
1371 struct buffer_head *next;
1372
af5bc92d
TT
1373 for (bh = head, block_start = 0;
1374 ret == 0 && (bh != head || !block_start);
1375 block_start = block_end, bh = next)
ac27a0ec
DK
1376 {
1377 next = bh->b_this_page;
1378 block_end = block_start + blocksize;
1379 if (block_end <= from || block_start >= to) {
1380 if (partial && !buffer_uptodate(bh))
1381 *partial = 1;
1382 continue;
1383 }
1384 err = (*fn)(handle, bh);
1385 if (!ret)
1386 ret = err;
1387 }
1388 return ret;
1389}
1390
1391/*
1392 * To preserve ordering, it is essential that the hole instantiation and
1393 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1394 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1395 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1396 * prepare_write() is the right place.
1397 *
617ba13b
MC
1398 * Also, this function can nest inside ext4_writepage() ->
1399 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1400 * has generated enough buffer credits to do the whole page. So we won't
1401 * block on the journal in that case, which is good, because the caller may
1402 * be PF_MEMALLOC.
1403 *
617ba13b 1404 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1405 * quota file writes. If we were to commit the transaction while thus
1406 * reentered, there can be a deadlock - we would be holding a quota
1407 * lock, and the commit would never complete if another thread had a
1408 * transaction open and was blocking on the quota lock - a ranking
1409 * violation.
1410 *
dab291af 1411 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1412 * will _not_ run commit under these circumstances because handle->h_ref
1413 * is elevated. We'll still have enough credits for the tiny quotafile
1414 * write.
1415 */
1416static int do_journal_get_write_access(handle_t *handle,
1417 struct buffer_head *bh)
1418{
1419 if (!buffer_mapped(bh) || buffer_freed(bh))
1420 return 0;
617ba13b 1421 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1422}
1423
bfc1af65
NP
1424static int ext4_write_begin(struct file *file, struct address_space *mapping,
1425 loff_t pos, unsigned len, unsigned flags,
1426 struct page **pagep, void **fsdata)
ac27a0ec 1427{
af5bc92d 1428 struct inode *inode = mapping->host;
7479d2b9 1429 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1430 handle_t *handle;
1431 int retries = 0;
af5bc92d 1432 struct page *page;
bfc1af65 1433 pgoff_t index;
af5bc92d 1434 unsigned from, to;
bfc1af65 1435
ba80b101
TT
1436 trace_mark(ext4_write_begin,
1437 "dev %s ino %lu pos %llu len %u flags %u",
1438 inode->i_sb->s_id, inode->i_ino,
1439 (unsigned long long) pos, len, flags);
bfc1af65 1440 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1441 from = pos & (PAGE_CACHE_SIZE - 1);
1442 to = from + len;
ac27a0ec
DK
1443
1444retry:
af5bc92d
TT
1445 handle = ext4_journal_start(inode, needed_blocks);
1446 if (IS_ERR(handle)) {
1447 ret = PTR_ERR(handle);
1448 goto out;
7479d2b9 1449 }
ac27a0ec 1450
ebd3610b
JK
1451 /* We cannot recurse into the filesystem as the transaction is already
1452 * started */
1453 flags |= AOP_FLAG_NOFS;
1454
54566b2c 1455 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1456 if (!page) {
1457 ext4_journal_stop(handle);
1458 ret = -ENOMEM;
1459 goto out;
1460 }
1461 *pagep = page;
1462
bfc1af65 1463 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1464 ext4_get_block);
bfc1af65
NP
1465
1466 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1467 ret = walk_page_buffers(handle, page_buffers(page),
1468 from, to, NULL, do_journal_get_write_access);
1469 }
bfc1af65
NP
1470
1471 if (ret) {
af5bc92d 1472 unlock_page(page);
cf108bca 1473 ext4_journal_stop(handle);
af5bc92d 1474 page_cache_release(page);
ae4d5372
AK
1475 /*
1476 * block_write_begin may have instantiated a few blocks
1477 * outside i_size. Trim these off again. Don't need
1478 * i_size_read because we hold i_mutex.
1479 */
1480 if (pos + len > inode->i_size)
1481 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1482 }
1483
617ba13b 1484 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1485 goto retry;
7479d2b9 1486out:
ac27a0ec
DK
1487 return ret;
1488}
1489
bfc1af65
NP
1490/* For write_end() in data=journal mode */
1491static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1492{
1493 if (!buffer_mapped(bh) || buffer_freed(bh))
1494 return 0;
1495 set_buffer_uptodate(bh);
0390131b 1496 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1497}
1498
1499/*
1500 * We need to pick up the new inode size which generic_commit_write gave us
1501 * `file' can be NULL - eg, when called from page_symlink().
1502 *
617ba13b 1503 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1504 * buffers are managed internally.
1505 */
bfc1af65
NP
1506static int ext4_ordered_write_end(struct file *file,
1507 struct address_space *mapping,
1508 loff_t pos, unsigned len, unsigned copied,
1509 struct page *page, void *fsdata)
ac27a0ec 1510{
617ba13b 1511 handle_t *handle = ext4_journal_current_handle();
cf108bca 1512 struct inode *inode = mapping->host;
ac27a0ec
DK
1513 int ret = 0, ret2;
1514
ba80b101
TT
1515 trace_mark(ext4_ordered_write_end,
1516 "dev %s ino %lu pos %llu len %u copied %u",
1517 inode->i_sb->s_id, inode->i_ino,
1518 (unsigned long long) pos, len, copied);
678aaf48 1519 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1520
1521 if (ret == 0) {
ac27a0ec
DK
1522 loff_t new_i_size;
1523
bfc1af65 1524 new_i_size = pos + copied;
cf17fea6
AK
1525 if (new_i_size > EXT4_I(inode)->i_disksize) {
1526 ext4_update_i_disksize(inode, new_i_size);
1527 /* We need to mark inode dirty even if
1528 * new_i_size is less that inode->i_size
1529 * bu greater than i_disksize.(hint delalloc)
1530 */
1531 ext4_mark_inode_dirty(handle, inode);
1532 }
1533
cf108bca 1534 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1535 page, fsdata);
f8a87d89
RK
1536 copied = ret2;
1537 if (ret2 < 0)
1538 ret = ret2;
ac27a0ec 1539 }
617ba13b 1540 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1541 if (!ret)
1542 ret = ret2;
bfc1af65
NP
1543
1544 return ret ? ret : copied;
ac27a0ec
DK
1545}
1546
bfc1af65
NP
1547static int ext4_writeback_write_end(struct file *file,
1548 struct address_space *mapping,
1549 loff_t pos, unsigned len, unsigned copied,
1550 struct page *page, void *fsdata)
ac27a0ec 1551{
617ba13b 1552 handle_t *handle = ext4_journal_current_handle();
cf108bca 1553 struct inode *inode = mapping->host;
ac27a0ec
DK
1554 int ret = 0, ret2;
1555 loff_t new_i_size;
1556
ba80b101
TT
1557 trace_mark(ext4_writeback_write_end,
1558 "dev %s ino %lu pos %llu len %u copied %u",
1559 inode->i_sb->s_id, inode->i_ino,
1560 (unsigned long long) pos, len, copied);
bfc1af65 1561 new_i_size = pos + copied;
cf17fea6
AK
1562 if (new_i_size > EXT4_I(inode)->i_disksize) {
1563 ext4_update_i_disksize(inode, new_i_size);
1564 /* We need to mark inode dirty even if
1565 * new_i_size is less that inode->i_size
1566 * bu greater than i_disksize.(hint delalloc)
1567 */
1568 ext4_mark_inode_dirty(handle, inode);
1569 }
ac27a0ec 1570
cf108bca 1571 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1572 page, fsdata);
f8a87d89
RK
1573 copied = ret2;
1574 if (ret2 < 0)
1575 ret = ret2;
ac27a0ec 1576
617ba13b 1577 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1578 if (!ret)
1579 ret = ret2;
bfc1af65
NP
1580
1581 return ret ? ret : copied;
ac27a0ec
DK
1582}
1583
bfc1af65
NP
1584static int ext4_journalled_write_end(struct file *file,
1585 struct address_space *mapping,
1586 loff_t pos, unsigned len, unsigned copied,
1587 struct page *page, void *fsdata)
ac27a0ec 1588{
617ba13b 1589 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1590 struct inode *inode = mapping->host;
ac27a0ec
DK
1591 int ret = 0, ret2;
1592 int partial = 0;
bfc1af65 1593 unsigned from, to;
cf17fea6 1594 loff_t new_i_size;
ac27a0ec 1595
ba80b101
TT
1596 trace_mark(ext4_journalled_write_end,
1597 "dev %s ino %lu pos %llu len %u copied %u",
1598 inode->i_sb->s_id, inode->i_ino,
1599 (unsigned long long) pos, len, copied);
bfc1af65
NP
1600 from = pos & (PAGE_CACHE_SIZE - 1);
1601 to = from + len;
1602
1603 if (copied < len) {
1604 if (!PageUptodate(page))
1605 copied = 0;
1606 page_zero_new_buffers(page, from+copied, to);
1607 }
ac27a0ec
DK
1608
1609 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1610 to, &partial, write_end_fn);
ac27a0ec
DK
1611 if (!partial)
1612 SetPageUptodate(page);
cf17fea6
AK
1613 new_i_size = pos + copied;
1614 if (new_i_size > inode->i_size)
bfc1af65 1615 i_size_write(inode, pos+copied);
617ba13b 1616 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1617 if (new_i_size > EXT4_I(inode)->i_disksize) {
1618 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1619 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1620 if (!ret)
1621 ret = ret2;
1622 }
bfc1af65 1623
cf108bca 1624 unlock_page(page);
617ba13b 1625 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1626 if (!ret)
1627 ret = ret2;
bfc1af65
NP
1628 page_cache_release(page);
1629
1630 return ret ? ret : copied;
ac27a0ec 1631}
d2a17637
MC
1632
1633static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1634{
030ba6bc 1635 int retries = 0;
60e58e0f
MC
1636 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1638
1639 /*
1640 * recalculate the amount of metadata blocks to reserve
1641 * in order to allocate nrblocks
1642 * worse case is one extent per block
1643 */
030ba6bc 1644repeat:
d2a17637
MC
1645 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1646 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1647 mdblocks = ext4_calc_metadata_amount(inode, total);
1648 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1649
1650 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1651 total = md_needed + nrblocks;
1652
60e58e0f
MC
1653 /*
1654 * Make quota reservation here to prevent quota overflow
1655 * later. Real quota accounting is done at pages writeout
1656 * time.
1657 */
1658 if (vfs_dq_reserve_block(inode, total)) {
1659 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1660 return -EDQUOT;
1661 }
1662
a30d542a 1663 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1664 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1665 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1666 yield();
1667 goto repeat;
1668 }
60e58e0f 1669 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1670 return -ENOSPC;
1671 }
d2a17637
MC
1672 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1673 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1674
1675 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1676 return 0; /* success */
1677}
1678
12219aea 1679static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1680{
1681 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1682 int total, mdb, mdb_free, release;
1683
cd213226
MC
1684 if (!to_free)
1685 return; /* Nothing to release, exit */
1686
d2a17637 1687 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1688
1689 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1690 /*
1691 * if there is no reserved blocks, but we try to free some
1692 * then the counter is messed up somewhere.
1693 * but since this function is called from invalidate
1694 * page, it's harmless to return without any action
1695 */
1696 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1697 "blocks for inode %lu, but there is no reserved "
1698 "data blocks\n", to_free, inode->i_ino);
1699 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1700 return;
1701 }
1702
d2a17637 1703 /* recalculate the number of metablocks still need to be reserved */
12219aea 1704 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1705 mdb = ext4_calc_metadata_amount(inode, total);
1706
1707 /* figure out how many metablocks to release */
1708 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1709 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1710
d2a17637
MC
1711 release = to_free + mdb_free;
1712
6bc6e63f
AK
1713 /* update fs dirty blocks counter for truncate case */
1714 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1715
1716 /* update per-inode reservations */
12219aea
AK
1717 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1718 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1719
1720 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1721 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1722 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1723
1724 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1725}
1726
1727static void ext4_da_page_release_reservation(struct page *page,
1728 unsigned long offset)
1729{
1730 int to_release = 0;
1731 struct buffer_head *head, *bh;
1732 unsigned int curr_off = 0;
1733
1734 head = page_buffers(page);
1735 bh = head;
1736 do {
1737 unsigned int next_off = curr_off + bh->b_size;
1738
1739 if ((offset <= curr_off) && (buffer_delay(bh))) {
1740 to_release++;
1741 clear_buffer_delay(bh);
1742 }
1743 curr_off = next_off;
1744 } while ((bh = bh->b_this_page) != head);
12219aea 1745 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1746}
ac27a0ec 1747
64769240
AT
1748/*
1749 * Delayed allocation stuff
1750 */
1751
1752struct mpage_da_data {
1753 struct inode *inode;
8dc207c0
TT
1754 sector_t b_blocknr; /* start block number of extent */
1755 size_t b_size; /* size of extent */
1756 unsigned long b_state; /* state of the extent */
64769240 1757 unsigned long first_page, next_page; /* extent of pages */
64769240 1758 struct writeback_control *wbc;
a1d6cc56 1759 int io_done;
498e5f24 1760 int pages_written;
df22291f 1761 int retval;
64769240
AT
1762};
1763
1764/*
1765 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1766 * them with writepage() call back
64769240
AT
1767 *
1768 * @mpd->inode: inode
1769 * @mpd->first_page: first page of the extent
1770 * @mpd->next_page: page after the last page of the extent
64769240
AT
1771 *
1772 * By the time mpage_da_submit_io() is called we expect all blocks
1773 * to be allocated. this may be wrong if allocation failed.
1774 *
1775 * As pages are already locked by write_cache_pages(), we can't use it
1776 */
1777static int mpage_da_submit_io(struct mpage_da_data *mpd)
1778{
22208ded 1779 long pages_skipped;
791b7f08
AK
1780 struct pagevec pvec;
1781 unsigned long index, end;
1782 int ret = 0, err, nr_pages, i;
1783 struct inode *inode = mpd->inode;
1784 struct address_space *mapping = inode->i_mapping;
64769240
AT
1785
1786 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1787 /*
1788 * We need to start from the first_page to the next_page - 1
1789 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1790 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1791 * at the currently mapped buffer_heads.
1792 */
64769240
AT
1793 index = mpd->first_page;
1794 end = mpd->next_page - 1;
1795
791b7f08 1796 pagevec_init(&pvec, 0);
64769240 1797 while (index <= end) {
791b7f08 1798 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1799 if (nr_pages == 0)
1800 break;
1801 for (i = 0; i < nr_pages; i++) {
1802 struct page *page = pvec.pages[i];
1803
791b7f08
AK
1804 index = page->index;
1805 if (index > end)
1806 break;
1807 index++;
1808
1809 BUG_ON(!PageLocked(page));
1810 BUG_ON(PageWriteback(page));
1811
22208ded 1812 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1813 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1814 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1815 /*
1816 * have successfully written the page
1817 * without skipping the same
1818 */
a1d6cc56 1819 mpd->pages_written++;
64769240
AT
1820 /*
1821 * In error case, we have to continue because
1822 * remaining pages are still locked
1823 * XXX: unlock and re-dirty them?
1824 */
1825 if (ret == 0)
1826 ret = err;
1827 }
1828 pagevec_release(&pvec);
1829 }
64769240
AT
1830 return ret;
1831}
1832
1833/*
1834 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1835 *
1836 * @mpd->inode - inode to walk through
1837 * @exbh->b_blocknr - first block on a disk
1838 * @exbh->b_size - amount of space in bytes
1839 * @logical - first logical block to start assignment with
1840 *
1841 * the function goes through all passed space and put actual disk
1842 * block numbers into buffer heads, dropping BH_Delay
1843 */
1844static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1845 struct buffer_head *exbh)
1846{
1847 struct inode *inode = mpd->inode;
1848 struct address_space *mapping = inode->i_mapping;
1849 int blocks = exbh->b_size >> inode->i_blkbits;
1850 sector_t pblock = exbh->b_blocknr, cur_logical;
1851 struct buffer_head *head, *bh;
a1d6cc56 1852 pgoff_t index, end;
64769240
AT
1853 struct pagevec pvec;
1854 int nr_pages, i;
1855
1856 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1857 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1858 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1859
1860 pagevec_init(&pvec, 0);
1861
1862 while (index <= end) {
1863 /* XXX: optimize tail */
1864 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1865 if (nr_pages == 0)
1866 break;
1867 for (i = 0; i < nr_pages; i++) {
1868 struct page *page = pvec.pages[i];
1869
1870 index = page->index;
1871 if (index > end)
1872 break;
1873 index++;
1874
1875 BUG_ON(!PageLocked(page));
1876 BUG_ON(PageWriteback(page));
1877 BUG_ON(!page_has_buffers(page));
1878
1879 bh = page_buffers(page);
1880 head = bh;
1881
1882 /* skip blocks out of the range */
1883 do {
1884 if (cur_logical >= logical)
1885 break;
1886 cur_logical++;
1887 } while ((bh = bh->b_this_page) != head);
1888
1889 do {
1890 if (cur_logical >= logical + blocks)
1891 break;
64769240
AT
1892 if (buffer_delay(bh)) {
1893 bh->b_blocknr = pblock;
1894 clear_buffer_delay(bh);
bf068ee2
AK
1895 bh->b_bdev = inode->i_sb->s_bdev;
1896 } else if (buffer_unwritten(bh)) {
1897 bh->b_blocknr = pblock;
1898 clear_buffer_unwritten(bh);
1899 set_buffer_mapped(bh);
1900 set_buffer_new(bh);
1901 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1902 } else if (buffer_mapped(bh))
64769240 1903 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1904
1905 cur_logical++;
1906 pblock++;
1907 } while ((bh = bh->b_this_page) != head);
1908 }
1909 pagevec_release(&pvec);
1910 }
1911}
1912
1913
1914/*
1915 * __unmap_underlying_blocks - just a helper function to unmap
1916 * set of blocks described by @bh
1917 */
1918static inline void __unmap_underlying_blocks(struct inode *inode,
1919 struct buffer_head *bh)
1920{
1921 struct block_device *bdev = inode->i_sb->s_bdev;
1922 int blocks, i;
1923
1924 blocks = bh->b_size >> inode->i_blkbits;
1925 for (i = 0; i < blocks; i++)
1926 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1927}
1928
c4a0c46e
AK
1929static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1930 sector_t logical, long blk_cnt)
1931{
1932 int nr_pages, i;
1933 pgoff_t index, end;
1934 struct pagevec pvec;
1935 struct inode *inode = mpd->inode;
1936 struct address_space *mapping = inode->i_mapping;
1937
1938 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1939 end = (logical + blk_cnt - 1) >>
1940 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1941 while (index <= end) {
1942 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1943 if (nr_pages == 0)
1944 break;
1945 for (i = 0; i < nr_pages; i++) {
1946 struct page *page = pvec.pages[i];
1947 index = page->index;
1948 if (index > end)
1949 break;
1950 index++;
1951
1952 BUG_ON(!PageLocked(page));
1953 BUG_ON(PageWriteback(page));
1954 block_invalidatepage(page, 0);
1955 ClearPageUptodate(page);
1956 unlock_page(page);
1957 }
1958 }
1959 return;
1960}
1961
df22291f
AK
1962static void ext4_print_free_blocks(struct inode *inode)
1963{
1964 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1965 printk(KERN_EMERG "Total free blocks count %lld\n",
1966 ext4_count_free_blocks(inode->i_sb));
1967 printk(KERN_EMERG "Free/Dirty block details\n");
1968 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 1969 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 1970 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 1971 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 1972 printk(KERN_EMERG "Block reservation details\n");
498e5f24 1973 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 1974 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 1975 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
1976 EXT4_I(inode)->i_reserved_meta_blocks);
1977 return;
1978}
1979
ed5bde0b
TT
1980#define EXT4_DELALLOC_RSVED 1
1981static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1982 struct buffer_head *bh_result, int create)
1983{
1984 int ret;
1985 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1986 loff_t disksize = EXT4_I(inode)->i_disksize;
1987 handle_t *handle = NULL;
1988
1989 handle = ext4_journal_current_handle();
1990 BUG_ON(!handle);
1991 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
1992 bh_result, create, 0, EXT4_DELALLOC_RSVED);
1993 if (ret <= 0)
1994 return ret;
1995
1996 bh_result->b_size = (ret << inode->i_blkbits);
1997
1998 if (ext4_should_order_data(inode)) {
1999 int retval;
2000 retval = ext4_jbd2_file_inode(handle, inode);
2001 if (retval)
2002 /*
2003 * Failed to add inode for ordered mode. Don't
2004 * update file size
2005 */
2006 return retval;
2007 }
2008
2009 /*
2010 * Update on-disk size along with block allocation we don't
2011 * use 'extend_disksize' as size may change within already
2012 * allocated block -bzzz
2013 */
2014 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2015 if (disksize > i_size_read(inode))
2016 disksize = i_size_read(inode);
2017 if (disksize > EXT4_I(inode)->i_disksize) {
2018 ext4_update_i_disksize(inode, disksize);
2019 ret = ext4_mark_inode_dirty(handle, inode);
2020 return ret;
2021 }
2022 return 0;
2023}
2024
64769240
AT
2025/*
2026 * mpage_da_map_blocks - go through given space
2027 *
8dc207c0 2028 * @mpd - bh describing space
64769240
AT
2029 *
2030 * The function skips space we know is already mapped to disk blocks.
2031 *
64769240 2032 */
ed5bde0b 2033static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2034{
a1d6cc56 2035 int err = 0;
030ba6bc 2036 struct buffer_head new;
df22291f 2037 sector_t next;
64769240
AT
2038
2039 /*
2040 * We consider only non-mapped and non-allocated blocks
2041 */
8dc207c0
TT
2042 if ((mpd->b_state & (1 << BH_Mapped)) &&
2043 !(mpd->b_state & (1 << BH_Delay)))
c4a0c46e 2044 return 0;
8dc207c0 2045 new.b_state = mpd->b_state;
a1d6cc56 2046 new.b_blocknr = 0;
8dc207c0
TT
2047 new.b_size = mpd->b_size;
2048 next = mpd->b_blocknr;
a1d6cc56
AK
2049 /*
2050 * If we didn't accumulate anything
2051 * to write simply return
2052 */
2053 if (!new.b_size)
c4a0c46e 2054 return 0;
c4a0c46e 2055
ed5bde0b
TT
2056 err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2057 if (err) {
2058 /*
2059 * If get block returns with error we simply
2060 * return. Later writepage will redirty the page and
2061 * writepages will find the dirty page again
c4a0c46e
AK
2062 */
2063 if (err == -EAGAIN)
2064 return 0;
df22291f
AK
2065
2066 if (err == -ENOSPC &&
ed5bde0b 2067 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2068 mpd->retval = err;
2069 return 0;
2070 }
2071
c4a0c46e 2072 /*
ed5bde0b
TT
2073 * get block failure will cause us to loop in
2074 * writepages, because a_ops->writepage won't be able
2075 * to make progress. The page will be redirtied by
2076 * writepage and writepages will again try to write
2077 * the same.
c4a0c46e
AK
2078 */
2079 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2080 "at logical offset %llu with max blocks "
2081 "%zd with error %d\n",
2082 __func__, mpd->inode->i_ino,
2083 (unsigned long long)next,
8dc207c0 2084 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2085 printk(KERN_EMERG "This should not happen.!! "
2086 "Data will be lost\n");
030ba6bc 2087 if (err == -ENOSPC) {
df22291f 2088 ext4_print_free_blocks(mpd->inode);
030ba6bc 2089 }
c4a0c46e
AK
2090 /* invlaidate all the pages */
2091 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2092 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2093 return err;
2094 }
a1d6cc56 2095 BUG_ON(new.b_size == 0);
64769240 2096
a1d6cc56
AK
2097 if (buffer_new(&new))
2098 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2099
a1d6cc56
AK
2100 /*
2101 * If blocks are delayed marked, we need to
2102 * put actual blocknr and drop delayed bit
2103 */
8dc207c0
TT
2104 if ((mpd->b_state & (1 << BH_Delay)) ||
2105 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2106 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2107
c4a0c46e 2108 return 0;
64769240
AT
2109}
2110
bf068ee2
AK
2111#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2112 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2113
2114/*
2115 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2116 *
2117 * @mpd->lbh - extent of blocks
2118 * @logical - logical number of the block in the file
2119 * @bh - bh of the block (used to access block's state)
2120 *
2121 * the function is used to collect contig. blocks in same state
2122 */
2123static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2124 sector_t logical, size_t b_size,
2125 unsigned long b_state)
64769240 2126{
64769240 2127 sector_t next;
8dc207c0 2128 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2129
525f4ed8
MC
2130 /* check if thereserved journal credits might overflow */
2131 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2132 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2133 /*
2134 * With non-extent format we are limited by the journal
2135 * credit available. Total credit needed to insert
2136 * nrblocks contiguous blocks is dependent on the
2137 * nrblocks. So limit nrblocks.
2138 */
2139 goto flush_it;
2140 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2141 EXT4_MAX_TRANS_DATA) {
2142 /*
2143 * Adding the new buffer_head would make it cross the
2144 * allowed limit for which we have journal credit
2145 * reserved. So limit the new bh->b_size
2146 */
2147 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2148 mpd->inode->i_blkbits;
2149 /* we will do mpage_da_submit_io in the next loop */
2150 }
2151 }
64769240
AT
2152 /*
2153 * First block in the extent
2154 */
8dc207c0
TT
2155 if (mpd->b_size == 0) {
2156 mpd->b_blocknr = logical;
2157 mpd->b_size = b_size;
2158 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2159 return;
2160 }
2161
8dc207c0 2162 next = mpd->b_blocknr + nrblocks;
64769240
AT
2163 /*
2164 * Can we merge the block to our big extent?
2165 */
8dc207c0
TT
2166 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2167 mpd->b_size += b_size;
64769240
AT
2168 return;
2169 }
2170
525f4ed8 2171flush_it:
64769240
AT
2172 /*
2173 * We couldn't merge the block to our extent, so we
2174 * need to flush current extent and start new one
2175 */
c4a0c46e
AK
2176 if (mpage_da_map_blocks(mpd) == 0)
2177 mpage_da_submit_io(mpd);
a1d6cc56
AK
2178 mpd->io_done = 1;
2179 return;
64769240
AT
2180}
2181
2182/*
2183 * __mpage_da_writepage - finds extent of pages and blocks
2184 *
2185 * @page: page to consider
2186 * @wbc: not used, we just follow rules
2187 * @data: context
2188 *
2189 * The function finds extents of pages and scan them for all blocks.
2190 */
2191static int __mpage_da_writepage(struct page *page,
2192 struct writeback_control *wbc, void *data)
2193{
2194 struct mpage_da_data *mpd = data;
2195 struct inode *inode = mpd->inode;
8dc207c0 2196 struct buffer_head *bh, *head;
64769240
AT
2197 sector_t logical;
2198
a1d6cc56
AK
2199 if (mpd->io_done) {
2200 /*
2201 * Rest of the page in the page_vec
2202 * redirty then and skip then. We will
2203 * try to to write them again after
2204 * starting a new transaction
2205 */
2206 redirty_page_for_writepage(wbc, page);
2207 unlock_page(page);
2208 return MPAGE_DA_EXTENT_TAIL;
2209 }
64769240
AT
2210 /*
2211 * Can we merge this page to current extent?
2212 */
2213 if (mpd->next_page != page->index) {
2214 /*
2215 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2216 * and start IO on them using writepage()
64769240
AT
2217 */
2218 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2219 if (mpage_da_map_blocks(mpd) == 0)
2220 mpage_da_submit_io(mpd);
a1d6cc56
AK
2221 /*
2222 * skip rest of the page in the page_vec
2223 */
2224 mpd->io_done = 1;
2225 redirty_page_for_writepage(wbc, page);
2226 unlock_page(page);
2227 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2228 }
2229
2230 /*
2231 * Start next extent of pages ...
2232 */
2233 mpd->first_page = page->index;
2234
2235 /*
2236 * ... and blocks
2237 */
8dc207c0
TT
2238 mpd->b_size = 0;
2239 mpd->b_state = 0;
2240 mpd->b_blocknr = 0;
64769240
AT
2241 }
2242
2243 mpd->next_page = page->index + 1;
2244 logical = (sector_t) page->index <<
2245 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2246
2247 if (!page_has_buffers(page)) {
8dc207c0
TT
2248 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2249 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2250 if (mpd->io_done)
2251 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2252 } else {
2253 /*
2254 * Page with regular buffer heads, just add all dirty ones
2255 */
2256 head = page_buffers(page);
2257 bh = head;
2258 do {
2259 BUG_ON(buffer_locked(bh));
791b7f08
AK
2260 /*
2261 * We need to try to allocate
2262 * unmapped blocks in the same page.
2263 * Otherwise we won't make progress
2264 * with the page in ext4_da_writepage
2265 */
a1d6cc56 2266 if (buffer_dirty(bh) &&
8dc207c0
TT
2267 (!buffer_mapped(bh) || buffer_delay(bh))) {
2268 mpage_add_bh_to_extent(mpd, logical,
2269 bh->b_size,
2270 bh->b_state);
a1d6cc56
AK
2271 if (mpd->io_done)
2272 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2273 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2274 /*
2275 * mapped dirty buffer. We need to update
2276 * the b_state because we look at
2277 * b_state in mpage_da_map_blocks. We don't
2278 * update b_size because if we find an
2279 * unmapped buffer_head later we need to
2280 * use the b_state flag of that buffer_head.
2281 */
8dc207c0
TT
2282 if (mpd->b_size == 0)
2283 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2284 }
64769240
AT
2285 logical++;
2286 } while ((bh = bh->b_this_page) != head);
2287 }
2288
2289 return 0;
2290}
2291
64769240
AT
2292/*
2293 * this is a special callback for ->write_begin() only
2294 * it's intention is to return mapped block or reserve space
2295 */
2296static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2297 struct buffer_head *bh_result, int create)
2298{
2299 int ret = 0;
33b9817e
AK
2300 sector_t invalid_block = ~((sector_t) 0xffff);
2301
2302 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2303 invalid_block = ~0;
64769240
AT
2304
2305 BUG_ON(create == 0);
2306 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2307
2308 /*
2309 * first, we need to know whether the block is allocated already
2310 * preallocated blocks are unmapped but should treated
2311 * the same as allocated blocks.
2312 */
d2a17637
MC
2313 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2314 if ((ret == 0) && !buffer_delay(bh_result)) {
2315 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2316 /*
2317 * XXX: __block_prepare_write() unmaps passed block,
2318 * is it OK?
2319 */
d2a17637
MC
2320 ret = ext4_da_reserve_space(inode, 1);
2321 if (ret)
2322 /* not enough space to reserve */
2323 return ret;
2324
33b9817e 2325 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2326 set_buffer_new(bh_result);
2327 set_buffer_delay(bh_result);
2328 } else if (ret > 0) {
2329 bh_result->b_size = (ret << inode->i_blkbits);
9c1ee184
AK
2330 /*
2331 * With sub-block writes into unwritten extents
2332 * we also need to mark the buffer as new so that
2333 * the unwritten parts of the buffer gets correctly zeroed.
2334 */
2335 if (buffer_unwritten(bh_result))
2336 set_buffer_new(bh_result);
64769240
AT
2337 ret = 0;
2338 }
2339
2340 return ret;
2341}
61628a3f
MC
2342
2343static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2344{
f0e6c985
AK
2345 /*
2346 * unmapped buffer is possible for holes.
2347 * delay buffer is possible with delayed allocation
2348 */
2349 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2350}
2351
2352static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2353 struct buffer_head *bh_result, int create)
2354{
2355 int ret = 0;
2356 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2357
2358 /*
2359 * we don't want to do block allocation in writepage
2360 * so call get_block_wrap with create = 0
2361 */
2362 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2363 bh_result, 0, 0, 0);
2364 if (ret > 0) {
2365 bh_result->b_size = (ret << inode->i_blkbits);
2366 ret = 0;
2367 }
2368 return ret;
61628a3f
MC
2369}
2370
61628a3f 2371/*
f0e6c985
AK
2372 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2373 * get called via journal_submit_inode_data_buffers (no journal handle)
2374 * get called via shrink_page_list via pdflush (no journal handle)
2375 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2376 */
64769240
AT
2377static int ext4_da_writepage(struct page *page,
2378 struct writeback_control *wbc)
2379{
64769240 2380 int ret = 0;
61628a3f 2381 loff_t size;
498e5f24 2382 unsigned int len;
61628a3f
MC
2383 struct buffer_head *page_bufs;
2384 struct inode *inode = page->mapping->host;
2385
ba80b101
TT
2386 trace_mark(ext4_da_writepage,
2387 "dev %s ino %lu page_index %lu",
2388 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2389 size = i_size_read(inode);
2390 if (page->index == size >> PAGE_CACHE_SHIFT)
2391 len = size & ~PAGE_CACHE_MASK;
2392 else
2393 len = PAGE_CACHE_SIZE;
64769240 2394
f0e6c985 2395 if (page_has_buffers(page)) {
61628a3f 2396 page_bufs = page_buffers(page);
f0e6c985
AK
2397 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2398 ext4_bh_unmapped_or_delay)) {
61628a3f 2399 /*
f0e6c985
AK
2400 * We don't want to do block allocation
2401 * So redirty the page and return
cd1aac32
AK
2402 * We may reach here when we do a journal commit
2403 * via journal_submit_inode_data_buffers.
2404 * If we don't have mapping block we just ignore
f0e6c985
AK
2405 * them. We can also reach here via shrink_page_list
2406 */
2407 redirty_page_for_writepage(wbc, page);
2408 unlock_page(page);
2409 return 0;
2410 }
2411 } else {
2412 /*
2413 * The test for page_has_buffers() is subtle:
2414 * We know the page is dirty but it lost buffers. That means
2415 * that at some moment in time after write_begin()/write_end()
2416 * has been called all buffers have been clean and thus they
2417 * must have been written at least once. So they are all
2418 * mapped and we can happily proceed with mapping them
2419 * and writing the page.
2420 *
2421 * Try to initialize the buffer_heads and check whether
2422 * all are mapped and non delay. We don't want to
2423 * do block allocation here.
2424 */
2425 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2426 ext4_normal_get_block_write);
2427 if (!ret) {
2428 page_bufs = page_buffers(page);
2429 /* check whether all are mapped and non delay */
2430 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2431 ext4_bh_unmapped_or_delay)) {
2432 redirty_page_for_writepage(wbc, page);
2433 unlock_page(page);
2434 return 0;
2435 }
2436 } else {
2437 /*
2438 * We can't do block allocation here
2439 * so just redity the page and unlock
2440 * and return
61628a3f 2441 */
61628a3f
MC
2442 redirty_page_for_writepage(wbc, page);
2443 unlock_page(page);
2444 return 0;
2445 }
ed9b3e33
AK
2446 /* now mark the buffer_heads as dirty and uptodate */
2447 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2448 }
2449
2450 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2451 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2452 else
f0e6c985
AK
2453 ret = block_write_full_page(page,
2454 ext4_normal_get_block_write,
2455 wbc);
64769240 2456
64769240
AT
2457 return ret;
2458}
2459
61628a3f 2460/*
525f4ed8
MC
2461 * This is called via ext4_da_writepages() to
2462 * calulate the total number of credits to reserve to fit
2463 * a single extent allocation into a single transaction,
2464 * ext4_da_writpeages() will loop calling this before
2465 * the block allocation.
61628a3f 2466 */
525f4ed8
MC
2467
2468static int ext4_da_writepages_trans_blocks(struct inode *inode)
2469{
2470 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2471
2472 /*
2473 * With non-extent format the journal credit needed to
2474 * insert nrblocks contiguous block is dependent on
2475 * number of contiguous block. So we will limit
2476 * number of contiguous block to a sane value
2477 */
2478 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2479 (max_blocks > EXT4_MAX_TRANS_DATA))
2480 max_blocks = EXT4_MAX_TRANS_DATA;
2481
2482 return ext4_chunk_trans_blocks(inode, max_blocks);
2483}
61628a3f 2484
64769240 2485static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2486 struct writeback_control *wbc)
64769240 2487{
22208ded
AK
2488 pgoff_t index;
2489 int range_whole = 0;
61628a3f 2490 handle_t *handle = NULL;
df22291f 2491 struct mpage_da_data mpd;
5e745b04 2492 struct inode *inode = mapping->host;
22208ded 2493 int no_nrwrite_index_update;
498e5f24
TT
2494 int pages_written = 0;
2495 long pages_skipped;
2acf2c26 2496 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2497 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2498 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2499
ba80b101
TT
2500 trace_mark(ext4_da_writepages,
2501 "dev %s ino %lu nr_t_write %ld "
2502 "pages_skipped %ld range_start %llu "
2503 "range_end %llu nonblocking %d "
2504 "for_kupdate %d for_reclaim %d "
2505 "for_writepages %d range_cyclic %d",
2506 inode->i_sb->s_id, inode->i_ino,
2507 wbc->nr_to_write, wbc->pages_skipped,
2508 (unsigned long long) wbc->range_start,
2509 (unsigned long long) wbc->range_end,
2510 wbc->nonblocking, wbc->for_kupdate,
2511 wbc->for_reclaim, wbc->for_writepages,
2512 wbc->range_cyclic);
2513
61628a3f
MC
2514 /*
2515 * No pages to write? This is mainly a kludge to avoid starting
2516 * a transaction for special inodes like journal inode on last iput()
2517 * because that could violate lock ordering on umount
2518 */
a1d6cc56 2519 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2520 return 0;
2a21e37e
TT
2521
2522 /*
2523 * If the filesystem has aborted, it is read-only, so return
2524 * right away instead of dumping stack traces later on that
2525 * will obscure the real source of the problem. We test
2526 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2527 * the latter could be true if the filesystem is mounted
2528 * read-only, and in that case, ext4_da_writepages should
2529 * *never* be called, so if that ever happens, we would want
2530 * the stack trace.
2531 */
2532 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2533 return -EROFS;
2534
5e745b04
AK
2535 /*
2536 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2537 * This make sure small files blocks are allocated in
2538 * single attempt. This ensure that small files
2539 * get less fragmented.
2540 */
2541 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2542 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2543 wbc->nr_to_write = sbi->s_mb_stream_request;
2544 }
22208ded
AK
2545 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2546 range_whole = 1;
61628a3f 2547
2acf2c26
AK
2548 range_cyclic = wbc->range_cyclic;
2549 if (wbc->range_cyclic) {
22208ded 2550 index = mapping->writeback_index;
2acf2c26
AK
2551 if (index)
2552 cycled = 0;
2553 wbc->range_start = index << PAGE_CACHE_SHIFT;
2554 wbc->range_end = LLONG_MAX;
2555 wbc->range_cyclic = 0;
2556 } else
22208ded 2557 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2558
df22291f
AK
2559 mpd.wbc = wbc;
2560 mpd.inode = mapping->host;
2561
22208ded
AK
2562 /*
2563 * we don't want write_cache_pages to update
2564 * nr_to_write and writeback_index
2565 */
2566 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2567 wbc->no_nrwrite_index_update = 1;
2568 pages_skipped = wbc->pages_skipped;
2569
2acf2c26 2570retry:
22208ded 2571 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2572
2573 /*
2574 * we insert one extent at a time. So we need
2575 * credit needed for single extent allocation.
2576 * journalled mode is currently not supported
2577 * by delalloc
2578 */
2579 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2580 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2581
61628a3f
MC
2582 /* start a new transaction*/
2583 handle = ext4_journal_start(inode, needed_blocks);
2584 if (IS_ERR(handle)) {
2585 ret = PTR_ERR(handle);
2a21e37e 2586 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2587 "%ld pages, ino %lu; err %d\n", __func__,
2588 wbc->nr_to_write, inode->i_ino, ret);
2589 dump_stack();
61628a3f
MC
2590 goto out_writepages;
2591 }
f63e6005
TT
2592
2593 /*
2594 * Now call __mpage_da_writepage to find the next
2595 * contiguous region of logical blocks that need
2596 * blocks to be allocated by ext4. We don't actually
2597 * submit the blocks for I/O here, even though
2598 * write_cache_pages thinks it will, and will set the
2599 * pages as clean for write before calling
2600 * __mpage_da_writepage().
2601 */
2602 mpd.b_size = 0;
2603 mpd.b_state = 0;
2604 mpd.b_blocknr = 0;
2605 mpd.first_page = 0;
2606 mpd.next_page = 0;
2607 mpd.io_done = 0;
2608 mpd.pages_written = 0;
2609 mpd.retval = 0;
2610 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2611 &mpd);
2612 /*
2613 * If we have a contigous extent of pages and we
2614 * haven't done the I/O yet, map the blocks and submit
2615 * them for I/O.
2616 */
2617 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2618 if (mpage_da_map_blocks(&mpd) == 0)
2619 mpage_da_submit_io(&mpd);
2620 mpd.io_done = 1;
2621 ret = MPAGE_DA_EXTENT_TAIL;
2622 }
2623 wbc->nr_to_write -= mpd.pages_written;
df22291f 2624
61628a3f 2625 ext4_journal_stop(handle);
df22291f 2626
8f64b32e 2627 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2628 /* commit the transaction which would
2629 * free blocks released in the transaction
2630 * and try again
2631 */
df22291f 2632 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2633 wbc->pages_skipped = pages_skipped;
2634 ret = 0;
2635 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2636 /*
2637 * got one extent now try with
2638 * rest of the pages
2639 */
22208ded
AK
2640 pages_written += mpd.pages_written;
2641 wbc->pages_skipped = pages_skipped;
a1d6cc56 2642 ret = 0;
2acf2c26 2643 io_done = 1;
22208ded 2644 } else if (wbc->nr_to_write)
61628a3f
MC
2645 /*
2646 * There is no more writeout needed
2647 * or we requested for a noblocking writeout
2648 * and we found the device congested
2649 */
61628a3f 2650 break;
a1d6cc56 2651 }
2acf2c26
AK
2652 if (!io_done && !cycled) {
2653 cycled = 1;
2654 index = 0;
2655 wbc->range_start = index << PAGE_CACHE_SHIFT;
2656 wbc->range_end = mapping->writeback_index - 1;
2657 goto retry;
2658 }
22208ded
AK
2659 if (pages_skipped != wbc->pages_skipped)
2660 printk(KERN_EMERG "This should not happen leaving %s "
2661 "with nr_to_write = %ld ret = %d\n",
2662 __func__, wbc->nr_to_write, ret);
2663
2664 /* Update index */
2665 index += pages_written;
2acf2c26 2666 wbc->range_cyclic = range_cyclic;
22208ded
AK
2667 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2668 /*
2669 * set the writeback_index so that range_cyclic
2670 * mode will write it back later
2671 */
2672 mapping->writeback_index = index;
a1d6cc56 2673
61628a3f 2674out_writepages:
22208ded
AK
2675 if (!no_nrwrite_index_update)
2676 wbc->no_nrwrite_index_update = 0;
2677 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2678 trace_mark(ext4_da_writepage_result,
2679 "dev %s ino %lu ret %d pages_written %d "
2680 "pages_skipped %ld congestion %d "
2681 "more_io %d no_nrwrite_index_update %d",
2682 inode->i_sb->s_id, inode->i_ino, ret,
2683 pages_written, wbc->pages_skipped,
2684 wbc->encountered_congestion, wbc->more_io,
2685 wbc->no_nrwrite_index_update);
61628a3f 2686 return ret;
64769240
AT
2687}
2688
79f0be8d
AK
2689#define FALL_BACK_TO_NONDELALLOC 1
2690static int ext4_nonda_switch(struct super_block *sb)
2691{
2692 s64 free_blocks, dirty_blocks;
2693 struct ext4_sb_info *sbi = EXT4_SB(sb);
2694
2695 /*
2696 * switch to non delalloc mode if we are running low
2697 * on free block. The free block accounting via percpu
179f7ebf 2698 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2699 * accumulated on each CPU without updating global counters
2700 * Delalloc need an accurate free block accounting. So switch
2701 * to non delalloc when we are near to error range.
2702 */
2703 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2704 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2705 if (2 * free_blocks < 3 * dirty_blocks ||
2706 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2707 /*
2708 * free block count is less that 150% of dirty blocks
2709 * or free blocks is less that watermark
2710 */
2711 return 1;
2712 }
2713 return 0;
2714}
2715
64769240
AT
2716static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2717 loff_t pos, unsigned len, unsigned flags,
2718 struct page **pagep, void **fsdata)
2719{
d2a17637 2720 int ret, retries = 0;
64769240
AT
2721 struct page *page;
2722 pgoff_t index;
2723 unsigned from, to;
2724 struct inode *inode = mapping->host;
2725 handle_t *handle;
2726
2727 index = pos >> PAGE_CACHE_SHIFT;
2728 from = pos & (PAGE_CACHE_SIZE - 1);
2729 to = from + len;
79f0be8d
AK
2730
2731 if (ext4_nonda_switch(inode->i_sb)) {
2732 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2733 return ext4_write_begin(file, mapping, pos,
2734 len, flags, pagep, fsdata);
2735 }
2736 *fsdata = (void *)0;
ba80b101
TT
2737
2738 trace_mark(ext4_da_write_begin,
2739 "dev %s ino %lu pos %llu len %u flags %u",
2740 inode->i_sb->s_id, inode->i_ino,
2741 (unsigned long long) pos, len, flags);
d2a17637 2742retry:
64769240
AT
2743 /*
2744 * With delayed allocation, we don't log the i_disksize update
2745 * if there is delayed block allocation. But we still need
2746 * to journalling the i_disksize update if writes to the end
2747 * of file which has an already mapped buffer.
2748 */
2749 handle = ext4_journal_start(inode, 1);
2750 if (IS_ERR(handle)) {
2751 ret = PTR_ERR(handle);
2752 goto out;
2753 }
ebd3610b
JK
2754 /* We cannot recurse into the filesystem as the transaction is already
2755 * started */
2756 flags |= AOP_FLAG_NOFS;
64769240 2757
54566b2c 2758 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2759 if (!page) {
2760 ext4_journal_stop(handle);
2761 ret = -ENOMEM;
2762 goto out;
2763 }
64769240
AT
2764 *pagep = page;
2765
2766 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2767 ext4_da_get_block_prep);
2768 if (ret < 0) {
2769 unlock_page(page);
2770 ext4_journal_stop(handle);
2771 page_cache_release(page);
ae4d5372
AK
2772 /*
2773 * block_write_begin may have instantiated a few blocks
2774 * outside i_size. Trim these off again. Don't need
2775 * i_size_read because we hold i_mutex.
2776 */
2777 if (pos + len > inode->i_size)
2778 vmtruncate(inode, inode->i_size);
64769240
AT
2779 }
2780
d2a17637
MC
2781 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2782 goto retry;
64769240
AT
2783out:
2784 return ret;
2785}
2786
632eaeab
MC
2787/*
2788 * Check if we should update i_disksize
2789 * when write to the end of file but not require block allocation
2790 */
2791static int ext4_da_should_update_i_disksize(struct page *page,
2792 unsigned long offset)
2793{
2794 struct buffer_head *bh;
2795 struct inode *inode = page->mapping->host;
2796 unsigned int idx;
2797 int i;
2798
2799 bh = page_buffers(page);
2800 idx = offset >> inode->i_blkbits;
2801
af5bc92d 2802 for (i = 0; i < idx; i++)
632eaeab
MC
2803 bh = bh->b_this_page;
2804
2805 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2806 return 0;
2807 return 1;
2808}
2809
64769240
AT
2810static int ext4_da_write_end(struct file *file,
2811 struct address_space *mapping,
2812 loff_t pos, unsigned len, unsigned copied,
2813 struct page *page, void *fsdata)
2814{
2815 struct inode *inode = mapping->host;
2816 int ret = 0, ret2;
2817 handle_t *handle = ext4_journal_current_handle();
2818 loff_t new_i_size;
632eaeab 2819 unsigned long start, end;
79f0be8d
AK
2820 int write_mode = (int)(unsigned long)fsdata;
2821
2822 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2823 if (ext4_should_order_data(inode)) {
2824 return ext4_ordered_write_end(file, mapping, pos,
2825 len, copied, page, fsdata);
2826 } else if (ext4_should_writeback_data(inode)) {
2827 return ext4_writeback_write_end(file, mapping, pos,
2828 len, copied, page, fsdata);
2829 } else {
2830 BUG();
2831 }
2832 }
632eaeab 2833
ba80b101
TT
2834 trace_mark(ext4_da_write_end,
2835 "dev %s ino %lu pos %llu len %u copied %u",
2836 inode->i_sb->s_id, inode->i_ino,
2837 (unsigned long long) pos, len, copied);
632eaeab 2838 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2839 end = start + copied - 1;
64769240
AT
2840
2841 /*
2842 * generic_write_end() will run mark_inode_dirty() if i_size
2843 * changes. So let's piggyback the i_disksize mark_inode_dirty
2844 * into that.
2845 */
2846
2847 new_i_size = pos + copied;
632eaeab
MC
2848 if (new_i_size > EXT4_I(inode)->i_disksize) {
2849 if (ext4_da_should_update_i_disksize(page, end)) {
2850 down_write(&EXT4_I(inode)->i_data_sem);
2851 if (new_i_size > EXT4_I(inode)->i_disksize) {
2852 /*
2853 * Updating i_disksize when extending file
2854 * without needing block allocation
2855 */
2856 if (ext4_should_order_data(inode))
2857 ret = ext4_jbd2_file_inode(handle,
2858 inode);
64769240 2859
632eaeab
MC
2860 EXT4_I(inode)->i_disksize = new_i_size;
2861 }
2862 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2863 /* We need to mark inode dirty even if
2864 * new_i_size is less that inode->i_size
2865 * bu greater than i_disksize.(hint delalloc)
2866 */
2867 ext4_mark_inode_dirty(handle, inode);
64769240 2868 }
632eaeab 2869 }
64769240
AT
2870 ret2 = generic_write_end(file, mapping, pos, len, copied,
2871 page, fsdata);
2872 copied = ret2;
2873 if (ret2 < 0)
2874 ret = ret2;
2875 ret2 = ext4_journal_stop(handle);
2876 if (!ret)
2877 ret = ret2;
2878
2879 return ret ? ret : copied;
2880}
2881
2882static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2883{
64769240
AT
2884 /*
2885 * Drop reserved blocks
2886 */
2887 BUG_ON(!PageLocked(page));
2888 if (!page_has_buffers(page))
2889 goto out;
2890
d2a17637 2891 ext4_da_page_release_reservation(page, offset);
64769240
AT
2892
2893out:
2894 ext4_invalidatepage(page, offset);
2895
2896 return;
2897}
2898
ccd2506b
TT
2899/*
2900 * Force all delayed allocation blocks to be allocated for a given inode.
2901 */
2902int ext4_alloc_da_blocks(struct inode *inode)
2903{
2904 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2905 !EXT4_I(inode)->i_reserved_meta_blocks)
2906 return 0;
2907
2908 /*
2909 * We do something simple for now. The filemap_flush() will
2910 * also start triggering a write of the data blocks, which is
2911 * not strictly speaking necessary (and for users of
2912 * laptop_mode, not even desirable). However, to do otherwise
2913 * would require replicating code paths in:
2914 *
2915 * ext4_da_writepages() ->
2916 * write_cache_pages() ---> (via passed in callback function)
2917 * __mpage_da_writepage() -->
2918 * mpage_add_bh_to_extent()
2919 * mpage_da_map_blocks()
2920 *
2921 * The problem is that write_cache_pages(), located in
2922 * mm/page-writeback.c, marks pages clean in preparation for
2923 * doing I/O, which is not desirable if we're not planning on
2924 * doing I/O at all.
2925 *
2926 * We could call write_cache_pages(), and then redirty all of
2927 * the pages by calling redirty_page_for_writeback() but that
2928 * would be ugly in the extreme. So instead we would need to
2929 * replicate parts of the code in the above functions,
2930 * simplifying them becuase we wouldn't actually intend to
2931 * write out the pages, but rather only collect contiguous
2932 * logical block extents, call the multi-block allocator, and
2933 * then update the buffer heads with the block allocations.
2934 *
2935 * For now, though, we'll cheat by calling filemap_flush(),
2936 * which will map the blocks, and start the I/O, but not
2937 * actually wait for the I/O to complete.
2938 */
2939 return filemap_flush(inode->i_mapping);
2940}
64769240 2941
ac27a0ec
DK
2942/*
2943 * bmap() is special. It gets used by applications such as lilo and by
2944 * the swapper to find the on-disk block of a specific piece of data.
2945 *
2946 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2947 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2948 * filesystem and enables swap, then they may get a nasty shock when the
2949 * data getting swapped to that swapfile suddenly gets overwritten by
2950 * the original zero's written out previously to the journal and
2951 * awaiting writeback in the kernel's buffer cache.
2952 *
2953 * So, if we see any bmap calls here on a modified, data-journaled file,
2954 * take extra steps to flush any blocks which might be in the cache.
2955 */
617ba13b 2956static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2957{
2958 struct inode *inode = mapping->host;
2959 journal_t *journal;
2960 int err;
2961
64769240
AT
2962 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2963 test_opt(inode->i_sb, DELALLOC)) {
2964 /*
2965 * With delalloc we want to sync the file
2966 * so that we can make sure we allocate
2967 * blocks for file
2968 */
2969 filemap_write_and_wait(mapping);
2970 }
2971
0390131b 2972 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2973 /*
2974 * This is a REALLY heavyweight approach, but the use of
2975 * bmap on dirty files is expected to be extremely rare:
2976 * only if we run lilo or swapon on a freshly made file
2977 * do we expect this to happen.
2978 *
2979 * (bmap requires CAP_SYS_RAWIO so this does not
2980 * represent an unprivileged user DOS attack --- we'd be
2981 * in trouble if mortal users could trigger this path at
2982 * will.)
2983 *
617ba13b 2984 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2985 * regular files. If somebody wants to bmap a directory
2986 * or symlink and gets confused because the buffer
2987 * hasn't yet been flushed to disk, they deserve
2988 * everything they get.
2989 */
2990
617ba13b
MC
2991 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2992 journal = EXT4_JOURNAL(inode);
dab291af
MC
2993 jbd2_journal_lock_updates(journal);
2994 err = jbd2_journal_flush(journal);
2995 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2996
2997 if (err)
2998 return 0;
2999 }
3000
af5bc92d 3001 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3002}
3003
3004static int bget_one(handle_t *handle, struct buffer_head *bh)
3005{
3006 get_bh(bh);
3007 return 0;
3008}
3009
3010static int bput_one(handle_t *handle, struct buffer_head *bh)
3011{
3012 put_bh(bh);
3013 return 0;
3014}
3015
ac27a0ec 3016/*
678aaf48
JK
3017 * Note that we don't need to start a transaction unless we're journaling data
3018 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3019 * need to file the inode to the transaction's list in ordered mode because if
3020 * we are writing back data added by write(), the inode is already there and if
3021 * we are writing back data modified via mmap(), noone guarantees in which
3022 * transaction the data will hit the disk. In case we are journaling data, we
3023 * cannot start transaction directly because transaction start ranks above page
3024 * lock so we have to do some magic.
ac27a0ec 3025 *
678aaf48 3026 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
3027 *
3028 * Problem:
3029 *
617ba13b
MC
3030 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3031 * ext4_writepage()
ac27a0ec
DK
3032 *
3033 * Similar for:
3034 *
617ba13b 3035 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 3036 *
617ba13b 3037 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 3038 * lock_journal and i_data_sem
ac27a0ec
DK
3039 *
3040 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3041 * allocations fail.
3042 *
3043 * 16May01: If we're reentered then journal_current_handle() will be
3044 * non-zero. We simply *return*.
3045 *
3046 * 1 July 2001: @@@ FIXME:
3047 * In journalled data mode, a data buffer may be metadata against the
3048 * current transaction. But the same file is part of a shared mapping
3049 * and someone does a writepage() on it.
3050 *
3051 * We will move the buffer onto the async_data list, but *after* it has
3052 * been dirtied. So there's a small window where we have dirty data on
3053 * BJ_Metadata.
3054 *
3055 * Note that this only applies to the last partial page in the file. The
3056 * bit which block_write_full_page() uses prepare/commit for. (That's
3057 * broken code anyway: it's wrong for msync()).
3058 *
3059 * It's a rare case: affects the final partial page, for journalled data
3060 * where the file is subject to bith write() and writepage() in the same
3061 * transction. To fix it we'll need a custom block_write_full_page().
3062 * We'll probably need that anyway for journalling writepage() output.
3063 *
3064 * We don't honour synchronous mounts for writepage(). That would be
3065 * disastrous. Any write() or metadata operation will sync the fs for
3066 * us.
3067 *
ac27a0ec 3068 */
678aaf48 3069static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
3070 struct writeback_control *wbc)
3071{
3072 struct inode *inode = page->mapping->host;
3073
3074 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
3075 return nobh_writepage(page,
3076 ext4_normal_get_block_write, wbc);
cf108bca 3077 else
f0e6c985
AK
3078 return block_write_full_page(page,
3079 ext4_normal_get_block_write,
3080 wbc);
cf108bca
JK
3081}
3082
678aaf48 3083static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
3084 struct writeback_control *wbc)
3085{
3086 struct inode *inode = page->mapping->host;
cf108bca
JK
3087 loff_t size = i_size_read(inode);
3088 loff_t len;
3089
ba80b101
TT
3090 trace_mark(ext4_normal_writepage,
3091 "dev %s ino %lu page_index %lu",
3092 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3093 J_ASSERT(PageLocked(page));
cf108bca
JK
3094 if (page->index == size >> PAGE_CACHE_SHIFT)
3095 len = size & ~PAGE_CACHE_MASK;
3096 else
3097 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3098
3099 if (page_has_buffers(page)) {
3100 /* if page has buffers it should all be mapped
3101 * and allocated. If there are not buffers attached
3102 * to the page we know the page is dirty but it lost
3103 * buffers. That means that at some moment in time
3104 * after write_begin() / write_end() has been called
3105 * all buffers have been clean and thus they must have been
3106 * written at least once. So they are all mapped and we can
3107 * happily proceed with mapping them and writing the page.
3108 */
3109 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3110 ext4_bh_unmapped_or_delay));
3111 }
cf108bca
JK
3112
3113 if (!ext4_journal_current_handle())
678aaf48 3114 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3115
3116 redirty_page_for_writepage(wbc, page);
3117 unlock_page(page);
3118 return 0;
3119}
3120
3121static int __ext4_journalled_writepage(struct page *page,
3122 struct writeback_control *wbc)
3123{
3124 struct address_space *mapping = page->mapping;
3125 struct inode *inode = mapping->host;
3126 struct buffer_head *page_bufs;
ac27a0ec
DK
3127 handle_t *handle = NULL;
3128 int ret = 0;
3129 int err;
3130
f0e6c985
AK
3131 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3132 ext4_normal_get_block_write);
cf108bca
JK
3133 if (ret != 0)
3134 goto out_unlock;
3135
3136 page_bufs = page_buffers(page);
3137 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3138 bget_one);
3139 /* As soon as we unlock the page, it can go away, but we have
3140 * references to buffers so we are safe */
3141 unlock_page(page);
ac27a0ec 3142
617ba13b 3143 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3144 if (IS_ERR(handle)) {
3145 ret = PTR_ERR(handle);
cf108bca 3146 goto out;
ac27a0ec
DK
3147 }
3148
cf108bca
JK
3149 ret = walk_page_buffers(handle, page_bufs, 0,
3150 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3151
cf108bca
JK
3152 err = walk_page_buffers(handle, page_bufs, 0,
3153 PAGE_CACHE_SIZE, NULL, write_end_fn);
3154 if (ret == 0)
3155 ret = err;
617ba13b 3156 err = ext4_journal_stop(handle);
ac27a0ec
DK
3157 if (!ret)
3158 ret = err;
ac27a0ec 3159
cf108bca
JK
3160 walk_page_buffers(handle, page_bufs, 0,
3161 PAGE_CACHE_SIZE, NULL, bput_one);
3162 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3163 goto out;
3164
3165out_unlock:
ac27a0ec 3166 unlock_page(page);
cf108bca 3167out:
ac27a0ec
DK
3168 return ret;
3169}
3170
617ba13b 3171static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3172 struct writeback_control *wbc)
3173{
3174 struct inode *inode = page->mapping->host;
cf108bca
JK
3175 loff_t size = i_size_read(inode);
3176 loff_t len;
ac27a0ec 3177
ba80b101
TT
3178 trace_mark(ext4_journalled_writepage,
3179 "dev %s ino %lu page_index %lu",
3180 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3181 J_ASSERT(PageLocked(page));
cf108bca
JK
3182 if (page->index == size >> PAGE_CACHE_SHIFT)
3183 len = size & ~PAGE_CACHE_MASK;
3184 else
3185 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3186
3187 if (page_has_buffers(page)) {
3188 /* if page has buffers it should all be mapped
3189 * and allocated. If there are not buffers attached
3190 * to the page we know the page is dirty but it lost
3191 * buffers. That means that at some moment in time
3192 * after write_begin() / write_end() has been called
3193 * all buffers have been clean and thus they must have been
3194 * written at least once. So they are all mapped and we can
3195 * happily proceed with mapping them and writing the page.
3196 */
3197 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3198 ext4_bh_unmapped_or_delay));
3199 }
ac27a0ec 3200
cf108bca 3201 if (ext4_journal_current_handle())
ac27a0ec 3202 goto no_write;
ac27a0ec 3203
cf108bca 3204 if (PageChecked(page)) {
ac27a0ec
DK
3205 /*
3206 * It's mmapped pagecache. Add buffers and journal it. There
3207 * doesn't seem much point in redirtying the page here.
3208 */
3209 ClearPageChecked(page);
cf108bca 3210 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3211 } else {
3212 /*
3213 * It may be a page full of checkpoint-mode buffers. We don't
3214 * really know unless we go poke around in the buffer_heads.
3215 * But block_write_full_page will do the right thing.
3216 */
f0e6c985
AK
3217 return block_write_full_page(page,
3218 ext4_normal_get_block_write,
3219 wbc);
ac27a0ec 3220 }
ac27a0ec
DK
3221no_write:
3222 redirty_page_for_writepage(wbc, page);
ac27a0ec 3223 unlock_page(page);
cf108bca 3224 return 0;
ac27a0ec
DK
3225}
3226
617ba13b 3227static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3228{
617ba13b 3229 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3230}
3231
3232static int
617ba13b 3233ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3234 struct list_head *pages, unsigned nr_pages)
3235{
617ba13b 3236 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3237}
3238
617ba13b 3239static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3240{
617ba13b 3241 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3242
3243 /*
3244 * If it's a full truncate we just forget about the pending dirtying
3245 */
3246 if (offset == 0)
3247 ClearPageChecked(page);
3248
0390131b
FM
3249 if (journal)
3250 jbd2_journal_invalidatepage(journal, page, offset);
3251 else
3252 block_invalidatepage(page, offset);
ac27a0ec
DK
3253}
3254
617ba13b 3255static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3256{
617ba13b 3257 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3258
3259 WARN_ON(PageChecked(page));
3260 if (!page_has_buffers(page))
3261 return 0;
0390131b
FM
3262 if (journal)
3263 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3264 else
3265 return try_to_free_buffers(page);
ac27a0ec
DK
3266}
3267
3268/*
3269 * If the O_DIRECT write will extend the file then add this inode to the
3270 * orphan list. So recovery will truncate it back to the original size
3271 * if the machine crashes during the write.
3272 *
3273 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3274 * crashes then stale disk data _may_ be exposed inside the file. But current
3275 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3276 */
617ba13b 3277static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3278 const struct iovec *iov, loff_t offset,
3279 unsigned long nr_segs)
3280{
3281 struct file *file = iocb->ki_filp;
3282 struct inode *inode = file->f_mapping->host;
617ba13b 3283 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3284 handle_t *handle;
ac27a0ec
DK
3285 ssize_t ret;
3286 int orphan = 0;
3287 size_t count = iov_length(iov, nr_segs);
3288
3289 if (rw == WRITE) {
3290 loff_t final_size = offset + count;
3291
ac27a0ec 3292 if (final_size > inode->i_size) {
7fb5409d
JK
3293 /* Credits for sb + inode write */
3294 handle = ext4_journal_start(inode, 2);
3295 if (IS_ERR(handle)) {
3296 ret = PTR_ERR(handle);
3297 goto out;
3298 }
617ba13b 3299 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3300 if (ret) {
3301 ext4_journal_stop(handle);
3302 goto out;
3303 }
ac27a0ec
DK
3304 orphan = 1;
3305 ei->i_disksize = inode->i_size;
7fb5409d 3306 ext4_journal_stop(handle);
ac27a0ec
DK
3307 }
3308 }
3309
3310 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3311 offset, nr_segs,
617ba13b 3312 ext4_get_block, NULL);
ac27a0ec 3313
7fb5409d 3314 if (orphan) {
ac27a0ec
DK
3315 int err;
3316
7fb5409d
JK
3317 /* Credits for sb + inode write */
3318 handle = ext4_journal_start(inode, 2);
3319 if (IS_ERR(handle)) {
3320 /* This is really bad luck. We've written the data
3321 * but cannot extend i_size. Bail out and pretend
3322 * the write failed... */
3323 ret = PTR_ERR(handle);
3324 goto out;
3325 }
3326 if (inode->i_nlink)
617ba13b 3327 ext4_orphan_del(handle, inode);
7fb5409d 3328 if (ret > 0) {
ac27a0ec
DK
3329 loff_t end = offset + ret;
3330 if (end > inode->i_size) {
3331 ei->i_disksize = end;
3332 i_size_write(inode, end);
3333 /*
3334 * We're going to return a positive `ret'
3335 * here due to non-zero-length I/O, so there's
3336 * no way of reporting error returns from
617ba13b 3337 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3338 * ignore it.
3339 */
617ba13b 3340 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3341 }
3342 }
617ba13b 3343 err = ext4_journal_stop(handle);
ac27a0ec
DK
3344 if (ret == 0)
3345 ret = err;
3346 }
3347out:
3348 return ret;
3349}
3350
3351/*
617ba13b 3352 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3353 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3354 * much here because ->set_page_dirty is called under VFS locks. The page is
3355 * not necessarily locked.
3356 *
3357 * We cannot just dirty the page and leave attached buffers clean, because the
3358 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3359 * or jbddirty because all the journalling code will explode.
3360 *
3361 * So what we do is to mark the page "pending dirty" and next time writepage
3362 * is called, propagate that into the buffers appropriately.
3363 */
617ba13b 3364static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3365{
3366 SetPageChecked(page);
3367 return __set_page_dirty_nobuffers(page);
3368}
3369
617ba13b 3370static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3371 .readpage = ext4_readpage,
3372 .readpages = ext4_readpages,
3373 .writepage = ext4_normal_writepage,
3374 .sync_page = block_sync_page,
3375 .write_begin = ext4_write_begin,
3376 .write_end = ext4_ordered_write_end,
3377 .bmap = ext4_bmap,
3378 .invalidatepage = ext4_invalidatepage,
3379 .releasepage = ext4_releasepage,
3380 .direct_IO = ext4_direct_IO,
3381 .migratepage = buffer_migrate_page,
3382 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3383};
3384
617ba13b 3385static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3386 .readpage = ext4_readpage,
3387 .readpages = ext4_readpages,
3388 .writepage = ext4_normal_writepage,
3389 .sync_page = block_sync_page,
3390 .write_begin = ext4_write_begin,
3391 .write_end = ext4_writeback_write_end,
3392 .bmap = ext4_bmap,
3393 .invalidatepage = ext4_invalidatepage,
3394 .releasepage = ext4_releasepage,
3395 .direct_IO = ext4_direct_IO,
3396 .migratepage = buffer_migrate_page,
3397 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3398};
3399
617ba13b 3400static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3401 .readpage = ext4_readpage,
3402 .readpages = ext4_readpages,
3403 .writepage = ext4_journalled_writepage,
3404 .sync_page = block_sync_page,
3405 .write_begin = ext4_write_begin,
3406 .write_end = ext4_journalled_write_end,
3407 .set_page_dirty = ext4_journalled_set_page_dirty,
3408 .bmap = ext4_bmap,
3409 .invalidatepage = ext4_invalidatepage,
3410 .releasepage = ext4_releasepage,
3411 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3412};
3413
64769240 3414static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3415 .readpage = ext4_readpage,
3416 .readpages = ext4_readpages,
3417 .writepage = ext4_da_writepage,
3418 .writepages = ext4_da_writepages,
3419 .sync_page = block_sync_page,
3420 .write_begin = ext4_da_write_begin,
3421 .write_end = ext4_da_write_end,
3422 .bmap = ext4_bmap,
3423 .invalidatepage = ext4_da_invalidatepage,
3424 .releasepage = ext4_releasepage,
3425 .direct_IO = ext4_direct_IO,
3426 .migratepage = buffer_migrate_page,
3427 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3428};
3429
617ba13b 3430void ext4_set_aops(struct inode *inode)
ac27a0ec 3431{
cd1aac32
AK
3432 if (ext4_should_order_data(inode) &&
3433 test_opt(inode->i_sb, DELALLOC))
3434 inode->i_mapping->a_ops = &ext4_da_aops;
3435 else if (ext4_should_order_data(inode))
617ba13b 3436 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3437 else if (ext4_should_writeback_data(inode) &&
3438 test_opt(inode->i_sb, DELALLOC))
3439 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3440 else if (ext4_should_writeback_data(inode))
3441 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3442 else
617ba13b 3443 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3444}
3445
3446/*
617ba13b 3447 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3448 * up to the end of the block which corresponds to `from'.
3449 * This required during truncate. We need to physically zero the tail end
3450 * of that block so it doesn't yield old data if the file is later grown.
3451 */
cf108bca 3452int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3453 struct address_space *mapping, loff_t from)
3454{
617ba13b 3455 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3456 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3457 unsigned blocksize, length, pos;
3458 ext4_lblk_t iblock;
ac27a0ec
DK
3459 struct inode *inode = mapping->host;
3460 struct buffer_head *bh;
cf108bca 3461 struct page *page;
ac27a0ec 3462 int err = 0;
ac27a0ec 3463
cf108bca
JK
3464 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3465 if (!page)
3466 return -EINVAL;
3467
ac27a0ec
DK
3468 blocksize = inode->i_sb->s_blocksize;
3469 length = blocksize - (offset & (blocksize - 1));
3470 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3471
3472 /*
3473 * For "nobh" option, we can only work if we don't need to
3474 * read-in the page - otherwise we create buffers to do the IO.
3475 */
3476 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3477 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3478 zero_user(page, offset, length);
ac27a0ec
DK
3479 set_page_dirty(page);
3480 goto unlock;
3481 }
3482
3483 if (!page_has_buffers(page))
3484 create_empty_buffers(page, blocksize, 0);
3485
3486 /* Find the buffer that contains "offset" */
3487 bh = page_buffers(page);
3488 pos = blocksize;
3489 while (offset >= pos) {
3490 bh = bh->b_this_page;
3491 iblock++;
3492 pos += blocksize;
3493 }
3494
3495 err = 0;
3496 if (buffer_freed(bh)) {
3497 BUFFER_TRACE(bh, "freed: skip");
3498 goto unlock;
3499 }
3500
3501 if (!buffer_mapped(bh)) {
3502 BUFFER_TRACE(bh, "unmapped");
617ba13b 3503 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3504 /* unmapped? It's a hole - nothing to do */
3505 if (!buffer_mapped(bh)) {
3506 BUFFER_TRACE(bh, "still unmapped");
3507 goto unlock;
3508 }
3509 }
3510
3511 /* Ok, it's mapped. Make sure it's up-to-date */
3512 if (PageUptodate(page))
3513 set_buffer_uptodate(bh);
3514
3515 if (!buffer_uptodate(bh)) {
3516 err = -EIO;
3517 ll_rw_block(READ, 1, &bh);
3518 wait_on_buffer(bh);
3519 /* Uhhuh. Read error. Complain and punt. */
3520 if (!buffer_uptodate(bh))
3521 goto unlock;
3522 }
3523
617ba13b 3524 if (ext4_should_journal_data(inode)) {
ac27a0ec 3525 BUFFER_TRACE(bh, "get write access");
617ba13b 3526 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3527 if (err)
3528 goto unlock;
3529 }
3530
eebd2aa3 3531 zero_user(page, offset, length);
ac27a0ec
DK
3532
3533 BUFFER_TRACE(bh, "zeroed end of block");
3534
3535 err = 0;
617ba13b 3536 if (ext4_should_journal_data(inode)) {
0390131b 3537 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3538 } else {
617ba13b 3539 if (ext4_should_order_data(inode))
678aaf48 3540 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3541 mark_buffer_dirty(bh);
3542 }
3543
3544unlock:
3545 unlock_page(page);
3546 page_cache_release(page);
3547 return err;
3548}
3549
3550/*
3551 * Probably it should be a library function... search for first non-zero word
3552 * or memcmp with zero_page, whatever is better for particular architecture.
3553 * Linus?
3554 */
3555static inline int all_zeroes(__le32 *p, __le32 *q)
3556{
3557 while (p < q)
3558 if (*p++)
3559 return 0;
3560 return 1;
3561}
3562
3563/**
617ba13b 3564 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3565 * @inode: inode in question
3566 * @depth: depth of the affected branch
617ba13b 3567 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3568 * @chain: place to store the pointers to partial indirect blocks
3569 * @top: place to the (detached) top of branch
3570 *
617ba13b 3571 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3572 *
3573 * When we do truncate() we may have to clean the ends of several
3574 * indirect blocks but leave the blocks themselves alive. Block is
3575 * partially truncated if some data below the new i_size is refered
3576 * from it (and it is on the path to the first completely truncated
3577 * data block, indeed). We have to free the top of that path along
3578 * with everything to the right of the path. Since no allocation
617ba13b 3579 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3580 * finishes, we may safely do the latter, but top of branch may
3581 * require special attention - pageout below the truncation point
3582 * might try to populate it.
3583 *
3584 * We atomically detach the top of branch from the tree, store the
3585 * block number of its root in *@top, pointers to buffer_heads of
3586 * partially truncated blocks - in @chain[].bh and pointers to
3587 * their last elements that should not be removed - in
3588 * @chain[].p. Return value is the pointer to last filled element
3589 * of @chain.
3590 *
3591 * The work left to caller to do the actual freeing of subtrees:
3592 * a) free the subtree starting from *@top
3593 * b) free the subtrees whose roots are stored in
3594 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3595 * c) free the subtrees growing from the inode past the @chain[0].
3596 * (no partially truncated stuff there). */
3597
617ba13b 3598static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3599 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3600{
3601 Indirect *partial, *p;
3602 int k, err;
3603
3604 *top = 0;
3605 /* Make k index the deepest non-null offest + 1 */
3606 for (k = depth; k > 1 && !offsets[k-1]; k--)
3607 ;
617ba13b 3608 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3609 /* Writer: pointers */
3610 if (!partial)
3611 partial = chain + k-1;
3612 /*
3613 * If the branch acquired continuation since we've looked at it -
3614 * fine, it should all survive and (new) top doesn't belong to us.
3615 */
3616 if (!partial->key && *partial->p)
3617 /* Writer: end */
3618 goto no_top;
af5bc92d 3619 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3620 ;
3621 /*
3622 * OK, we've found the last block that must survive. The rest of our
3623 * branch should be detached before unlocking. However, if that rest
3624 * of branch is all ours and does not grow immediately from the inode
3625 * it's easier to cheat and just decrement partial->p.
3626 */
3627 if (p == chain + k - 1 && p > chain) {
3628 p->p--;
3629 } else {
3630 *top = *p->p;
617ba13b 3631 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3632#if 0
3633 *p->p = 0;
3634#endif
3635 }
3636 /* Writer: end */
3637
af5bc92d 3638 while (partial > p) {
ac27a0ec
DK
3639 brelse(partial->bh);
3640 partial--;
3641 }
3642no_top:
3643 return partial;
3644}
3645
3646/*
3647 * Zero a number of block pointers in either an inode or an indirect block.
3648 * If we restart the transaction we must again get write access to the
3649 * indirect block for further modification.
3650 *
3651 * We release `count' blocks on disk, but (last - first) may be greater
3652 * than `count' because there can be holes in there.
3653 */
617ba13b
MC
3654static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3655 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3656 unsigned long count, __le32 *first, __le32 *last)
3657{
3658 __le32 *p;
3659 if (try_to_extend_transaction(handle, inode)) {
3660 if (bh) {
0390131b
FM
3661 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3662 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3663 }
617ba13b
MC
3664 ext4_mark_inode_dirty(handle, inode);
3665 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3666 if (bh) {
3667 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3668 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3669 }
3670 }
3671
3672 /*
3673 * Any buffers which are on the journal will be in memory. We find
dab291af 3674 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3675 * on them. We've already detached each block from the file, so
dab291af 3676 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3677 *
dab291af 3678 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3679 */
3680 for (p = first; p < last; p++) {
3681 u32 nr = le32_to_cpu(*p);
3682 if (nr) {
1d03ec98 3683 struct buffer_head *tbh;
ac27a0ec
DK
3684
3685 *p = 0;
1d03ec98
AK
3686 tbh = sb_find_get_block(inode->i_sb, nr);
3687 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3688 }
3689 }
3690
c9de560d 3691 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3692}
3693
3694/**
617ba13b 3695 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3696 * @handle: handle for this transaction
3697 * @inode: inode we are dealing with
3698 * @this_bh: indirect buffer_head which contains *@first and *@last
3699 * @first: array of block numbers
3700 * @last: points immediately past the end of array
3701 *
3702 * We are freeing all blocks refered from that array (numbers are stored as
3703 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3704 *
3705 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3706 * blocks are contiguous then releasing them at one time will only affect one
3707 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3708 * actually use a lot of journal space.
3709 *
3710 * @this_bh will be %NULL if @first and @last point into the inode's direct
3711 * block pointers.
3712 */
617ba13b 3713static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3714 struct buffer_head *this_bh,
3715 __le32 *first, __le32 *last)
3716{
617ba13b 3717 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3718 unsigned long count = 0; /* Number of blocks in the run */
3719 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3720 corresponding to
3721 block_to_free */
617ba13b 3722 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3723 __le32 *p; /* Pointer into inode/ind
3724 for current block */
3725 int err;
3726
3727 if (this_bh) { /* For indirect block */
3728 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3729 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3730 /* Important: if we can't update the indirect pointers
3731 * to the blocks, we can't free them. */
3732 if (err)
3733 return;
3734 }
3735
3736 for (p = first; p < last; p++) {
3737 nr = le32_to_cpu(*p);
3738 if (nr) {
3739 /* accumulate blocks to free if they're contiguous */
3740 if (count == 0) {
3741 block_to_free = nr;
3742 block_to_free_p = p;
3743 count = 1;
3744 } else if (nr == block_to_free + count) {
3745 count++;
3746 } else {
617ba13b 3747 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3748 block_to_free,
3749 count, block_to_free_p, p);
3750 block_to_free = nr;
3751 block_to_free_p = p;
3752 count = 1;
3753 }
3754 }
3755 }
3756
3757 if (count > 0)
617ba13b 3758 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3759 count, block_to_free_p, p);
3760
3761 if (this_bh) {
0390131b 3762 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3763
3764 /*
3765 * The buffer head should have an attached journal head at this
3766 * point. However, if the data is corrupted and an indirect
3767 * block pointed to itself, it would have been detached when
3768 * the block was cleared. Check for this instead of OOPSing.
3769 */
e7f07968 3770 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3771 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3772 else
3773 ext4_error(inode->i_sb, __func__,
3774 "circular indirect block detected, "
3775 "inode=%lu, block=%llu",
3776 inode->i_ino,
3777 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3778 }
3779}
3780
3781/**
617ba13b 3782 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3783 * @handle: JBD handle for this transaction
3784 * @inode: inode we are dealing with
3785 * @parent_bh: the buffer_head which contains *@first and *@last
3786 * @first: array of block numbers
3787 * @last: pointer immediately past the end of array
3788 * @depth: depth of the branches to free
3789 *
3790 * We are freeing all blocks refered from these branches (numbers are
3791 * stored as little-endian 32-bit) and updating @inode->i_blocks
3792 * appropriately.
3793 */
617ba13b 3794static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3795 struct buffer_head *parent_bh,
3796 __le32 *first, __le32 *last, int depth)
3797{
617ba13b 3798 ext4_fsblk_t nr;
ac27a0ec
DK
3799 __le32 *p;
3800
0390131b 3801 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3802 return;
3803
3804 if (depth--) {
3805 struct buffer_head *bh;
617ba13b 3806 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3807 p = last;
3808 while (--p >= first) {
3809 nr = le32_to_cpu(*p);
3810 if (!nr)
3811 continue; /* A hole */
3812
3813 /* Go read the buffer for the next level down */
3814 bh = sb_bread(inode->i_sb, nr);
3815
3816 /*
3817 * A read failure? Report error and clear slot
3818 * (should be rare).
3819 */
3820 if (!bh) {
617ba13b 3821 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3822 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3823 inode->i_ino, nr);
3824 continue;
3825 }
3826
3827 /* This zaps the entire block. Bottom up. */
3828 BUFFER_TRACE(bh, "free child branches");
617ba13b 3829 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3830 (__le32 *) bh->b_data,
3831 (__le32 *) bh->b_data + addr_per_block,
3832 depth);
ac27a0ec
DK
3833
3834 /*
3835 * We've probably journalled the indirect block several
3836 * times during the truncate. But it's no longer
3837 * needed and we now drop it from the transaction via
dab291af 3838 * jbd2_journal_revoke().
ac27a0ec
DK
3839 *
3840 * That's easy if it's exclusively part of this
3841 * transaction. But if it's part of the committing
dab291af 3842 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3843 * brelse() it. That means that if the underlying
617ba13b 3844 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3845 * unmap_underlying_metadata() will find this block
3846 * and will try to get rid of it. damn, damn.
3847 *
3848 * If this block has already been committed to the
3849 * journal, a revoke record will be written. And
3850 * revoke records must be emitted *before* clearing
3851 * this block's bit in the bitmaps.
3852 */
617ba13b 3853 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3854
3855 /*
3856 * Everything below this this pointer has been
3857 * released. Now let this top-of-subtree go.
3858 *
3859 * We want the freeing of this indirect block to be
3860 * atomic in the journal with the updating of the
3861 * bitmap block which owns it. So make some room in
3862 * the journal.
3863 *
3864 * We zero the parent pointer *after* freeing its
3865 * pointee in the bitmaps, so if extend_transaction()
3866 * for some reason fails to put the bitmap changes and
3867 * the release into the same transaction, recovery
3868 * will merely complain about releasing a free block,
3869 * rather than leaking blocks.
3870 */
0390131b 3871 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3872 return;
3873 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3874 ext4_mark_inode_dirty(handle, inode);
3875 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3876 }
3877
c9de560d 3878 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3879
3880 if (parent_bh) {
3881 /*
3882 * The block which we have just freed is
3883 * pointed to by an indirect block: journal it
3884 */
3885 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3886 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3887 parent_bh)){
3888 *p = 0;
3889 BUFFER_TRACE(parent_bh,
0390131b
FM
3890 "call ext4_handle_dirty_metadata");
3891 ext4_handle_dirty_metadata(handle,
3892 inode,
3893 parent_bh);
ac27a0ec
DK
3894 }
3895 }
3896 }
3897 } else {
3898 /* We have reached the bottom of the tree. */
3899 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3900 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3901 }
3902}
3903
91ef4caf
DG
3904int ext4_can_truncate(struct inode *inode)
3905{
3906 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3907 return 0;
3908 if (S_ISREG(inode->i_mode))
3909 return 1;
3910 if (S_ISDIR(inode->i_mode))
3911 return 1;
3912 if (S_ISLNK(inode->i_mode))
3913 return !ext4_inode_is_fast_symlink(inode);
3914 return 0;
3915}
3916
ac27a0ec 3917/*
617ba13b 3918 * ext4_truncate()
ac27a0ec 3919 *
617ba13b
MC
3920 * We block out ext4_get_block() block instantiations across the entire
3921 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3922 * simultaneously on behalf of the same inode.
3923 *
3924 * As we work through the truncate and commmit bits of it to the journal there
3925 * is one core, guiding principle: the file's tree must always be consistent on
3926 * disk. We must be able to restart the truncate after a crash.
3927 *
3928 * The file's tree may be transiently inconsistent in memory (although it
3929 * probably isn't), but whenever we close off and commit a journal transaction,
3930 * the contents of (the filesystem + the journal) must be consistent and
3931 * restartable. It's pretty simple, really: bottom up, right to left (although
3932 * left-to-right works OK too).
3933 *
3934 * Note that at recovery time, journal replay occurs *before* the restart of
3935 * truncate against the orphan inode list.
3936 *
3937 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3938 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3939 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3940 * ext4_truncate() to have another go. So there will be instantiated blocks
3941 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3942 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3943 * ext4_truncate() run will find them and release them.
ac27a0ec 3944 */
617ba13b 3945void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3946{
3947 handle_t *handle;
617ba13b 3948 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3949 __le32 *i_data = ei->i_data;
617ba13b 3950 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3951 struct address_space *mapping = inode->i_mapping;
725d26d3 3952 ext4_lblk_t offsets[4];
ac27a0ec
DK
3953 Indirect chain[4];
3954 Indirect *partial;
3955 __le32 nr = 0;
3956 int n;
725d26d3 3957 ext4_lblk_t last_block;
ac27a0ec 3958 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3959
91ef4caf 3960 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3961 return;
3962
afd4672d 3963 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
3964 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3965
1d03ec98 3966 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3967 ext4_ext_truncate(inode);
1d03ec98
AK
3968 return;
3969 }
a86c6181 3970
ac27a0ec 3971 handle = start_transaction(inode);
cf108bca 3972 if (IS_ERR(handle))
ac27a0ec 3973 return; /* AKPM: return what? */
ac27a0ec
DK
3974
3975 last_block = (inode->i_size + blocksize-1)
617ba13b 3976 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3977
cf108bca
JK
3978 if (inode->i_size & (blocksize - 1))
3979 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3980 goto out_stop;
ac27a0ec 3981
617ba13b 3982 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3983 if (n == 0)
3984 goto out_stop; /* error */
3985
3986 /*
3987 * OK. This truncate is going to happen. We add the inode to the
3988 * orphan list, so that if this truncate spans multiple transactions,
3989 * and we crash, we will resume the truncate when the filesystem
3990 * recovers. It also marks the inode dirty, to catch the new size.
3991 *
3992 * Implication: the file must always be in a sane, consistent
3993 * truncatable state while each transaction commits.
3994 */
617ba13b 3995 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3996 goto out_stop;
3997
632eaeab
MC
3998 /*
3999 * From here we block out all ext4_get_block() callers who want to
4000 * modify the block allocation tree.
4001 */
4002 down_write(&ei->i_data_sem);
b4df2030 4003
c2ea3fde 4004 ext4_discard_preallocations(inode);
b4df2030 4005
ac27a0ec
DK
4006 /*
4007 * The orphan list entry will now protect us from any crash which
4008 * occurs before the truncate completes, so it is now safe to propagate
4009 * the new, shorter inode size (held for now in i_size) into the
4010 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4011 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4012 */
4013 ei->i_disksize = inode->i_size;
4014
ac27a0ec 4015 if (n == 1) { /* direct blocks */
617ba13b
MC
4016 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4017 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4018 goto do_indirects;
4019 }
4020
617ba13b 4021 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4022 /* Kill the top of shared branch (not detached) */
4023 if (nr) {
4024 if (partial == chain) {
4025 /* Shared branch grows from the inode */
617ba13b 4026 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4027 &nr, &nr+1, (chain+n-1) - partial);
4028 *partial->p = 0;
4029 /*
4030 * We mark the inode dirty prior to restart,
4031 * and prior to stop. No need for it here.
4032 */
4033 } else {
4034 /* Shared branch grows from an indirect block */
4035 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4036 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4037 partial->p,
4038 partial->p+1, (chain+n-1) - partial);
4039 }
4040 }
4041 /* Clear the ends of indirect blocks on the shared branch */
4042 while (partial > chain) {
617ba13b 4043 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4044 (__le32*)partial->bh->b_data+addr_per_block,
4045 (chain+n-1) - partial);
4046 BUFFER_TRACE(partial->bh, "call brelse");
4047 brelse (partial->bh);
4048 partial--;
4049 }
4050do_indirects:
4051 /* Kill the remaining (whole) subtrees */
4052 switch (offsets[0]) {
4053 default:
617ba13b 4054 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4055 if (nr) {
617ba13b
MC
4056 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4057 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4058 }
617ba13b
MC
4059 case EXT4_IND_BLOCK:
4060 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4061 if (nr) {
617ba13b
MC
4062 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4063 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4064 }
617ba13b
MC
4065 case EXT4_DIND_BLOCK:
4066 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4067 if (nr) {
617ba13b
MC
4068 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4069 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4070 }
617ba13b 4071 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4072 ;
4073 }
4074
0e855ac8 4075 up_write(&ei->i_data_sem);
ef7f3835 4076 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4077 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4078
4079 /*
4080 * In a multi-transaction truncate, we only make the final transaction
4081 * synchronous
4082 */
4083 if (IS_SYNC(inode))
0390131b 4084 ext4_handle_sync(handle);
ac27a0ec
DK
4085out_stop:
4086 /*
4087 * If this was a simple ftruncate(), and the file will remain alive
4088 * then we need to clear up the orphan record which we created above.
4089 * However, if this was a real unlink then we were called by
617ba13b 4090 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4091 * orphan info for us.
4092 */
4093 if (inode->i_nlink)
617ba13b 4094 ext4_orphan_del(handle, inode);
ac27a0ec 4095
617ba13b 4096 ext4_journal_stop(handle);
ac27a0ec
DK
4097}
4098
ac27a0ec 4099/*
617ba13b 4100 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4101 * underlying buffer_head on success. If 'in_mem' is true, we have all
4102 * data in memory that is needed to recreate the on-disk version of this
4103 * inode.
4104 */
617ba13b
MC
4105static int __ext4_get_inode_loc(struct inode *inode,
4106 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4107{
240799cd
TT
4108 struct ext4_group_desc *gdp;
4109 struct buffer_head *bh;
4110 struct super_block *sb = inode->i_sb;
4111 ext4_fsblk_t block;
4112 int inodes_per_block, inode_offset;
4113
3a06d778 4114 iloc->bh = NULL;
240799cd
TT
4115 if (!ext4_valid_inum(sb, inode->i_ino))
4116 return -EIO;
ac27a0ec 4117
240799cd
TT
4118 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4119 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4120 if (!gdp)
ac27a0ec
DK
4121 return -EIO;
4122
240799cd
TT
4123 /*
4124 * Figure out the offset within the block group inode table
4125 */
4126 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4127 inode_offset = ((inode->i_ino - 1) %
4128 EXT4_INODES_PER_GROUP(sb));
4129 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4130 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4131
4132 bh = sb_getblk(sb, block);
ac27a0ec 4133 if (!bh) {
240799cd
TT
4134 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4135 "inode block - inode=%lu, block=%llu",
4136 inode->i_ino, block);
ac27a0ec
DK
4137 return -EIO;
4138 }
4139 if (!buffer_uptodate(bh)) {
4140 lock_buffer(bh);
9c83a923
HK
4141
4142 /*
4143 * If the buffer has the write error flag, we have failed
4144 * to write out another inode in the same block. In this
4145 * case, we don't have to read the block because we may
4146 * read the old inode data successfully.
4147 */
4148 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4149 set_buffer_uptodate(bh);
4150
ac27a0ec
DK
4151 if (buffer_uptodate(bh)) {
4152 /* someone brought it uptodate while we waited */
4153 unlock_buffer(bh);
4154 goto has_buffer;
4155 }
4156
4157 /*
4158 * If we have all information of the inode in memory and this
4159 * is the only valid inode in the block, we need not read the
4160 * block.
4161 */
4162 if (in_mem) {
4163 struct buffer_head *bitmap_bh;
240799cd 4164 int i, start;
ac27a0ec 4165
240799cd 4166 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4167
240799cd
TT
4168 /* Is the inode bitmap in cache? */
4169 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4170 if (!bitmap_bh)
4171 goto make_io;
4172
4173 /*
4174 * If the inode bitmap isn't in cache then the
4175 * optimisation may end up performing two reads instead
4176 * of one, so skip it.
4177 */
4178 if (!buffer_uptodate(bitmap_bh)) {
4179 brelse(bitmap_bh);
4180 goto make_io;
4181 }
240799cd 4182 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4183 if (i == inode_offset)
4184 continue;
617ba13b 4185 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4186 break;
4187 }
4188 brelse(bitmap_bh);
240799cd 4189 if (i == start + inodes_per_block) {
ac27a0ec
DK
4190 /* all other inodes are free, so skip I/O */
4191 memset(bh->b_data, 0, bh->b_size);
4192 set_buffer_uptodate(bh);
4193 unlock_buffer(bh);
4194 goto has_buffer;
4195 }
4196 }
4197
4198make_io:
240799cd
TT
4199 /*
4200 * If we need to do any I/O, try to pre-readahead extra
4201 * blocks from the inode table.
4202 */
4203 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4204 ext4_fsblk_t b, end, table;
4205 unsigned num;
4206
4207 table = ext4_inode_table(sb, gdp);
b713a5ec 4208 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4209 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4210 if (table > b)
4211 b = table;
4212 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4213 num = EXT4_INODES_PER_GROUP(sb);
4214 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4215 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4216 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4217 table += num / inodes_per_block;
4218 if (end > table)
4219 end = table;
4220 while (b <= end)
4221 sb_breadahead(sb, b++);
4222 }
4223
ac27a0ec
DK
4224 /*
4225 * There are other valid inodes in the buffer, this inode
4226 * has in-inode xattrs, or we don't have this inode in memory.
4227 * Read the block from disk.
4228 */
4229 get_bh(bh);
4230 bh->b_end_io = end_buffer_read_sync;
4231 submit_bh(READ_META, bh);
4232 wait_on_buffer(bh);
4233 if (!buffer_uptodate(bh)) {
240799cd
TT
4234 ext4_error(sb, __func__,
4235 "unable to read inode block - inode=%lu, "
4236 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4237 brelse(bh);
4238 return -EIO;
4239 }
4240 }
4241has_buffer:
4242 iloc->bh = bh;
4243 return 0;
4244}
4245
617ba13b 4246int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4247{
4248 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4249 return __ext4_get_inode_loc(inode, iloc,
4250 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4251}
4252
617ba13b 4253void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4254{
617ba13b 4255 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4256
4257 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4258 if (flags & EXT4_SYNC_FL)
ac27a0ec 4259 inode->i_flags |= S_SYNC;
617ba13b 4260 if (flags & EXT4_APPEND_FL)
ac27a0ec 4261 inode->i_flags |= S_APPEND;
617ba13b 4262 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4263 inode->i_flags |= S_IMMUTABLE;
617ba13b 4264 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4265 inode->i_flags |= S_NOATIME;
617ba13b 4266 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4267 inode->i_flags |= S_DIRSYNC;
4268}
4269
ff9ddf7e
JK
4270/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4271void ext4_get_inode_flags(struct ext4_inode_info *ei)
4272{
4273 unsigned int flags = ei->vfs_inode.i_flags;
4274
4275 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4276 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4277 if (flags & S_SYNC)
4278 ei->i_flags |= EXT4_SYNC_FL;
4279 if (flags & S_APPEND)
4280 ei->i_flags |= EXT4_APPEND_FL;
4281 if (flags & S_IMMUTABLE)
4282 ei->i_flags |= EXT4_IMMUTABLE_FL;
4283 if (flags & S_NOATIME)
4284 ei->i_flags |= EXT4_NOATIME_FL;
4285 if (flags & S_DIRSYNC)
4286 ei->i_flags |= EXT4_DIRSYNC_FL;
4287}
0fc1b451
AK
4288static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4289 struct ext4_inode_info *ei)
4290{
4291 blkcnt_t i_blocks ;
8180a562
AK
4292 struct inode *inode = &(ei->vfs_inode);
4293 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4294
4295 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4296 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4297 /* we are using combined 48 bit field */
4298 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4299 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4300 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4301 /* i_blocks represent file system block size */
4302 return i_blocks << (inode->i_blkbits - 9);
4303 } else {
4304 return i_blocks;
4305 }
0fc1b451
AK
4306 } else {
4307 return le32_to_cpu(raw_inode->i_blocks_lo);
4308 }
4309}
ff9ddf7e 4310
1d1fe1ee 4311struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4312{
617ba13b
MC
4313 struct ext4_iloc iloc;
4314 struct ext4_inode *raw_inode;
1d1fe1ee 4315 struct ext4_inode_info *ei;
ac27a0ec 4316 struct buffer_head *bh;
1d1fe1ee
DH
4317 struct inode *inode;
4318 long ret;
ac27a0ec
DK
4319 int block;
4320
1d1fe1ee
DH
4321 inode = iget_locked(sb, ino);
4322 if (!inode)
4323 return ERR_PTR(-ENOMEM);
4324 if (!(inode->i_state & I_NEW))
4325 return inode;
4326
4327 ei = EXT4_I(inode);
03010a33 4328#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4329 ei->i_acl = EXT4_ACL_NOT_CACHED;
4330 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4331#endif
ac27a0ec 4332
1d1fe1ee
DH
4333 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4334 if (ret < 0)
ac27a0ec
DK
4335 goto bad_inode;
4336 bh = iloc.bh;
617ba13b 4337 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4338 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4339 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4340 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4341 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4342 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4343 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4344 }
4345 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4346
4347 ei->i_state = 0;
4348 ei->i_dir_start_lookup = 0;
4349 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4350 /* We now have enough fields to check if the inode was active or not.
4351 * This is needed because nfsd might try to access dead inodes
4352 * the test is that same one that e2fsck uses
4353 * NeilBrown 1999oct15
4354 */
4355 if (inode->i_nlink == 0) {
4356 if (inode->i_mode == 0 ||
617ba13b 4357 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4358 /* this inode is deleted */
af5bc92d 4359 brelse(bh);
1d1fe1ee 4360 ret = -ESTALE;
ac27a0ec
DK
4361 goto bad_inode;
4362 }
4363 /* The only unlinked inodes we let through here have
4364 * valid i_mode and are being read by the orphan
4365 * recovery code: that's fine, we're about to complete
4366 * the process of deleting those. */
4367 }
ac27a0ec 4368 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4369 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4370 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4371 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4372 ei->i_file_acl |=
4373 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4374 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4375 ei->i_disksize = inode->i_size;
4376 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4377 ei->i_block_group = iloc.block_group;
a4912123 4378 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4379 /*
4380 * NOTE! The in-memory inode i_data array is in little-endian order
4381 * even on big-endian machines: we do NOT byteswap the block numbers!
4382 */
617ba13b 4383 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4384 ei->i_data[block] = raw_inode->i_block[block];
4385 INIT_LIST_HEAD(&ei->i_orphan);
4386
0040d987 4387 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4388 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4389 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4390 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4391 brelse(bh);
1d1fe1ee 4392 ret = -EIO;
ac27a0ec 4393 goto bad_inode;
e5d2861f 4394 }
ac27a0ec
DK
4395 if (ei->i_extra_isize == 0) {
4396 /* The extra space is currently unused. Use it. */
617ba13b
MC
4397 ei->i_extra_isize = sizeof(struct ext4_inode) -
4398 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4399 } else {
4400 __le32 *magic = (void *)raw_inode +
617ba13b 4401 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4402 ei->i_extra_isize;
617ba13b
MC
4403 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4404 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4405 }
4406 } else
4407 ei->i_extra_isize = 0;
4408
ef7f3835
KS
4409 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4410 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4411 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4412 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4413
25ec56b5
JNC
4414 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4415 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4416 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4417 inode->i_version |=
4418 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4419 }
4420
c4b5a614 4421 ret = 0;
485c26ec
TT
4422 if (ei->i_file_acl &&
4423 ((ei->i_file_acl <
4424 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4425 EXT4_SB(sb)->s_gdb_count)) ||
4426 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4427 ext4_error(sb, __func__,
4428 "bad extended attribute block %llu in inode #%lu",
4429 ei->i_file_acl, inode->i_ino);
4430 ret = -EIO;
4431 goto bad_inode;
4432 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4433 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4434 (S_ISLNK(inode->i_mode) &&
4435 !ext4_inode_is_fast_symlink(inode)))
4436 /* Validate extent which is part of inode */
4437 ret = ext4_ext_check_inode(inode);
fe2c8191
TN
4438 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4439 (S_ISLNK(inode->i_mode) &&
4440 !ext4_inode_is_fast_symlink(inode))) {
4441 /* Validate block references which are part of inode */
4442 ret = ext4_check_inode_blockref(inode);
4443 }
4444 if (ret) {
4445 brelse(bh);
4446 goto bad_inode;
7a262f7c
AK
4447 }
4448
ac27a0ec 4449 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4450 inode->i_op = &ext4_file_inode_operations;
4451 inode->i_fop = &ext4_file_operations;
4452 ext4_set_aops(inode);
ac27a0ec 4453 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4454 inode->i_op = &ext4_dir_inode_operations;
4455 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4456 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4457 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4458 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4459 nd_terminate_link(ei->i_data, inode->i_size,
4460 sizeof(ei->i_data) - 1);
4461 } else {
617ba13b
MC
4462 inode->i_op = &ext4_symlink_inode_operations;
4463 ext4_set_aops(inode);
ac27a0ec 4464 }
563bdd61
TT
4465 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4466 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4467 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4468 if (raw_inode->i_block[0])
4469 init_special_inode(inode, inode->i_mode,
4470 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4471 else
4472 init_special_inode(inode, inode->i_mode,
4473 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4474 } else {
4475 brelse(bh);
4476 ret = -EIO;
4477 ext4_error(inode->i_sb, __func__,
4478 "bogus i_mode (%o) for inode=%lu",
4479 inode->i_mode, inode->i_ino);
4480 goto bad_inode;
ac27a0ec 4481 }
af5bc92d 4482 brelse(iloc.bh);
617ba13b 4483 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4484 unlock_new_inode(inode);
4485 return inode;
ac27a0ec
DK
4486
4487bad_inode:
1d1fe1ee
DH
4488 iget_failed(inode);
4489 return ERR_PTR(ret);
ac27a0ec
DK
4490}
4491
0fc1b451
AK
4492static int ext4_inode_blocks_set(handle_t *handle,
4493 struct ext4_inode *raw_inode,
4494 struct ext4_inode_info *ei)
4495{
4496 struct inode *inode = &(ei->vfs_inode);
4497 u64 i_blocks = inode->i_blocks;
4498 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4499
4500 if (i_blocks <= ~0U) {
4501 /*
4502 * i_blocks can be represnted in a 32 bit variable
4503 * as multiple of 512 bytes
4504 */
8180a562 4505 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4506 raw_inode->i_blocks_high = 0;
8180a562 4507 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4508 return 0;
4509 }
4510 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4511 return -EFBIG;
4512
4513 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4514 /*
4515 * i_blocks can be represented in a 48 bit variable
4516 * as multiple of 512 bytes
4517 */
8180a562 4518 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4519 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4520 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4521 } else {
8180a562
AK
4522 ei->i_flags |= EXT4_HUGE_FILE_FL;
4523 /* i_block is stored in file system block size */
4524 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4525 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4526 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4527 }
f287a1a5 4528 return 0;
0fc1b451
AK
4529}
4530
ac27a0ec
DK
4531/*
4532 * Post the struct inode info into an on-disk inode location in the
4533 * buffer-cache. This gobbles the caller's reference to the
4534 * buffer_head in the inode location struct.
4535 *
4536 * The caller must have write access to iloc->bh.
4537 */
617ba13b 4538static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4539 struct inode *inode,
617ba13b 4540 struct ext4_iloc *iloc)
ac27a0ec 4541{
617ba13b
MC
4542 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4543 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4544 struct buffer_head *bh = iloc->bh;
4545 int err = 0, rc, block;
4546
4547 /* For fields not not tracking in the in-memory inode,
4548 * initialise them to zero for new inodes. */
617ba13b
MC
4549 if (ei->i_state & EXT4_STATE_NEW)
4550 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4551
ff9ddf7e 4552 ext4_get_inode_flags(ei);
ac27a0ec 4553 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4554 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4555 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4556 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4557/*
4558 * Fix up interoperability with old kernels. Otherwise, old inodes get
4559 * re-used with the upper 16 bits of the uid/gid intact
4560 */
af5bc92d 4561 if (!ei->i_dtime) {
ac27a0ec
DK
4562 raw_inode->i_uid_high =
4563 cpu_to_le16(high_16_bits(inode->i_uid));
4564 raw_inode->i_gid_high =
4565 cpu_to_le16(high_16_bits(inode->i_gid));
4566 } else {
4567 raw_inode->i_uid_high = 0;
4568 raw_inode->i_gid_high = 0;
4569 }
4570 } else {
4571 raw_inode->i_uid_low =
4572 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4573 raw_inode->i_gid_low =
4574 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4575 raw_inode->i_uid_high = 0;
4576 raw_inode->i_gid_high = 0;
4577 }
4578 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4579
4580 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4581 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4582 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4583 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4584
0fc1b451
AK
4585 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4586 goto out_brelse;
ac27a0ec 4587 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4588 /* clear the migrate flag in the raw_inode */
4589 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4590 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4591 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4592 raw_inode->i_file_acl_high =
4593 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4594 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4595 ext4_isize_set(raw_inode, ei->i_disksize);
4596 if (ei->i_disksize > 0x7fffffffULL) {
4597 struct super_block *sb = inode->i_sb;
4598 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4599 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4600 EXT4_SB(sb)->s_es->s_rev_level ==
4601 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4602 /* If this is the first large file
4603 * created, add a flag to the superblock.
4604 */
4605 err = ext4_journal_get_write_access(handle,
4606 EXT4_SB(sb)->s_sbh);
4607 if (err)
4608 goto out_brelse;
4609 ext4_update_dynamic_rev(sb);
4610 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4611 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4612 sb->s_dirt = 1;
0390131b
FM
4613 ext4_handle_sync(handle);
4614 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4615 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4616 }
4617 }
4618 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4619 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4620 if (old_valid_dev(inode->i_rdev)) {
4621 raw_inode->i_block[0] =
4622 cpu_to_le32(old_encode_dev(inode->i_rdev));
4623 raw_inode->i_block[1] = 0;
4624 } else {
4625 raw_inode->i_block[0] = 0;
4626 raw_inode->i_block[1] =
4627 cpu_to_le32(new_encode_dev(inode->i_rdev));
4628 raw_inode->i_block[2] = 0;
4629 }
617ba13b 4630 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4631 raw_inode->i_block[block] = ei->i_data[block];
4632
25ec56b5
JNC
4633 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4634 if (ei->i_extra_isize) {
4635 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4636 raw_inode->i_version_hi =
4637 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4638 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4639 }
4640
0390131b
FM
4641 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4642 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4643 if (!err)
4644 err = rc;
617ba13b 4645 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4646
4647out_brelse:
af5bc92d 4648 brelse(bh);
617ba13b 4649 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4650 return err;
4651}
4652
4653/*
617ba13b 4654 * ext4_write_inode()
ac27a0ec
DK
4655 *
4656 * We are called from a few places:
4657 *
4658 * - Within generic_file_write() for O_SYNC files.
4659 * Here, there will be no transaction running. We wait for any running
4660 * trasnaction to commit.
4661 *
4662 * - Within sys_sync(), kupdate and such.
4663 * We wait on commit, if tol to.
4664 *
4665 * - Within prune_icache() (PF_MEMALLOC == true)
4666 * Here we simply return. We can't afford to block kswapd on the
4667 * journal commit.
4668 *
4669 * In all cases it is actually safe for us to return without doing anything,
4670 * because the inode has been copied into a raw inode buffer in
617ba13b 4671 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4672 * knfsd.
4673 *
4674 * Note that we are absolutely dependent upon all inode dirtiers doing the
4675 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4676 * which we are interested.
4677 *
4678 * It would be a bug for them to not do this. The code:
4679 *
4680 * mark_inode_dirty(inode)
4681 * stuff();
4682 * inode->i_size = expr;
4683 *
4684 * is in error because a kswapd-driven write_inode() could occur while
4685 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4686 * will no longer be on the superblock's dirty inode list.
4687 */
617ba13b 4688int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4689{
4690 if (current->flags & PF_MEMALLOC)
4691 return 0;
4692
617ba13b 4693 if (ext4_journal_current_handle()) {
b38bd33a 4694 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4695 dump_stack();
4696 return -EIO;
4697 }
4698
4699 if (!wait)
4700 return 0;
4701
617ba13b 4702 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4703}
4704
0390131b
FM
4705int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4706{
4707 int err = 0;
4708
4709 mark_buffer_dirty(bh);
4710 if (inode && inode_needs_sync(inode)) {
4711 sync_dirty_buffer(bh);
4712 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4713 ext4_error(inode->i_sb, __func__,
4714 "IO error syncing inode, "
4715 "inode=%lu, block=%llu",
4716 inode->i_ino,
4717 (unsigned long long)bh->b_blocknr);
4718 err = -EIO;
4719 }
4720 }
4721 return err;
4722}
4723
ac27a0ec 4724/*
617ba13b 4725 * ext4_setattr()
ac27a0ec
DK
4726 *
4727 * Called from notify_change.
4728 *
4729 * We want to trap VFS attempts to truncate the file as soon as
4730 * possible. In particular, we want to make sure that when the VFS
4731 * shrinks i_size, we put the inode on the orphan list and modify
4732 * i_disksize immediately, so that during the subsequent flushing of
4733 * dirty pages and freeing of disk blocks, we can guarantee that any
4734 * commit will leave the blocks being flushed in an unused state on
4735 * disk. (On recovery, the inode will get truncated and the blocks will
4736 * be freed, so we have a strong guarantee that no future commit will
4737 * leave these blocks visible to the user.)
4738 *
678aaf48
JK
4739 * Another thing we have to assure is that if we are in ordered mode
4740 * and inode is still attached to the committing transaction, we must
4741 * we start writeout of all the dirty pages which are being truncated.
4742 * This way we are sure that all the data written in the previous
4743 * transaction are already on disk (truncate waits for pages under
4744 * writeback).
4745 *
4746 * Called with inode->i_mutex down.
ac27a0ec 4747 */
617ba13b 4748int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4749{
4750 struct inode *inode = dentry->d_inode;
4751 int error, rc = 0;
4752 const unsigned int ia_valid = attr->ia_valid;
4753
4754 error = inode_change_ok(inode, attr);
4755 if (error)
4756 return error;
4757
4758 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4759 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4760 handle_t *handle;
4761
4762 /* (user+group)*(old+new) structure, inode write (sb,
4763 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4764 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4765 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4766 if (IS_ERR(handle)) {
4767 error = PTR_ERR(handle);
4768 goto err_out;
4769 }
a269eb18 4770 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4771 if (error) {
617ba13b 4772 ext4_journal_stop(handle);
ac27a0ec
DK
4773 return error;
4774 }
4775 /* Update corresponding info in inode so that everything is in
4776 * one transaction */
4777 if (attr->ia_valid & ATTR_UID)
4778 inode->i_uid = attr->ia_uid;
4779 if (attr->ia_valid & ATTR_GID)
4780 inode->i_gid = attr->ia_gid;
617ba13b
MC
4781 error = ext4_mark_inode_dirty(handle, inode);
4782 ext4_journal_stop(handle);
ac27a0ec
DK
4783 }
4784
e2b46574
ES
4785 if (attr->ia_valid & ATTR_SIZE) {
4786 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4787 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4788
4789 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4790 error = -EFBIG;
4791 goto err_out;
4792 }
4793 }
4794 }
4795
ac27a0ec
DK
4796 if (S_ISREG(inode->i_mode) &&
4797 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4798 handle_t *handle;
4799
617ba13b 4800 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4801 if (IS_ERR(handle)) {
4802 error = PTR_ERR(handle);
4803 goto err_out;
4804 }
4805
617ba13b
MC
4806 error = ext4_orphan_add(handle, inode);
4807 EXT4_I(inode)->i_disksize = attr->ia_size;
4808 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4809 if (!error)
4810 error = rc;
617ba13b 4811 ext4_journal_stop(handle);
678aaf48
JK
4812
4813 if (ext4_should_order_data(inode)) {
4814 error = ext4_begin_ordered_truncate(inode,
4815 attr->ia_size);
4816 if (error) {
4817 /* Do as much error cleanup as possible */
4818 handle = ext4_journal_start(inode, 3);
4819 if (IS_ERR(handle)) {
4820 ext4_orphan_del(NULL, inode);
4821 goto err_out;
4822 }
4823 ext4_orphan_del(handle, inode);
4824 ext4_journal_stop(handle);
4825 goto err_out;
4826 }
4827 }
ac27a0ec
DK
4828 }
4829
4830 rc = inode_setattr(inode, attr);
4831
617ba13b 4832 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4833 * transaction handle at all, we need to clean up the in-core
4834 * orphan list manually. */
4835 if (inode->i_nlink)
617ba13b 4836 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4837
4838 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4839 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4840
4841err_out:
617ba13b 4842 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4843 if (!error)
4844 error = rc;
4845 return error;
4846}
4847
3e3398a0
MC
4848int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4849 struct kstat *stat)
4850{
4851 struct inode *inode;
4852 unsigned long delalloc_blocks;
4853
4854 inode = dentry->d_inode;
4855 generic_fillattr(inode, stat);
4856
4857 /*
4858 * We can't update i_blocks if the block allocation is delayed
4859 * otherwise in the case of system crash before the real block
4860 * allocation is done, we will have i_blocks inconsistent with
4861 * on-disk file blocks.
4862 * We always keep i_blocks updated together with real
4863 * allocation. But to not confuse with user, stat
4864 * will return the blocks that include the delayed allocation
4865 * blocks for this file.
4866 */
4867 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4868 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4869 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4870
4871 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4872 return 0;
4873}
ac27a0ec 4874
a02908f1
MC
4875static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4876 int chunk)
4877{
4878 int indirects;
4879
4880 /* if nrblocks are contiguous */
4881 if (chunk) {
4882 /*
4883 * With N contiguous data blocks, it need at most
4884 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4885 * 2 dindirect blocks
4886 * 1 tindirect block
4887 */
4888 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4889 return indirects + 3;
4890 }
4891 /*
4892 * if nrblocks are not contiguous, worse case, each block touch
4893 * a indirect block, and each indirect block touch a double indirect
4894 * block, plus a triple indirect block
4895 */
4896 indirects = nrblocks * 2 + 1;
4897 return indirects;
4898}
4899
4900static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4901{
4902 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4903 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4904 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4905}
ac51d837 4906
ac27a0ec 4907/*
a02908f1
MC
4908 * Account for index blocks, block groups bitmaps and block group
4909 * descriptor blocks if modify datablocks and index blocks
4910 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4911 *
a02908f1
MC
4912 * If datablocks are discontiguous, they are possible to spread over
4913 * different block groups too. If they are contiugous, with flexbg,
4914 * they could still across block group boundary.
ac27a0ec 4915 *
a02908f1
MC
4916 * Also account for superblock, inode, quota and xattr blocks
4917 */
4918int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4919{
4920 int groups, gdpblocks;
4921 int idxblocks;
4922 int ret = 0;
4923
4924 /*
4925 * How many index blocks need to touch to modify nrblocks?
4926 * The "Chunk" flag indicating whether the nrblocks is
4927 * physically contiguous on disk
4928 *
4929 * For Direct IO and fallocate, they calls get_block to allocate
4930 * one single extent at a time, so they could set the "Chunk" flag
4931 */
4932 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4933
4934 ret = idxblocks;
4935
4936 /*
4937 * Now let's see how many group bitmaps and group descriptors need
4938 * to account
4939 */
4940 groups = idxblocks;
4941 if (chunk)
4942 groups += 1;
4943 else
4944 groups += nrblocks;
4945
4946 gdpblocks = groups;
4947 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4948 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4949 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4950 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4951
4952 /* bitmaps and block group descriptor blocks */
4953 ret += groups + gdpblocks;
4954
4955 /* Blocks for super block, inode, quota and xattr blocks */
4956 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4957
4958 return ret;
4959}
4960
4961/*
4962 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4963 * the modification of a single pages into a single transaction,
4964 * which may include multiple chunks of block allocations.
ac27a0ec 4965 *
525f4ed8 4966 * This could be called via ext4_write_begin()
ac27a0ec 4967 *
525f4ed8 4968 * We need to consider the worse case, when
a02908f1 4969 * one new block per extent.
ac27a0ec 4970 */
a86c6181 4971int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4972{
617ba13b 4973 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4974 int ret;
4975
a02908f1 4976 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4977
a02908f1 4978 /* Account for data blocks for journalled mode */
617ba13b 4979 if (ext4_should_journal_data(inode))
a02908f1 4980 ret += bpp;
ac27a0ec
DK
4981 return ret;
4982}
f3bd1f3f
MC
4983
4984/*
4985 * Calculate the journal credits for a chunk of data modification.
4986 *
4987 * This is called from DIO, fallocate or whoever calling
4988 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4989 *
4990 * journal buffers for data blocks are not included here, as DIO
4991 * and fallocate do no need to journal data buffers.
4992 */
4993int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4994{
4995 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4996}
4997
ac27a0ec 4998/*
617ba13b 4999 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5000 * Give this, we know that the caller already has write access to iloc->bh.
5001 */
617ba13b
MC
5002int ext4_mark_iloc_dirty(handle_t *handle,
5003 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5004{
5005 int err = 0;
5006
25ec56b5
JNC
5007 if (test_opt(inode->i_sb, I_VERSION))
5008 inode_inc_iversion(inode);
5009
ac27a0ec
DK
5010 /* the do_update_inode consumes one bh->b_count */
5011 get_bh(iloc->bh);
5012
dab291af 5013 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 5014 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5015 put_bh(iloc->bh);
5016 return err;
5017}
5018
5019/*
5020 * On success, We end up with an outstanding reference count against
5021 * iloc->bh. This _must_ be cleaned up later.
5022 */
5023
5024int
617ba13b
MC
5025ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5026 struct ext4_iloc *iloc)
ac27a0ec 5027{
0390131b
FM
5028 int err;
5029
5030 err = ext4_get_inode_loc(inode, iloc);
5031 if (!err) {
5032 BUFFER_TRACE(iloc->bh, "get_write_access");
5033 err = ext4_journal_get_write_access(handle, iloc->bh);
5034 if (err) {
5035 brelse(iloc->bh);
5036 iloc->bh = NULL;
ac27a0ec
DK
5037 }
5038 }
617ba13b 5039 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5040 return err;
5041}
5042
6dd4ee7c
KS
5043/*
5044 * Expand an inode by new_extra_isize bytes.
5045 * Returns 0 on success or negative error number on failure.
5046 */
1d03ec98
AK
5047static int ext4_expand_extra_isize(struct inode *inode,
5048 unsigned int new_extra_isize,
5049 struct ext4_iloc iloc,
5050 handle_t *handle)
6dd4ee7c
KS
5051{
5052 struct ext4_inode *raw_inode;
5053 struct ext4_xattr_ibody_header *header;
5054 struct ext4_xattr_entry *entry;
5055
5056 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5057 return 0;
5058
5059 raw_inode = ext4_raw_inode(&iloc);
5060
5061 header = IHDR(inode, raw_inode);
5062 entry = IFIRST(header);
5063
5064 /* No extended attributes present */
5065 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5066 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5067 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5068 new_extra_isize);
5069 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5070 return 0;
5071 }
5072
5073 /* try to expand with EAs present */
5074 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5075 raw_inode, handle);
5076}
5077
ac27a0ec
DK
5078/*
5079 * What we do here is to mark the in-core inode as clean with respect to inode
5080 * dirtiness (it may still be data-dirty).
5081 * This means that the in-core inode may be reaped by prune_icache
5082 * without having to perform any I/O. This is a very good thing,
5083 * because *any* task may call prune_icache - even ones which
5084 * have a transaction open against a different journal.
5085 *
5086 * Is this cheating? Not really. Sure, we haven't written the
5087 * inode out, but prune_icache isn't a user-visible syncing function.
5088 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5089 * we start and wait on commits.
5090 *
5091 * Is this efficient/effective? Well, we're being nice to the system
5092 * by cleaning up our inodes proactively so they can be reaped
5093 * without I/O. But we are potentially leaving up to five seconds'
5094 * worth of inodes floating about which prune_icache wants us to
5095 * write out. One way to fix that would be to get prune_icache()
5096 * to do a write_super() to free up some memory. It has the desired
5097 * effect.
5098 */
617ba13b 5099int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5100{
617ba13b 5101 struct ext4_iloc iloc;
6dd4ee7c
KS
5102 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5103 static unsigned int mnt_count;
5104 int err, ret;
ac27a0ec
DK
5105
5106 might_sleep();
617ba13b 5107 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5108 if (ext4_handle_valid(handle) &&
5109 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5110 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5111 /*
5112 * We need extra buffer credits since we may write into EA block
5113 * with this same handle. If journal_extend fails, then it will
5114 * only result in a minor loss of functionality for that inode.
5115 * If this is felt to be critical, then e2fsck should be run to
5116 * force a large enough s_min_extra_isize.
5117 */
5118 if ((jbd2_journal_extend(handle,
5119 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5120 ret = ext4_expand_extra_isize(inode,
5121 sbi->s_want_extra_isize,
5122 iloc, handle);
5123 if (ret) {
5124 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5125 if (mnt_count !=
5126 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5127 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5128 "Unable to expand inode %lu. Delete"
5129 " some EAs or run e2fsck.",
5130 inode->i_ino);
c1bddad9
AK
5131 mnt_count =
5132 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5133 }
5134 }
5135 }
5136 }
ac27a0ec 5137 if (!err)
617ba13b 5138 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5139 return err;
5140}
5141
5142/*
617ba13b 5143 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5144 *
5145 * We're really interested in the case where a file is being extended.
5146 * i_size has been changed by generic_commit_write() and we thus need
5147 * to include the updated inode in the current transaction.
5148 *
a269eb18 5149 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5150 * are allocated to the file.
5151 *
5152 * If the inode is marked synchronous, we don't honour that here - doing
5153 * so would cause a commit on atime updates, which we don't bother doing.
5154 * We handle synchronous inodes at the highest possible level.
5155 */
617ba13b 5156void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5157{
617ba13b 5158 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5159 handle_t *handle;
5160
0390131b
FM
5161 if (!ext4_handle_valid(current_handle)) {
5162 ext4_mark_inode_dirty(current_handle, inode);
5163 return;
5164 }
5165
617ba13b 5166 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5167 if (IS_ERR(handle))
5168 goto out;
5169 if (current_handle &&
5170 current_handle->h_transaction != handle->h_transaction) {
5171 /* This task has a transaction open against a different fs */
5172 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5173 __func__);
ac27a0ec
DK
5174 } else {
5175 jbd_debug(5, "marking dirty. outer handle=%p\n",
5176 current_handle);
617ba13b 5177 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5178 }
617ba13b 5179 ext4_journal_stop(handle);
ac27a0ec
DK
5180out:
5181 return;
5182}
5183
5184#if 0
5185/*
5186 * Bind an inode's backing buffer_head into this transaction, to prevent
5187 * it from being flushed to disk early. Unlike
617ba13b 5188 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5189 * returns no iloc structure, so the caller needs to repeat the iloc
5190 * lookup to mark the inode dirty later.
5191 */
617ba13b 5192static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5193{
617ba13b 5194 struct ext4_iloc iloc;
ac27a0ec
DK
5195
5196 int err = 0;
5197 if (handle) {
617ba13b 5198 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5199 if (!err) {
5200 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5201 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5202 if (!err)
0390131b
FM
5203 err = ext4_handle_dirty_metadata(handle,
5204 inode,
5205 iloc.bh);
ac27a0ec
DK
5206 brelse(iloc.bh);
5207 }
5208 }
617ba13b 5209 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5210 return err;
5211}
5212#endif
5213
617ba13b 5214int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5215{
5216 journal_t *journal;
5217 handle_t *handle;
5218 int err;
5219
5220 /*
5221 * We have to be very careful here: changing a data block's
5222 * journaling status dynamically is dangerous. If we write a
5223 * data block to the journal, change the status and then delete
5224 * that block, we risk forgetting to revoke the old log record
5225 * from the journal and so a subsequent replay can corrupt data.
5226 * So, first we make sure that the journal is empty and that
5227 * nobody is changing anything.
5228 */
5229
617ba13b 5230 journal = EXT4_JOURNAL(inode);
0390131b
FM
5231 if (!journal)
5232 return 0;
d699594d 5233 if (is_journal_aborted(journal))
ac27a0ec
DK
5234 return -EROFS;
5235
dab291af
MC
5236 jbd2_journal_lock_updates(journal);
5237 jbd2_journal_flush(journal);
ac27a0ec
DK
5238
5239 /*
5240 * OK, there are no updates running now, and all cached data is
5241 * synced to disk. We are now in a completely consistent state
5242 * which doesn't have anything in the journal, and we know that
5243 * no filesystem updates are running, so it is safe to modify
5244 * the inode's in-core data-journaling state flag now.
5245 */
5246
5247 if (val)
617ba13b 5248 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5249 else
617ba13b
MC
5250 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5251 ext4_set_aops(inode);
ac27a0ec 5252
dab291af 5253 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5254
5255 /* Finally we can mark the inode as dirty. */
5256
617ba13b 5257 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5258 if (IS_ERR(handle))
5259 return PTR_ERR(handle);
5260
617ba13b 5261 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5262 ext4_handle_sync(handle);
617ba13b
MC
5263 ext4_journal_stop(handle);
5264 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5265
5266 return err;
5267}
2e9ee850
AK
5268
5269static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5270{
5271 return !buffer_mapped(bh);
5272}
5273
c2ec175c 5274int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5275{
c2ec175c 5276 struct page *page = vmf->page;
2e9ee850
AK
5277 loff_t size;
5278 unsigned long len;
5279 int ret = -EINVAL;
79f0be8d 5280 void *fsdata;
2e9ee850
AK
5281 struct file *file = vma->vm_file;
5282 struct inode *inode = file->f_path.dentry->d_inode;
5283 struct address_space *mapping = inode->i_mapping;
5284
5285 /*
5286 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5287 * get i_mutex because we are already holding mmap_sem.
5288 */
5289 down_read(&inode->i_alloc_sem);
5290 size = i_size_read(inode);
5291 if (page->mapping != mapping || size <= page_offset(page)
5292 || !PageUptodate(page)) {
5293 /* page got truncated from under us? */
5294 goto out_unlock;
5295 }
5296 ret = 0;
5297 if (PageMappedToDisk(page))
5298 goto out_unlock;
5299
5300 if (page->index == size >> PAGE_CACHE_SHIFT)
5301 len = size & ~PAGE_CACHE_MASK;
5302 else
5303 len = PAGE_CACHE_SIZE;
5304
5305 if (page_has_buffers(page)) {
5306 /* return if we have all the buffers mapped */
5307 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5308 ext4_bh_unmapped))
5309 goto out_unlock;
5310 }
5311 /*
5312 * OK, we need to fill the hole... Do write_begin write_end
5313 * to do block allocation/reservation.We are not holding
5314 * inode.i__mutex here. That allow * parallel write_begin,
5315 * write_end call. lock_page prevent this from happening
5316 * on the same page though
5317 */
5318 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5319 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5320 if (ret < 0)
5321 goto out_unlock;
5322 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5323 len, len, page, fsdata);
2e9ee850
AK
5324 if (ret < 0)
5325 goto out_unlock;
5326 ret = 0;
5327out_unlock:
c2ec175c
NP
5328 if (ret)
5329 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5330 up_read(&inode->i_alloc_sem);
5331 return ret;
5332}