]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: super.c whitespace cleanup
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
fe2c8191 374static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
375 __le32 *p, unsigned int max)
376{
f73953c0 377 __le32 *bref = p;
6fd058f7
TT
378 unsigned int blk;
379
fe2c8191 380 while (bref < p+max) {
6fd058f7
TT
381 blk = le32_to_cpu(*bref++);
382 if (blk &&
383 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
384 blk, 1))) {
fe2c8191 385 ext4_error(inode->i_sb, function,
6fd058f7
TT
386 "invalid block reference %u "
387 "in inode #%lu", blk, inode->i_ino);
fe2c8191
TN
388 return -EIO;
389 }
fe2c8191
TN
390 }
391 return 0;
392}
393
394
395#define ext4_check_indirect_blockref(inode, bh) \
396 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
397 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
398
399#define ext4_check_inode_blockref(inode) \
400 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
401 EXT4_NDIR_BLOCKS)
402
ac27a0ec 403/**
617ba13b 404 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
405 * @inode: inode in question
406 * @depth: depth of the chain (1 - direct pointer, etc.)
407 * @offsets: offsets of pointers in inode/indirect blocks
408 * @chain: place to store the result
409 * @err: here we store the error value
410 *
411 * Function fills the array of triples <key, p, bh> and returns %NULL
412 * if everything went OK or the pointer to the last filled triple
413 * (incomplete one) otherwise. Upon the return chain[i].key contains
414 * the number of (i+1)-th block in the chain (as it is stored in memory,
415 * i.e. little-endian 32-bit), chain[i].p contains the address of that
416 * number (it points into struct inode for i==0 and into the bh->b_data
417 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
418 * block for i>0 and NULL for i==0. In other words, it holds the block
419 * numbers of the chain, addresses they were taken from (and where we can
420 * verify that chain did not change) and buffer_heads hosting these
421 * numbers.
422 *
423 * Function stops when it stumbles upon zero pointer (absent block)
424 * (pointer to last triple returned, *@err == 0)
425 * or when it gets an IO error reading an indirect block
426 * (ditto, *@err == -EIO)
ac27a0ec
DK
427 * or when it reads all @depth-1 indirect blocks successfully and finds
428 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
429 *
430 * Need to be called with
0e855ac8 431 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 432 */
725d26d3
AK
433static Indirect *ext4_get_branch(struct inode *inode, int depth,
434 ext4_lblk_t *offsets,
ac27a0ec
DK
435 Indirect chain[4], int *err)
436{
437 struct super_block *sb = inode->i_sb;
438 Indirect *p = chain;
439 struct buffer_head *bh;
440
441 *err = 0;
442 /* i_data is not going away, no lock needed */
af5bc92d 443 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
444 if (!p->key)
445 goto no_block;
446 while (--depth) {
fe2c8191
TN
447 bh = sb_getblk(sb, le32_to_cpu(p->key));
448 if (unlikely(!bh))
ac27a0ec 449 goto failure;
fe2c8191
TN
450
451 if (!bh_uptodate_or_lock(bh)) {
452 if (bh_submit_read(bh) < 0) {
453 put_bh(bh);
454 goto failure;
455 }
456 /* validate block references */
457 if (ext4_check_indirect_blockref(inode, bh)) {
458 put_bh(bh);
459 goto failure;
460 }
461 }
462
af5bc92d 463 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
464 /* Reader: end */
465 if (!p->key)
466 goto no_block;
467 }
468 return NULL;
469
ac27a0ec
DK
470failure:
471 *err = -EIO;
472no_block:
473 return p;
474}
475
476/**
617ba13b 477 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
478 * @inode: owner
479 * @ind: descriptor of indirect block.
480 *
1cc8dcf5 481 * This function returns the preferred place for block allocation.
ac27a0ec
DK
482 * It is used when heuristic for sequential allocation fails.
483 * Rules are:
484 * + if there is a block to the left of our position - allocate near it.
485 * + if pointer will live in indirect block - allocate near that block.
486 * + if pointer will live in inode - allocate in the same
487 * cylinder group.
488 *
489 * In the latter case we colour the starting block by the callers PID to
490 * prevent it from clashing with concurrent allocations for a different inode
491 * in the same block group. The PID is used here so that functionally related
492 * files will be close-by on-disk.
493 *
494 * Caller must make sure that @ind is valid and will stay that way.
495 */
617ba13b 496static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 497{
617ba13b 498 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 499 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 500 __le32 *p;
617ba13b 501 ext4_fsblk_t bg_start;
74d3487f 502 ext4_fsblk_t last_block;
617ba13b 503 ext4_grpblk_t colour;
a4912123
TT
504 ext4_group_t block_group;
505 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
506
507 /* Try to find previous block */
508 for (p = ind->p - 1; p >= start; p--) {
509 if (*p)
510 return le32_to_cpu(*p);
511 }
512
513 /* No such thing, so let's try location of indirect block */
514 if (ind->bh)
515 return ind->bh->b_blocknr;
516
517 /*
518 * It is going to be referred to from the inode itself? OK, just put it
519 * into the same cylinder group then.
520 */
a4912123
TT
521 block_group = ei->i_block_group;
522 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
523 block_group &= ~(flex_size-1);
524 if (S_ISREG(inode->i_mode))
525 block_group++;
526 }
527 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
528 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
529
a4912123
TT
530 /*
531 * If we are doing delayed allocation, we don't need take
532 * colour into account.
533 */
534 if (test_opt(inode->i_sb, DELALLOC))
535 return bg_start;
536
74d3487f
VC
537 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
538 colour = (current->pid % 16) *
617ba13b 539 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
540 else
541 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
542 return bg_start + colour;
543}
544
545/**
1cc8dcf5 546 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
547 * @inode: owner
548 * @block: block we want
ac27a0ec 549 * @partial: pointer to the last triple within a chain
ac27a0ec 550 *
1cc8dcf5 551 * Normally this function find the preferred place for block allocation,
fb01bfda 552 * returns it.
ac27a0ec 553 */
725d26d3 554static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 555 Indirect *partial)
ac27a0ec 556{
ac27a0ec 557 /*
c2ea3fde 558 * XXX need to get goal block from mballoc's data structures
ac27a0ec 559 */
ac27a0ec 560
617ba13b 561 return ext4_find_near(inode, partial);
ac27a0ec
DK
562}
563
564/**
617ba13b 565 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
566 * of direct blocks need to be allocated for the given branch.
567 *
568 * @branch: chain of indirect blocks
569 * @k: number of blocks need for indirect blocks
570 * @blks: number of data blocks to be mapped.
571 * @blocks_to_boundary: the offset in the indirect block
572 *
573 * return the total number of blocks to be allocate, including the
574 * direct and indirect blocks.
575 */
498e5f24 576static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
577 int blocks_to_boundary)
578{
498e5f24 579 unsigned int count = 0;
ac27a0ec
DK
580
581 /*
582 * Simple case, [t,d]Indirect block(s) has not allocated yet
583 * then it's clear blocks on that path have not allocated
584 */
585 if (k > 0) {
586 /* right now we don't handle cross boundary allocation */
587 if (blks < blocks_to_boundary + 1)
588 count += blks;
589 else
590 count += blocks_to_boundary + 1;
591 return count;
592 }
593
594 count++;
595 while (count < blks && count <= blocks_to_boundary &&
596 le32_to_cpu(*(branch[0].p + count)) == 0) {
597 count++;
598 }
599 return count;
600}
601
602/**
617ba13b 603 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
604 * @indirect_blks: the number of blocks need to allocate for indirect
605 * blocks
606 *
607 * @new_blocks: on return it will store the new block numbers for
608 * the indirect blocks(if needed) and the first direct block,
609 * @blks: on return it will store the total number of allocated
610 * direct blocks
611 */
617ba13b 612static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
613 ext4_lblk_t iblock, ext4_fsblk_t goal,
614 int indirect_blks, int blks,
615 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 616{
815a1130 617 struct ext4_allocation_request ar;
ac27a0ec 618 int target, i;
7061eba7 619 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 620 int index = 0;
617ba13b 621 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
622 int ret = 0;
623
624 /*
625 * Here we try to allocate the requested multiple blocks at once,
626 * on a best-effort basis.
627 * To build a branch, we should allocate blocks for
628 * the indirect blocks(if not allocated yet), and at least
629 * the first direct block of this branch. That's the
630 * minimum number of blocks need to allocate(required)
631 */
7061eba7
AK
632 /* first we try to allocate the indirect blocks */
633 target = indirect_blks;
634 while (target > 0) {
ac27a0ec
DK
635 count = target;
636 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
637 current_block = ext4_new_meta_blocks(handle, inode,
638 goal, &count, err);
ac27a0ec
DK
639 if (*err)
640 goto failed_out;
641
642 target -= count;
643 /* allocate blocks for indirect blocks */
644 while (index < indirect_blks && count) {
645 new_blocks[index++] = current_block++;
646 count--;
647 }
7061eba7
AK
648 if (count > 0) {
649 /*
650 * save the new block number
651 * for the first direct block
652 */
653 new_blocks[index] = current_block;
654 printk(KERN_INFO "%s returned more blocks than "
655 "requested\n", __func__);
656 WARN_ON(1);
ac27a0ec 657 break;
7061eba7 658 }
ac27a0ec
DK
659 }
660
7061eba7
AK
661 target = blks - count ;
662 blk_allocated = count;
663 if (!target)
664 goto allocated;
665 /* Now allocate data blocks */
815a1130
TT
666 memset(&ar, 0, sizeof(ar));
667 ar.inode = inode;
668 ar.goal = goal;
669 ar.len = target;
670 ar.logical = iblock;
671 if (S_ISREG(inode->i_mode))
672 /* enable in-core preallocation only for regular files */
673 ar.flags = EXT4_MB_HINT_DATA;
674
675 current_block = ext4_mb_new_blocks(handle, &ar, err);
676
7061eba7
AK
677 if (*err && (target == blks)) {
678 /*
679 * if the allocation failed and we didn't allocate
680 * any blocks before
681 */
682 goto failed_out;
683 }
684 if (!*err) {
685 if (target == blks) {
686 /*
687 * save the new block number
688 * for the first direct block
689 */
690 new_blocks[index] = current_block;
691 }
815a1130 692 blk_allocated += ar.len;
7061eba7
AK
693 }
694allocated:
ac27a0ec 695 /* total number of blocks allocated for direct blocks */
7061eba7 696 ret = blk_allocated;
ac27a0ec
DK
697 *err = 0;
698 return ret;
699failed_out:
af5bc92d 700 for (i = 0; i < index; i++)
c9de560d 701 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
702 return ret;
703}
704
705/**
617ba13b 706 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
707 * @inode: owner
708 * @indirect_blks: number of allocated indirect blocks
709 * @blks: number of allocated direct blocks
710 * @offsets: offsets (in the blocks) to store the pointers to next.
711 * @branch: place to store the chain in.
712 *
713 * This function allocates blocks, zeroes out all but the last one,
714 * links them into chain and (if we are synchronous) writes them to disk.
715 * In other words, it prepares a branch that can be spliced onto the
716 * inode. It stores the information about that chain in the branch[], in
617ba13b 717 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
718 * we had read the existing part of chain and partial points to the last
719 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 720 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
721 * place chain is disconnected - *branch->p is still zero (we did not
722 * set the last link), but branch->key contains the number that should
723 * be placed into *branch->p to fill that gap.
724 *
725 * If allocation fails we free all blocks we've allocated (and forget
726 * their buffer_heads) and return the error value the from failed
617ba13b 727 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
728 * as described above and return 0.
729 */
617ba13b 730static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
731 ext4_lblk_t iblock, int indirect_blks,
732 int *blks, ext4_fsblk_t goal,
733 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
734{
735 int blocksize = inode->i_sb->s_blocksize;
736 int i, n = 0;
737 int err = 0;
738 struct buffer_head *bh;
739 int num;
617ba13b
MC
740 ext4_fsblk_t new_blocks[4];
741 ext4_fsblk_t current_block;
ac27a0ec 742
7061eba7 743 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
744 *blks, new_blocks, &err);
745 if (err)
746 return err;
747
748 branch[0].key = cpu_to_le32(new_blocks[0]);
749 /*
750 * metadata blocks and data blocks are allocated.
751 */
752 for (n = 1; n <= indirect_blks; n++) {
753 /*
754 * Get buffer_head for parent block, zero it out
755 * and set the pointer to new one, then send
756 * parent to disk.
757 */
758 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
759 branch[n].bh = bh;
760 lock_buffer(bh);
761 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 762 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
763 if (err) {
764 unlock_buffer(bh);
765 brelse(bh);
766 goto failed;
767 }
768
769 memset(bh->b_data, 0, blocksize);
770 branch[n].p = (__le32 *) bh->b_data + offsets[n];
771 branch[n].key = cpu_to_le32(new_blocks[n]);
772 *branch[n].p = branch[n].key;
af5bc92d 773 if (n == indirect_blks) {
ac27a0ec
DK
774 current_block = new_blocks[n];
775 /*
776 * End of chain, update the last new metablock of
777 * the chain to point to the new allocated
778 * data blocks numbers
779 */
780 for (i=1; i < num; i++)
781 *(branch[n].p + i) = cpu_to_le32(++current_block);
782 }
783 BUFFER_TRACE(bh, "marking uptodate");
784 set_buffer_uptodate(bh);
785 unlock_buffer(bh);
786
0390131b
FM
787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
789 if (err)
790 goto failed;
791 }
792 *blks = num;
793 return err;
794failed:
795 /* Allocation failed, free what we already allocated */
796 for (i = 1; i <= n ; i++) {
dab291af 797 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 798 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 799 }
af5bc92d 800 for (i = 0; i < indirect_blks; i++)
c9de560d 801 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 802
c9de560d 803 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
804
805 return err;
806}
807
808/**
617ba13b 809 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
810 * @inode: owner
811 * @block: (logical) number of block we are adding
812 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 813 * ext4_alloc_branch)
ac27a0ec
DK
814 * @where: location of missing link
815 * @num: number of indirect blocks we are adding
816 * @blks: number of direct blocks we are adding
817 *
818 * This function fills the missing link and does all housekeeping needed in
819 * inode (->i_blocks, etc.). In case of success we end up with the full
820 * chain to new block and return 0.
821 */
617ba13b 822static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 823 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
824{
825 int i;
826 int err = 0;
617ba13b 827 ext4_fsblk_t current_block;
ac27a0ec 828
ac27a0ec
DK
829 /*
830 * If we're splicing into a [td]indirect block (as opposed to the
831 * inode) then we need to get write access to the [td]indirect block
832 * before the splice.
833 */
834 if (where->bh) {
835 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 836 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
837 if (err)
838 goto err_out;
839 }
840 /* That's it */
841
842 *where->p = where->key;
843
844 /*
845 * Update the host buffer_head or inode to point to more just allocated
846 * direct blocks blocks
847 */
848 if (num == 0 && blks > 1) {
849 current_block = le32_to_cpu(where->key) + 1;
850 for (i = 1; i < blks; i++)
af5bc92d 851 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
852 }
853
ac27a0ec
DK
854 /* We are done with atomic stuff, now do the rest of housekeeping */
855
ef7f3835 856 inode->i_ctime = ext4_current_time(inode);
617ba13b 857 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
858
859 /* had we spliced it onto indirect block? */
860 if (where->bh) {
861 /*
862 * If we spliced it onto an indirect block, we haven't
863 * altered the inode. Note however that if it is being spliced
864 * onto an indirect block at the very end of the file (the
865 * file is growing) then we *will* alter the inode to reflect
866 * the new i_size. But that is not done here - it is done in
617ba13b 867 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
868 */
869 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
870 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
871 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
872 if (err)
873 goto err_out;
874 } else {
875 /*
876 * OK, we spliced it into the inode itself on a direct block.
877 * Inode was dirtied above.
878 */
879 jbd_debug(5, "splicing direct\n");
880 }
881 return err;
882
883err_out:
884 for (i = 1; i <= num; i++) {
dab291af 885 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 886 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
887 ext4_free_blocks(handle, inode,
888 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 889 }
c9de560d 890 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
891
892 return err;
893}
894
895/*
b920c755
TT
896 * The ext4_ind_get_blocks() function handles non-extents inodes
897 * (i.e., using the traditional indirect/double-indirect i_blocks
898 * scheme) for ext4_get_blocks().
899 *
ac27a0ec
DK
900 * Allocation strategy is simple: if we have to allocate something, we will
901 * have to go the whole way to leaf. So let's do it before attaching anything
902 * to tree, set linkage between the newborn blocks, write them if sync is
903 * required, recheck the path, free and repeat if check fails, otherwise
904 * set the last missing link (that will protect us from any truncate-generated
905 * removals - all blocks on the path are immune now) and possibly force the
906 * write on the parent block.
907 * That has a nice additional property: no special recovery from the failed
908 * allocations is needed - we simply release blocks and do not touch anything
909 * reachable from inode.
910 *
911 * `handle' can be NULL if create == 0.
912 *
ac27a0ec
DK
913 * return > 0, # of blocks mapped or allocated.
914 * return = 0, if plain lookup failed.
915 * return < 0, error case.
c278bfec 916 *
b920c755
TT
917 * The ext4_ind_get_blocks() function should be called with
918 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
919 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
920 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
921 * blocks.
ac27a0ec 922 */
e4d996ca 923static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
498e5f24
TT
924 ext4_lblk_t iblock, unsigned int maxblocks,
925 struct buffer_head *bh_result,
c2177057 926 int flags)
ac27a0ec
DK
927{
928 int err = -EIO;
725d26d3 929 ext4_lblk_t offsets[4];
ac27a0ec
DK
930 Indirect chain[4];
931 Indirect *partial;
617ba13b 932 ext4_fsblk_t goal;
ac27a0ec
DK
933 int indirect_blks;
934 int blocks_to_boundary = 0;
935 int depth;
617ba13b 936 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 937 int count = 0;
617ba13b 938 ext4_fsblk_t first_block = 0;
61628a3f 939 loff_t disksize;
ac27a0ec
DK
940
941
a86c6181 942 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 943 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3
AK
944 depth = ext4_block_to_path(inode, iblock, offsets,
945 &blocks_to_boundary);
ac27a0ec
DK
946
947 if (depth == 0)
948 goto out;
949
617ba13b 950 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
951
952 /* Simplest case - block found, no allocation needed */
953 if (!partial) {
954 first_block = le32_to_cpu(chain[depth - 1].key);
955 clear_buffer_new(bh_result);
956 count++;
957 /*map more blocks*/
958 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 959 ext4_fsblk_t blk;
ac27a0ec 960
ac27a0ec
DK
961 blk = le32_to_cpu(*(chain[depth-1].p + count));
962
963 if (blk == first_block + count)
964 count++;
965 else
966 break;
967 }
c278bfec 968 goto got_it;
ac27a0ec
DK
969 }
970
971 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 972 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
973 goto cleanup;
974
ac27a0ec 975 /*
c2ea3fde 976 * Okay, we need to do block allocation.
ac27a0ec 977 */
fb01bfda 978 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
979
980 /* the number of blocks need to allocate for [d,t]indirect blocks */
981 indirect_blks = (chain + depth) - partial - 1;
982
983 /*
984 * Next look up the indirect map to count the totoal number of
985 * direct blocks to allocate for this branch.
986 */
617ba13b 987 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
988 maxblocks, blocks_to_boundary);
989 /*
617ba13b 990 * Block out ext4_truncate while we alter the tree
ac27a0ec 991 */
7061eba7
AK
992 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
993 &count, goal,
994 offsets + (partial - chain), partial);
ac27a0ec
DK
995
996 /*
617ba13b 997 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
998 * on the new chain if there is a failure, but that risks using
999 * up transaction credits, especially for bitmaps where the
1000 * credits cannot be returned. Can we handle this somehow? We
1001 * may need to return -EAGAIN upwards in the worst case. --sct
1002 */
1003 if (!err)
617ba13b 1004 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
1005 partial, indirect_blks, count);
1006 /*
0e855ac8 1007 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 1008 * protect it if you're about to implement concurrent
617ba13b 1009 * ext4_get_block() -bzzz
ac27a0ec 1010 */
c2177057 1011 if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
61628a3f
MC
1012 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1013 if (disksize > i_size_read(inode))
1014 disksize = i_size_read(inode);
1015 if (disksize > ei->i_disksize)
1016 ei->i_disksize = disksize;
1017 }
ac27a0ec
DK
1018 if (err)
1019 goto cleanup;
1020
1021 set_buffer_new(bh_result);
1022got_it:
1023 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1024 if (count > blocks_to_boundary)
1025 set_buffer_boundary(bh_result);
1026 err = count;
1027 /* Clean up and exit */
1028 partial = chain + depth - 1; /* the whole chain */
1029cleanup:
1030 while (partial > chain) {
1031 BUFFER_TRACE(partial->bh, "call brelse");
1032 brelse(partial->bh);
1033 partial--;
1034 }
1035 BUFFER_TRACE(bh_result, "returned");
1036out:
1037 return err;
1038}
1039
60e58e0f
MC
1040qsize_t ext4_get_reserved_space(struct inode *inode)
1041{
1042 unsigned long long total;
1043
1044 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1045 total = EXT4_I(inode)->i_reserved_data_blocks +
1046 EXT4_I(inode)->i_reserved_meta_blocks;
1047 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048
1049 return total;
1050}
12219aea
AK
1051/*
1052 * Calculate the number of metadata blocks need to reserve
1053 * to allocate @blocks for non extent file based file
1054 */
1055static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1056{
1057 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1058 int ind_blks, dind_blks, tind_blks;
1059
1060 /* number of new indirect blocks needed */
1061 ind_blks = (blocks + icap - 1) / icap;
1062
1063 dind_blks = (ind_blks + icap - 1) / icap;
1064
1065 tind_blks = 1;
1066
1067 return ind_blks + dind_blks + tind_blks;
1068}
1069
1070/*
1071 * Calculate the number of metadata blocks need to reserve
1072 * to allocate given number of blocks
1073 */
1074static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1075{
cd213226
MC
1076 if (!blocks)
1077 return 0;
1078
12219aea
AK
1079 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1080 return ext4_ext_calc_metadata_amount(inode, blocks);
1081
1082 return ext4_indirect_calc_metadata_amount(inode, blocks);
1083}
1084
1085static void ext4_da_update_reserve_space(struct inode *inode, int used)
1086{
1087 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1088 int total, mdb, mdb_free;
1089
1090 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1091 /* recalculate the number of metablocks still need to be reserved */
1092 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1093 mdb = ext4_calc_metadata_amount(inode, total);
1094
1095 /* figure out how many metablocks to release */
1096 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1097 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1098
6bc6e63f
AK
1099 if (mdb_free) {
1100 /* Account for allocated meta_blocks */
1101 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1102
1103 /* update fs dirty blocks counter */
1104 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1105 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1106 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1107 }
12219aea
AK
1108
1109 /* update per-inode reservations */
1110 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1111 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1112 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1113
1114 /*
1115 * free those over-booking quota for metadata blocks
1116 */
60e58e0f
MC
1117 if (mdb_free)
1118 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1119
1120 /*
1121 * If we have done all the pending block allocations and if
1122 * there aren't any writers on the inode, we can discard the
1123 * inode's preallocations.
1124 */
1125 if (!total && (atomic_read(&inode->i_writecount) == 0))
1126 ext4_discard_preallocations(inode);
12219aea
AK
1127}
1128
6fd058f7
TT
1129static int check_block_validity(struct inode *inode, sector_t logical,
1130 sector_t phys, int len)
1131{
1132 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1133 ext4_error(inode->i_sb, "check_block_validity",
1134 "inode #%lu logical block %llu mapped to %llu "
1135 "(size %d)", inode->i_ino,
1136 (unsigned long long) logical,
1137 (unsigned long long) phys, len);
1138 WARN_ON(1);
1139 return -EIO;
1140 }
1141 return 0;
1142}
1143
f5ab0d1f 1144/*
12b7ac17 1145 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1146 * and returns if the blocks are already mapped.
f5ab0d1f 1147 *
f5ab0d1f
MC
1148 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1149 * and store the allocated blocks in the result buffer head and mark it
1150 * mapped.
1151 *
1152 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1153 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1154 * based files
1155 *
1156 * On success, it returns the number of blocks being mapped or allocate.
1157 * if create==0 and the blocks are pre-allocated and uninitialized block,
1158 * the result buffer head is unmapped. If the create ==1, it will make sure
1159 * the buffer head is mapped.
1160 *
1161 * It returns 0 if plain look up failed (blocks have not been allocated), in
1162 * that casem, buffer head is unmapped
1163 *
1164 * It returns the error in case of allocation failure.
1165 */
12b7ac17
TT
1166int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1167 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1168 int flags)
0e855ac8
AK
1169{
1170 int retval;
f5ab0d1f
MC
1171
1172 clear_buffer_mapped(bh);
2a8964d6 1173 clear_buffer_unwritten(bh);
f5ab0d1f 1174
4df3d265 1175 /*
b920c755
TT
1176 * Try to see if we can get the block without requesting a new
1177 * file system block.
4df3d265
AK
1178 */
1179 down_read((&EXT4_I(inode)->i_data_sem));
1180 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1181 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1182 bh, 0);
0e855ac8 1183 } else {
e4d996ca 1184 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1185 bh, 0);
0e855ac8 1186 }
4df3d265 1187 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1188
6fd058f7
TT
1189 if (retval > 0 && buffer_mapped(bh)) {
1190 int ret = check_block_validity(inode, block,
1191 bh->b_blocknr, retval);
1192 if (ret != 0)
1193 return ret;
1194 }
1195
f5ab0d1f 1196 /* If it is only a block(s) look up */
c2177057 1197 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1198 return retval;
1199
1200 /*
1201 * Returns if the blocks have already allocated
1202 *
1203 * Note that if blocks have been preallocated
1204 * ext4_ext_get_block() returns th create = 0
1205 * with buffer head unmapped.
1206 */
1207 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1208 return retval;
1209
2a8964d6
AK
1210 /*
1211 * When we call get_blocks without the create flag, the
1212 * BH_Unwritten flag could have gotten set if the blocks
1213 * requested were part of a uninitialized extent. We need to
1214 * clear this flag now that we are committed to convert all or
1215 * part of the uninitialized extent to be an initialized
1216 * extent. This is because we need to avoid the combination
1217 * of BH_Unwritten and BH_Mapped flags being simultaneously
1218 * set on the buffer_head.
1219 */
1220 clear_buffer_unwritten(bh);
1221
4df3d265 1222 /*
f5ab0d1f
MC
1223 * New blocks allocate and/or writing to uninitialized extent
1224 * will possibly result in updating i_data, so we take
1225 * the write lock of i_data_sem, and call get_blocks()
1226 * with create == 1 flag.
4df3d265
AK
1227 */
1228 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1229
1230 /*
1231 * if the caller is from delayed allocation writeout path
1232 * we have already reserved fs blocks for allocation
1233 * let the underlying get_block() function know to
1234 * avoid double accounting
1235 */
c2177057 1236 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1237 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1238 /*
1239 * We need to check for EXT4 here because migrate
1240 * could have changed the inode type in between
1241 */
0e855ac8
AK
1242 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1243 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1244 bh, flags);
0e855ac8 1245 } else {
e4d996ca 1246 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1247 max_blocks, bh, flags);
267e4db9
AK
1248
1249 if (retval > 0 && buffer_new(bh)) {
1250 /*
1251 * We allocated new blocks which will result in
1252 * i_data's format changing. Force the migrate
1253 * to fail by clearing migrate flags
1254 */
1255 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1256 ~EXT4_EXT_MIGRATE;
1257 }
0e855ac8 1258 }
d2a17637 1259
2ac3b6e0 1260 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1261 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1262
1263 /*
1264 * Update reserved blocks/metadata blocks after successful
1265 * block allocation which had been deferred till now.
1266 */
1267 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1268 ext4_da_update_reserve_space(inode, retval);
d2a17637 1269
4df3d265 1270 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7
TT
1271 if (retval > 0 && buffer_mapped(bh)) {
1272 int ret = check_block_validity(inode, block,
1273 bh->b_blocknr, retval);
1274 if (ret != 0)
1275 return ret;
1276 }
0e855ac8
AK
1277 return retval;
1278}
1279
f3bd1f3f
MC
1280/* Maximum number of blocks we map for direct IO at once. */
1281#define DIO_MAX_BLOCKS 4096
1282
6873fa0d
ES
1283int ext4_get_block(struct inode *inode, sector_t iblock,
1284 struct buffer_head *bh_result, int create)
ac27a0ec 1285{
3e4fdaf8 1286 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1287 int ret = 0, started = 0;
ac27a0ec 1288 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1289 int dio_credits;
ac27a0ec 1290
7fb5409d
JK
1291 if (create && !handle) {
1292 /* Direct IO write... */
1293 if (max_blocks > DIO_MAX_BLOCKS)
1294 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1295 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1296 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1297 if (IS_ERR(handle)) {
ac27a0ec 1298 ret = PTR_ERR(handle);
7fb5409d 1299 goto out;
ac27a0ec 1300 }
7fb5409d 1301 started = 1;
ac27a0ec
DK
1302 }
1303
12b7ac17 1304 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1305 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1306 if (ret > 0) {
1307 bh_result->b_size = (ret << inode->i_blkbits);
1308 ret = 0;
ac27a0ec 1309 }
7fb5409d
JK
1310 if (started)
1311 ext4_journal_stop(handle);
1312out:
ac27a0ec
DK
1313 return ret;
1314}
1315
1316/*
1317 * `handle' can be NULL if create is zero
1318 */
617ba13b 1319struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1320 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1321{
1322 struct buffer_head dummy;
1323 int fatal = 0, err;
c2177057 1324 int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
ac27a0ec
DK
1325
1326 J_ASSERT(handle != NULL || create == 0);
1327
1328 dummy.b_state = 0;
1329 dummy.b_blocknr = -1000;
1330 buffer_trace_init(&dummy.b_history);
c2177057
TT
1331 if (create)
1332 flags |= EXT4_GET_BLOCKS_CREATE;
1333 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1334 /*
c2177057
TT
1335 * ext4_get_blocks() returns number of blocks mapped. 0 in
1336 * case of a HOLE.
ac27a0ec
DK
1337 */
1338 if (err > 0) {
1339 if (err > 1)
1340 WARN_ON(1);
1341 err = 0;
1342 }
1343 *errp = err;
1344 if (!err && buffer_mapped(&dummy)) {
1345 struct buffer_head *bh;
1346 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1347 if (!bh) {
1348 *errp = -EIO;
1349 goto err;
1350 }
1351 if (buffer_new(&dummy)) {
1352 J_ASSERT(create != 0);
ac39849d 1353 J_ASSERT(handle != NULL);
ac27a0ec
DK
1354
1355 /*
1356 * Now that we do not always journal data, we should
1357 * keep in mind whether this should always journal the
1358 * new buffer as metadata. For now, regular file
617ba13b 1359 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1360 * problem.
1361 */
1362 lock_buffer(bh);
1363 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1364 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1365 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1366 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1367 set_buffer_uptodate(bh);
1368 }
1369 unlock_buffer(bh);
0390131b
FM
1370 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1371 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1372 if (!fatal)
1373 fatal = err;
1374 } else {
1375 BUFFER_TRACE(bh, "not a new buffer");
1376 }
1377 if (fatal) {
1378 *errp = fatal;
1379 brelse(bh);
1380 bh = NULL;
1381 }
1382 return bh;
1383 }
1384err:
1385 return NULL;
1386}
1387
617ba13b 1388struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1389 ext4_lblk_t block, int create, int *err)
ac27a0ec 1390{
af5bc92d 1391 struct buffer_head *bh;
ac27a0ec 1392
617ba13b 1393 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1394 if (!bh)
1395 return bh;
1396 if (buffer_uptodate(bh))
1397 return bh;
1398 ll_rw_block(READ_META, 1, &bh);
1399 wait_on_buffer(bh);
1400 if (buffer_uptodate(bh))
1401 return bh;
1402 put_bh(bh);
1403 *err = -EIO;
1404 return NULL;
1405}
1406
af5bc92d
TT
1407static int walk_page_buffers(handle_t *handle,
1408 struct buffer_head *head,
1409 unsigned from,
1410 unsigned to,
1411 int *partial,
1412 int (*fn)(handle_t *handle,
1413 struct buffer_head *bh))
ac27a0ec
DK
1414{
1415 struct buffer_head *bh;
1416 unsigned block_start, block_end;
1417 unsigned blocksize = head->b_size;
1418 int err, ret = 0;
1419 struct buffer_head *next;
1420
af5bc92d
TT
1421 for (bh = head, block_start = 0;
1422 ret == 0 && (bh != head || !block_start);
1423 block_start = block_end, bh = next)
ac27a0ec
DK
1424 {
1425 next = bh->b_this_page;
1426 block_end = block_start + blocksize;
1427 if (block_end <= from || block_start >= to) {
1428 if (partial && !buffer_uptodate(bh))
1429 *partial = 1;
1430 continue;
1431 }
1432 err = (*fn)(handle, bh);
1433 if (!ret)
1434 ret = err;
1435 }
1436 return ret;
1437}
1438
1439/*
1440 * To preserve ordering, it is essential that the hole instantiation and
1441 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1442 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1443 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1444 * prepare_write() is the right place.
1445 *
617ba13b
MC
1446 * Also, this function can nest inside ext4_writepage() ->
1447 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1448 * has generated enough buffer credits to do the whole page. So we won't
1449 * block on the journal in that case, which is good, because the caller may
1450 * be PF_MEMALLOC.
1451 *
617ba13b 1452 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1453 * quota file writes. If we were to commit the transaction while thus
1454 * reentered, there can be a deadlock - we would be holding a quota
1455 * lock, and the commit would never complete if another thread had a
1456 * transaction open and was blocking on the quota lock - a ranking
1457 * violation.
1458 *
dab291af 1459 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1460 * will _not_ run commit under these circumstances because handle->h_ref
1461 * is elevated. We'll still have enough credits for the tiny quotafile
1462 * write.
1463 */
1464static int do_journal_get_write_access(handle_t *handle,
1465 struct buffer_head *bh)
1466{
1467 if (!buffer_mapped(bh) || buffer_freed(bh))
1468 return 0;
617ba13b 1469 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1470}
1471
bfc1af65
NP
1472static int ext4_write_begin(struct file *file, struct address_space *mapping,
1473 loff_t pos, unsigned len, unsigned flags,
1474 struct page **pagep, void **fsdata)
ac27a0ec 1475{
af5bc92d 1476 struct inode *inode = mapping->host;
7479d2b9 1477 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1478 handle_t *handle;
1479 int retries = 0;
af5bc92d 1480 struct page *page;
bfc1af65 1481 pgoff_t index;
af5bc92d 1482 unsigned from, to;
bfc1af65 1483
ba80b101
TT
1484 trace_mark(ext4_write_begin,
1485 "dev %s ino %lu pos %llu len %u flags %u",
1486 inode->i_sb->s_id, inode->i_ino,
1487 (unsigned long long) pos, len, flags);
bfc1af65 1488 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1489 from = pos & (PAGE_CACHE_SIZE - 1);
1490 to = from + len;
ac27a0ec
DK
1491
1492retry:
af5bc92d
TT
1493 handle = ext4_journal_start(inode, needed_blocks);
1494 if (IS_ERR(handle)) {
1495 ret = PTR_ERR(handle);
1496 goto out;
7479d2b9 1497 }
ac27a0ec 1498
ebd3610b
JK
1499 /* We cannot recurse into the filesystem as the transaction is already
1500 * started */
1501 flags |= AOP_FLAG_NOFS;
1502
54566b2c 1503 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1504 if (!page) {
1505 ext4_journal_stop(handle);
1506 ret = -ENOMEM;
1507 goto out;
1508 }
1509 *pagep = page;
1510
bfc1af65 1511 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1512 ext4_get_block);
bfc1af65
NP
1513
1514 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1515 ret = walk_page_buffers(handle, page_buffers(page),
1516 from, to, NULL, do_journal_get_write_access);
1517 }
bfc1af65
NP
1518
1519 if (ret) {
af5bc92d 1520 unlock_page(page);
cf108bca 1521 ext4_journal_stop(handle);
af5bc92d 1522 page_cache_release(page);
ae4d5372
AK
1523 /*
1524 * block_write_begin may have instantiated a few blocks
1525 * outside i_size. Trim these off again. Don't need
1526 * i_size_read because we hold i_mutex.
1527 */
1528 if (pos + len > inode->i_size)
1529 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1530 }
1531
617ba13b 1532 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1533 goto retry;
7479d2b9 1534out:
ac27a0ec
DK
1535 return ret;
1536}
1537
bfc1af65
NP
1538/* For write_end() in data=journal mode */
1539static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1540{
1541 if (!buffer_mapped(bh) || buffer_freed(bh))
1542 return 0;
1543 set_buffer_uptodate(bh);
0390131b 1544 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1545}
1546
1547/*
1548 * We need to pick up the new inode size which generic_commit_write gave us
1549 * `file' can be NULL - eg, when called from page_symlink().
1550 *
617ba13b 1551 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1552 * buffers are managed internally.
1553 */
bfc1af65
NP
1554static int ext4_ordered_write_end(struct file *file,
1555 struct address_space *mapping,
1556 loff_t pos, unsigned len, unsigned copied,
1557 struct page *page, void *fsdata)
ac27a0ec 1558{
617ba13b 1559 handle_t *handle = ext4_journal_current_handle();
cf108bca 1560 struct inode *inode = mapping->host;
ac27a0ec
DK
1561 int ret = 0, ret2;
1562
ba80b101
TT
1563 trace_mark(ext4_ordered_write_end,
1564 "dev %s ino %lu pos %llu len %u copied %u",
1565 inode->i_sb->s_id, inode->i_ino,
1566 (unsigned long long) pos, len, copied);
678aaf48 1567 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1568
1569 if (ret == 0) {
ac27a0ec
DK
1570 loff_t new_i_size;
1571
bfc1af65 1572 new_i_size = pos + copied;
cf17fea6
AK
1573 if (new_i_size > EXT4_I(inode)->i_disksize) {
1574 ext4_update_i_disksize(inode, new_i_size);
1575 /* We need to mark inode dirty even if
1576 * new_i_size is less that inode->i_size
1577 * bu greater than i_disksize.(hint delalloc)
1578 */
1579 ext4_mark_inode_dirty(handle, inode);
1580 }
1581
cf108bca 1582 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1583 page, fsdata);
f8a87d89
RK
1584 copied = ret2;
1585 if (ret2 < 0)
1586 ret = ret2;
ac27a0ec 1587 }
617ba13b 1588 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1589 if (!ret)
1590 ret = ret2;
bfc1af65
NP
1591
1592 return ret ? ret : copied;
ac27a0ec
DK
1593}
1594
bfc1af65
NP
1595static int ext4_writeback_write_end(struct file *file,
1596 struct address_space *mapping,
1597 loff_t pos, unsigned len, unsigned copied,
1598 struct page *page, void *fsdata)
ac27a0ec 1599{
617ba13b 1600 handle_t *handle = ext4_journal_current_handle();
cf108bca 1601 struct inode *inode = mapping->host;
ac27a0ec
DK
1602 int ret = 0, ret2;
1603 loff_t new_i_size;
1604
ba80b101
TT
1605 trace_mark(ext4_writeback_write_end,
1606 "dev %s ino %lu pos %llu len %u copied %u",
1607 inode->i_sb->s_id, inode->i_ino,
1608 (unsigned long long) pos, len, copied);
bfc1af65 1609 new_i_size = pos + copied;
cf17fea6
AK
1610 if (new_i_size > EXT4_I(inode)->i_disksize) {
1611 ext4_update_i_disksize(inode, new_i_size);
1612 /* We need to mark inode dirty even if
1613 * new_i_size is less that inode->i_size
1614 * bu greater than i_disksize.(hint delalloc)
1615 */
1616 ext4_mark_inode_dirty(handle, inode);
1617 }
ac27a0ec 1618
cf108bca 1619 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1620 page, fsdata);
f8a87d89
RK
1621 copied = ret2;
1622 if (ret2 < 0)
1623 ret = ret2;
ac27a0ec 1624
617ba13b 1625 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1626 if (!ret)
1627 ret = ret2;
bfc1af65
NP
1628
1629 return ret ? ret : copied;
ac27a0ec
DK
1630}
1631
bfc1af65
NP
1632static int ext4_journalled_write_end(struct file *file,
1633 struct address_space *mapping,
1634 loff_t pos, unsigned len, unsigned copied,
1635 struct page *page, void *fsdata)
ac27a0ec 1636{
617ba13b 1637 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1638 struct inode *inode = mapping->host;
ac27a0ec
DK
1639 int ret = 0, ret2;
1640 int partial = 0;
bfc1af65 1641 unsigned from, to;
cf17fea6 1642 loff_t new_i_size;
ac27a0ec 1643
ba80b101
TT
1644 trace_mark(ext4_journalled_write_end,
1645 "dev %s ino %lu pos %llu len %u copied %u",
1646 inode->i_sb->s_id, inode->i_ino,
1647 (unsigned long long) pos, len, copied);
bfc1af65
NP
1648 from = pos & (PAGE_CACHE_SIZE - 1);
1649 to = from + len;
1650
1651 if (copied < len) {
1652 if (!PageUptodate(page))
1653 copied = 0;
1654 page_zero_new_buffers(page, from+copied, to);
1655 }
ac27a0ec
DK
1656
1657 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1658 to, &partial, write_end_fn);
ac27a0ec
DK
1659 if (!partial)
1660 SetPageUptodate(page);
cf17fea6
AK
1661 new_i_size = pos + copied;
1662 if (new_i_size > inode->i_size)
bfc1af65 1663 i_size_write(inode, pos+copied);
617ba13b 1664 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1665 if (new_i_size > EXT4_I(inode)->i_disksize) {
1666 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1667 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1668 if (!ret)
1669 ret = ret2;
1670 }
bfc1af65 1671
cf108bca 1672 unlock_page(page);
617ba13b 1673 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1674 if (!ret)
1675 ret = ret2;
bfc1af65
NP
1676 page_cache_release(page);
1677
1678 return ret ? ret : copied;
ac27a0ec 1679}
d2a17637
MC
1680
1681static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1682{
030ba6bc 1683 int retries = 0;
60e58e0f
MC
1684 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1685 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1686
1687 /*
1688 * recalculate the amount of metadata blocks to reserve
1689 * in order to allocate nrblocks
1690 * worse case is one extent per block
1691 */
030ba6bc 1692repeat:
d2a17637
MC
1693 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1694 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1695 mdblocks = ext4_calc_metadata_amount(inode, total);
1696 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1697
1698 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1699 total = md_needed + nrblocks;
1700
60e58e0f
MC
1701 /*
1702 * Make quota reservation here to prevent quota overflow
1703 * later. Real quota accounting is done at pages writeout
1704 * time.
1705 */
1706 if (vfs_dq_reserve_block(inode, total)) {
1707 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1708 return -EDQUOT;
1709 }
1710
a30d542a 1711 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1712 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1713 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1714 yield();
1715 goto repeat;
1716 }
60e58e0f 1717 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1718 return -ENOSPC;
1719 }
d2a17637
MC
1720 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1721 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1722
1723 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1724 return 0; /* success */
1725}
1726
12219aea 1727static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1728{
1729 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1730 int total, mdb, mdb_free, release;
1731
cd213226
MC
1732 if (!to_free)
1733 return; /* Nothing to release, exit */
1734
d2a17637 1735 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1736
1737 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1738 /*
1739 * if there is no reserved blocks, but we try to free some
1740 * then the counter is messed up somewhere.
1741 * but since this function is called from invalidate
1742 * page, it's harmless to return without any action
1743 */
1744 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1745 "blocks for inode %lu, but there is no reserved "
1746 "data blocks\n", to_free, inode->i_ino);
1747 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1748 return;
1749 }
1750
d2a17637 1751 /* recalculate the number of metablocks still need to be reserved */
12219aea 1752 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1753 mdb = ext4_calc_metadata_amount(inode, total);
1754
1755 /* figure out how many metablocks to release */
1756 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1757 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1758
d2a17637
MC
1759 release = to_free + mdb_free;
1760
6bc6e63f
AK
1761 /* update fs dirty blocks counter for truncate case */
1762 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1763
1764 /* update per-inode reservations */
12219aea
AK
1765 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1766 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1767
1768 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1769 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1770 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1771
1772 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1773}
1774
1775static void ext4_da_page_release_reservation(struct page *page,
1776 unsigned long offset)
1777{
1778 int to_release = 0;
1779 struct buffer_head *head, *bh;
1780 unsigned int curr_off = 0;
1781
1782 head = page_buffers(page);
1783 bh = head;
1784 do {
1785 unsigned int next_off = curr_off + bh->b_size;
1786
1787 if ((offset <= curr_off) && (buffer_delay(bh))) {
1788 to_release++;
1789 clear_buffer_delay(bh);
1790 }
1791 curr_off = next_off;
1792 } while ((bh = bh->b_this_page) != head);
12219aea 1793 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1794}
ac27a0ec 1795
64769240
AT
1796/*
1797 * Delayed allocation stuff
1798 */
1799
1800struct mpage_da_data {
1801 struct inode *inode;
8dc207c0
TT
1802 sector_t b_blocknr; /* start block number of extent */
1803 size_t b_size; /* size of extent */
1804 unsigned long b_state; /* state of the extent */
64769240 1805 unsigned long first_page, next_page; /* extent of pages */
64769240 1806 struct writeback_control *wbc;
a1d6cc56 1807 int io_done;
498e5f24 1808 int pages_written;
df22291f 1809 int retval;
64769240
AT
1810};
1811
1812/*
1813 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1814 * them with writepage() call back
64769240
AT
1815 *
1816 * @mpd->inode: inode
1817 * @mpd->first_page: first page of the extent
1818 * @mpd->next_page: page after the last page of the extent
64769240
AT
1819 *
1820 * By the time mpage_da_submit_io() is called we expect all blocks
1821 * to be allocated. this may be wrong if allocation failed.
1822 *
1823 * As pages are already locked by write_cache_pages(), we can't use it
1824 */
1825static int mpage_da_submit_io(struct mpage_da_data *mpd)
1826{
22208ded 1827 long pages_skipped;
791b7f08
AK
1828 struct pagevec pvec;
1829 unsigned long index, end;
1830 int ret = 0, err, nr_pages, i;
1831 struct inode *inode = mpd->inode;
1832 struct address_space *mapping = inode->i_mapping;
64769240
AT
1833
1834 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1835 /*
1836 * We need to start from the first_page to the next_page - 1
1837 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1838 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1839 * at the currently mapped buffer_heads.
1840 */
64769240
AT
1841 index = mpd->first_page;
1842 end = mpd->next_page - 1;
1843
791b7f08 1844 pagevec_init(&pvec, 0);
64769240 1845 while (index <= end) {
791b7f08 1846 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1847 if (nr_pages == 0)
1848 break;
1849 for (i = 0; i < nr_pages; i++) {
1850 struct page *page = pvec.pages[i];
1851
791b7f08
AK
1852 index = page->index;
1853 if (index > end)
1854 break;
1855 index++;
1856
1857 BUG_ON(!PageLocked(page));
1858 BUG_ON(PageWriteback(page));
1859
22208ded 1860 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1861 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1862 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1863 /*
1864 * have successfully written the page
1865 * without skipping the same
1866 */
a1d6cc56 1867 mpd->pages_written++;
64769240
AT
1868 /*
1869 * In error case, we have to continue because
1870 * remaining pages are still locked
1871 * XXX: unlock and re-dirty them?
1872 */
1873 if (ret == 0)
1874 ret = err;
1875 }
1876 pagevec_release(&pvec);
1877 }
64769240
AT
1878 return ret;
1879}
1880
1881/*
1882 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1883 *
1884 * @mpd->inode - inode to walk through
1885 * @exbh->b_blocknr - first block on a disk
1886 * @exbh->b_size - amount of space in bytes
1887 * @logical - first logical block to start assignment with
1888 *
1889 * the function goes through all passed space and put actual disk
29fa89d0 1890 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
1891 */
1892static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1893 struct buffer_head *exbh)
1894{
1895 struct inode *inode = mpd->inode;
1896 struct address_space *mapping = inode->i_mapping;
1897 int blocks = exbh->b_size >> inode->i_blkbits;
1898 sector_t pblock = exbh->b_blocknr, cur_logical;
1899 struct buffer_head *head, *bh;
a1d6cc56 1900 pgoff_t index, end;
64769240
AT
1901 struct pagevec pvec;
1902 int nr_pages, i;
1903
1904 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1905 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1906 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1907
1908 pagevec_init(&pvec, 0);
1909
1910 while (index <= end) {
1911 /* XXX: optimize tail */
1912 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1913 if (nr_pages == 0)
1914 break;
1915 for (i = 0; i < nr_pages; i++) {
1916 struct page *page = pvec.pages[i];
1917
1918 index = page->index;
1919 if (index > end)
1920 break;
1921 index++;
1922
1923 BUG_ON(!PageLocked(page));
1924 BUG_ON(PageWriteback(page));
1925 BUG_ON(!page_has_buffers(page));
1926
1927 bh = page_buffers(page);
1928 head = bh;
1929
1930 /* skip blocks out of the range */
1931 do {
1932 if (cur_logical >= logical)
1933 break;
1934 cur_logical++;
1935 } while ((bh = bh->b_this_page) != head);
1936
1937 do {
1938 if (cur_logical >= logical + blocks)
1939 break;
29fa89d0
AK
1940
1941 if (buffer_delay(bh) ||
1942 buffer_unwritten(bh)) {
1943
1944 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1945
1946 if (buffer_delay(bh)) {
1947 clear_buffer_delay(bh);
1948 bh->b_blocknr = pblock;
1949 } else {
1950 /*
1951 * unwritten already should have
1952 * blocknr assigned. Verify that
1953 */
1954 clear_buffer_unwritten(bh);
1955 BUG_ON(bh->b_blocknr != pblock);
1956 }
1957
61628a3f 1958 } else if (buffer_mapped(bh))
64769240 1959 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1960
1961 cur_logical++;
1962 pblock++;
1963 } while ((bh = bh->b_this_page) != head);
1964 }
1965 pagevec_release(&pvec);
1966 }
1967}
1968
1969
1970/*
1971 * __unmap_underlying_blocks - just a helper function to unmap
1972 * set of blocks described by @bh
1973 */
1974static inline void __unmap_underlying_blocks(struct inode *inode,
1975 struct buffer_head *bh)
1976{
1977 struct block_device *bdev = inode->i_sb->s_bdev;
1978 int blocks, i;
1979
1980 blocks = bh->b_size >> inode->i_blkbits;
1981 for (i = 0; i < blocks; i++)
1982 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1983}
1984
c4a0c46e
AK
1985static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1986 sector_t logical, long blk_cnt)
1987{
1988 int nr_pages, i;
1989 pgoff_t index, end;
1990 struct pagevec pvec;
1991 struct inode *inode = mpd->inode;
1992 struct address_space *mapping = inode->i_mapping;
1993
1994 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1995 end = (logical + blk_cnt - 1) >>
1996 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1997 while (index <= end) {
1998 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1999 if (nr_pages == 0)
2000 break;
2001 for (i = 0; i < nr_pages; i++) {
2002 struct page *page = pvec.pages[i];
2003 index = page->index;
2004 if (index > end)
2005 break;
2006 index++;
2007
2008 BUG_ON(!PageLocked(page));
2009 BUG_ON(PageWriteback(page));
2010 block_invalidatepage(page, 0);
2011 ClearPageUptodate(page);
2012 unlock_page(page);
2013 }
2014 }
2015 return;
2016}
2017
df22291f
AK
2018static void ext4_print_free_blocks(struct inode *inode)
2019{
2020 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2021 printk(KERN_EMERG "Total free blocks count %lld\n",
2022 ext4_count_free_blocks(inode->i_sb));
2023 printk(KERN_EMERG "Free/Dirty block details\n");
2024 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 2025 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 2026 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 2027 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 2028 printk(KERN_EMERG "Block reservation details\n");
498e5f24 2029 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 2030 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 2031 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
2032 EXT4_I(inode)->i_reserved_meta_blocks);
2033 return;
2034}
2035
64769240
AT
2036/*
2037 * mpage_da_map_blocks - go through given space
2038 *
8dc207c0 2039 * @mpd - bh describing space
64769240
AT
2040 *
2041 * The function skips space we know is already mapped to disk blocks.
2042 *
64769240 2043 */
ed5bde0b 2044static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2045{
2ac3b6e0 2046 int err, blks, get_blocks_flags;
030ba6bc 2047 struct buffer_head new;
2fa3cdfb
TT
2048 sector_t next = mpd->b_blocknr;
2049 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2050 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2051 handle_t *handle = NULL;
64769240
AT
2052
2053 /*
2054 * We consider only non-mapped and non-allocated blocks
2055 */
8dc207c0 2056 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2057 !(mpd->b_state & (1 << BH_Delay)) &&
2058 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2059 return 0;
2fa3cdfb
TT
2060
2061 /*
2062 * If we didn't accumulate anything to write simply return
2063 */
2064 if (!mpd->b_size)
2065 return 0;
2066
2067 handle = ext4_journal_current_handle();
2068 BUG_ON(!handle);
2069
79ffab34 2070 /*
2ac3b6e0
TT
2071 * Call ext4_get_blocks() to allocate any delayed allocation
2072 * blocks, or to convert an uninitialized extent to be
2073 * initialized (in the case where we have written into
2074 * one or more preallocated blocks).
2075 *
2076 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2077 * indicate that we are on the delayed allocation path. This
2078 * affects functions in many different parts of the allocation
2079 * call path. This flag exists primarily because we don't
2080 * want to change *many* call functions, so ext4_get_blocks()
2081 * will set the magic i_delalloc_reserved_flag once the
2082 * inode's allocation semaphore is taken.
2083 *
2084 * If the blocks in questions were delalloc blocks, set
2085 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2086 * variables are updated after the blocks have been allocated.
79ffab34 2087 */
2ac3b6e0
TT
2088 new.b_state = 0;
2089 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2090 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2091 if (mpd->b_state & (1 << BH_Delay))
2092 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2093 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2094 &new, get_blocks_flags);
2fa3cdfb
TT
2095 if (blks < 0) {
2096 err = blks;
ed5bde0b
TT
2097 /*
2098 * If get block returns with error we simply
2099 * return. Later writepage will redirty the page and
2100 * writepages will find the dirty page again
c4a0c46e
AK
2101 */
2102 if (err == -EAGAIN)
2103 return 0;
df22291f
AK
2104
2105 if (err == -ENOSPC &&
ed5bde0b 2106 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2107 mpd->retval = err;
2108 return 0;
2109 }
2110
c4a0c46e 2111 /*
ed5bde0b
TT
2112 * get block failure will cause us to loop in
2113 * writepages, because a_ops->writepage won't be able
2114 * to make progress. The page will be redirtied by
2115 * writepage and writepages will again try to write
2116 * the same.
c4a0c46e
AK
2117 */
2118 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2119 "at logical offset %llu with max blocks "
2120 "%zd with error %d\n",
2121 __func__, mpd->inode->i_ino,
2122 (unsigned long long)next,
8dc207c0 2123 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2124 printk(KERN_EMERG "This should not happen.!! "
2125 "Data will be lost\n");
030ba6bc 2126 if (err == -ENOSPC) {
df22291f 2127 ext4_print_free_blocks(mpd->inode);
030ba6bc 2128 }
2fa3cdfb 2129 /* invalidate all the pages */
c4a0c46e 2130 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2131 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2132 return err;
2133 }
2fa3cdfb
TT
2134 BUG_ON(blks == 0);
2135
2136 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2137
a1d6cc56
AK
2138 if (buffer_new(&new))
2139 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2140
a1d6cc56
AK
2141 /*
2142 * If blocks are delayed marked, we need to
2143 * put actual blocknr and drop delayed bit
2144 */
8dc207c0
TT
2145 if ((mpd->b_state & (1 << BH_Delay)) ||
2146 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2147 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2148
2fa3cdfb
TT
2149 if (ext4_should_order_data(mpd->inode)) {
2150 err = ext4_jbd2_file_inode(handle, mpd->inode);
2151 if (err)
2152 return err;
2153 }
2154
2155 /*
2156 * Update on-disk size along with block allocation we don't
2157 * use EXT4_GET_BLOCKS_EXTEND_DISKSIZE as size may change
2158 * within already allocated block -bzzz
2159 */
2160 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2161 if (disksize > i_size_read(mpd->inode))
2162 disksize = i_size_read(mpd->inode);
2163 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2164 ext4_update_i_disksize(mpd->inode, disksize);
2165 return ext4_mark_inode_dirty(handle, mpd->inode);
2166 }
2167
c4a0c46e 2168 return 0;
64769240
AT
2169}
2170
bf068ee2
AK
2171#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2172 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2173
2174/*
2175 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2176 *
2177 * @mpd->lbh - extent of blocks
2178 * @logical - logical number of the block in the file
2179 * @bh - bh of the block (used to access block's state)
2180 *
2181 * the function is used to collect contig. blocks in same state
2182 */
2183static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2184 sector_t logical, size_t b_size,
2185 unsigned long b_state)
64769240 2186{
64769240 2187 sector_t next;
8dc207c0 2188 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2189
525f4ed8
MC
2190 /* check if thereserved journal credits might overflow */
2191 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2192 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2193 /*
2194 * With non-extent format we are limited by the journal
2195 * credit available. Total credit needed to insert
2196 * nrblocks contiguous blocks is dependent on the
2197 * nrblocks. So limit nrblocks.
2198 */
2199 goto flush_it;
2200 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2201 EXT4_MAX_TRANS_DATA) {
2202 /*
2203 * Adding the new buffer_head would make it cross the
2204 * allowed limit for which we have journal credit
2205 * reserved. So limit the new bh->b_size
2206 */
2207 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2208 mpd->inode->i_blkbits;
2209 /* we will do mpage_da_submit_io in the next loop */
2210 }
2211 }
64769240
AT
2212 /*
2213 * First block in the extent
2214 */
8dc207c0
TT
2215 if (mpd->b_size == 0) {
2216 mpd->b_blocknr = logical;
2217 mpd->b_size = b_size;
2218 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2219 return;
2220 }
2221
8dc207c0 2222 next = mpd->b_blocknr + nrblocks;
64769240
AT
2223 /*
2224 * Can we merge the block to our big extent?
2225 */
8dc207c0
TT
2226 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2227 mpd->b_size += b_size;
64769240
AT
2228 return;
2229 }
2230
525f4ed8 2231flush_it:
64769240
AT
2232 /*
2233 * We couldn't merge the block to our extent, so we
2234 * need to flush current extent and start new one
2235 */
c4a0c46e
AK
2236 if (mpage_da_map_blocks(mpd) == 0)
2237 mpage_da_submit_io(mpd);
a1d6cc56
AK
2238 mpd->io_done = 1;
2239 return;
64769240
AT
2240}
2241
29fa89d0
AK
2242static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2243{
2244 /*
2245 * unmapped buffer is possible for holes.
2246 * delay buffer is possible with delayed allocation.
2247 * We also need to consider unwritten buffer as unmapped.
2248 */
2249 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2250 buffer_unwritten(bh)) && buffer_dirty(bh);
2251}
2252
64769240
AT
2253/*
2254 * __mpage_da_writepage - finds extent of pages and blocks
2255 *
2256 * @page: page to consider
2257 * @wbc: not used, we just follow rules
2258 * @data: context
2259 *
2260 * The function finds extents of pages and scan them for all blocks.
2261 */
2262static int __mpage_da_writepage(struct page *page,
2263 struct writeback_control *wbc, void *data)
2264{
2265 struct mpage_da_data *mpd = data;
2266 struct inode *inode = mpd->inode;
8dc207c0 2267 struct buffer_head *bh, *head;
64769240
AT
2268 sector_t logical;
2269
a1d6cc56
AK
2270 if (mpd->io_done) {
2271 /*
2272 * Rest of the page in the page_vec
2273 * redirty then and skip then. We will
2274 * try to to write them again after
2275 * starting a new transaction
2276 */
2277 redirty_page_for_writepage(wbc, page);
2278 unlock_page(page);
2279 return MPAGE_DA_EXTENT_TAIL;
2280 }
64769240
AT
2281 /*
2282 * Can we merge this page to current extent?
2283 */
2284 if (mpd->next_page != page->index) {
2285 /*
2286 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2287 * and start IO on them using writepage()
64769240
AT
2288 */
2289 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2290 if (mpage_da_map_blocks(mpd) == 0)
2291 mpage_da_submit_io(mpd);
a1d6cc56
AK
2292 /*
2293 * skip rest of the page in the page_vec
2294 */
2295 mpd->io_done = 1;
2296 redirty_page_for_writepage(wbc, page);
2297 unlock_page(page);
2298 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2299 }
2300
2301 /*
2302 * Start next extent of pages ...
2303 */
2304 mpd->first_page = page->index;
2305
2306 /*
2307 * ... and blocks
2308 */
8dc207c0
TT
2309 mpd->b_size = 0;
2310 mpd->b_state = 0;
2311 mpd->b_blocknr = 0;
64769240
AT
2312 }
2313
2314 mpd->next_page = page->index + 1;
2315 logical = (sector_t) page->index <<
2316 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2317
2318 if (!page_has_buffers(page)) {
8dc207c0
TT
2319 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2320 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2321 if (mpd->io_done)
2322 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2323 } else {
2324 /*
2325 * Page with regular buffer heads, just add all dirty ones
2326 */
2327 head = page_buffers(page);
2328 bh = head;
2329 do {
2330 BUG_ON(buffer_locked(bh));
791b7f08
AK
2331 /*
2332 * We need to try to allocate
2333 * unmapped blocks in the same page.
2334 * Otherwise we won't make progress
2335 * with the page in ext4_da_writepage
2336 */
29fa89d0 2337 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
8dc207c0
TT
2338 mpage_add_bh_to_extent(mpd, logical,
2339 bh->b_size,
2340 bh->b_state);
a1d6cc56
AK
2341 if (mpd->io_done)
2342 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2343 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2344 /*
2345 * mapped dirty buffer. We need to update
2346 * the b_state because we look at
2347 * b_state in mpage_da_map_blocks. We don't
2348 * update b_size because if we find an
2349 * unmapped buffer_head later we need to
2350 * use the b_state flag of that buffer_head.
2351 */
8dc207c0
TT
2352 if (mpd->b_size == 0)
2353 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2354 }
64769240
AT
2355 logical++;
2356 } while ((bh = bh->b_this_page) != head);
2357 }
2358
2359 return 0;
2360}
2361
64769240 2362/*
b920c755
TT
2363 * This is a special get_blocks_t callback which is used by
2364 * ext4_da_write_begin(). It will either return mapped block or
2365 * reserve space for a single block.
29fa89d0
AK
2366 *
2367 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2368 * We also have b_blocknr = -1 and b_bdev initialized properly
2369 *
2370 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2371 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2372 * initialized properly.
64769240
AT
2373 */
2374static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2375 struct buffer_head *bh_result, int create)
2376{
2377 int ret = 0;
33b9817e
AK
2378 sector_t invalid_block = ~((sector_t) 0xffff);
2379
2380 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2381 invalid_block = ~0;
64769240
AT
2382
2383 BUG_ON(create == 0);
2384 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2385
2386 /*
2387 * first, we need to know whether the block is allocated already
2388 * preallocated blocks are unmapped but should treated
2389 * the same as allocated blocks.
2390 */
c2177057 2391 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2392 if ((ret == 0) && !buffer_delay(bh_result)) {
2393 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2394 /*
2395 * XXX: __block_prepare_write() unmaps passed block,
2396 * is it OK?
2397 */
d2a17637
MC
2398 ret = ext4_da_reserve_space(inode, 1);
2399 if (ret)
2400 /* not enough space to reserve */
2401 return ret;
2402
33b9817e 2403 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2404 set_buffer_new(bh_result);
2405 set_buffer_delay(bh_result);
2406 } else if (ret > 0) {
2407 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2408 if (buffer_unwritten(bh_result)) {
2409 /* A delayed write to unwritten bh should
2410 * be marked new and mapped. Mapped ensures
2411 * that we don't do get_block multiple times
2412 * when we write to the same offset and new
2413 * ensures that we do proper zero out for
2414 * partial write.
2415 */
9c1ee184 2416 set_buffer_new(bh_result);
29fa89d0
AK
2417 set_buffer_mapped(bh_result);
2418 }
64769240
AT
2419 ret = 0;
2420 }
2421
2422 return ret;
2423}
61628a3f 2424
b920c755
TT
2425/*
2426 * This function is used as a standard get_block_t calback function
2427 * when there is no desire to allocate any blocks. It is used as a
2428 * callback function for block_prepare_write(), nobh_writepage(), and
2429 * block_write_full_page(). These functions should only try to map a
2430 * single block at a time.
2431 *
2432 * Since this function doesn't do block allocations even if the caller
2433 * requests it by passing in create=1, it is critically important that
2434 * any caller checks to make sure that any buffer heads are returned
2435 * by this function are either all already mapped or marked for
2436 * delayed allocation before calling nobh_writepage() or
2437 * block_write_full_page(). Otherwise, b_blocknr could be left
2438 * unitialized, and the page write functions will be taken by
2439 * surprise.
2440 */
2441static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2442 struct buffer_head *bh_result, int create)
2443{
2444 int ret = 0;
2445 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2446
a2dc52b5
TT
2447 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2448
f0e6c985
AK
2449 /*
2450 * we don't want to do block allocation in writepage
2451 * so call get_block_wrap with create = 0
2452 */
c2177057 2453 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
a2dc52b5 2454 BUG_ON(create && ret == 0);
f0e6c985
AK
2455 if (ret > 0) {
2456 bh_result->b_size = (ret << inode->i_blkbits);
2457 ret = 0;
2458 }
2459 return ret;
61628a3f
MC
2460}
2461
61628a3f 2462/*
b920c755
TT
2463 * This function can get called via...
2464 * - ext4_da_writepages after taking page lock (have journal handle)
2465 * - journal_submit_inode_data_buffers (no journal handle)
2466 * - shrink_page_list via pdflush (no journal handle)
2467 * - grab_page_cache when doing write_begin (have journal handle)
61628a3f 2468 */
64769240
AT
2469static int ext4_da_writepage(struct page *page,
2470 struct writeback_control *wbc)
2471{
64769240 2472 int ret = 0;
61628a3f 2473 loff_t size;
498e5f24 2474 unsigned int len;
61628a3f
MC
2475 struct buffer_head *page_bufs;
2476 struct inode *inode = page->mapping->host;
2477
ba80b101
TT
2478 trace_mark(ext4_da_writepage,
2479 "dev %s ino %lu page_index %lu",
2480 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2481 size = i_size_read(inode);
2482 if (page->index == size >> PAGE_CACHE_SHIFT)
2483 len = size & ~PAGE_CACHE_MASK;
2484 else
2485 len = PAGE_CACHE_SIZE;
64769240 2486
f0e6c985 2487 if (page_has_buffers(page)) {
61628a3f 2488 page_bufs = page_buffers(page);
f0e6c985
AK
2489 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2490 ext4_bh_unmapped_or_delay)) {
61628a3f 2491 /*
f0e6c985
AK
2492 * We don't want to do block allocation
2493 * So redirty the page and return
cd1aac32
AK
2494 * We may reach here when we do a journal commit
2495 * via journal_submit_inode_data_buffers.
2496 * If we don't have mapping block we just ignore
f0e6c985
AK
2497 * them. We can also reach here via shrink_page_list
2498 */
2499 redirty_page_for_writepage(wbc, page);
2500 unlock_page(page);
2501 return 0;
2502 }
2503 } else {
2504 /*
2505 * The test for page_has_buffers() is subtle:
2506 * We know the page is dirty but it lost buffers. That means
2507 * that at some moment in time after write_begin()/write_end()
2508 * has been called all buffers have been clean and thus they
2509 * must have been written at least once. So they are all
2510 * mapped and we can happily proceed with mapping them
2511 * and writing the page.
2512 *
2513 * Try to initialize the buffer_heads and check whether
2514 * all are mapped and non delay. We don't want to
2515 * do block allocation here.
2516 */
2517 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
b920c755 2518 noalloc_get_block_write);
f0e6c985
AK
2519 if (!ret) {
2520 page_bufs = page_buffers(page);
2521 /* check whether all are mapped and non delay */
2522 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2523 ext4_bh_unmapped_or_delay)) {
2524 redirty_page_for_writepage(wbc, page);
2525 unlock_page(page);
2526 return 0;
2527 }
2528 } else {
2529 /*
2530 * We can't do block allocation here
2531 * so just redity the page and unlock
2532 * and return
61628a3f 2533 */
61628a3f
MC
2534 redirty_page_for_writepage(wbc, page);
2535 unlock_page(page);
2536 return 0;
2537 }
ed9b3e33
AK
2538 /* now mark the buffer_heads as dirty and uptodate */
2539 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2540 }
2541
2542 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2543 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2544 else
b920c755
TT
2545 ret = block_write_full_page(page, noalloc_get_block_write,
2546 wbc);
64769240 2547
64769240
AT
2548 return ret;
2549}
2550
61628a3f 2551/*
525f4ed8
MC
2552 * This is called via ext4_da_writepages() to
2553 * calulate the total number of credits to reserve to fit
2554 * a single extent allocation into a single transaction,
2555 * ext4_da_writpeages() will loop calling this before
2556 * the block allocation.
61628a3f 2557 */
525f4ed8
MC
2558
2559static int ext4_da_writepages_trans_blocks(struct inode *inode)
2560{
2561 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2562
2563 /*
2564 * With non-extent format the journal credit needed to
2565 * insert nrblocks contiguous block is dependent on
2566 * number of contiguous block. So we will limit
2567 * number of contiguous block to a sane value
2568 */
2569 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2570 (max_blocks > EXT4_MAX_TRANS_DATA))
2571 max_blocks = EXT4_MAX_TRANS_DATA;
2572
2573 return ext4_chunk_trans_blocks(inode, max_blocks);
2574}
61628a3f 2575
64769240 2576static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2577 struct writeback_control *wbc)
64769240 2578{
22208ded
AK
2579 pgoff_t index;
2580 int range_whole = 0;
61628a3f 2581 handle_t *handle = NULL;
df22291f 2582 struct mpage_da_data mpd;
5e745b04 2583 struct inode *inode = mapping->host;
22208ded 2584 int no_nrwrite_index_update;
498e5f24
TT
2585 int pages_written = 0;
2586 long pages_skipped;
2acf2c26 2587 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2588 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2589 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2590
ba80b101
TT
2591 trace_mark(ext4_da_writepages,
2592 "dev %s ino %lu nr_t_write %ld "
2593 "pages_skipped %ld range_start %llu "
2594 "range_end %llu nonblocking %d "
2595 "for_kupdate %d for_reclaim %d "
2596 "for_writepages %d range_cyclic %d",
2597 inode->i_sb->s_id, inode->i_ino,
2598 wbc->nr_to_write, wbc->pages_skipped,
2599 (unsigned long long) wbc->range_start,
2600 (unsigned long long) wbc->range_end,
2601 wbc->nonblocking, wbc->for_kupdate,
2602 wbc->for_reclaim, wbc->for_writepages,
2603 wbc->range_cyclic);
2604
61628a3f
MC
2605 /*
2606 * No pages to write? This is mainly a kludge to avoid starting
2607 * a transaction for special inodes like journal inode on last iput()
2608 * because that could violate lock ordering on umount
2609 */
a1d6cc56 2610 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2611 return 0;
2a21e37e
TT
2612
2613 /*
2614 * If the filesystem has aborted, it is read-only, so return
2615 * right away instead of dumping stack traces later on that
2616 * will obscure the real source of the problem. We test
2617 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2618 * the latter could be true if the filesystem is mounted
2619 * read-only, and in that case, ext4_da_writepages should
2620 * *never* be called, so if that ever happens, we would want
2621 * the stack trace.
2622 */
2623 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2624 return -EROFS;
2625
5e745b04
AK
2626 /*
2627 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2628 * This make sure small files blocks are allocated in
2629 * single attempt. This ensure that small files
2630 * get less fragmented.
2631 */
2632 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2633 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2634 wbc->nr_to_write = sbi->s_mb_stream_request;
2635 }
22208ded
AK
2636 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2637 range_whole = 1;
61628a3f 2638
2acf2c26
AK
2639 range_cyclic = wbc->range_cyclic;
2640 if (wbc->range_cyclic) {
22208ded 2641 index = mapping->writeback_index;
2acf2c26
AK
2642 if (index)
2643 cycled = 0;
2644 wbc->range_start = index << PAGE_CACHE_SHIFT;
2645 wbc->range_end = LLONG_MAX;
2646 wbc->range_cyclic = 0;
2647 } else
22208ded 2648 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2649
df22291f
AK
2650 mpd.wbc = wbc;
2651 mpd.inode = mapping->host;
2652
22208ded
AK
2653 /*
2654 * we don't want write_cache_pages to update
2655 * nr_to_write and writeback_index
2656 */
2657 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2658 wbc->no_nrwrite_index_update = 1;
2659 pages_skipped = wbc->pages_skipped;
2660
2acf2c26 2661retry:
22208ded 2662 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2663
2664 /*
2665 * we insert one extent at a time. So we need
2666 * credit needed for single extent allocation.
2667 * journalled mode is currently not supported
2668 * by delalloc
2669 */
2670 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2671 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2672
61628a3f
MC
2673 /* start a new transaction*/
2674 handle = ext4_journal_start(inode, needed_blocks);
2675 if (IS_ERR(handle)) {
2676 ret = PTR_ERR(handle);
2a21e37e 2677 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2678 "%ld pages, ino %lu; err %d\n", __func__,
2679 wbc->nr_to_write, inode->i_ino, ret);
2680 dump_stack();
61628a3f
MC
2681 goto out_writepages;
2682 }
f63e6005
TT
2683
2684 /*
2685 * Now call __mpage_da_writepage to find the next
2686 * contiguous region of logical blocks that need
2687 * blocks to be allocated by ext4. We don't actually
2688 * submit the blocks for I/O here, even though
2689 * write_cache_pages thinks it will, and will set the
2690 * pages as clean for write before calling
2691 * __mpage_da_writepage().
2692 */
2693 mpd.b_size = 0;
2694 mpd.b_state = 0;
2695 mpd.b_blocknr = 0;
2696 mpd.first_page = 0;
2697 mpd.next_page = 0;
2698 mpd.io_done = 0;
2699 mpd.pages_written = 0;
2700 mpd.retval = 0;
2701 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2702 &mpd);
2703 /*
2704 * If we have a contigous extent of pages and we
2705 * haven't done the I/O yet, map the blocks and submit
2706 * them for I/O.
2707 */
2708 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2709 if (mpage_da_map_blocks(&mpd) == 0)
2710 mpage_da_submit_io(&mpd);
2711 mpd.io_done = 1;
2712 ret = MPAGE_DA_EXTENT_TAIL;
2713 }
2714 wbc->nr_to_write -= mpd.pages_written;
df22291f 2715
61628a3f 2716 ext4_journal_stop(handle);
df22291f 2717
8f64b32e 2718 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2719 /* commit the transaction which would
2720 * free blocks released in the transaction
2721 * and try again
2722 */
df22291f 2723 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2724 wbc->pages_skipped = pages_skipped;
2725 ret = 0;
2726 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2727 /*
2728 * got one extent now try with
2729 * rest of the pages
2730 */
22208ded
AK
2731 pages_written += mpd.pages_written;
2732 wbc->pages_skipped = pages_skipped;
a1d6cc56 2733 ret = 0;
2acf2c26 2734 io_done = 1;
22208ded 2735 } else if (wbc->nr_to_write)
61628a3f
MC
2736 /*
2737 * There is no more writeout needed
2738 * or we requested for a noblocking writeout
2739 * and we found the device congested
2740 */
61628a3f 2741 break;
a1d6cc56 2742 }
2acf2c26
AK
2743 if (!io_done && !cycled) {
2744 cycled = 1;
2745 index = 0;
2746 wbc->range_start = index << PAGE_CACHE_SHIFT;
2747 wbc->range_end = mapping->writeback_index - 1;
2748 goto retry;
2749 }
22208ded
AK
2750 if (pages_skipped != wbc->pages_skipped)
2751 printk(KERN_EMERG "This should not happen leaving %s "
2752 "with nr_to_write = %ld ret = %d\n",
2753 __func__, wbc->nr_to_write, ret);
2754
2755 /* Update index */
2756 index += pages_written;
2acf2c26 2757 wbc->range_cyclic = range_cyclic;
22208ded
AK
2758 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2759 /*
2760 * set the writeback_index so that range_cyclic
2761 * mode will write it back later
2762 */
2763 mapping->writeback_index = index;
a1d6cc56 2764
61628a3f 2765out_writepages:
22208ded
AK
2766 if (!no_nrwrite_index_update)
2767 wbc->no_nrwrite_index_update = 0;
2768 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2769 trace_mark(ext4_da_writepage_result,
2770 "dev %s ino %lu ret %d pages_written %d "
2771 "pages_skipped %ld congestion %d "
2772 "more_io %d no_nrwrite_index_update %d",
2773 inode->i_sb->s_id, inode->i_ino, ret,
2774 pages_written, wbc->pages_skipped,
2775 wbc->encountered_congestion, wbc->more_io,
2776 wbc->no_nrwrite_index_update);
61628a3f 2777 return ret;
64769240
AT
2778}
2779
79f0be8d
AK
2780#define FALL_BACK_TO_NONDELALLOC 1
2781static int ext4_nonda_switch(struct super_block *sb)
2782{
2783 s64 free_blocks, dirty_blocks;
2784 struct ext4_sb_info *sbi = EXT4_SB(sb);
2785
2786 /*
2787 * switch to non delalloc mode if we are running low
2788 * on free block. The free block accounting via percpu
179f7ebf 2789 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2790 * accumulated on each CPU without updating global counters
2791 * Delalloc need an accurate free block accounting. So switch
2792 * to non delalloc when we are near to error range.
2793 */
2794 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2795 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2796 if (2 * free_blocks < 3 * dirty_blocks ||
2797 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2798 /*
2799 * free block count is less that 150% of dirty blocks
2800 * or free blocks is less that watermark
2801 */
2802 return 1;
2803 }
2804 return 0;
2805}
2806
64769240
AT
2807static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2808 loff_t pos, unsigned len, unsigned flags,
2809 struct page **pagep, void **fsdata)
2810{
d2a17637 2811 int ret, retries = 0;
64769240
AT
2812 struct page *page;
2813 pgoff_t index;
2814 unsigned from, to;
2815 struct inode *inode = mapping->host;
2816 handle_t *handle;
2817
2818 index = pos >> PAGE_CACHE_SHIFT;
2819 from = pos & (PAGE_CACHE_SIZE - 1);
2820 to = from + len;
79f0be8d
AK
2821
2822 if (ext4_nonda_switch(inode->i_sb)) {
2823 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2824 return ext4_write_begin(file, mapping, pos,
2825 len, flags, pagep, fsdata);
2826 }
2827 *fsdata = (void *)0;
ba80b101
TT
2828
2829 trace_mark(ext4_da_write_begin,
2830 "dev %s ino %lu pos %llu len %u flags %u",
2831 inode->i_sb->s_id, inode->i_ino,
2832 (unsigned long long) pos, len, flags);
d2a17637 2833retry:
64769240
AT
2834 /*
2835 * With delayed allocation, we don't log the i_disksize update
2836 * if there is delayed block allocation. But we still need
2837 * to journalling the i_disksize update if writes to the end
2838 * of file which has an already mapped buffer.
2839 */
2840 handle = ext4_journal_start(inode, 1);
2841 if (IS_ERR(handle)) {
2842 ret = PTR_ERR(handle);
2843 goto out;
2844 }
ebd3610b
JK
2845 /* We cannot recurse into the filesystem as the transaction is already
2846 * started */
2847 flags |= AOP_FLAG_NOFS;
64769240 2848
54566b2c 2849 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2850 if (!page) {
2851 ext4_journal_stop(handle);
2852 ret = -ENOMEM;
2853 goto out;
2854 }
64769240
AT
2855 *pagep = page;
2856
2857 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 2858 ext4_da_get_block_prep);
64769240
AT
2859 if (ret < 0) {
2860 unlock_page(page);
2861 ext4_journal_stop(handle);
2862 page_cache_release(page);
ae4d5372
AK
2863 /*
2864 * block_write_begin may have instantiated a few blocks
2865 * outside i_size. Trim these off again. Don't need
2866 * i_size_read because we hold i_mutex.
2867 */
2868 if (pos + len > inode->i_size)
2869 vmtruncate(inode, inode->i_size);
64769240
AT
2870 }
2871
d2a17637
MC
2872 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2873 goto retry;
64769240
AT
2874out:
2875 return ret;
2876}
2877
632eaeab
MC
2878/*
2879 * Check if we should update i_disksize
2880 * when write to the end of file but not require block allocation
2881 */
2882static int ext4_da_should_update_i_disksize(struct page *page,
2883 unsigned long offset)
2884{
2885 struct buffer_head *bh;
2886 struct inode *inode = page->mapping->host;
2887 unsigned int idx;
2888 int i;
2889
2890 bh = page_buffers(page);
2891 idx = offset >> inode->i_blkbits;
2892
af5bc92d 2893 for (i = 0; i < idx; i++)
632eaeab
MC
2894 bh = bh->b_this_page;
2895
29fa89d0 2896 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2897 return 0;
2898 return 1;
2899}
2900
64769240
AT
2901static int ext4_da_write_end(struct file *file,
2902 struct address_space *mapping,
2903 loff_t pos, unsigned len, unsigned copied,
2904 struct page *page, void *fsdata)
2905{
2906 struct inode *inode = mapping->host;
2907 int ret = 0, ret2;
2908 handle_t *handle = ext4_journal_current_handle();
2909 loff_t new_i_size;
632eaeab 2910 unsigned long start, end;
79f0be8d
AK
2911 int write_mode = (int)(unsigned long)fsdata;
2912
2913 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2914 if (ext4_should_order_data(inode)) {
2915 return ext4_ordered_write_end(file, mapping, pos,
2916 len, copied, page, fsdata);
2917 } else if (ext4_should_writeback_data(inode)) {
2918 return ext4_writeback_write_end(file, mapping, pos,
2919 len, copied, page, fsdata);
2920 } else {
2921 BUG();
2922 }
2923 }
632eaeab 2924
ba80b101
TT
2925 trace_mark(ext4_da_write_end,
2926 "dev %s ino %lu pos %llu len %u copied %u",
2927 inode->i_sb->s_id, inode->i_ino,
2928 (unsigned long long) pos, len, copied);
632eaeab 2929 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2930 end = start + copied - 1;
64769240
AT
2931
2932 /*
2933 * generic_write_end() will run mark_inode_dirty() if i_size
2934 * changes. So let's piggyback the i_disksize mark_inode_dirty
2935 * into that.
2936 */
2937
2938 new_i_size = pos + copied;
632eaeab
MC
2939 if (new_i_size > EXT4_I(inode)->i_disksize) {
2940 if (ext4_da_should_update_i_disksize(page, end)) {
2941 down_write(&EXT4_I(inode)->i_data_sem);
2942 if (new_i_size > EXT4_I(inode)->i_disksize) {
2943 /*
2944 * Updating i_disksize when extending file
2945 * without needing block allocation
2946 */
2947 if (ext4_should_order_data(inode))
2948 ret = ext4_jbd2_file_inode(handle,
2949 inode);
64769240 2950
632eaeab
MC
2951 EXT4_I(inode)->i_disksize = new_i_size;
2952 }
2953 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2954 /* We need to mark inode dirty even if
2955 * new_i_size is less that inode->i_size
2956 * bu greater than i_disksize.(hint delalloc)
2957 */
2958 ext4_mark_inode_dirty(handle, inode);
64769240 2959 }
632eaeab 2960 }
64769240
AT
2961 ret2 = generic_write_end(file, mapping, pos, len, copied,
2962 page, fsdata);
2963 copied = ret2;
2964 if (ret2 < 0)
2965 ret = ret2;
2966 ret2 = ext4_journal_stop(handle);
2967 if (!ret)
2968 ret = ret2;
2969
2970 return ret ? ret : copied;
2971}
2972
2973static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2974{
64769240
AT
2975 /*
2976 * Drop reserved blocks
2977 */
2978 BUG_ON(!PageLocked(page));
2979 if (!page_has_buffers(page))
2980 goto out;
2981
d2a17637 2982 ext4_da_page_release_reservation(page, offset);
64769240
AT
2983
2984out:
2985 ext4_invalidatepage(page, offset);
2986
2987 return;
2988}
2989
ccd2506b
TT
2990/*
2991 * Force all delayed allocation blocks to be allocated for a given inode.
2992 */
2993int ext4_alloc_da_blocks(struct inode *inode)
2994{
2995 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2996 !EXT4_I(inode)->i_reserved_meta_blocks)
2997 return 0;
2998
2999 /*
3000 * We do something simple for now. The filemap_flush() will
3001 * also start triggering a write of the data blocks, which is
3002 * not strictly speaking necessary (and for users of
3003 * laptop_mode, not even desirable). However, to do otherwise
3004 * would require replicating code paths in:
3005 *
3006 * ext4_da_writepages() ->
3007 * write_cache_pages() ---> (via passed in callback function)
3008 * __mpage_da_writepage() -->
3009 * mpage_add_bh_to_extent()
3010 * mpage_da_map_blocks()
3011 *
3012 * The problem is that write_cache_pages(), located in
3013 * mm/page-writeback.c, marks pages clean in preparation for
3014 * doing I/O, which is not desirable if we're not planning on
3015 * doing I/O at all.
3016 *
3017 * We could call write_cache_pages(), and then redirty all of
3018 * the pages by calling redirty_page_for_writeback() but that
3019 * would be ugly in the extreme. So instead we would need to
3020 * replicate parts of the code in the above functions,
3021 * simplifying them becuase we wouldn't actually intend to
3022 * write out the pages, but rather only collect contiguous
3023 * logical block extents, call the multi-block allocator, and
3024 * then update the buffer heads with the block allocations.
3025 *
3026 * For now, though, we'll cheat by calling filemap_flush(),
3027 * which will map the blocks, and start the I/O, but not
3028 * actually wait for the I/O to complete.
3029 */
3030 return filemap_flush(inode->i_mapping);
3031}
64769240 3032
ac27a0ec
DK
3033/*
3034 * bmap() is special. It gets used by applications such as lilo and by
3035 * the swapper to find the on-disk block of a specific piece of data.
3036 *
3037 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3038 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3039 * filesystem and enables swap, then they may get a nasty shock when the
3040 * data getting swapped to that swapfile suddenly gets overwritten by
3041 * the original zero's written out previously to the journal and
3042 * awaiting writeback in the kernel's buffer cache.
3043 *
3044 * So, if we see any bmap calls here on a modified, data-journaled file,
3045 * take extra steps to flush any blocks which might be in the cache.
3046 */
617ba13b 3047static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3048{
3049 struct inode *inode = mapping->host;
3050 journal_t *journal;
3051 int err;
3052
64769240
AT
3053 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3054 test_opt(inode->i_sb, DELALLOC)) {
3055 /*
3056 * With delalloc we want to sync the file
3057 * so that we can make sure we allocate
3058 * blocks for file
3059 */
3060 filemap_write_and_wait(mapping);
3061 }
3062
0390131b 3063 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3064 /*
3065 * This is a REALLY heavyweight approach, but the use of
3066 * bmap on dirty files is expected to be extremely rare:
3067 * only if we run lilo or swapon on a freshly made file
3068 * do we expect this to happen.
3069 *
3070 * (bmap requires CAP_SYS_RAWIO so this does not
3071 * represent an unprivileged user DOS attack --- we'd be
3072 * in trouble if mortal users could trigger this path at
3073 * will.)
3074 *
617ba13b 3075 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3076 * regular files. If somebody wants to bmap a directory
3077 * or symlink and gets confused because the buffer
3078 * hasn't yet been flushed to disk, they deserve
3079 * everything they get.
3080 */
3081
617ba13b
MC
3082 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3083 journal = EXT4_JOURNAL(inode);
dab291af
MC
3084 jbd2_journal_lock_updates(journal);
3085 err = jbd2_journal_flush(journal);
3086 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3087
3088 if (err)
3089 return 0;
3090 }
3091
af5bc92d 3092 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3093}
3094
3095static int bget_one(handle_t *handle, struct buffer_head *bh)
3096{
3097 get_bh(bh);
3098 return 0;
3099}
3100
3101static int bput_one(handle_t *handle, struct buffer_head *bh)
3102{
3103 put_bh(bh);
3104 return 0;
3105}
3106
ac27a0ec 3107/*
678aaf48
JK
3108 * Note that we don't need to start a transaction unless we're journaling data
3109 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3110 * need to file the inode to the transaction's list in ordered mode because if
3111 * we are writing back data added by write(), the inode is already there and if
3112 * we are writing back data modified via mmap(), noone guarantees in which
3113 * transaction the data will hit the disk. In case we are journaling data, we
3114 * cannot start transaction directly because transaction start ranks above page
3115 * lock so we have to do some magic.
ac27a0ec 3116 *
678aaf48 3117 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
3118 *
3119 * Problem:
3120 *
617ba13b
MC
3121 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3122 * ext4_writepage()
ac27a0ec
DK
3123 *
3124 * Similar for:
3125 *
617ba13b 3126 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 3127 *
617ba13b 3128 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 3129 * lock_journal and i_data_sem
ac27a0ec
DK
3130 *
3131 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3132 * allocations fail.
3133 *
3134 * 16May01: If we're reentered then journal_current_handle() will be
3135 * non-zero. We simply *return*.
3136 *
3137 * 1 July 2001: @@@ FIXME:
3138 * In journalled data mode, a data buffer may be metadata against the
3139 * current transaction. But the same file is part of a shared mapping
3140 * and someone does a writepage() on it.
3141 *
3142 * We will move the buffer onto the async_data list, but *after* it has
3143 * been dirtied. So there's a small window where we have dirty data on
3144 * BJ_Metadata.
3145 *
3146 * Note that this only applies to the last partial page in the file. The
3147 * bit which block_write_full_page() uses prepare/commit for. (That's
3148 * broken code anyway: it's wrong for msync()).
3149 *
3150 * It's a rare case: affects the final partial page, for journalled data
3151 * where the file is subject to bith write() and writepage() in the same
3152 * transction. To fix it we'll need a custom block_write_full_page().
3153 * We'll probably need that anyway for journalling writepage() output.
3154 *
3155 * We don't honour synchronous mounts for writepage(). That would be
3156 * disastrous. Any write() or metadata operation will sync the fs for
3157 * us.
3158 *
ac27a0ec 3159 */
678aaf48 3160static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
3161 struct writeback_control *wbc)
3162{
3163 struct inode *inode = page->mapping->host;
3164
3165 if (test_opt(inode->i_sb, NOBH))
b920c755 3166 return nobh_writepage(page, noalloc_get_block_write, wbc);
cf108bca 3167 else
b920c755
TT
3168 return block_write_full_page(page, noalloc_get_block_write,
3169 wbc);
cf108bca
JK
3170}
3171
678aaf48 3172static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
3173 struct writeback_control *wbc)
3174{
3175 struct inode *inode = page->mapping->host;
cf108bca
JK
3176 loff_t size = i_size_read(inode);
3177 loff_t len;
3178
ba80b101
TT
3179 trace_mark(ext4_normal_writepage,
3180 "dev %s ino %lu page_index %lu",
3181 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3182 J_ASSERT(PageLocked(page));
cf108bca
JK
3183 if (page->index == size >> PAGE_CACHE_SHIFT)
3184 len = size & ~PAGE_CACHE_MASK;
3185 else
3186 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3187
3188 if (page_has_buffers(page)) {
3189 /* if page has buffers it should all be mapped
3190 * and allocated. If there are not buffers attached
3191 * to the page we know the page is dirty but it lost
3192 * buffers. That means that at some moment in time
3193 * after write_begin() / write_end() has been called
3194 * all buffers have been clean and thus they must have been
3195 * written at least once. So they are all mapped and we can
3196 * happily proceed with mapping them and writing the page.
3197 */
3198 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3199 ext4_bh_unmapped_or_delay));
3200 }
cf108bca
JK
3201
3202 if (!ext4_journal_current_handle())
678aaf48 3203 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3204
3205 redirty_page_for_writepage(wbc, page);
3206 unlock_page(page);
3207 return 0;
3208}
3209
3210static int __ext4_journalled_writepage(struct page *page,
3211 struct writeback_control *wbc)
3212{
3213 struct address_space *mapping = page->mapping;
3214 struct inode *inode = mapping->host;
3215 struct buffer_head *page_bufs;
ac27a0ec
DK
3216 handle_t *handle = NULL;
3217 int ret = 0;
3218 int err;
3219
f0e6c985 3220 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
b920c755 3221 noalloc_get_block_write);
cf108bca
JK
3222 if (ret != 0)
3223 goto out_unlock;
3224
3225 page_bufs = page_buffers(page);
3226 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3227 bget_one);
3228 /* As soon as we unlock the page, it can go away, but we have
3229 * references to buffers so we are safe */
3230 unlock_page(page);
ac27a0ec 3231
617ba13b 3232 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3233 if (IS_ERR(handle)) {
3234 ret = PTR_ERR(handle);
cf108bca 3235 goto out;
ac27a0ec
DK
3236 }
3237
cf108bca
JK
3238 ret = walk_page_buffers(handle, page_bufs, 0,
3239 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3240
cf108bca
JK
3241 err = walk_page_buffers(handle, page_bufs, 0,
3242 PAGE_CACHE_SIZE, NULL, write_end_fn);
3243 if (ret == 0)
3244 ret = err;
617ba13b 3245 err = ext4_journal_stop(handle);
ac27a0ec
DK
3246 if (!ret)
3247 ret = err;
ac27a0ec 3248
cf108bca
JK
3249 walk_page_buffers(handle, page_bufs, 0,
3250 PAGE_CACHE_SIZE, NULL, bput_one);
3251 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3252 goto out;
3253
3254out_unlock:
ac27a0ec 3255 unlock_page(page);
cf108bca 3256out:
ac27a0ec
DK
3257 return ret;
3258}
3259
617ba13b 3260static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3261 struct writeback_control *wbc)
3262{
3263 struct inode *inode = page->mapping->host;
cf108bca
JK
3264 loff_t size = i_size_read(inode);
3265 loff_t len;
ac27a0ec 3266
ba80b101
TT
3267 trace_mark(ext4_journalled_writepage,
3268 "dev %s ino %lu page_index %lu",
3269 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3270 J_ASSERT(PageLocked(page));
cf108bca
JK
3271 if (page->index == size >> PAGE_CACHE_SHIFT)
3272 len = size & ~PAGE_CACHE_MASK;
3273 else
3274 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3275
3276 if (page_has_buffers(page)) {
3277 /* if page has buffers it should all be mapped
3278 * and allocated. If there are not buffers attached
3279 * to the page we know the page is dirty but it lost
3280 * buffers. That means that at some moment in time
3281 * after write_begin() / write_end() has been called
3282 * all buffers have been clean and thus they must have been
3283 * written at least once. So they are all mapped and we can
3284 * happily proceed with mapping them and writing the page.
3285 */
3286 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3287 ext4_bh_unmapped_or_delay));
3288 }
ac27a0ec 3289
cf108bca 3290 if (ext4_journal_current_handle())
ac27a0ec 3291 goto no_write;
ac27a0ec 3292
cf108bca 3293 if (PageChecked(page)) {
ac27a0ec
DK
3294 /*
3295 * It's mmapped pagecache. Add buffers and journal it. There
3296 * doesn't seem much point in redirtying the page here.
3297 */
3298 ClearPageChecked(page);
cf108bca 3299 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3300 } else {
3301 /*
3302 * It may be a page full of checkpoint-mode buffers. We don't
3303 * really know unless we go poke around in the buffer_heads.
3304 * But block_write_full_page will do the right thing.
3305 */
b920c755
TT
3306 return block_write_full_page(page, noalloc_get_block_write,
3307 wbc);
ac27a0ec 3308 }
ac27a0ec
DK
3309no_write:
3310 redirty_page_for_writepage(wbc, page);
ac27a0ec 3311 unlock_page(page);
cf108bca 3312 return 0;
ac27a0ec
DK
3313}
3314
617ba13b 3315static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3316{
617ba13b 3317 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3318}
3319
3320static int
617ba13b 3321ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3322 struct list_head *pages, unsigned nr_pages)
3323{
617ba13b 3324 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3325}
3326
617ba13b 3327static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3328{
617ba13b 3329 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3330
3331 /*
3332 * If it's a full truncate we just forget about the pending dirtying
3333 */
3334 if (offset == 0)
3335 ClearPageChecked(page);
3336
0390131b
FM
3337 if (journal)
3338 jbd2_journal_invalidatepage(journal, page, offset);
3339 else
3340 block_invalidatepage(page, offset);
ac27a0ec
DK
3341}
3342
617ba13b 3343static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3344{
617ba13b 3345 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3346
3347 WARN_ON(PageChecked(page));
3348 if (!page_has_buffers(page))
3349 return 0;
0390131b
FM
3350 if (journal)
3351 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3352 else
3353 return try_to_free_buffers(page);
ac27a0ec
DK
3354}
3355
3356/*
3357 * If the O_DIRECT write will extend the file then add this inode to the
3358 * orphan list. So recovery will truncate it back to the original size
3359 * if the machine crashes during the write.
3360 *
3361 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3362 * crashes then stale disk data _may_ be exposed inside the file. But current
3363 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3364 */
617ba13b 3365static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3366 const struct iovec *iov, loff_t offset,
3367 unsigned long nr_segs)
3368{
3369 struct file *file = iocb->ki_filp;
3370 struct inode *inode = file->f_mapping->host;
617ba13b 3371 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3372 handle_t *handle;
ac27a0ec
DK
3373 ssize_t ret;
3374 int orphan = 0;
3375 size_t count = iov_length(iov, nr_segs);
3376
3377 if (rw == WRITE) {
3378 loff_t final_size = offset + count;
3379
ac27a0ec 3380 if (final_size > inode->i_size) {
7fb5409d
JK
3381 /* Credits for sb + inode write */
3382 handle = ext4_journal_start(inode, 2);
3383 if (IS_ERR(handle)) {
3384 ret = PTR_ERR(handle);
3385 goto out;
3386 }
617ba13b 3387 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3388 if (ret) {
3389 ext4_journal_stop(handle);
3390 goto out;
3391 }
ac27a0ec
DK
3392 orphan = 1;
3393 ei->i_disksize = inode->i_size;
7fb5409d 3394 ext4_journal_stop(handle);
ac27a0ec
DK
3395 }
3396 }
3397
3398 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3399 offset, nr_segs,
617ba13b 3400 ext4_get_block, NULL);
ac27a0ec 3401
7fb5409d 3402 if (orphan) {
ac27a0ec
DK
3403 int err;
3404
7fb5409d
JK
3405 /* Credits for sb + inode write */
3406 handle = ext4_journal_start(inode, 2);
3407 if (IS_ERR(handle)) {
3408 /* This is really bad luck. We've written the data
3409 * but cannot extend i_size. Bail out and pretend
3410 * the write failed... */
3411 ret = PTR_ERR(handle);
3412 goto out;
3413 }
3414 if (inode->i_nlink)
617ba13b 3415 ext4_orphan_del(handle, inode);
7fb5409d 3416 if (ret > 0) {
ac27a0ec
DK
3417 loff_t end = offset + ret;
3418 if (end > inode->i_size) {
3419 ei->i_disksize = end;
3420 i_size_write(inode, end);
3421 /*
3422 * We're going to return a positive `ret'
3423 * here due to non-zero-length I/O, so there's
3424 * no way of reporting error returns from
617ba13b 3425 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3426 * ignore it.
3427 */
617ba13b 3428 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3429 }
3430 }
617ba13b 3431 err = ext4_journal_stop(handle);
ac27a0ec
DK
3432 if (ret == 0)
3433 ret = err;
3434 }
3435out:
3436 return ret;
3437}
3438
3439/*
617ba13b 3440 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3441 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3442 * much here because ->set_page_dirty is called under VFS locks. The page is
3443 * not necessarily locked.
3444 *
3445 * We cannot just dirty the page and leave attached buffers clean, because the
3446 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3447 * or jbddirty because all the journalling code will explode.
3448 *
3449 * So what we do is to mark the page "pending dirty" and next time writepage
3450 * is called, propagate that into the buffers appropriately.
3451 */
617ba13b 3452static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3453{
3454 SetPageChecked(page);
3455 return __set_page_dirty_nobuffers(page);
3456}
3457
617ba13b 3458static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3459 .readpage = ext4_readpage,
3460 .readpages = ext4_readpages,
3461 .writepage = ext4_normal_writepage,
3462 .sync_page = block_sync_page,
3463 .write_begin = ext4_write_begin,
3464 .write_end = ext4_ordered_write_end,
3465 .bmap = ext4_bmap,
3466 .invalidatepage = ext4_invalidatepage,
3467 .releasepage = ext4_releasepage,
3468 .direct_IO = ext4_direct_IO,
3469 .migratepage = buffer_migrate_page,
3470 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3471};
3472
617ba13b 3473static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3474 .readpage = ext4_readpage,
3475 .readpages = ext4_readpages,
3476 .writepage = ext4_normal_writepage,
3477 .sync_page = block_sync_page,
3478 .write_begin = ext4_write_begin,
3479 .write_end = ext4_writeback_write_end,
3480 .bmap = ext4_bmap,
3481 .invalidatepage = ext4_invalidatepage,
3482 .releasepage = ext4_releasepage,
3483 .direct_IO = ext4_direct_IO,
3484 .migratepage = buffer_migrate_page,
3485 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3486};
3487
617ba13b 3488static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3489 .readpage = ext4_readpage,
3490 .readpages = ext4_readpages,
3491 .writepage = ext4_journalled_writepage,
3492 .sync_page = block_sync_page,
3493 .write_begin = ext4_write_begin,
3494 .write_end = ext4_journalled_write_end,
3495 .set_page_dirty = ext4_journalled_set_page_dirty,
3496 .bmap = ext4_bmap,
3497 .invalidatepage = ext4_invalidatepage,
3498 .releasepage = ext4_releasepage,
3499 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3500};
3501
64769240 3502static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3503 .readpage = ext4_readpage,
3504 .readpages = ext4_readpages,
3505 .writepage = ext4_da_writepage,
3506 .writepages = ext4_da_writepages,
3507 .sync_page = block_sync_page,
3508 .write_begin = ext4_da_write_begin,
3509 .write_end = ext4_da_write_end,
3510 .bmap = ext4_bmap,
3511 .invalidatepage = ext4_da_invalidatepage,
3512 .releasepage = ext4_releasepage,
3513 .direct_IO = ext4_direct_IO,
3514 .migratepage = buffer_migrate_page,
3515 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3516};
3517
617ba13b 3518void ext4_set_aops(struct inode *inode)
ac27a0ec 3519{
cd1aac32
AK
3520 if (ext4_should_order_data(inode) &&
3521 test_opt(inode->i_sb, DELALLOC))
3522 inode->i_mapping->a_ops = &ext4_da_aops;
3523 else if (ext4_should_order_data(inode))
617ba13b 3524 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3525 else if (ext4_should_writeback_data(inode) &&
3526 test_opt(inode->i_sb, DELALLOC))
3527 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3528 else if (ext4_should_writeback_data(inode))
3529 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3530 else
617ba13b 3531 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3532}
3533
3534/*
617ba13b 3535 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3536 * up to the end of the block which corresponds to `from'.
3537 * This required during truncate. We need to physically zero the tail end
3538 * of that block so it doesn't yield old data if the file is later grown.
3539 */
cf108bca 3540int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3541 struct address_space *mapping, loff_t from)
3542{
617ba13b 3543 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3544 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3545 unsigned blocksize, length, pos;
3546 ext4_lblk_t iblock;
ac27a0ec
DK
3547 struct inode *inode = mapping->host;
3548 struct buffer_head *bh;
cf108bca 3549 struct page *page;
ac27a0ec 3550 int err = 0;
ac27a0ec 3551
cf108bca
JK
3552 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3553 if (!page)
3554 return -EINVAL;
3555
ac27a0ec
DK
3556 blocksize = inode->i_sb->s_blocksize;
3557 length = blocksize - (offset & (blocksize - 1));
3558 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3559
3560 /*
3561 * For "nobh" option, we can only work if we don't need to
3562 * read-in the page - otherwise we create buffers to do the IO.
3563 */
3564 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3565 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3566 zero_user(page, offset, length);
ac27a0ec
DK
3567 set_page_dirty(page);
3568 goto unlock;
3569 }
3570
3571 if (!page_has_buffers(page))
3572 create_empty_buffers(page, blocksize, 0);
3573
3574 /* Find the buffer that contains "offset" */
3575 bh = page_buffers(page);
3576 pos = blocksize;
3577 while (offset >= pos) {
3578 bh = bh->b_this_page;
3579 iblock++;
3580 pos += blocksize;
3581 }
3582
3583 err = 0;
3584 if (buffer_freed(bh)) {
3585 BUFFER_TRACE(bh, "freed: skip");
3586 goto unlock;
3587 }
3588
3589 if (!buffer_mapped(bh)) {
3590 BUFFER_TRACE(bh, "unmapped");
617ba13b 3591 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3592 /* unmapped? It's a hole - nothing to do */
3593 if (!buffer_mapped(bh)) {
3594 BUFFER_TRACE(bh, "still unmapped");
3595 goto unlock;
3596 }
3597 }
3598
3599 /* Ok, it's mapped. Make sure it's up-to-date */
3600 if (PageUptodate(page))
3601 set_buffer_uptodate(bh);
3602
3603 if (!buffer_uptodate(bh)) {
3604 err = -EIO;
3605 ll_rw_block(READ, 1, &bh);
3606 wait_on_buffer(bh);
3607 /* Uhhuh. Read error. Complain and punt. */
3608 if (!buffer_uptodate(bh))
3609 goto unlock;
3610 }
3611
617ba13b 3612 if (ext4_should_journal_data(inode)) {
ac27a0ec 3613 BUFFER_TRACE(bh, "get write access");
617ba13b 3614 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3615 if (err)
3616 goto unlock;
3617 }
3618
eebd2aa3 3619 zero_user(page, offset, length);
ac27a0ec
DK
3620
3621 BUFFER_TRACE(bh, "zeroed end of block");
3622
3623 err = 0;
617ba13b 3624 if (ext4_should_journal_data(inode)) {
0390131b 3625 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3626 } else {
617ba13b 3627 if (ext4_should_order_data(inode))
678aaf48 3628 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3629 mark_buffer_dirty(bh);
3630 }
3631
3632unlock:
3633 unlock_page(page);
3634 page_cache_release(page);
3635 return err;
3636}
3637
3638/*
3639 * Probably it should be a library function... search for first non-zero word
3640 * or memcmp with zero_page, whatever is better for particular architecture.
3641 * Linus?
3642 */
3643static inline int all_zeroes(__le32 *p, __le32 *q)
3644{
3645 while (p < q)
3646 if (*p++)
3647 return 0;
3648 return 1;
3649}
3650
3651/**
617ba13b 3652 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3653 * @inode: inode in question
3654 * @depth: depth of the affected branch
617ba13b 3655 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3656 * @chain: place to store the pointers to partial indirect blocks
3657 * @top: place to the (detached) top of branch
3658 *
617ba13b 3659 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3660 *
3661 * When we do truncate() we may have to clean the ends of several
3662 * indirect blocks but leave the blocks themselves alive. Block is
3663 * partially truncated if some data below the new i_size is refered
3664 * from it (and it is on the path to the first completely truncated
3665 * data block, indeed). We have to free the top of that path along
3666 * with everything to the right of the path. Since no allocation
617ba13b 3667 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3668 * finishes, we may safely do the latter, but top of branch may
3669 * require special attention - pageout below the truncation point
3670 * might try to populate it.
3671 *
3672 * We atomically detach the top of branch from the tree, store the
3673 * block number of its root in *@top, pointers to buffer_heads of
3674 * partially truncated blocks - in @chain[].bh and pointers to
3675 * their last elements that should not be removed - in
3676 * @chain[].p. Return value is the pointer to last filled element
3677 * of @chain.
3678 *
3679 * The work left to caller to do the actual freeing of subtrees:
3680 * a) free the subtree starting from *@top
3681 * b) free the subtrees whose roots are stored in
3682 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3683 * c) free the subtrees growing from the inode past the @chain[0].
3684 * (no partially truncated stuff there). */
3685
617ba13b 3686static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3687 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3688{
3689 Indirect *partial, *p;
3690 int k, err;
3691
3692 *top = 0;
3693 /* Make k index the deepest non-null offest + 1 */
3694 for (k = depth; k > 1 && !offsets[k-1]; k--)
3695 ;
617ba13b 3696 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3697 /* Writer: pointers */
3698 if (!partial)
3699 partial = chain + k-1;
3700 /*
3701 * If the branch acquired continuation since we've looked at it -
3702 * fine, it should all survive and (new) top doesn't belong to us.
3703 */
3704 if (!partial->key && *partial->p)
3705 /* Writer: end */
3706 goto no_top;
af5bc92d 3707 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3708 ;
3709 /*
3710 * OK, we've found the last block that must survive. The rest of our
3711 * branch should be detached before unlocking. However, if that rest
3712 * of branch is all ours and does not grow immediately from the inode
3713 * it's easier to cheat and just decrement partial->p.
3714 */
3715 if (p == chain + k - 1 && p > chain) {
3716 p->p--;
3717 } else {
3718 *top = *p->p;
617ba13b 3719 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3720#if 0
3721 *p->p = 0;
3722#endif
3723 }
3724 /* Writer: end */
3725
af5bc92d 3726 while (partial > p) {
ac27a0ec
DK
3727 brelse(partial->bh);
3728 partial--;
3729 }
3730no_top:
3731 return partial;
3732}
3733
3734/*
3735 * Zero a number of block pointers in either an inode or an indirect block.
3736 * If we restart the transaction we must again get write access to the
3737 * indirect block for further modification.
3738 *
3739 * We release `count' blocks on disk, but (last - first) may be greater
3740 * than `count' because there can be holes in there.
3741 */
617ba13b
MC
3742static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3743 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3744 unsigned long count, __le32 *first, __le32 *last)
3745{
3746 __le32 *p;
3747 if (try_to_extend_transaction(handle, inode)) {
3748 if (bh) {
0390131b
FM
3749 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3750 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3751 }
617ba13b
MC
3752 ext4_mark_inode_dirty(handle, inode);
3753 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3754 if (bh) {
3755 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3756 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3757 }
3758 }
3759
3760 /*
3761 * Any buffers which are on the journal will be in memory. We find
dab291af 3762 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3763 * on them. We've already detached each block from the file, so
dab291af 3764 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3765 *
dab291af 3766 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3767 */
3768 for (p = first; p < last; p++) {
3769 u32 nr = le32_to_cpu(*p);
3770 if (nr) {
1d03ec98 3771 struct buffer_head *tbh;
ac27a0ec
DK
3772
3773 *p = 0;
1d03ec98
AK
3774 tbh = sb_find_get_block(inode->i_sb, nr);
3775 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3776 }
3777 }
3778
c9de560d 3779 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3780}
3781
3782/**
617ba13b 3783 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3784 * @handle: handle for this transaction
3785 * @inode: inode we are dealing with
3786 * @this_bh: indirect buffer_head which contains *@first and *@last
3787 * @first: array of block numbers
3788 * @last: points immediately past the end of array
3789 *
3790 * We are freeing all blocks refered from that array (numbers are stored as
3791 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3792 *
3793 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3794 * blocks are contiguous then releasing them at one time will only affect one
3795 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3796 * actually use a lot of journal space.
3797 *
3798 * @this_bh will be %NULL if @first and @last point into the inode's direct
3799 * block pointers.
3800 */
617ba13b 3801static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3802 struct buffer_head *this_bh,
3803 __le32 *first, __le32 *last)
3804{
617ba13b 3805 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3806 unsigned long count = 0; /* Number of blocks in the run */
3807 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3808 corresponding to
3809 block_to_free */
617ba13b 3810 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3811 __le32 *p; /* Pointer into inode/ind
3812 for current block */
3813 int err;
3814
3815 if (this_bh) { /* For indirect block */
3816 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3817 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3818 /* Important: if we can't update the indirect pointers
3819 * to the blocks, we can't free them. */
3820 if (err)
3821 return;
3822 }
3823
3824 for (p = first; p < last; p++) {
3825 nr = le32_to_cpu(*p);
3826 if (nr) {
3827 /* accumulate blocks to free if they're contiguous */
3828 if (count == 0) {
3829 block_to_free = nr;
3830 block_to_free_p = p;
3831 count = 1;
3832 } else if (nr == block_to_free + count) {
3833 count++;
3834 } else {
617ba13b 3835 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3836 block_to_free,
3837 count, block_to_free_p, p);
3838 block_to_free = nr;
3839 block_to_free_p = p;
3840 count = 1;
3841 }
3842 }
3843 }
3844
3845 if (count > 0)
617ba13b 3846 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3847 count, block_to_free_p, p);
3848
3849 if (this_bh) {
0390131b 3850 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3851
3852 /*
3853 * The buffer head should have an attached journal head at this
3854 * point. However, if the data is corrupted and an indirect
3855 * block pointed to itself, it would have been detached when
3856 * the block was cleared. Check for this instead of OOPSing.
3857 */
e7f07968 3858 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3859 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3860 else
3861 ext4_error(inode->i_sb, __func__,
3862 "circular indirect block detected, "
3863 "inode=%lu, block=%llu",
3864 inode->i_ino,
3865 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3866 }
3867}
3868
3869/**
617ba13b 3870 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3871 * @handle: JBD handle for this transaction
3872 * @inode: inode we are dealing with
3873 * @parent_bh: the buffer_head which contains *@first and *@last
3874 * @first: array of block numbers
3875 * @last: pointer immediately past the end of array
3876 * @depth: depth of the branches to free
3877 *
3878 * We are freeing all blocks refered from these branches (numbers are
3879 * stored as little-endian 32-bit) and updating @inode->i_blocks
3880 * appropriately.
3881 */
617ba13b 3882static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3883 struct buffer_head *parent_bh,
3884 __le32 *first, __le32 *last, int depth)
3885{
617ba13b 3886 ext4_fsblk_t nr;
ac27a0ec
DK
3887 __le32 *p;
3888
0390131b 3889 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3890 return;
3891
3892 if (depth--) {
3893 struct buffer_head *bh;
617ba13b 3894 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3895 p = last;
3896 while (--p >= first) {
3897 nr = le32_to_cpu(*p);
3898 if (!nr)
3899 continue; /* A hole */
3900
3901 /* Go read the buffer for the next level down */
3902 bh = sb_bread(inode->i_sb, nr);
3903
3904 /*
3905 * A read failure? Report error and clear slot
3906 * (should be rare).
3907 */
3908 if (!bh) {
617ba13b 3909 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3910 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3911 inode->i_ino, nr);
3912 continue;
3913 }
3914
3915 /* This zaps the entire block. Bottom up. */
3916 BUFFER_TRACE(bh, "free child branches");
617ba13b 3917 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3918 (__le32 *) bh->b_data,
3919 (__le32 *) bh->b_data + addr_per_block,
3920 depth);
ac27a0ec
DK
3921
3922 /*
3923 * We've probably journalled the indirect block several
3924 * times during the truncate. But it's no longer
3925 * needed and we now drop it from the transaction via
dab291af 3926 * jbd2_journal_revoke().
ac27a0ec
DK
3927 *
3928 * That's easy if it's exclusively part of this
3929 * transaction. But if it's part of the committing
dab291af 3930 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3931 * brelse() it. That means that if the underlying
617ba13b 3932 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3933 * unmap_underlying_metadata() will find this block
3934 * and will try to get rid of it. damn, damn.
3935 *
3936 * If this block has already been committed to the
3937 * journal, a revoke record will be written. And
3938 * revoke records must be emitted *before* clearing
3939 * this block's bit in the bitmaps.
3940 */
617ba13b 3941 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3942
3943 /*
3944 * Everything below this this pointer has been
3945 * released. Now let this top-of-subtree go.
3946 *
3947 * We want the freeing of this indirect block to be
3948 * atomic in the journal with the updating of the
3949 * bitmap block which owns it. So make some room in
3950 * the journal.
3951 *
3952 * We zero the parent pointer *after* freeing its
3953 * pointee in the bitmaps, so if extend_transaction()
3954 * for some reason fails to put the bitmap changes and
3955 * the release into the same transaction, recovery
3956 * will merely complain about releasing a free block,
3957 * rather than leaking blocks.
3958 */
0390131b 3959 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3960 return;
3961 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3962 ext4_mark_inode_dirty(handle, inode);
3963 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3964 }
3965
c9de560d 3966 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3967
3968 if (parent_bh) {
3969 /*
3970 * The block which we have just freed is
3971 * pointed to by an indirect block: journal it
3972 */
3973 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3974 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3975 parent_bh)){
3976 *p = 0;
3977 BUFFER_TRACE(parent_bh,
0390131b
FM
3978 "call ext4_handle_dirty_metadata");
3979 ext4_handle_dirty_metadata(handle,
3980 inode,
3981 parent_bh);
ac27a0ec
DK
3982 }
3983 }
3984 }
3985 } else {
3986 /* We have reached the bottom of the tree. */
3987 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3988 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3989 }
3990}
3991
91ef4caf
DG
3992int ext4_can_truncate(struct inode *inode)
3993{
3994 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3995 return 0;
3996 if (S_ISREG(inode->i_mode))
3997 return 1;
3998 if (S_ISDIR(inode->i_mode))
3999 return 1;
4000 if (S_ISLNK(inode->i_mode))
4001 return !ext4_inode_is_fast_symlink(inode);
4002 return 0;
4003}
4004
ac27a0ec 4005/*
617ba13b 4006 * ext4_truncate()
ac27a0ec 4007 *
617ba13b
MC
4008 * We block out ext4_get_block() block instantiations across the entire
4009 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4010 * simultaneously on behalf of the same inode.
4011 *
4012 * As we work through the truncate and commmit bits of it to the journal there
4013 * is one core, guiding principle: the file's tree must always be consistent on
4014 * disk. We must be able to restart the truncate after a crash.
4015 *
4016 * The file's tree may be transiently inconsistent in memory (although it
4017 * probably isn't), but whenever we close off and commit a journal transaction,
4018 * the contents of (the filesystem + the journal) must be consistent and
4019 * restartable. It's pretty simple, really: bottom up, right to left (although
4020 * left-to-right works OK too).
4021 *
4022 * Note that at recovery time, journal replay occurs *before* the restart of
4023 * truncate against the orphan inode list.
4024 *
4025 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4026 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4027 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4028 * ext4_truncate() to have another go. So there will be instantiated blocks
4029 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4030 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4031 * ext4_truncate() run will find them and release them.
ac27a0ec 4032 */
617ba13b 4033void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4034{
4035 handle_t *handle;
617ba13b 4036 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4037 __le32 *i_data = ei->i_data;
617ba13b 4038 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4039 struct address_space *mapping = inode->i_mapping;
725d26d3 4040 ext4_lblk_t offsets[4];
ac27a0ec
DK
4041 Indirect chain[4];
4042 Indirect *partial;
4043 __le32 nr = 0;
4044 int n;
725d26d3 4045 ext4_lblk_t last_block;
ac27a0ec 4046 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4047
91ef4caf 4048 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4049 return;
4050
afd4672d 4051 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4052 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4053
1d03ec98 4054 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4055 ext4_ext_truncate(inode);
1d03ec98
AK
4056 return;
4057 }
a86c6181 4058
ac27a0ec 4059 handle = start_transaction(inode);
cf108bca 4060 if (IS_ERR(handle))
ac27a0ec 4061 return; /* AKPM: return what? */
ac27a0ec
DK
4062
4063 last_block = (inode->i_size + blocksize-1)
617ba13b 4064 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4065
cf108bca
JK
4066 if (inode->i_size & (blocksize - 1))
4067 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4068 goto out_stop;
ac27a0ec 4069
617ba13b 4070 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4071 if (n == 0)
4072 goto out_stop; /* error */
4073
4074 /*
4075 * OK. This truncate is going to happen. We add the inode to the
4076 * orphan list, so that if this truncate spans multiple transactions,
4077 * and we crash, we will resume the truncate when the filesystem
4078 * recovers. It also marks the inode dirty, to catch the new size.
4079 *
4080 * Implication: the file must always be in a sane, consistent
4081 * truncatable state while each transaction commits.
4082 */
617ba13b 4083 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4084 goto out_stop;
4085
632eaeab
MC
4086 /*
4087 * From here we block out all ext4_get_block() callers who want to
4088 * modify the block allocation tree.
4089 */
4090 down_write(&ei->i_data_sem);
b4df2030 4091
c2ea3fde 4092 ext4_discard_preallocations(inode);
b4df2030 4093
ac27a0ec
DK
4094 /*
4095 * The orphan list entry will now protect us from any crash which
4096 * occurs before the truncate completes, so it is now safe to propagate
4097 * the new, shorter inode size (held for now in i_size) into the
4098 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4099 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4100 */
4101 ei->i_disksize = inode->i_size;
4102
ac27a0ec 4103 if (n == 1) { /* direct blocks */
617ba13b
MC
4104 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4105 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4106 goto do_indirects;
4107 }
4108
617ba13b 4109 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4110 /* Kill the top of shared branch (not detached) */
4111 if (nr) {
4112 if (partial == chain) {
4113 /* Shared branch grows from the inode */
617ba13b 4114 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4115 &nr, &nr+1, (chain+n-1) - partial);
4116 *partial->p = 0;
4117 /*
4118 * We mark the inode dirty prior to restart,
4119 * and prior to stop. No need for it here.
4120 */
4121 } else {
4122 /* Shared branch grows from an indirect block */
4123 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4124 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4125 partial->p,
4126 partial->p+1, (chain+n-1) - partial);
4127 }
4128 }
4129 /* Clear the ends of indirect blocks on the shared branch */
4130 while (partial > chain) {
617ba13b 4131 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4132 (__le32*)partial->bh->b_data+addr_per_block,
4133 (chain+n-1) - partial);
4134 BUFFER_TRACE(partial->bh, "call brelse");
4135 brelse (partial->bh);
4136 partial--;
4137 }
4138do_indirects:
4139 /* Kill the remaining (whole) subtrees */
4140 switch (offsets[0]) {
4141 default:
617ba13b 4142 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4143 if (nr) {
617ba13b
MC
4144 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4145 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4146 }
617ba13b
MC
4147 case EXT4_IND_BLOCK:
4148 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4149 if (nr) {
617ba13b
MC
4150 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4151 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4152 }
617ba13b
MC
4153 case EXT4_DIND_BLOCK:
4154 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4155 if (nr) {
617ba13b
MC
4156 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4157 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4158 }
617ba13b 4159 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4160 ;
4161 }
4162
0e855ac8 4163 up_write(&ei->i_data_sem);
ef7f3835 4164 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4165 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4166
4167 /*
4168 * In a multi-transaction truncate, we only make the final transaction
4169 * synchronous
4170 */
4171 if (IS_SYNC(inode))
0390131b 4172 ext4_handle_sync(handle);
ac27a0ec
DK
4173out_stop:
4174 /*
4175 * If this was a simple ftruncate(), and the file will remain alive
4176 * then we need to clear up the orphan record which we created above.
4177 * However, if this was a real unlink then we were called by
617ba13b 4178 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4179 * orphan info for us.
4180 */
4181 if (inode->i_nlink)
617ba13b 4182 ext4_orphan_del(handle, inode);
ac27a0ec 4183
617ba13b 4184 ext4_journal_stop(handle);
ac27a0ec
DK
4185}
4186
ac27a0ec 4187/*
617ba13b 4188 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4189 * underlying buffer_head on success. If 'in_mem' is true, we have all
4190 * data in memory that is needed to recreate the on-disk version of this
4191 * inode.
4192 */
617ba13b
MC
4193static int __ext4_get_inode_loc(struct inode *inode,
4194 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4195{
240799cd
TT
4196 struct ext4_group_desc *gdp;
4197 struct buffer_head *bh;
4198 struct super_block *sb = inode->i_sb;
4199 ext4_fsblk_t block;
4200 int inodes_per_block, inode_offset;
4201
3a06d778 4202 iloc->bh = NULL;
240799cd
TT
4203 if (!ext4_valid_inum(sb, inode->i_ino))
4204 return -EIO;
ac27a0ec 4205
240799cd
TT
4206 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4207 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4208 if (!gdp)
ac27a0ec
DK
4209 return -EIO;
4210
240799cd
TT
4211 /*
4212 * Figure out the offset within the block group inode table
4213 */
4214 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4215 inode_offset = ((inode->i_ino - 1) %
4216 EXT4_INODES_PER_GROUP(sb));
4217 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4218 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4219
4220 bh = sb_getblk(sb, block);
ac27a0ec 4221 if (!bh) {
240799cd
TT
4222 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4223 "inode block - inode=%lu, block=%llu",
4224 inode->i_ino, block);
ac27a0ec
DK
4225 return -EIO;
4226 }
4227 if (!buffer_uptodate(bh)) {
4228 lock_buffer(bh);
9c83a923
HK
4229
4230 /*
4231 * If the buffer has the write error flag, we have failed
4232 * to write out another inode in the same block. In this
4233 * case, we don't have to read the block because we may
4234 * read the old inode data successfully.
4235 */
4236 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4237 set_buffer_uptodate(bh);
4238
ac27a0ec
DK
4239 if (buffer_uptodate(bh)) {
4240 /* someone brought it uptodate while we waited */
4241 unlock_buffer(bh);
4242 goto has_buffer;
4243 }
4244
4245 /*
4246 * If we have all information of the inode in memory and this
4247 * is the only valid inode in the block, we need not read the
4248 * block.
4249 */
4250 if (in_mem) {
4251 struct buffer_head *bitmap_bh;
240799cd 4252 int i, start;
ac27a0ec 4253
240799cd 4254 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4255
240799cd
TT
4256 /* Is the inode bitmap in cache? */
4257 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4258 if (!bitmap_bh)
4259 goto make_io;
4260
4261 /*
4262 * If the inode bitmap isn't in cache then the
4263 * optimisation may end up performing two reads instead
4264 * of one, so skip it.
4265 */
4266 if (!buffer_uptodate(bitmap_bh)) {
4267 brelse(bitmap_bh);
4268 goto make_io;
4269 }
240799cd 4270 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4271 if (i == inode_offset)
4272 continue;
617ba13b 4273 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4274 break;
4275 }
4276 brelse(bitmap_bh);
240799cd 4277 if (i == start + inodes_per_block) {
ac27a0ec
DK
4278 /* all other inodes are free, so skip I/O */
4279 memset(bh->b_data, 0, bh->b_size);
4280 set_buffer_uptodate(bh);
4281 unlock_buffer(bh);
4282 goto has_buffer;
4283 }
4284 }
4285
4286make_io:
240799cd
TT
4287 /*
4288 * If we need to do any I/O, try to pre-readahead extra
4289 * blocks from the inode table.
4290 */
4291 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4292 ext4_fsblk_t b, end, table;
4293 unsigned num;
4294
4295 table = ext4_inode_table(sb, gdp);
b713a5ec 4296 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4297 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4298 if (table > b)
4299 b = table;
4300 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4301 num = EXT4_INODES_PER_GROUP(sb);
4302 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4303 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4304 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4305 table += num / inodes_per_block;
4306 if (end > table)
4307 end = table;
4308 while (b <= end)
4309 sb_breadahead(sb, b++);
4310 }
4311
ac27a0ec
DK
4312 /*
4313 * There are other valid inodes in the buffer, this inode
4314 * has in-inode xattrs, or we don't have this inode in memory.
4315 * Read the block from disk.
4316 */
4317 get_bh(bh);
4318 bh->b_end_io = end_buffer_read_sync;
4319 submit_bh(READ_META, bh);
4320 wait_on_buffer(bh);
4321 if (!buffer_uptodate(bh)) {
240799cd
TT
4322 ext4_error(sb, __func__,
4323 "unable to read inode block - inode=%lu, "
4324 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4325 brelse(bh);
4326 return -EIO;
4327 }
4328 }
4329has_buffer:
4330 iloc->bh = bh;
4331 return 0;
4332}
4333
617ba13b 4334int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4335{
4336 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4337 return __ext4_get_inode_loc(inode, iloc,
4338 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4339}
4340
617ba13b 4341void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4342{
617ba13b 4343 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4344
4345 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4346 if (flags & EXT4_SYNC_FL)
ac27a0ec 4347 inode->i_flags |= S_SYNC;
617ba13b 4348 if (flags & EXT4_APPEND_FL)
ac27a0ec 4349 inode->i_flags |= S_APPEND;
617ba13b 4350 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4351 inode->i_flags |= S_IMMUTABLE;
617ba13b 4352 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4353 inode->i_flags |= S_NOATIME;
617ba13b 4354 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4355 inode->i_flags |= S_DIRSYNC;
4356}
4357
ff9ddf7e
JK
4358/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4359void ext4_get_inode_flags(struct ext4_inode_info *ei)
4360{
4361 unsigned int flags = ei->vfs_inode.i_flags;
4362
4363 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4364 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4365 if (flags & S_SYNC)
4366 ei->i_flags |= EXT4_SYNC_FL;
4367 if (flags & S_APPEND)
4368 ei->i_flags |= EXT4_APPEND_FL;
4369 if (flags & S_IMMUTABLE)
4370 ei->i_flags |= EXT4_IMMUTABLE_FL;
4371 if (flags & S_NOATIME)
4372 ei->i_flags |= EXT4_NOATIME_FL;
4373 if (flags & S_DIRSYNC)
4374 ei->i_flags |= EXT4_DIRSYNC_FL;
4375}
0fc1b451
AK
4376static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4377 struct ext4_inode_info *ei)
4378{
4379 blkcnt_t i_blocks ;
8180a562
AK
4380 struct inode *inode = &(ei->vfs_inode);
4381 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4382
4383 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4384 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4385 /* we are using combined 48 bit field */
4386 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4387 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4388 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4389 /* i_blocks represent file system block size */
4390 return i_blocks << (inode->i_blkbits - 9);
4391 } else {
4392 return i_blocks;
4393 }
0fc1b451
AK
4394 } else {
4395 return le32_to_cpu(raw_inode->i_blocks_lo);
4396 }
4397}
ff9ddf7e 4398
1d1fe1ee 4399struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4400{
617ba13b
MC
4401 struct ext4_iloc iloc;
4402 struct ext4_inode *raw_inode;
1d1fe1ee 4403 struct ext4_inode_info *ei;
ac27a0ec 4404 struct buffer_head *bh;
1d1fe1ee
DH
4405 struct inode *inode;
4406 long ret;
ac27a0ec
DK
4407 int block;
4408
1d1fe1ee
DH
4409 inode = iget_locked(sb, ino);
4410 if (!inode)
4411 return ERR_PTR(-ENOMEM);
4412 if (!(inode->i_state & I_NEW))
4413 return inode;
4414
4415 ei = EXT4_I(inode);
03010a33 4416#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4417 ei->i_acl = EXT4_ACL_NOT_CACHED;
4418 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4419#endif
ac27a0ec 4420
1d1fe1ee
DH
4421 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4422 if (ret < 0)
ac27a0ec
DK
4423 goto bad_inode;
4424 bh = iloc.bh;
617ba13b 4425 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4426 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4427 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4428 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4429 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4430 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4431 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4432 }
4433 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4434
4435 ei->i_state = 0;
4436 ei->i_dir_start_lookup = 0;
4437 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4438 /* We now have enough fields to check if the inode was active or not.
4439 * This is needed because nfsd might try to access dead inodes
4440 * the test is that same one that e2fsck uses
4441 * NeilBrown 1999oct15
4442 */
4443 if (inode->i_nlink == 0) {
4444 if (inode->i_mode == 0 ||
617ba13b 4445 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4446 /* this inode is deleted */
af5bc92d 4447 brelse(bh);
1d1fe1ee 4448 ret = -ESTALE;
ac27a0ec
DK
4449 goto bad_inode;
4450 }
4451 /* The only unlinked inodes we let through here have
4452 * valid i_mode and are being read by the orphan
4453 * recovery code: that's fine, we're about to complete
4454 * the process of deleting those. */
4455 }
ac27a0ec 4456 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4457 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4458 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4459 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4460 ei->i_file_acl |=
4461 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4462 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4463 ei->i_disksize = inode->i_size;
4464 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4465 ei->i_block_group = iloc.block_group;
a4912123 4466 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4467 /*
4468 * NOTE! The in-memory inode i_data array is in little-endian order
4469 * even on big-endian machines: we do NOT byteswap the block numbers!
4470 */
617ba13b 4471 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4472 ei->i_data[block] = raw_inode->i_block[block];
4473 INIT_LIST_HEAD(&ei->i_orphan);
4474
0040d987 4475 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4476 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4477 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4478 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4479 brelse(bh);
1d1fe1ee 4480 ret = -EIO;
ac27a0ec 4481 goto bad_inode;
e5d2861f 4482 }
ac27a0ec
DK
4483 if (ei->i_extra_isize == 0) {
4484 /* The extra space is currently unused. Use it. */
617ba13b
MC
4485 ei->i_extra_isize = sizeof(struct ext4_inode) -
4486 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4487 } else {
4488 __le32 *magic = (void *)raw_inode +
617ba13b 4489 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4490 ei->i_extra_isize;
617ba13b
MC
4491 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4492 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4493 }
4494 } else
4495 ei->i_extra_isize = 0;
4496
ef7f3835
KS
4497 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4498 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4499 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4500 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4501
25ec56b5
JNC
4502 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4503 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4504 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4505 inode->i_version |=
4506 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4507 }
4508
c4b5a614 4509 ret = 0;
485c26ec
TT
4510 if (ei->i_file_acl &&
4511 ((ei->i_file_acl <
4512 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4513 EXT4_SB(sb)->s_gdb_count)) ||
4514 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4515 ext4_error(sb, __func__,
4516 "bad extended attribute block %llu in inode #%lu",
4517 ei->i_file_acl, inode->i_ino);
4518 ret = -EIO;
4519 goto bad_inode;
4520 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4521 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4522 (S_ISLNK(inode->i_mode) &&
4523 !ext4_inode_is_fast_symlink(inode)))
4524 /* Validate extent which is part of inode */
4525 ret = ext4_ext_check_inode(inode);
fe2c8191
TN
4526 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4527 (S_ISLNK(inode->i_mode) &&
4528 !ext4_inode_is_fast_symlink(inode))) {
4529 /* Validate block references which are part of inode */
4530 ret = ext4_check_inode_blockref(inode);
4531 }
4532 if (ret) {
4533 brelse(bh);
4534 goto bad_inode;
7a262f7c
AK
4535 }
4536
ac27a0ec 4537 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4538 inode->i_op = &ext4_file_inode_operations;
4539 inode->i_fop = &ext4_file_operations;
4540 ext4_set_aops(inode);
ac27a0ec 4541 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4542 inode->i_op = &ext4_dir_inode_operations;
4543 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4544 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4545 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4546 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4547 nd_terminate_link(ei->i_data, inode->i_size,
4548 sizeof(ei->i_data) - 1);
4549 } else {
617ba13b
MC
4550 inode->i_op = &ext4_symlink_inode_operations;
4551 ext4_set_aops(inode);
ac27a0ec 4552 }
563bdd61
TT
4553 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4554 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4555 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4556 if (raw_inode->i_block[0])
4557 init_special_inode(inode, inode->i_mode,
4558 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4559 else
4560 init_special_inode(inode, inode->i_mode,
4561 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4562 } else {
4563 brelse(bh);
4564 ret = -EIO;
4565 ext4_error(inode->i_sb, __func__,
4566 "bogus i_mode (%o) for inode=%lu",
4567 inode->i_mode, inode->i_ino);
4568 goto bad_inode;
ac27a0ec 4569 }
af5bc92d 4570 brelse(iloc.bh);
617ba13b 4571 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4572 unlock_new_inode(inode);
4573 return inode;
ac27a0ec
DK
4574
4575bad_inode:
1d1fe1ee
DH
4576 iget_failed(inode);
4577 return ERR_PTR(ret);
ac27a0ec
DK
4578}
4579
0fc1b451
AK
4580static int ext4_inode_blocks_set(handle_t *handle,
4581 struct ext4_inode *raw_inode,
4582 struct ext4_inode_info *ei)
4583{
4584 struct inode *inode = &(ei->vfs_inode);
4585 u64 i_blocks = inode->i_blocks;
4586 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4587
4588 if (i_blocks <= ~0U) {
4589 /*
4590 * i_blocks can be represnted in a 32 bit variable
4591 * as multiple of 512 bytes
4592 */
8180a562 4593 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4594 raw_inode->i_blocks_high = 0;
8180a562 4595 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4596 return 0;
4597 }
4598 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4599 return -EFBIG;
4600
4601 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4602 /*
4603 * i_blocks can be represented in a 48 bit variable
4604 * as multiple of 512 bytes
4605 */
8180a562 4606 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4607 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4608 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4609 } else {
8180a562
AK
4610 ei->i_flags |= EXT4_HUGE_FILE_FL;
4611 /* i_block is stored in file system block size */
4612 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4613 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4614 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4615 }
f287a1a5 4616 return 0;
0fc1b451
AK
4617}
4618
ac27a0ec
DK
4619/*
4620 * Post the struct inode info into an on-disk inode location in the
4621 * buffer-cache. This gobbles the caller's reference to the
4622 * buffer_head in the inode location struct.
4623 *
4624 * The caller must have write access to iloc->bh.
4625 */
617ba13b 4626static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4627 struct inode *inode,
617ba13b 4628 struct ext4_iloc *iloc)
ac27a0ec 4629{
617ba13b
MC
4630 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4631 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4632 struct buffer_head *bh = iloc->bh;
4633 int err = 0, rc, block;
4634
4635 /* For fields not not tracking in the in-memory inode,
4636 * initialise them to zero for new inodes. */
617ba13b
MC
4637 if (ei->i_state & EXT4_STATE_NEW)
4638 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4639
ff9ddf7e 4640 ext4_get_inode_flags(ei);
ac27a0ec 4641 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4642 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4643 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4644 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4645/*
4646 * Fix up interoperability with old kernels. Otherwise, old inodes get
4647 * re-used with the upper 16 bits of the uid/gid intact
4648 */
af5bc92d 4649 if (!ei->i_dtime) {
ac27a0ec
DK
4650 raw_inode->i_uid_high =
4651 cpu_to_le16(high_16_bits(inode->i_uid));
4652 raw_inode->i_gid_high =
4653 cpu_to_le16(high_16_bits(inode->i_gid));
4654 } else {
4655 raw_inode->i_uid_high = 0;
4656 raw_inode->i_gid_high = 0;
4657 }
4658 } else {
4659 raw_inode->i_uid_low =
4660 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4661 raw_inode->i_gid_low =
4662 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4663 raw_inode->i_uid_high = 0;
4664 raw_inode->i_gid_high = 0;
4665 }
4666 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4667
4668 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4669 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4670 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4671 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4672
0fc1b451
AK
4673 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4674 goto out_brelse;
ac27a0ec 4675 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4676 /* clear the migrate flag in the raw_inode */
4677 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4678 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4679 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4680 raw_inode->i_file_acl_high =
4681 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4682 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4683 ext4_isize_set(raw_inode, ei->i_disksize);
4684 if (ei->i_disksize > 0x7fffffffULL) {
4685 struct super_block *sb = inode->i_sb;
4686 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4687 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4688 EXT4_SB(sb)->s_es->s_rev_level ==
4689 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4690 /* If this is the first large file
4691 * created, add a flag to the superblock.
4692 */
4693 err = ext4_journal_get_write_access(handle,
4694 EXT4_SB(sb)->s_sbh);
4695 if (err)
4696 goto out_brelse;
4697 ext4_update_dynamic_rev(sb);
4698 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4699 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4700 sb->s_dirt = 1;
0390131b
FM
4701 ext4_handle_sync(handle);
4702 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4703 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4704 }
4705 }
4706 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4707 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4708 if (old_valid_dev(inode->i_rdev)) {
4709 raw_inode->i_block[0] =
4710 cpu_to_le32(old_encode_dev(inode->i_rdev));
4711 raw_inode->i_block[1] = 0;
4712 } else {
4713 raw_inode->i_block[0] = 0;
4714 raw_inode->i_block[1] =
4715 cpu_to_le32(new_encode_dev(inode->i_rdev));
4716 raw_inode->i_block[2] = 0;
4717 }
617ba13b 4718 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4719 raw_inode->i_block[block] = ei->i_data[block];
4720
25ec56b5
JNC
4721 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4722 if (ei->i_extra_isize) {
4723 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4724 raw_inode->i_version_hi =
4725 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4726 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4727 }
4728
0390131b
FM
4729 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4730 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4731 if (!err)
4732 err = rc;
617ba13b 4733 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4734
4735out_brelse:
af5bc92d 4736 brelse(bh);
617ba13b 4737 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4738 return err;
4739}
4740
4741/*
617ba13b 4742 * ext4_write_inode()
ac27a0ec
DK
4743 *
4744 * We are called from a few places:
4745 *
4746 * - Within generic_file_write() for O_SYNC files.
4747 * Here, there will be no transaction running. We wait for any running
4748 * trasnaction to commit.
4749 *
4750 * - Within sys_sync(), kupdate and such.
4751 * We wait on commit, if tol to.
4752 *
4753 * - Within prune_icache() (PF_MEMALLOC == true)
4754 * Here we simply return. We can't afford to block kswapd on the
4755 * journal commit.
4756 *
4757 * In all cases it is actually safe for us to return without doing anything,
4758 * because the inode has been copied into a raw inode buffer in
617ba13b 4759 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4760 * knfsd.
4761 *
4762 * Note that we are absolutely dependent upon all inode dirtiers doing the
4763 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4764 * which we are interested.
4765 *
4766 * It would be a bug for them to not do this. The code:
4767 *
4768 * mark_inode_dirty(inode)
4769 * stuff();
4770 * inode->i_size = expr;
4771 *
4772 * is in error because a kswapd-driven write_inode() could occur while
4773 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4774 * will no longer be on the superblock's dirty inode list.
4775 */
617ba13b 4776int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4777{
4778 if (current->flags & PF_MEMALLOC)
4779 return 0;
4780
617ba13b 4781 if (ext4_journal_current_handle()) {
b38bd33a 4782 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4783 dump_stack();
4784 return -EIO;
4785 }
4786
4787 if (!wait)
4788 return 0;
4789
617ba13b 4790 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4791}
4792
4793/*
617ba13b 4794 * ext4_setattr()
ac27a0ec
DK
4795 *
4796 * Called from notify_change.
4797 *
4798 * We want to trap VFS attempts to truncate the file as soon as
4799 * possible. In particular, we want to make sure that when the VFS
4800 * shrinks i_size, we put the inode on the orphan list and modify
4801 * i_disksize immediately, so that during the subsequent flushing of
4802 * dirty pages and freeing of disk blocks, we can guarantee that any
4803 * commit will leave the blocks being flushed in an unused state on
4804 * disk. (On recovery, the inode will get truncated and the blocks will
4805 * be freed, so we have a strong guarantee that no future commit will
4806 * leave these blocks visible to the user.)
4807 *
678aaf48
JK
4808 * Another thing we have to assure is that if we are in ordered mode
4809 * and inode is still attached to the committing transaction, we must
4810 * we start writeout of all the dirty pages which are being truncated.
4811 * This way we are sure that all the data written in the previous
4812 * transaction are already on disk (truncate waits for pages under
4813 * writeback).
4814 *
4815 * Called with inode->i_mutex down.
ac27a0ec 4816 */
617ba13b 4817int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4818{
4819 struct inode *inode = dentry->d_inode;
4820 int error, rc = 0;
4821 const unsigned int ia_valid = attr->ia_valid;
4822
4823 error = inode_change_ok(inode, attr);
4824 if (error)
4825 return error;
4826
4827 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4828 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4829 handle_t *handle;
4830
4831 /* (user+group)*(old+new) structure, inode write (sb,
4832 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4833 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4834 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4835 if (IS_ERR(handle)) {
4836 error = PTR_ERR(handle);
4837 goto err_out;
4838 }
a269eb18 4839 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4840 if (error) {
617ba13b 4841 ext4_journal_stop(handle);
ac27a0ec
DK
4842 return error;
4843 }
4844 /* Update corresponding info in inode so that everything is in
4845 * one transaction */
4846 if (attr->ia_valid & ATTR_UID)
4847 inode->i_uid = attr->ia_uid;
4848 if (attr->ia_valid & ATTR_GID)
4849 inode->i_gid = attr->ia_gid;
617ba13b
MC
4850 error = ext4_mark_inode_dirty(handle, inode);
4851 ext4_journal_stop(handle);
ac27a0ec
DK
4852 }
4853
e2b46574
ES
4854 if (attr->ia_valid & ATTR_SIZE) {
4855 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4856 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4857
4858 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4859 error = -EFBIG;
4860 goto err_out;
4861 }
4862 }
4863 }
4864
ac27a0ec
DK
4865 if (S_ISREG(inode->i_mode) &&
4866 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4867 handle_t *handle;
4868
617ba13b 4869 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4870 if (IS_ERR(handle)) {
4871 error = PTR_ERR(handle);
4872 goto err_out;
4873 }
4874
617ba13b
MC
4875 error = ext4_orphan_add(handle, inode);
4876 EXT4_I(inode)->i_disksize = attr->ia_size;
4877 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4878 if (!error)
4879 error = rc;
617ba13b 4880 ext4_journal_stop(handle);
678aaf48
JK
4881
4882 if (ext4_should_order_data(inode)) {
4883 error = ext4_begin_ordered_truncate(inode,
4884 attr->ia_size);
4885 if (error) {
4886 /* Do as much error cleanup as possible */
4887 handle = ext4_journal_start(inode, 3);
4888 if (IS_ERR(handle)) {
4889 ext4_orphan_del(NULL, inode);
4890 goto err_out;
4891 }
4892 ext4_orphan_del(handle, inode);
4893 ext4_journal_stop(handle);
4894 goto err_out;
4895 }
4896 }
ac27a0ec
DK
4897 }
4898
4899 rc = inode_setattr(inode, attr);
4900
617ba13b 4901 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4902 * transaction handle at all, we need to clean up the in-core
4903 * orphan list manually. */
4904 if (inode->i_nlink)
617ba13b 4905 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4906
4907 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4908 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4909
4910err_out:
617ba13b 4911 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4912 if (!error)
4913 error = rc;
4914 return error;
4915}
4916
3e3398a0
MC
4917int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4918 struct kstat *stat)
4919{
4920 struct inode *inode;
4921 unsigned long delalloc_blocks;
4922
4923 inode = dentry->d_inode;
4924 generic_fillattr(inode, stat);
4925
4926 /*
4927 * We can't update i_blocks if the block allocation is delayed
4928 * otherwise in the case of system crash before the real block
4929 * allocation is done, we will have i_blocks inconsistent with
4930 * on-disk file blocks.
4931 * We always keep i_blocks updated together with real
4932 * allocation. But to not confuse with user, stat
4933 * will return the blocks that include the delayed allocation
4934 * blocks for this file.
4935 */
4936 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4937 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4938 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4939
4940 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4941 return 0;
4942}
ac27a0ec 4943
a02908f1
MC
4944static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4945 int chunk)
4946{
4947 int indirects;
4948
4949 /* if nrblocks are contiguous */
4950 if (chunk) {
4951 /*
4952 * With N contiguous data blocks, it need at most
4953 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4954 * 2 dindirect blocks
4955 * 1 tindirect block
4956 */
4957 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4958 return indirects + 3;
4959 }
4960 /*
4961 * if nrblocks are not contiguous, worse case, each block touch
4962 * a indirect block, and each indirect block touch a double indirect
4963 * block, plus a triple indirect block
4964 */
4965 indirects = nrblocks * 2 + 1;
4966 return indirects;
4967}
4968
4969static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4970{
4971 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4972 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4973 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4974}
ac51d837 4975
ac27a0ec 4976/*
a02908f1
MC
4977 * Account for index blocks, block groups bitmaps and block group
4978 * descriptor blocks if modify datablocks and index blocks
4979 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4980 *
a02908f1
MC
4981 * If datablocks are discontiguous, they are possible to spread over
4982 * different block groups too. If they are contiugous, with flexbg,
4983 * they could still across block group boundary.
ac27a0ec 4984 *
a02908f1
MC
4985 * Also account for superblock, inode, quota and xattr blocks
4986 */
4987int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4988{
8df9675f
TT
4989 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4990 int gdpblocks;
a02908f1
MC
4991 int idxblocks;
4992 int ret = 0;
4993
4994 /*
4995 * How many index blocks need to touch to modify nrblocks?
4996 * The "Chunk" flag indicating whether the nrblocks is
4997 * physically contiguous on disk
4998 *
4999 * For Direct IO and fallocate, they calls get_block to allocate
5000 * one single extent at a time, so they could set the "Chunk" flag
5001 */
5002 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5003
5004 ret = idxblocks;
5005
5006 /*
5007 * Now let's see how many group bitmaps and group descriptors need
5008 * to account
5009 */
5010 groups = idxblocks;
5011 if (chunk)
5012 groups += 1;
5013 else
5014 groups += nrblocks;
5015
5016 gdpblocks = groups;
8df9675f
TT
5017 if (groups > ngroups)
5018 groups = ngroups;
a02908f1
MC
5019 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5020 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5021
5022 /* bitmaps and block group descriptor blocks */
5023 ret += groups + gdpblocks;
5024
5025 /* Blocks for super block, inode, quota and xattr blocks */
5026 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5027
5028 return ret;
5029}
5030
5031/*
5032 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5033 * the modification of a single pages into a single transaction,
5034 * which may include multiple chunks of block allocations.
ac27a0ec 5035 *
525f4ed8 5036 * This could be called via ext4_write_begin()
ac27a0ec 5037 *
525f4ed8 5038 * We need to consider the worse case, when
a02908f1 5039 * one new block per extent.
ac27a0ec 5040 */
a86c6181 5041int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5042{
617ba13b 5043 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5044 int ret;
5045
a02908f1 5046 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5047
a02908f1 5048 /* Account for data blocks for journalled mode */
617ba13b 5049 if (ext4_should_journal_data(inode))
a02908f1 5050 ret += bpp;
ac27a0ec
DK
5051 return ret;
5052}
f3bd1f3f
MC
5053
5054/*
5055 * Calculate the journal credits for a chunk of data modification.
5056 *
5057 * This is called from DIO, fallocate or whoever calling
12b7ac17 5058 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5059 *
5060 * journal buffers for data blocks are not included here, as DIO
5061 * and fallocate do no need to journal data buffers.
5062 */
5063int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5064{
5065 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5066}
5067
ac27a0ec 5068/*
617ba13b 5069 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5070 * Give this, we know that the caller already has write access to iloc->bh.
5071 */
617ba13b
MC
5072int ext4_mark_iloc_dirty(handle_t *handle,
5073 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5074{
5075 int err = 0;
5076
25ec56b5
JNC
5077 if (test_opt(inode->i_sb, I_VERSION))
5078 inode_inc_iversion(inode);
5079
ac27a0ec
DK
5080 /* the do_update_inode consumes one bh->b_count */
5081 get_bh(iloc->bh);
5082
dab291af 5083 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 5084 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5085 put_bh(iloc->bh);
5086 return err;
5087}
5088
5089/*
5090 * On success, We end up with an outstanding reference count against
5091 * iloc->bh. This _must_ be cleaned up later.
5092 */
5093
5094int
617ba13b
MC
5095ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5096 struct ext4_iloc *iloc)
ac27a0ec 5097{
0390131b
FM
5098 int err;
5099
5100 err = ext4_get_inode_loc(inode, iloc);
5101 if (!err) {
5102 BUFFER_TRACE(iloc->bh, "get_write_access");
5103 err = ext4_journal_get_write_access(handle, iloc->bh);
5104 if (err) {
5105 brelse(iloc->bh);
5106 iloc->bh = NULL;
ac27a0ec
DK
5107 }
5108 }
617ba13b 5109 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5110 return err;
5111}
5112
6dd4ee7c
KS
5113/*
5114 * Expand an inode by new_extra_isize bytes.
5115 * Returns 0 on success or negative error number on failure.
5116 */
1d03ec98
AK
5117static int ext4_expand_extra_isize(struct inode *inode,
5118 unsigned int new_extra_isize,
5119 struct ext4_iloc iloc,
5120 handle_t *handle)
6dd4ee7c
KS
5121{
5122 struct ext4_inode *raw_inode;
5123 struct ext4_xattr_ibody_header *header;
5124 struct ext4_xattr_entry *entry;
5125
5126 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5127 return 0;
5128
5129 raw_inode = ext4_raw_inode(&iloc);
5130
5131 header = IHDR(inode, raw_inode);
5132 entry = IFIRST(header);
5133
5134 /* No extended attributes present */
5135 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5136 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5137 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5138 new_extra_isize);
5139 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5140 return 0;
5141 }
5142
5143 /* try to expand with EAs present */
5144 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5145 raw_inode, handle);
5146}
5147
ac27a0ec
DK
5148/*
5149 * What we do here is to mark the in-core inode as clean with respect to inode
5150 * dirtiness (it may still be data-dirty).
5151 * This means that the in-core inode may be reaped by prune_icache
5152 * without having to perform any I/O. This is a very good thing,
5153 * because *any* task may call prune_icache - even ones which
5154 * have a transaction open against a different journal.
5155 *
5156 * Is this cheating? Not really. Sure, we haven't written the
5157 * inode out, but prune_icache isn't a user-visible syncing function.
5158 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5159 * we start and wait on commits.
5160 *
5161 * Is this efficient/effective? Well, we're being nice to the system
5162 * by cleaning up our inodes proactively so they can be reaped
5163 * without I/O. But we are potentially leaving up to five seconds'
5164 * worth of inodes floating about which prune_icache wants us to
5165 * write out. One way to fix that would be to get prune_icache()
5166 * to do a write_super() to free up some memory. It has the desired
5167 * effect.
5168 */
617ba13b 5169int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5170{
617ba13b 5171 struct ext4_iloc iloc;
6dd4ee7c
KS
5172 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5173 static unsigned int mnt_count;
5174 int err, ret;
ac27a0ec
DK
5175
5176 might_sleep();
617ba13b 5177 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5178 if (ext4_handle_valid(handle) &&
5179 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5180 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5181 /*
5182 * We need extra buffer credits since we may write into EA block
5183 * with this same handle. If journal_extend fails, then it will
5184 * only result in a minor loss of functionality for that inode.
5185 * If this is felt to be critical, then e2fsck should be run to
5186 * force a large enough s_min_extra_isize.
5187 */
5188 if ((jbd2_journal_extend(handle,
5189 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5190 ret = ext4_expand_extra_isize(inode,
5191 sbi->s_want_extra_isize,
5192 iloc, handle);
5193 if (ret) {
5194 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5195 if (mnt_count !=
5196 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5197 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5198 "Unable to expand inode %lu. Delete"
5199 " some EAs or run e2fsck.",
5200 inode->i_ino);
c1bddad9
AK
5201 mnt_count =
5202 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5203 }
5204 }
5205 }
5206 }
ac27a0ec 5207 if (!err)
617ba13b 5208 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5209 return err;
5210}
5211
5212/*
617ba13b 5213 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5214 *
5215 * We're really interested in the case where a file is being extended.
5216 * i_size has been changed by generic_commit_write() and we thus need
5217 * to include the updated inode in the current transaction.
5218 *
a269eb18 5219 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5220 * are allocated to the file.
5221 *
5222 * If the inode is marked synchronous, we don't honour that here - doing
5223 * so would cause a commit on atime updates, which we don't bother doing.
5224 * We handle synchronous inodes at the highest possible level.
5225 */
617ba13b 5226void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5227{
617ba13b 5228 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5229 handle_t *handle;
5230
0390131b
FM
5231 if (!ext4_handle_valid(current_handle)) {
5232 ext4_mark_inode_dirty(current_handle, inode);
5233 return;
5234 }
5235
617ba13b 5236 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5237 if (IS_ERR(handle))
5238 goto out;
5239 if (current_handle &&
5240 current_handle->h_transaction != handle->h_transaction) {
5241 /* This task has a transaction open against a different fs */
5242 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5243 __func__);
ac27a0ec
DK
5244 } else {
5245 jbd_debug(5, "marking dirty. outer handle=%p\n",
5246 current_handle);
617ba13b 5247 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5248 }
617ba13b 5249 ext4_journal_stop(handle);
ac27a0ec
DK
5250out:
5251 return;
5252}
5253
5254#if 0
5255/*
5256 * Bind an inode's backing buffer_head into this transaction, to prevent
5257 * it from being flushed to disk early. Unlike
617ba13b 5258 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5259 * returns no iloc structure, so the caller needs to repeat the iloc
5260 * lookup to mark the inode dirty later.
5261 */
617ba13b 5262static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5263{
617ba13b 5264 struct ext4_iloc iloc;
ac27a0ec
DK
5265
5266 int err = 0;
5267 if (handle) {
617ba13b 5268 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5269 if (!err) {
5270 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5271 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5272 if (!err)
0390131b
FM
5273 err = ext4_handle_dirty_metadata(handle,
5274 inode,
5275 iloc.bh);
ac27a0ec
DK
5276 brelse(iloc.bh);
5277 }
5278 }
617ba13b 5279 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5280 return err;
5281}
5282#endif
5283
617ba13b 5284int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5285{
5286 journal_t *journal;
5287 handle_t *handle;
5288 int err;
5289
5290 /*
5291 * We have to be very careful here: changing a data block's
5292 * journaling status dynamically is dangerous. If we write a
5293 * data block to the journal, change the status and then delete
5294 * that block, we risk forgetting to revoke the old log record
5295 * from the journal and so a subsequent replay can corrupt data.
5296 * So, first we make sure that the journal is empty and that
5297 * nobody is changing anything.
5298 */
5299
617ba13b 5300 journal = EXT4_JOURNAL(inode);
0390131b
FM
5301 if (!journal)
5302 return 0;
d699594d 5303 if (is_journal_aborted(journal))
ac27a0ec
DK
5304 return -EROFS;
5305
dab291af
MC
5306 jbd2_journal_lock_updates(journal);
5307 jbd2_journal_flush(journal);
ac27a0ec
DK
5308
5309 /*
5310 * OK, there are no updates running now, and all cached data is
5311 * synced to disk. We are now in a completely consistent state
5312 * which doesn't have anything in the journal, and we know that
5313 * no filesystem updates are running, so it is safe to modify
5314 * the inode's in-core data-journaling state flag now.
5315 */
5316
5317 if (val)
617ba13b 5318 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5319 else
617ba13b
MC
5320 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5321 ext4_set_aops(inode);
ac27a0ec 5322
dab291af 5323 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5324
5325 /* Finally we can mark the inode as dirty. */
5326
617ba13b 5327 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5328 if (IS_ERR(handle))
5329 return PTR_ERR(handle);
5330
617ba13b 5331 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5332 ext4_handle_sync(handle);
617ba13b
MC
5333 ext4_journal_stop(handle);
5334 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5335
5336 return err;
5337}
2e9ee850
AK
5338
5339static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5340{
5341 return !buffer_mapped(bh);
5342}
5343
c2ec175c 5344int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5345{
c2ec175c 5346 struct page *page = vmf->page;
2e9ee850
AK
5347 loff_t size;
5348 unsigned long len;
5349 int ret = -EINVAL;
79f0be8d 5350 void *fsdata;
2e9ee850
AK
5351 struct file *file = vma->vm_file;
5352 struct inode *inode = file->f_path.dentry->d_inode;
5353 struct address_space *mapping = inode->i_mapping;
5354
5355 /*
5356 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5357 * get i_mutex because we are already holding mmap_sem.
5358 */
5359 down_read(&inode->i_alloc_sem);
5360 size = i_size_read(inode);
5361 if (page->mapping != mapping || size <= page_offset(page)
5362 || !PageUptodate(page)) {
5363 /* page got truncated from under us? */
5364 goto out_unlock;
5365 }
5366 ret = 0;
5367 if (PageMappedToDisk(page))
5368 goto out_unlock;
5369
5370 if (page->index == size >> PAGE_CACHE_SHIFT)
5371 len = size & ~PAGE_CACHE_MASK;
5372 else
5373 len = PAGE_CACHE_SIZE;
5374
5375 if (page_has_buffers(page)) {
5376 /* return if we have all the buffers mapped */
5377 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5378 ext4_bh_unmapped))
5379 goto out_unlock;
5380 }
5381 /*
5382 * OK, we need to fill the hole... Do write_begin write_end
5383 * to do block allocation/reservation.We are not holding
5384 * inode.i__mutex here. That allow * parallel write_begin,
5385 * write_end call. lock_page prevent this from happening
5386 * on the same page though
5387 */
5388 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5389 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5390 if (ret < 0)
5391 goto out_unlock;
5392 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5393 len, len, page, fsdata);
2e9ee850
AK
5394 if (ret < 0)
5395 goto out_unlock;
5396 ret = 0;
5397out_unlock:
c2ec175c
NP
5398 if (ret)
5399 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5400 up_read(&inode->i_alloc_sem);
5401 return ret;
5402}