]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext3/inode.c
dquot: cleanup space allocation / freeing routines
[net-next-2.6.git] / fs / ext3 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
e9ad5620 16 * (sct@redhat.com), 1993, 1998
1da177e4
LT
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
e9ad5620 20 * (jj@sunsite.ms.mff.cuni.cz)
1da177e4
LT
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
1da177e4
LT
30#include <linux/highuid.h>
31#include <linux/pagemap.h>
32#include <linux/quotaops.h>
33#include <linux/string.h>
34#include <linux/buffer_head.h>
35#include <linux/writeback.h>
36#include <linux/mpage.h>
37#include <linux/uio.h>
caa38fb0 38#include <linux/bio.h>
68c9d702 39#include <linux/fiemap.h>
b5ed3112 40#include <linux/namei.h>
1da177e4
LT
41#include "xattr.h"
42#include "acl.h"
43
44static int ext3_writepage_trans_blocks(struct inode *inode);
45
46/*
47 * Test whether an inode is a fast symlink.
48 */
d6859bfc 49static int ext3_inode_is_fast_symlink(struct inode *inode)
1da177e4
LT
50{
51 int ea_blocks = EXT3_I(inode)->i_file_acl ?
52 (inode->i_sb->s_blocksize >> 9) : 0;
53
d6859bfc 54 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
1da177e4
LT
55}
56
d6859bfc
AM
57/*
58 * The ext3 forget function must perform a revoke if we are freeing data
1da177e4 59 * which has been journaled. Metadata (eg. indirect blocks) must be
ae6ddcc5 60 * revoked in all cases.
1da177e4
LT
61 *
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
65 */
d6859bfc 66int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
1c2bf374 67 struct buffer_head *bh, ext3_fsblk_t blocknr)
1da177e4
LT
68{
69 int err;
70
71 might_sleep();
72
73 BUFFER_TRACE(bh, "enter");
74
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
79
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
84
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
90 }
91 return 0;
92 }
93
94 /*
95 * data!=journal && (is_metadata || should_journal_data(inode))
96 */
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
e05b6b52 100 ext3_abort(inode->i_sb, __func__,
1da177e4
LT
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
104}
105
106/*
d6859bfc 107 * Work out how many blocks we need to proceed with the next chunk of a
1da177e4
LT
108 * truncate transaction.
109 */
ae6ddcc5 110static unsigned long blocks_for_truncate(struct inode *inode)
1da177e4
LT
111{
112 unsigned long needed;
113
114 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
122 if (needed < 2)
123 needed = 2;
124
125 /* But we need to bound the transaction so we don't overflow the
126 * journal. */
ae6ddcc5 127 if (needed > EXT3_MAX_TRANS_DATA)
1da177e4
LT
128 needed = EXT3_MAX_TRANS_DATA;
129
1f54587b 130 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
1da177e4
LT
131}
132
ae6ddcc5 133/*
1da177e4
LT
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
137 *
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
ae6ddcc5 141 * transaction in the top-level truncate loop. --sct
1da177e4 142 */
ae6ddcc5 143static handle_t *start_transaction(struct inode *inode)
1da177e4
LT
144{
145 handle_t *result;
146
147 result = ext3_journal_start(inode, blocks_for_truncate(inode));
148 if (!IS_ERR(result))
149 return result;
150
151 ext3_std_error(inode->i_sb, PTR_ERR(result));
152 return result;
153}
154
155/*
156 * Try to extend this transaction for the purposes of truncation.
157 *
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
160 */
161static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162{
163 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164 return 0;
165 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166 return 0;
167 return 1;
168}
169
170/*
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
173 * this transaction.
174 */
00171d3c 175static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
1da177e4 176{
00171d3c
JK
177 int ret;
178
1da177e4 179 jbd_debug(2, "restarting handle %p\n", handle);
00171d3c
JK
180 /*
181 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182 * At this moment, get_block can be called only for blocks inside
183 * i_size since page cache has been already dropped and writes are
184 * blocked by i_mutex. So we can safely drop the truncate_mutex.
185 */
186 mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187 ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188 mutex_lock(&EXT3_I(inode)->truncate_mutex);
189 return ret;
1da177e4
LT
190}
191
192/*
193 * Called at the last iput() if i_nlink is zero.
194 */
195void ext3_delete_inode (struct inode * inode)
196{
197 handle_t *handle;
198
fef26658
MF
199 truncate_inode_pages(&inode->i_data, 0);
200
1da177e4
LT
201 if (is_bad_inode(inode))
202 goto no_delete;
203
204 handle = start_transaction(inode);
205 if (IS_ERR(handle)) {
d6859bfc
AM
206 /*
207 * If we're going to skip the normal cleanup, we still need to
208 * make sure that the in-core orphan linked list is properly
209 * cleaned up.
210 */
1da177e4
LT
211 ext3_orphan_del(NULL, inode);
212 goto no_delete;
213 }
214
215 if (IS_SYNC(inode))
216 handle->h_sync = 1;
217 inode->i_size = 0;
218 if (inode->i_blocks)
219 ext3_truncate(inode);
220 /*
221 * Kill off the orphan record which ext3_truncate created.
222 * AKPM: I think this can be inside the above `if'.
223 * Note that ext3_orphan_del() has to be able to cope with the
224 * deletion of a non-existent orphan - this is because we don't
225 * know if ext3_truncate() actually created an orphan record.
226 * (Well, we could do this if we need to, but heck - it works)
227 */
228 ext3_orphan_del(handle, inode);
229 EXT3_I(inode)->i_dtime = get_seconds();
230
ae6ddcc5 231 /*
1da177e4
LT
232 * One subtle ordering requirement: if anything has gone wrong
233 * (transaction abort, IO errors, whatever), then we can still
234 * do these next steps (the fs will already have been marked as
235 * having errors), but we can't free the inode if the mark_dirty
ae6ddcc5 236 * fails.
1da177e4
LT
237 */
238 if (ext3_mark_inode_dirty(handle, inode))
239 /* If that failed, just do the required in-core inode clear. */
240 clear_inode(inode);
241 else
242 ext3_free_inode(handle, inode);
243 ext3_journal_stop(handle);
244 return;
245no_delete:
246 clear_inode(inode); /* We must guarantee clearing of inode... */
247}
248
1da177e4
LT
249typedef struct {
250 __le32 *p;
251 __le32 key;
252 struct buffer_head *bh;
253} Indirect;
254
255static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
256{
257 p->key = *(p->p = v);
258 p->bh = bh;
259}
260
d6859bfc 261static int verify_chain(Indirect *from, Indirect *to)
1da177e4
LT
262{
263 while (from <= to && from->key == *from->p)
264 from++;
265 return (from > to);
266}
267
268/**
269 * ext3_block_to_path - parse the block number into array of offsets
270 * @inode: inode in question (we are only interested in its superblock)
271 * @i_block: block number to be parsed
272 * @offsets: array to store the offsets in
273 * @boundary: set this non-zero if the referred-to block is likely to be
274 * followed (on disk) by an indirect block.
275 *
276 * To store the locations of file's data ext3 uses a data structure common
277 * for UNIX filesystems - tree of pointers anchored in the inode, with
278 * data blocks at leaves and indirect blocks in intermediate nodes.
279 * This function translates the block number into path in that tree -
280 * return value is the path length and @offsets[n] is the offset of
281 * pointer to (n+1)th node in the nth one. If @block is out of range
282 * (negative or too large) warning is printed and zero returned.
283 *
284 * Note: function doesn't find node addresses, so no IO is needed. All
285 * we need to know is the capacity of indirect blocks (taken from the
286 * inode->i_sb).
287 */
288
289/*
290 * Portability note: the last comparison (check that we fit into triple
291 * indirect block) is spelled differently, because otherwise on an
292 * architecture with 32-bit longs and 8Kb pages we might get into trouble
293 * if our filesystem had 8Kb blocks. We might use long long, but that would
294 * kill us on x86. Oh, well, at least the sign propagation does not matter -
295 * i_block would have to be negative in the very beginning, so we would not
296 * get there at all.
297 */
298
299static int ext3_block_to_path(struct inode *inode,
300 long i_block, int offsets[4], int *boundary)
301{
302 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
303 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
304 const long direct_blocks = EXT3_NDIR_BLOCKS,
305 indirect_blocks = ptrs,
306 double_blocks = (1 << (ptrs_bits * 2));
307 int n = 0;
308 int final = 0;
309
310 if (i_block < 0) {
311 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
312 } else if (i_block < direct_blocks) {
313 offsets[n++] = i_block;
314 final = direct_blocks;
315 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
316 offsets[n++] = EXT3_IND_BLOCK;
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
320 offsets[n++] = EXT3_DIND_BLOCK;
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325 offsets[n++] = EXT3_TIND_BLOCK;
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
d6859bfc 331 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
1da177e4
LT
332 }
333 if (boundary)
89747d36 334 *boundary = final - 1 - (i_block & (ptrs - 1));
1da177e4
LT
335 return n;
336}
337
338/**
339 * ext3_get_branch - read the chain of indirect blocks leading to data
340 * @inode: inode in question
341 * @depth: depth of the chain (1 - direct pointer, etc.)
342 * @offsets: offsets of pointers in inode/indirect blocks
343 * @chain: place to store the result
344 * @err: here we store the error value
345 *
346 * Function fills the array of triples <key, p, bh> and returns %NULL
347 * if everything went OK or the pointer to the last filled triple
348 * (incomplete one) otherwise. Upon the return chain[i].key contains
349 * the number of (i+1)-th block in the chain (as it is stored in memory,
350 * i.e. little-endian 32-bit), chain[i].p contains the address of that
351 * number (it points into struct inode for i==0 and into the bh->b_data
352 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
353 * block for i>0 and NULL for i==0. In other words, it holds the block
354 * numbers of the chain, addresses they were taken from (and where we can
355 * verify that chain did not change) and buffer_heads hosting these
356 * numbers.
357 *
358 * Function stops when it stumbles upon zero pointer (absent block)
359 * (pointer to last triple returned, *@err == 0)
360 * or when it gets an IO error reading an indirect block
361 * (ditto, *@err == -EIO)
362 * or when it notices that chain had been changed while it was reading
363 * (ditto, *@err == -EAGAIN)
364 * or when it reads all @depth-1 indirect blocks successfully and finds
365 * the whole chain, all way to the data (returns %NULL, *err == 0).
366 */
367static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
368 Indirect chain[4], int *err)
369{
370 struct super_block *sb = inode->i_sb;
371 Indirect *p = chain;
372 struct buffer_head *bh;
373
374 *err = 0;
375 /* i_data is not going away, no lock needed */
376 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
377 if (!p->key)
378 goto no_block;
379 while (--depth) {
380 bh = sb_bread(sb, le32_to_cpu(p->key));
381 if (!bh)
382 goto failure;
383 /* Reader: pointers */
384 if (!verify_chain(chain, p))
385 goto changed;
386 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
387 /* Reader: end */
388 if (!p->key)
389 goto no_block;
390 }
391 return NULL;
392
393changed:
394 brelse(bh);
395 *err = -EAGAIN;
396 goto no_block;
397failure:
398 *err = -EIO;
399no_block:
400 return p;
401}
402
403/**
404 * ext3_find_near - find a place for allocation with sufficient locality
405 * @inode: owner
406 * @ind: descriptor of indirect block.
407 *
1cc8dcf5 408 * This function returns the preferred place for block allocation.
1da177e4
LT
409 * It is used when heuristic for sequential allocation fails.
410 * Rules are:
411 * + if there is a block to the left of our position - allocate near it.
412 * + if pointer will live in indirect block - allocate near that block.
413 * + if pointer will live in inode - allocate in the same
ae6ddcc5 414 * cylinder group.
1da177e4
LT
415 *
416 * In the latter case we colour the starting block by the callers PID to
417 * prevent it from clashing with concurrent allocations for a different inode
418 * in the same block group. The PID is used here so that functionally related
419 * files will be close-by on-disk.
420 *
421 * Caller must make sure that @ind is valid and will stay that way.
422 */
43d23f90 423static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
1da177e4
LT
424{
425 struct ext3_inode_info *ei = EXT3_I(inode);
426 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
427 __le32 *p;
43d23f90
MC
428 ext3_fsblk_t bg_start;
429 ext3_grpblk_t colour;
1da177e4
LT
430
431 /* Try to find previous block */
d6859bfc 432 for (p = ind->p - 1; p >= start; p--) {
1da177e4
LT
433 if (*p)
434 return le32_to_cpu(*p);
d6859bfc 435 }
1da177e4
LT
436
437 /* No such thing, so let's try location of indirect block */
438 if (ind->bh)
439 return ind->bh->b_blocknr;
440
441 /*
d6859bfc
AM
442 * It is going to be referred to from the inode itself? OK, just put it
443 * into the same cylinder group then.
1da177e4 444 */
43d23f90 445 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
1da177e4
LT
446 colour = (current->pid % 16) *
447 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
448 return bg_start + colour;
449}
450
451/**
1cc8dcf5 452 * ext3_find_goal - find a preferred place for allocation.
1da177e4
LT
453 * @inode: owner
454 * @block: block we want
1da177e4 455 * @partial: pointer to the last triple within a chain
1da177e4 456 *
1cc8dcf5 457 * Normally this function find the preferred place for block allocation,
fb01bfda 458 * returns it.
1da177e4
LT
459 */
460
43d23f90 461static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
fb01bfda 462 Indirect *partial)
1da177e4 463{
d6859bfc
AM
464 struct ext3_block_alloc_info *block_i;
465
466 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
467
468 /*
469 * try the heuristic for sequential allocation,
470 * failing that at least try to get decent locality.
471 */
472 if (block_i && (block == block_i->last_alloc_logical_block + 1)
473 && (block_i->last_alloc_physical_block != 0)) {
fe55c452 474 return block_i->last_alloc_physical_block + 1;
1da177e4
LT
475 }
476
fe55c452 477 return ext3_find_near(inode, partial);
1da177e4 478}
d6859bfc 479
b47b2478
MC
480/**
481 * ext3_blks_to_allocate: Look up the block map and count the number
482 * of direct blocks need to be allocated for the given branch.
483 *
e9ad5620 484 * @branch: chain of indirect blocks
b47b2478
MC
485 * @k: number of blocks need for indirect blocks
486 * @blks: number of data blocks to be mapped.
487 * @blocks_to_boundary: the offset in the indirect block
488 *
489 * return the total number of blocks to be allocate, including the
490 * direct and indirect blocks.
491 */
d6859bfc 492static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
b47b2478
MC
493 int blocks_to_boundary)
494{
495 unsigned long count = 0;
496
497 /*
498 * Simple case, [t,d]Indirect block(s) has not allocated yet
499 * then it's clear blocks on that path have not allocated
500 */
501 if (k > 0) {
d6859bfc 502 /* right now we don't handle cross boundary allocation */
b47b2478
MC
503 if (blks < blocks_to_boundary + 1)
504 count += blks;
505 else
506 count += blocks_to_boundary + 1;
507 return count;
508 }
509
510 count++;
511 while (count < blks && count <= blocks_to_boundary &&
512 le32_to_cpu(*(branch[0].p + count)) == 0) {
513 count++;
514 }
515 return count;
516}
517
518/**
519 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
520 * @indirect_blks: the number of blocks need to allocate for indirect
521 * blocks
522 *
523 * @new_blocks: on return it will store the new block numbers for
524 * the indirect blocks(if needed) and the first direct block,
525 * @blks: on return it will store the total number of allocated
526 * direct blocks
527 */
528static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
43d23f90
MC
529 ext3_fsblk_t goal, int indirect_blks, int blks,
530 ext3_fsblk_t new_blocks[4], int *err)
b47b2478
MC
531{
532 int target, i;
533 unsigned long count = 0;
534 int index = 0;
43d23f90 535 ext3_fsblk_t current_block = 0;
b47b2478
MC
536 int ret = 0;
537
538 /*
539 * Here we try to allocate the requested multiple blocks at once,
540 * on a best-effort basis.
541 * To build a branch, we should allocate blocks for
542 * the indirect blocks(if not allocated yet), and at least
543 * the first direct block of this branch. That's the
544 * minimum number of blocks need to allocate(required)
545 */
546 target = blks + indirect_blks;
547
548 while (1) {
549 count = target;
550 /* allocating blocks for indirect blocks and direct blocks */
d6859bfc 551 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
b47b2478
MC
552 if (*err)
553 goto failed_out;
554
555 target -= count;
556 /* allocate blocks for indirect blocks */
557 while (index < indirect_blks && count) {
558 new_blocks[index++] = current_block++;
559 count--;
560 }
561
562 if (count > 0)
563 break;
564 }
565
566 /* save the new block number for the first direct block */
567 new_blocks[index] = current_block;
568
569 /* total number of blocks allocated for direct blocks */
570 ret = count;
571 *err = 0;
572 return ret;
573failed_out:
574 for (i = 0; i <index; i++)
575 ext3_free_blocks(handle, inode, new_blocks[i], 1);
576 return ret;
577}
1da177e4
LT
578
579/**
580 * ext3_alloc_branch - allocate and set up a chain of blocks.
581 * @inode: owner
b47b2478
MC
582 * @indirect_blks: number of allocated indirect blocks
583 * @blks: number of allocated direct blocks
1da177e4
LT
584 * @offsets: offsets (in the blocks) to store the pointers to next.
585 * @branch: place to store the chain in.
586 *
b47b2478 587 * This function allocates blocks, zeroes out all but the last one,
1da177e4
LT
588 * links them into chain and (if we are synchronous) writes them to disk.
589 * In other words, it prepares a branch that can be spliced onto the
590 * inode. It stores the information about that chain in the branch[], in
591 * the same format as ext3_get_branch() would do. We are calling it after
592 * we had read the existing part of chain and partial points to the last
593 * triple of that (one with zero ->key). Upon the exit we have the same
5b116879 594 * picture as after the successful ext3_get_block(), except that in one
1da177e4
LT
595 * place chain is disconnected - *branch->p is still zero (we did not
596 * set the last link), but branch->key contains the number that should
597 * be placed into *branch->p to fill that gap.
598 *
599 * If allocation fails we free all blocks we've allocated (and forget
600 * their buffer_heads) and return the error value the from failed
601 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
602 * as described above and return 0.
603 */
1da177e4 604static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
43d23f90 605 int indirect_blks, int *blks, ext3_fsblk_t goal,
b47b2478 606 int *offsets, Indirect *branch)
1da177e4
LT
607{
608 int blocksize = inode->i_sb->s_blocksize;
b47b2478 609 int i, n = 0;
1da177e4 610 int err = 0;
b47b2478
MC
611 struct buffer_head *bh;
612 int num;
43d23f90
MC
613 ext3_fsblk_t new_blocks[4];
614 ext3_fsblk_t current_block;
1da177e4 615
b47b2478
MC
616 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
617 *blks, new_blocks, &err);
618 if (err)
619 return err;
1da177e4 620
b47b2478
MC
621 branch[0].key = cpu_to_le32(new_blocks[0]);
622 /*
623 * metadata blocks and data blocks are allocated.
624 */
625 for (n = 1; n <= indirect_blks; n++) {
626 /*
627 * Get buffer_head for parent block, zero it out
628 * and set the pointer to new one, then send
629 * parent to disk.
630 */
631 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
632 branch[n].bh = bh;
633 lock_buffer(bh);
634 BUFFER_TRACE(bh, "call get_create_access");
635 err = ext3_journal_get_create_access(handle, bh);
636 if (err) {
1da177e4 637 unlock_buffer(bh);
b47b2478
MC
638 brelse(bh);
639 goto failed;
640 }
1da177e4 641
b47b2478
MC
642 memset(bh->b_data, 0, blocksize);
643 branch[n].p = (__le32 *) bh->b_data + offsets[n];
644 branch[n].key = cpu_to_le32(new_blocks[n]);
645 *branch[n].p = branch[n].key;
646 if ( n == indirect_blks) {
647 current_block = new_blocks[n];
648 /*
649 * End of chain, update the last new metablock of
650 * the chain to point to the new allocated
651 * data blocks numbers
652 */
653 for (i=1; i < num; i++)
654 *(branch[n].p + i) = cpu_to_le32(++current_block);
1da177e4 655 }
b47b2478
MC
656 BUFFER_TRACE(bh, "marking uptodate");
657 set_buffer_uptodate(bh);
658 unlock_buffer(bh);
1da177e4 659
b47b2478
MC
660 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
661 err = ext3_journal_dirty_metadata(handle, bh);
662 if (err)
663 goto failed;
664 }
665 *blks = num;
666 return err;
667failed:
1da177e4 668 /* Allocation failed, free what we already allocated */
b47b2478 669 for (i = 1; i <= n ; i++) {
1da177e4
LT
670 BUFFER_TRACE(branch[i].bh, "call journal_forget");
671 ext3_journal_forget(handle, branch[i].bh);
672 }
b47b2478
MC
673 for (i = 0; i <indirect_blks; i++)
674 ext3_free_blocks(handle, inode, new_blocks[i], 1);
675
676 ext3_free_blocks(handle, inode, new_blocks[i], num);
677
1da177e4
LT
678 return err;
679}
680
681/**
d6859bfc
AM
682 * ext3_splice_branch - splice the allocated branch onto inode.
683 * @inode: owner
684 * @block: (logical) number of block we are adding
685 * @chain: chain of indirect blocks (with a missing link - see
686 * ext3_alloc_branch)
687 * @where: location of missing link
688 * @num: number of indirect blocks we are adding
689 * @blks: number of direct blocks we are adding
690 *
691 * This function fills the missing link and does all housekeeping needed in
692 * inode (->i_blocks, etc.). In case of success we end up with the full
693 * chain to new block and return 0.
1da177e4 694 */
d6859bfc
AM
695static int ext3_splice_branch(handle_t *handle, struct inode *inode,
696 long block, Indirect *where, int num, int blks)
1da177e4
LT
697{
698 int i;
699 int err = 0;
d6859bfc 700 struct ext3_block_alloc_info *block_i;
43d23f90 701 ext3_fsblk_t current_block;
fe8bc91c 702 struct ext3_inode_info *ei = EXT3_I(inode);
d6859bfc 703
fe8bc91c 704 block_i = ei->i_block_alloc_info;
1da177e4
LT
705 /*
706 * If we're splicing into a [td]indirect block (as opposed to the
707 * inode) then we need to get write access to the [td]indirect block
708 * before the splice.
709 */
710 if (where->bh) {
711 BUFFER_TRACE(where->bh, "get_write_access");
712 err = ext3_journal_get_write_access(handle, where->bh);
713 if (err)
714 goto err_out;
715 }
1da177e4
LT
716 /* That's it */
717
718 *where->p = where->key;
d6859bfc
AM
719
720 /*
721 * Update the host buffer_head or inode to point to more just allocated
722 * direct blocks blocks
723 */
b47b2478 724 if (num == 0 && blks > 1) {
5dea5176 725 current_block = le32_to_cpu(where->key) + 1;
b47b2478
MC
726 for (i = 1; i < blks; i++)
727 *(where->p + i ) = cpu_to_le32(current_block++);
728 }
1da177e4
LT
729
730 /*
731 * update the most recently allocated logical & physical block
732 * in i_block_alloc_info, to assist find the proper goal block for next
733 * allocation
734 */
735 if (block_i) {
b47b2478 736 block_i->last_alloc_logical_block = block + blks - 1;
d6859bfc 737 block_i->last_alloc_physical_block =
5dea5176 738 le32_to_cpu(where[num].key) + blks - 1;
1da177e4
LT
739 }
740
741 /* We are done with atomic stuff, now do the rest of housekeeping */
742
743 inode->i_ctime = CURRENT_TIME_SEC;
744 ext3_mark_inode_dirty(handle, inode);
fe8bc91c
JK
745 /* ext3_mark_inode_dirty already updated i_sync_tid */
746 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1da177e4
LT
747
748 /* had we spliced it onto indirect block? */
749 if (where->bh) {
750 /*
d6859bfc 751 * If we spliced it onto an indirect block, we haven't
1da177e4
LT
752 * altered the inode. Note however that if it is being spliced
753 * onto an indirect block at the very end of the file (the
754 * file is growing) then we *will* alter the inode to reflect
755 * the new i_size. But that is not done here - it is done in
756 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
757 */
758 jbd_debug(5, "splicing indirect only\n");
759 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
760 err = ext3_journal_dirty_metadata(handle, where->bh);
ae6ddcc5 761 if (err)
1da177e4
LT
762 goto err_out;
763 } else {
764 /*
765 * OK, we spliced it into the inode itself on a direct block.
766 * Inode was dirtied above.
767 */
768 jbd_debug(5, "splicing direct\n");
769 }
770 return err;
771
1da177e4 772err_out:
b47b2478 773 for (i = 1; i <= num; i++) {
1da177e4
LT
774 BUFFER_TRACE(where[i].bh, "call journal_forget");
775 ext3_journal_forget(handle, where[i].bh);
d6859bfc 776 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
1da177e4 777 }
b47b2478
MC
778 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
779
1da177e4
LT
780 return err;
781}
782
783/*
784 * Allocation strategy is simple: if we have to allocate something, we will
785 * have to go the whole way to leaf. So let's do it before attaching anything
786 * to tree, set linkage between the newborn blocks, write them if sync is
787 * required, recheck the path, free and repeat if check fails, otherwise
788 * set the last missing link (that will protect us from any truncate-generated
789 * removals - all blocks on the path are immune now) and possibly force the
790 * write on the parent block.
791 * That has a nice additional property: no special recovery from the failed
792 * allocations is needed - we simply release blocks and do not touch anything
793 * reachable from inode.
794 *
d6859bfc 795 * `handle' can be NULL if create == 0.
1da177e4
LT
796 *
797 * The BKL may not be held on entry here. Be sure to take it early.
89747d36
MC
798 * return > 0, # of blocks mapped or allocated.
799 * return = 0, if plain lookup failed.
800 * return < 0, error case.
1da177e4 801 */
d6859bfc
AM
802int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
803 sector_t iblock, unsigned long maxblocks,
804 struct buffer_head *bh_result,
43237b54 805 int create)
1da177e4
LT
806{
807 int err = -EIO;
808 int offsets[4];
809 Indirect chain[4];
810 Indirect *partial;
43d23f90 811 ext3_fsblk_t goal;
b47b2478 812 int indirect_blks;
89747d36
MC
813 int blocks_to_boundary = 0;
814 int depth;
1da177e4 815 struct ext3_inode_info *ei = EXT3_I(inode);
89747d36 816 int count = 0;
43d23f90 817 ext3_fsblk_t first_block = 0;
89747d36 818
1da177e4
LT
819
820 J_ASSERT(handle != NULL || create == 0);
d6859bfc 821 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
1da177e4
LT
822
823 if (depth == 0)
824 goto out;
825
1da177e4
LT
826 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
827
828 /* Simplest case - block found, no allocation needed */
829 if (!partial) {
5dea5176 830 first_block = le32_to_cpu(chain[depth - 1].key);
1da177e4 831 clear_buffer_new(bh_result);
89747d36
MC
832 count++;
833 /*map more blocks*/
834 while (count < maxblocks && count <= blocks_to_boundary) {
43d23f90 835 ext3_fsblk_t blk;
5dea5176 836
e8ef7aae 837 if (!verify_chain(chain, chain + depth - 1)) {
89747d36
MC
838 /*
839 * Indirect block might be removed by
840 * truncate while we were reading it.
841 * Handling of that case: forget what we've
842 * got now. Flag the err as EAGAIN, so it
843 * will reread.
844 */
845 err = -EAGAIN;
846 count = 0;
847 break;
848 }
5dea5176
MC
849 blk = le32_to_cpu(*(chain[depth-1].p + count));
850
851 if (blk == first_block + count)
89747d36
MC
852 count++;
853 else
854 break;
855 }
856 if (err != -EAGAIN)
857 goto got_it;
1da177e4
LT
858 }
859
860 /* Next simple case - plain lookup or failed read of indirect block */
fe55c452
MC
861 if (!create || err == -EIO)
862 goto cleanup;
863
97461518 864 mutex_lock(&ei->truncate_mutex);
fe55c452
MC
865
866 /*
867 * If the indirect block is missing while we are reading
868 * the chain(ext3_get_branch() returns -EAGAIN err), or
869 * if the chain has been changed after we grab the semaphore,
870 * (either because another process truncated this branch, or
871 * another get_block allocated this branch) re-grab the chain to see if
872 * the request block has been allocated or not.
873 *
874 * Since we already block the truncate/other get_block
875 * at this point, we will have the current copy of the chain when we
876 * splice the branch into the tree.
877 */
878 if (err == -EAGAIN || !verify_chain(chain, partial)) {
1da177e4 879 while (partial > chain) {
1da177e4
LT
880 brelse(partial->bh);
881 partial--;
882 }
fe55c452
MC
883 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
884 if (!partial) {
89747d36 885 count++;
97461518 886 mutex_unlock(&ei->truncate_mutex);
fe55c452
MC
887 if (err)
888 goto cleanup;
889 clear_buffer_new(bh_result);
890 goto got_it;
891 }
1da177e4
LT
892 }
893
894 /*
fe55c452
MC
895 * Okay, we need to do block allocation. Lazily initialize the block
896 * allocation info here if necessary
897 */
898 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
1da177e4 899 ext3_init_block_alloc_info(inode);
1da177e4 900
fb01bfda 901 goal = ext3_find_goal(inode, iblock, partial);
1da177e4 902
b47b2478
MC
903 /* the number of blocks need to allocate for [d,t]indirect blocks */
904 indirect_blks = (chain + depth) - partial - 1;
1da177e4 905
b47b2478
MC
906 /*
907 * Next look up the indirect map to count the totoal number of
908 * direct blocks to allocate for this branch.
909 */
910 count = ext3_blks_to_allocate(partial, indirect_blks,
911 maxblocks, blocks_to_boundary);
1da177e4
LT
912 /*
913 * Block out ext3_truncate while we alter the tree
914 */
b47b2478 915 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
fe55c452 916 offsets + (partial - chain), partial);
1da177e4 917
fe55c452
MC
918 /*
919 * The ext3_splice_branch call will free and forget any buffers
1da177e4
LT
920 * on the new chain if there is a failure, but that risks using
921 * up transaction credits, especially for bitmaps where the
922 * credits cannot be returned. Can we handle this somehow? We
fe55c452
MC
923 * may need to return -EAGAIN upwards in the worst case. --sct
924 */
1da177e4 925 if (!err)
b47b2478
MC
926 err = ext3_splice_branch(handle, inode, iblock,
927 partial, indirect_blks, count);
97461518 928 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
929 if (err)
930 goto cleanup;
931
932 set_buffer_new(bh_result);
fe55c452
MC
933got_it:
934 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
20acaa18 935 if (count > blocks_to_boundary)
fe55c452 936 set_buffer_boundary(bh_result);
89747d36 937 err = count;
fe55c452
MC
938 /* Clean up and exit */
939 partial = chain + depth - 1; /* the whole chain */
940cleanup:
1da177e4 941 while (partial > chain) {
fe55c452 942 BUFFER_TRACE(partial->bh, "call brelse");
1da177e4
LT
943 brelse(partial->bh);
944 partial--;
945 }
fe55c452
MC
946 BUFFER_TRACE(bh_result, "returned");
947out:
948 return err;
1da177e4
LT
949}
950
bd1939de
JK
951/* Maximum number of blocks we map for direct IO at once. */
952#define DIO_MAX_BLOCKS 4096
953/*
954 * Number of credits we need for writing DIO_MAX_BLOCKS:
955 * We need sb + group descriptor + bitmap + inode -> 4
956 * For B blocks with A block pointers per block we need:
957 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
958 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
959 */
960#define DIO_CREDITS 25
1da177e4 961
f91a2ad2
BP
962static int ext3_get_block(struct inode *inode, sector_t iblock,
963 struct buffer_head *bh_result, int create)
1da177e4 964{
3e4fdaf8 965 handle_t *handle = ext3_journal_current_handle();
bd1939de 966 int ret = 0, started = 0;
1d8fa7a2 967 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1da177e4 968
bd1939de
JK
969 if (create && !handle) { /* Direct IO write... */
970 if (max_blocks > DIO_MAX_BLOCKS)
971 max_blocks = DIO_MAX_BLOCKS;
972 handle = ext3_journal_start(inode, DIO_CREDITS +
c459001f 973 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
bd1939de 974 if (IS_ERR(handle)) {
1da177e4 975 ret = PTR_ERR(handle);
bd1939de 976 goto out;
1da177e4 977 }
bd1939de 978 started = 1;
1da177e4
LT
979 }
980
bd1939de 981 ret = ext3_get_blocks_handle(handle, inode, iblock,
43237b54 982 max_blocks, bh_result, create);
bd1939de
JK
983 if (ret > 0) {
984 bh_result->b_size = (ret << inode->i_blkbits);
985 ret = 0;
89747d36 986 }
bd1939de
JK
987 if (started)
988 ext3_journal_stop(handle);
989out:
1da177e4
LT
990 return ret;
991}
992
68c9d702
JB
993int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
994 u64 start, u64 len)
995{
996 return generic_block_fiemap(inode, fieinfo, start, len,
997 ext3_get_block);
998}
999
1da177e4
LT
1000/*
1001 * `handle' can be NULL if create is zero
1002 */
d6859bfc
AM
1003struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1004 long block, int create, int *errp)
1da177e4
LT
1005{
1006 struct buffer_head dummy;
1007 int fatal = 0, err;
1008
1009 J_ASSERT(handle != NULL || create == 0);
1010
1011 dummy.b_state = 0;
1012 dummy.b_blocknr = -1000;
1013 buffer_trace_init(&dummy.b_history);
89747d36 1014 err = ext3_get_blocks_handle(handle, inode, block, 1,
43237b54 1015 &dummy, create);
3665d0e5
BP
1016 /*
1017 * ext3_get_blocks_handle() returns number of blocks
1018 * mapped. 0 in case of a HOLE.
1019 */
1020 if (err > 0) {
1021 if (err > 1)
1022 WARN_ON(1);
89747d36 1023 err = 0;
89747d36
MC
1024 }
1025 *errp = err;
1026 if (!err && buffer_mapped(&dummy)) {
1da177e4
LT
1027 struct buffer_head *bh;
1028 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
2973dfdb
GOC
1029 if (!bh) {
1030 *errp = -EIO;
1031 goto err;
1032 }
1da177e4
LT
1033 if (buffer_new(&dummy)) {
1034 J_ASSERT(create != 0);
c80544dc 1035 J_ASSERT(handle != NULL);
1da177e4 1036
d6859bfc
AM
1037 /*
1038 * Now that we do not always journal data, we should
1039 * keep in mind whether this should always journal the
1040 * new buffer as metadata. For now, regular file
1041 * writes use ext3_get_block instead, so it's not a
1042 * problem.
1043 */
1da177e4
LT
1044 lock_buffer(bh);
1045 BUFFER_TRACE(bh, "call get_create_access");
1046 fatal = ext3_journal_get_create_access(handle, bh);
1047 if (!fatal && !buffer_uptodate(bh)) {
d6859bfc 1048 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1da177e4
LT
1049 set_buffer_uptodate(bh);
1050 }
1051 unlock_buffer(bh);
1052 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1053 err = ext3_journal_dirty_metadata(handle, bh);
1054 if (!fatal)
1055 fatal = err;
1056 } else {
1057 BUFFER_TRACE(bh, "not a new buffer");
1058 }
1059 if (fatal) {
1060 *errp = fatal;
1061 brelse(bh);
1062 bh = NULL;
1063 }
1064 return bh;
1065 }
2973dfdb 1066err:
1da177e4
LT
1067 return NULL;
1068}
1069
d6859bfc 1070struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1da177e4
LT
1071 int block, int create, int *err)
1072{
1073 struct buffer_head * bh;
1074
1075 bh = ext3_getblk(handle, inode, block, create, err);
1076 if (!bh)
1077 return bh;
1078 if (buffer_uptodate(bh))
1079 return bh;
caa38fb0 1080 ll_rw_block(READ_META, 1, &bh);
1da177e4
LT
1081 wait_on_buffer(bh);
1082 if (buffer_uptodate(bh))
1083 return bh;
1084 put_bh(bh);
1085 *err = -EIO;
1086 return NULL;
1087}
1088
1089static int walk_page_buffers( handle_t *handle,
1090 struct buffer_head *head,
1091 unsigned from,
1092 unsigned to,
1093 int *partial,
1094 int (*fn)( handle_t *handle,
1095 struct buffer_head *bh))
1096{
1097 struct buffer_head *bh;
1098 unsigned block_start, block_end;
1099 unsigned blocksize = head->b_size;
1100 int err, ret = 0;
1101 struct buffer_head *next;
1102
1103 for ( bh = head, block_start = 0;
1104 ret == 0 && (bh != head || !block_start);
e9ad5620 1105 block_start = block_end, bh = next)
1da177e4
LT
1106 {
1107 next = bh->b_this_page;
1108 block_end = block_start + blocksize;
1109 if (block_end <= from || block_start >= to) {
1110 if (partial && !buffer_uptodate(bh))
1111 *partial = 1;
1112 continue;
1113 }
1114 err = (*fn)(handle, bh);
1115 if (!ret)
1116 ret = err;
1117 }
1118 return ret;
1119}
1120
1121/*
1122 * To preserve ordering, it is essential that the hole instantiation and
1123 * the data write be encapsulated in a single transaction. We cannot
1124 * close off a transaction and start a new one between the ext3_get_block()
1125 * and the commit_write(). So doing the journal_start at the start of
1126 * prepare_write() is the right place.
1127 *
1128 * Also, this function can nest inside ext3_writepage() ->
1129 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1130 * has generated enough buffer credits to do the whole page. So we won't
1131 * block on the journal in that case, which is good, because the caller may
1132 * be PF_MEMALLOC.
1133 *
1134 * By accident, ext3 can be reentered when a transaction is open via
1135 * quota file writes. If we were to commit the transaction while thus
1136 * reentered, there can be a deadlock - we would be holding a quota
1137 * lock, and the commit would never complete if another thread had a
1138 * transaction open and was blocking on the quota lock - a ranking
1139 * violation.
1140 *
1141 * So what we do is to rely on the fact that journal_stop/journal_start
1142 * will _not_ run commit under these circumstances because handle->h_ref
1143 * is elevated. We'll still have enough credits for the tiny quotafile
ae6ddcc5 1144 * write.
1da177e4 1145 */
d6859bfc
AM
1146static int do_journal_get_write_access(handle_t *handle,
1147 struct buffer_head *bh)
1da177e4
LT
1148{
1149 if (!buffer_mapped(bh) || buffer_freed(bh))
1150 return 0;
1151 return ext3_journal_get_write_access(handle, bh);
1152}
1153
68eb3db0
JK
1154/*
1155 * Truncate blocks that were not used by write. We have to truncate the
1156 * pagecache as well so that corresponding buffers get properly unmapped.
1157 */
1158static void ext3_truncate_failed_write(struct inode *inode)
1159{
1160 truncate_inode_pages(inode->i_mapping, inode->i_size);
1161 ext3_truncate(inode);
1162}
1163
f4fc66a8
NP
1164static int ext3_write_begin(struct file *file, struct address_space *mapping,
1165 loff_t pos, unsigned len, unsigned flags,
1166 struct page **pagep, void **fsdata)
1da177e4 1167{
f4fc66a8 1168 struct inode *inode = mapping->host;
695f6ae0 1169 int ret;
1da177e4
LT
1170 handle_t *handle;
1171 int retries = 0;
f4fc66a8
NP
1172 struct page *page;
1173 pgoff_t index;
1174 unsigned from, to;
695f6ae0
JK
1175 /* Reserve one block more for addition to orphan list in case
1176 * we allocate blocks but write fails for some reason */
1177 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
f4fc66a8
NP
1178
1179 index = pos >> PAGE_CACHE_SHIFT;
1180 from = pos & (PAGE_CACHE_SIZE - 1);
1181 to = from + len;
1da177e4
LT
1182
1183retry:
54566b2c 1184 page = grab_cache_page_write_begin(mapping, index, flags);
f4fc66a8
NP
1185 if (!page)
1186 return -ENOMEM;
1187 *pagep = page;
1188
1da177e4 1189 handle = ext3_journal_start(inode, needed_blocks);
1aa9b4b9 1190 if (IS_ERR(handle)) {
f4fc66a8
NP
1191 unlock_page(page);
1192 page_cache_release(page);
1aa9b4b9
AM
1193 ret = PTR_ERR(handle);
1194 goto out;
1195 }
f4fc66a8
NP
1196 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1197 ext3_get_block);
1da177e4 1198 if (ret)
f4fc66a8 1199 goto write_begin_failed;
1da177e4
LT
1200
1201 if (ext3_should_journal_data(inode)) {
1202 ret = walk_page_buffers(handle, page_buffers(page),
1203 from, to, NULL, do_journal_get_write_access);
1204 }
f4fc66a8
NP
1205write_begin_failed:
1206 if (ret) {
5ec8b75e
AK
1207 /*
1208 * block_write_begin may have instantiated a few blocks
1209 * outside i_size. Trim these off again. Don't need
1210 * i_size_read because we hold i_mutex.
695f6ae0
JK
1211 *
1212 * Add inode to orphan list in case we crash before truncate
9eaaa2d5
JK
1213 * finishes. Do this only if ext3_can_truncate() agrees so
1214 * that orphan processing code is happy.
5ec8b75e 1215 */
9eaaa2d5 1216 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0
JK
1217 ext3_orphan_add(handle, inode);
1218 ext3_journal_stop(handle);
1219 unlock_page(page);
1220 page_cache_release(page);
5ec8b75e 1221 if (pos + len > inode->i_size)
68eb3db0 1222 ext3_truncate_failed_write(inode);
f4fc66a8 1223 }
1da177e4
LT
1224 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1225 goto retry;
1aa9b4b9 1226out:
1da177e4
LT
1227 return ret;
1228}
1229
f4fc66a8 1230
d6859bfc 1231int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1232{
1233 int err = journal_dirty_data(handle, bh);
1234 if (err)
e05b6b52 1235 ext3_journal_abort_handle(__func__, __func__,
f4fc66a8 1236 bh, handle, err);
1da177e4
LT
1237 return err;
1238}
1239
695f6ae0
JK
1240/* For ordered writepage and write_end functions */
1241static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1242{
1243 /*
1244 * Write could have mapped the buffer but it didn't copy the data in
1245 * yet. So avoid filing such buffer into a transaction.
1246 */
1247 if (buffer_mapped(bh) && buffer_uptodate(bh))
1248 return ext3_journal_dirty_data(handle, bh);
1249 return 0;
1250}
1251
f4fc66a8
NP
1252/* For write_end() in data=journal mode */
1253static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1254{
1255 if (!buffer_mapped(bh) || buffer_freed(bh))
1256 return 0;
1257 set_buffer_uptodate(bh);
1258 return ext3_journal_dirty_metadata(handle, bh);
1259}
1260
f4fc66a8 1261/*
695f6ae0
JK
1262 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1263 * for the whole page but later we failed to copy the data in. Update inode
1264 * size according to what we managed to copy. The rest is going to be
1265 * truncated in write_end function.
f4fc66a8 1266 */
695f6ae0 1267static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
f4fc66a8 1268{
695f6ae0
JK
1269 /* What matters to us is i_disksize. We don't write i_size anywhere */
1270 if (pos + copied > inode->i_size)
1271 i_size_write(inode, pos + copied);
1272 if (pos + copied > EXT3_I(inode)->i_disksize) {
1273 EXT3_I(inode)->i_disksize = pos + copied;
f4fc66a8
NP
1274 mark_inode_dirty(inode);
1275 }
f4fc66a8
NP
1276}
1277
1da177e4
LT
1278/*
1279 * We need to pick up the new inode size which generic_commit_write gave us
1280 * `file' can be NULL - eg, when called from page_symlink().
1281 *
1282 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1283 * buffers are managed internally.
1284 */
f4fc66a8
NP
1285static int ext3_ordered_write_end(struct file *file,
1286 struct address_space *mapping,
1287 loff_t pos, unsigned len, unsigned copied,
1288 struct page *page, void *fsdata)
1da177e4
LT
1289{
1290 handle_t *handle = ext3_journal_current_handle();
f4fc66a8
NP
1291 struct inode *inode = file->f_mapping->host;
1292 unsigned from, to;
1da177e4
LT
1293 int ret = 0, ret2;
1294
695f6ae0 1295 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
f4fc66a8 1296
695f6ae0
JK
1297 from = pos & (PAGE_CACHE_SIZE - 1);
1298 to = from + copied;
1da177e4 1299 ret = walk_page_buffers(handle, page_buffers(page),
695f6ae0 1300 from, to, NULL, journal_dirty_data_fn);
1da177e4 1301
695f6ae0
JK
1302 if (ret == 0)
1303 update_file_sizes(inode, pos, copied);
1304 /*
1305 * There may be allocated blocks outside of i_size because
1306 * we failed to copy some data. Prepare for truncate.
1307 */
9eaaa2d5 1308 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0 1309 ext3_orphan_add(handle, inode);
1da177e4
LT
1310 ret2 = ext3_journal_stop(handle);
1311 if (!ret)
1312 ret = ret2;
f4fc66a8
NP
1313 unlock_page(page);
1314 page_cache_release(page);
1315
695f6ae0 1316 if (pos + len > inode->i_size)
68eb3db0 1317 ext3_truncate_failed_write(inode);
f4fc66a8 1318 return ret ? ret : copied;
1da177e4
LT
1319}
1320
f4fc66a8
NP
1321static int ext3_writeback_write_end(struct file *file,
1322 struct address_space *mapping,
1323 loff_t pos, unsigned len, unsigned copied,
1324 struct page *page, void *fsdata)
1da177e4
LT
1325{
1326 handle_t *handle = ext3_journal_current_handle();
f4fc66a8 1327 struct inode *inode = file->f_mapping->host;
695f6ae0 1328 int ret;
1da177e4 1329
695f6ae0
JK
1330 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1331 update_file_sizes(inode, pos, copied);
1332 /*
1333 * There may be allocated blocks outside of i_size because
1334 * we failed to copy some data. Prepare for truncate.
1335 */
9eaaa2d5 1336 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0
JK
1337 ext3_orphan_add(handle, inode);
1338 ret = ext3_journal_stop(handle);
f4fc66a8
NP
1339 unlock_page(page);
1340 page_cache_release(page);
1341
695f6ae0 1342 if (pos + len > inode->i_size)
68eb3db0 1343 ext3_truncate_failed_write(inode);
f4fc66a8 1344 return ret ? ret : copied;
1da177e4
LT
1345}
1346
f4fc66a8
NP
1347static int ext3_journalled_write_end(struct file *file,
1348 struct address_space *mapping,
1349 loff_t pos, unsigned len, unsigned copied,
1350 struct page *page, void *fsdata)
1da177e4
LT
1351{
1352 handle_t *handle = ext3_journal_current_handle();
f4fc66a8 1353 struct inode *inode = mapping->host;
1da177e4
LT
1354 int ret = 0, ret2;
1355 int partial = 0;
f4fc66a8 1356 unsigned from, to;
1da177e4 1357
f4fc66a8
NP
1358 from = pos & (PAGE_CACHE_SIZE - 1);
1359 to = from + len;
1360
1361 if (copied < len) {
1362 if (!PageUptodate(page))
1363 copied = 0;
695f6ae0
JK
1364 page_zero_new_buffers(page, from + copied, to);
1365 to = from + copied;
f4fc66a8 1366 }
1da177e4
LT
1367
1368 ret = walk_page_buffers(handle, page_buffers(page), from,
f4fc66a8 1369 to, &partial, write_end_fn);
1da177e4
LT
1370 if (!partial)
1371 SetPageUptodate(page);
695f6ae0
JK
1372
1373 if (pos + copied > inode->i_size)
1374 i_size_write(inode, pos + copied);
1375 /*
1376 * There may be allocated blocks outside of i_size because
1377 * we failed to copy some data. Prepare for truncate.
1378 */
9eaaa2d5 1379 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0 1380 ext3_orphan_add(handle, inode);
9df93939 1381 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1da177e4
LT
1382 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1383 EXT3_I(inode)->i_disksize = inode->i_size;
1384 ret2 = ext3_mark_inode_dirty(handle, inode);
ae6ddcc5 1385 if (!ret)
1da177e4
LT
1386 ret = ret2;
1387 }
f4fc66a8 1388
1da177e4
LT
1389 ret2 = ext3_journal_stop(handle);
1390 if (!ret)
1391 ret = ret2;
f4fc66a8
NP
1392 unlock_page(page);
1393 page_cache_release(page);
1394
695f6ae0 1395 if (pos + len > inode->i_size)
68eb3db0 1396 ext3_truncate_failed_write(inode);
f4fc66a8 1397 return ret ? ret : copied;
1da177e4
LT
1398}
1399
ae6ddcc5 1400/*
1da177e4
LT
1401 * bmap() is special. It gets used by applications such as lilo and by
1402 * the swapper to find the on-disk block of a specific piece of data.
1403 *
1404 * Naturally, this is dangerous if the block concerned is still in the
1405 * journal. If somebody makes a swapfile on an ext3 data-journaling
1406 * filesystem and enables swap, then they may get a nasty shock when the
1407 * data getting swapped to that swapfile suddenly gets overwritten by
1408 * the original zero's written out previously to the journal and
ae6ddcc5 1409 * awaiting writeback in the kernel's buffer cache.
1da177e4
LT
1410 *
1411 * So, if we see any bmap calls here on a modified, data-journaled file,
ae6ddcc5 1412 * take extra steps to flush any blocks which might be in the cache.
1da177e4
LT
1413 */
1414static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1415{
1416 struct inode *inode = mapping->host;
1417 journal_t *journal;
1418 int err;
1419
9df93939 1420 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
ae6ddcc5 1421 /*
1da177e4
LT
1422 * This is a REALLY heavyweight approach, but the use of
1423 * bmap on dirty files is expected to be extremely rare:
1424 * only if we run lilo or swapon on a freshly made file
ae6ddcc5 1425 * do we expect this to happen.
1da177e4
LT
1426 *
1427 * (bmap requires CAP_SYS_RAWIO so this does not
1428 * represent an unprivileged user DOS attack --- we'd be
1429 * in trouble if mortal users could trigger this path at
ae6ddcc5 1430 * will.)
1da177e4
LT
1431 *
1432 * NB. EXT3_STATE_JDATA is not set on files other than
1433 * regular files. If somebody wants to bmap a directory
1434 * or symlink and gets confused because the buffer
1435 * hasn't yet been flushed to disk, they deserve
1436 * everything they get.
1437 */
1438
9df93939 1439 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1da177e4
LT
1440 journal = EXT3_JOURNAL(inode);
1441 journal_lock_updates(journal);
1442 err = journal_flush(journal);
1443 journal_unlock_updates(journal);
1444
1445 if (err)
1446 return 0;
1447 }
1448
1449 return generic_block_bmap(mapping,block,ext3_get_block);
1450}
1451
1452static int bget_one(handle_t *handle, struct buffer_head *bh)
1453{
1454 get_bh(bh);
1455 return 0;
1456}
1457
1458static int bput_one(handle_t *handle, struct buffer_head *bh)
1459{
1460 put_bh(bh);
1461 return 0;
1462}
1463
9e80d407
JK
1464static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1465{
1466 return !buffer_mapped(bh);
1467}
695f6ae0 1468
1da177e4
LT
1469/*
1470 * Note that we always start a transaction even if we're not journalling
1471 * data. This is to preserve ordering: any hole instantiation within
1472 * __block_write_full_page -> ext3_get_block() should be journalled
1473 * along with the data so we don't crash and then get metadata which
1474 * refers to old data.
1475 *
1476 * In all journalling modes block_write_full_page() will start the I/O.
1477 *
1478 * Problem:
1479 *
1480 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1481 * ext3_writepage()
1482 *
1483 * Similar for:
1484 *
1485 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1486 *
1487 * Same applies to ext3_get_block(). We will deadlock on various things like
97461518 1488 * lock_journal and i_truncate_mutex.
1da177e4
LT
1489 *
1490 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1491 * allocations fail.
1492 *
1493 * 16May01: If we're reentered then journal_current_handle() will be
1494 * non-zero. We simply *return*.
1495 *
1496 * 1 July 2001: @@@ FIXME:
1497 * In journalled data mode, a data buffer may be metadata against the
1498 * current transaction. But the same file is part of a shared mapping
1499 * and someone does a writepage() on it.
1500 *
1501 * We will move the buffer onto the async_data list, but *after* it has
1502 * been dirtied. So there's a small window where we have dirty data on
1503 * BJ_Metadata.
1504 *
1505 * Note that this only applies to the last partial page in the file. The
1506 * bit which block_write_full_page() uses prepare/commit for. (That's
1507 * broken code anyway: it's wrong for msync()).
1508 *
1509 * It's a rare case: affects the final partial page, for journalled data
1510 * where the file is subject to bith write() and writepage() in the same
1511 * transction. To fix it we'll need a custom block_write_full_page().
1512 * We'll probably need that anyway for journalling writepage() output.
1513 *
1514 * We don't honour synchronous mounts for writepage(). That would be
1515 * disastrous. Any write() or metadata operation will sync the fs for
1516 * us.
1517 *
1518 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1519 * we don't need to open a transaction here.
1520 */
1521static int ext3_ordered_writepage(struct page *page,
d6859bfc 1522 struct writeback_control *wbc)
1da177e4
LT
1523{
1524 struct inode *inode = page->mapping->host;
1525 struct buffer_head *page_bufs;
1526 handle_t *handle = NULL;
1527 int ret = 0;
1528 int err;
1529
1530 J_ASSERT(PageLocked(page));
49792c80 1531 WARN_ON_ONCE(IS_RDONLY(inode));
1da177e4
LT
1532
1533 /*
1534 * We give up here if we're reentered, because it might be for a
1535 * different filesystem.
1536 */
1537 if (ext3_journal_current_handle())
1538 goto out_fail;
1539
9e80d407
JK
1540 if (!page_has_buffers(page)) {
1541 create_empty_buffers(page, inode->i_sb->s_blocksize,
1542 (1 << BH_Dirty)|(1 << BH_Uptodate));
430db323
JK
1543 page_bufs = page_buffers(page);
1544 } else {
1545 page_bufs = page_buffers(page);
1546 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1547 NULL, buffer_unmapped)) {
1548 /* Provide NULL get_block() to catch bugs if buffers
1549 * weren't really mapped */
1550 return block_write_full_page(page, NULL, wbc);
1551 }
9e80d407 1552 }
1da177e4
LT
1553 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1554
1555 if (IS_ERR(handle)) {
1556 ret = PTR_ERR(handle);
1557 goto out_fail;
1558 }
1559
1da177e4
LT
1560 walk_page_buffers(handle, page_bufs, 0,
1561 PAGE_CACHE_SIZE, NULL, bget_one);
1562
1563 ret = block_write_full_page(page, ext3_get_block, wbc);
1564
1565 /*
1566 * The page can become unlocked at any point now, and
1567 * truncate can then come in and change things. So we
1568 * can't touch *page from now on. But *page_bufs is
1569 * safe due to elevated refcount.
1570 */
1571
1572 /*
ae6ddcc5 1573 * And attach them to the current transaction. But only if
1da177e4
LT
1574 * block_write_full_page() succeeded. Otherwise they are unmapped,
1575 * and generally junk.
1576 */
1577 if (ret == 0) {
1578 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1579 NULL, journal_dirty_data_fn);
1580 if (!ret)
1581 ret = err;
1582 }
1583 walk_page_buffers(handle, page_bufs, 0,
1584 PAGE_CACHE_SIZE, NULL, bput_one);
1585 err = ext3_journal_stop(handle);
1586 if (!ret)
1587 ret = err;
1588 return ret;
1589
1590out_fail:
1591 redirty_page_for_writepage(wbc, page);
1592 unlock_page(page);
1593 return ret;
1594}
1595
1da177e4
LT
1596static int ext3_writeback_writepage(struct page *page,
1597 struct writeback_control *wbc)
1598{
1599 struct inode *inode = page->mapping->host;
1600 handle_t *handle = NULL;
1601 int ret = 0;
1602 int err;
1603
49792c80
DM
1604 J_ASSERT(PageLocked(page));
1605 WARN_ON_ONCE(IS_RDONLY(inode));
1606
1da177e4
LT
1607 if (ext3_journal_current_handle())
1608 goto out_fail;
1609
430db323
JK
1610 if (page_has_buffers(page)) {
1611 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1612 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1613 /* Provide NULL get_block() to catch bugs if buffers
1614 * weren't really mapped */
1615 return block_write_full_page(page, NULL, wbc);
1616 }
1617 }
1618
1da177e4
LT
1619 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1620 if (IS_ERR(handle)) {
1621 ret = PTR_ERR(handle);
1622 goto out_fail;
1623 }
1624
0e31f51d 1625 if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1da177e4
LT
1626 ret = nobh_writepage(page, ext3_get_block, wbc);
1627 else
1628 ret = block_write_full_page(page, ext3_get_block, wbc);
1629
1630 err = ext3_journal_stop(handle);
1631 if (!ret)
1632 ret = err;
1633 return ret;
1634
1635out_fail:
1636 redirty_page_for_writepage(wbc, page);
1637 unlock_page(page);
1638 return ret;
1639}
1640
1641static int ext3_journalled_writepage(struct page *page,
1642 struct writeback_control *wbc)
1643{
1644 struct inode *inode = page->mapping->host;
1645 handle_t *handle = NULL;
1646 int ret = 0;
1647 int err;
1648
49792c80
DM
1649 J_ASSERT(PageLocked(page));
1650 WARN_ON_ONCE(IS_RDONLY(inode));
1651
1da177e4
LT
1652 if (ext3_journal_current_handle())
1653 goto no_write;
1654
1655 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1656 if (IS_ERR(handle)) {
1657 ret = PTR_ERR(handle);
1658 goto no_write;
1659 }
1660
1661 if (!page_has_buffers(page) || PageChecked(page)) {
1662 /*
1663 * It's mmapped pagecache. Add buffers and journal it. There
1664 * doesn't seem much point in redirtying the page here.
1665 */
1666 ClearPageChecked(page);
1667 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1668 ext3_get_block);
ab4eb43c
DL
1669 if (ret != 0) {
1670 ext3_journal_stop(handle);
1da177e4 1671 goto out_unlock;
ab4eb43c 1672 }
1da177e4
LT
1673 ret = walk_page_buffers(handle, page_buffers(page), 0,
1674 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1675
1676 err = walk_page_buffers(handle, page_buffers(page), 0,
f4fc66a8 1677 PAGE_CACHE_SIZE, NULL, write_end_fn);
1da177e4
LT
1678 if (ret == 0)
1679 ret = err;
9df93939 1680 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1da177e4
LT
1681 unlock_page(page);
1682 } else {
1683 /*
1684 * It may be a page full of checkpoint-mode buffers. We don't
1685 * really know unless we go poke around in the buffer_heads.
1686 * But block_write_full_page will do the right thing.
1687 */
1688 ret = block_write_full_page(page, ext3_get_block, wbc);
1689 }
1690 err = ext3_journal_stop(handle);
1691 if (!ret)
1692 ret = err;
1693out:
1694 return ret;
1695
1696no_write:
1697 redirty_page_for_writepage(wbc, page);
1698out_unlock:
1699 unlock_page(page);
1700 goto out;
1701}
1702
1703static int ext3_readpage(struct file *file, struct page *page)
1704{
1705 return mpage_readpage(page, ext3_get_block);
1706}
1707
1708static int
1709ext3_readpages(struct file *file, struct address_space *mapping,
1710 struct list_head *pages, unsigned nr_pages)
1711{
1712 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1713}
1714
2ff28e22 1715static void ext3_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1716{
1717 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1718
1719 /*
1720 * If it's a full truncate we just forget about the pending dirtying
1721 */
1722 if (offset == 0)
1723 ClearPageChecked(page);
1724
2ff28e22 1725 journal_invalidatepage(journal, page, offset);
1da177e4
LT
1726}
1727
27496a8c 1728static int ext3_releasepage(struct page *page, gfp_t wait)
1da177e4
LT
1729{
1730 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1731
1732 WARN_ON(PageChecked(page));
1733 if (!page_has_buffers(page))
1734 return 0;
1735 return journal_try_to_free_buffers(journal, page, wait);
1736}
1737
1738/*
1739 * If the O_DIRECT write will extend the file then add this inode to the
1740 * orphan list. So recovery will truncate it back to the original size
1741 * if the machine crashes during the write.
1742 *
1743 * If the O_DIRECT write is intantiating holes inside i_size and the machine
bd1939de
JK
1744 * crashes then stale disk data _may_ be exposed inside the file. But current
1745 * VFS code falls back into buffered path in that case so we are safe.
1da177e4
LT
1746 */
1747static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1748 const struct iovec *iov, loff_t offset,
1749 unsigned long nr_segs)
1750{
1751 struct file *file = iocb->ki_filp;
1752 struct inode *inode = file->f_mapping->host;
1753 struct ext3_inode_info *ei = EXT3_I(inode);
bd1939de 1754 handle_t *handle;
1da177e4
LT
1755 ssize_t ret;
1756 int orphan = 0;
1757 size_t count = iov_length(iov, nr_segs);
ea0174a7 1758 int retries = 0;
1da177e4
LT
1759
1760 if (rw == WRITE) {
1761 loff_t final_size = offset + count;
1762
1da177e4 1763 if (final_size > inode->i_size) {
bd1939de
JK
1764 /* Credits for sb + inode write */
1765 handle = ext3_journal_start(inode, 2);
1766 if (IS_ERR(handle)) {
1767 ret = PTR_ERR(handle);
1768 goto out;
1769 }
1da177e4 1770 ret = ext3_orphan_add(handle, inode);
bd1939de
JK
1771 if (ret) {
1772 ext3_journal_stop(handle);
1773 goto out;
1774 }
1da177e4
LT
1775 orphan = 1;
1776 ei->i_disksize = inode->i_size;
bd1939de 1777 ext3_journal_stop(handle);
1da177e4
LT
1778 }
1779 }
1780
ea0174a7 1781retry:
ae6ddcc5 1782 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1da177e4 1783 offset, nr_segs,
f91a2ad2 1784 ext3_get_block, NULL);
ea0174a7
ES
1785 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1786 goto retry;
1da177e4 1787
bd1939de 1788 if (orphan) {
1da177e4
LT
1789 int err;
1790
bd1939de
JK
1791 /* Credits for sb + inode write */
1792 handle = ext3_journal_start(inode, 2);
1793 if (IS_ERR(handle)) {
1794 /* This is really bad luck. We've written the data
7eb4969e
JK
1795 * but cannot extend i_size. Truncate allocated blocks
1796 * and pretend the write failed... */
1797 ext3_truncate(inode);
bd1939de
JK
1798 ret = PTR_ERR(handle);
1799 goto out;
1800 }
1801 if (inode->i_nlink)
1da177e4 1802 ext3_orphan_del(handle, inode);
bd1939de 1803 if (ret > 0) {
1da177e4
LT
1804 loff_t end = offset + ret;
1805 if (end > inode->i_size) {
1806 ei->i_disksize = end;
1807 i_size_write(inode, end);
1808 /*
1809 * We're going to return a positive `ret'
1810 * here due to non-zero-length I/O, so there's
1811 * no way of reporting error returns from
1812 * ext3_mark_inode_dirty() to userspace. So
1813 * ignore it.
1814 */
1815 ext3_mark_inode_dirty(handle, inode);
1816 }
1817 }
1818 err = ext3_journal_stop(handle);
1819 if (ret == 0)
1820 ret = err;
1821 }
1822out:
1823 return ret;
1824}
1825
1826/*
1827 * Pages can be marked dirty completely asynchronously from ext3's journalling
1828 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1829 * much here because ->set_page_dirty is called under VFS locks. The page is
1830 * not necessarily locked.
1831 *
1832 * We cannot just dirty the page and leave attached buffers clean, because the
1833 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1834 * or jbddirty because all the journalling code will explode.
1835 *
1836 * So what we do is to mark the page "pending dirty" and next time writepage
1837 * is called, propagate that into the buffers appropriately.
1838 */
1839static int ext3_journalled_set_page_dirty(struct page *page)
1840{
1841 SetPageChecked(page);
1842 return __set_page_dirty_nobuffers(page);
1843}
1844
f5e54d6e 1845static const struct address_space_operations ext3_ordered_aops = {
8ab22b9a
HH
1846 .readpage = ext3_readpage,
1847 .readpages = ext3_readpages,
1848 .writepage = ext3_ordered_writepage,
1849 .sync_page = block_sync_page,
1850 .write_begin = ext3_write_begin,
1851 .write_end = ext3_ordered_write_end,
1852 .bmap = ext3_bmap,
1853 .invalidatepage = ext3_invalidatepage,
1854 .releasepage = ext3_releasepage,
1855 .direct_IO = ext3_direct_IO,
1856 .migratepage = buffer_migrate_page,
1857 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1858 .error_remove_page = generic_error_remove_page,
1da177e4
LT
1859};
1860
f5e54d6e 1861static const struct address_space_operations ext3_writeback_aops = {
8ab22b9a
HH
1862 .readpage = ext3_readpage,
1863 .readpages = ext3_readpages,
1864 .writepage = ext3_writeback_writepage,
1865 .sync_page = block_sync_page,
1866 .write_begin = ext3_write_begin,
1867 .write_end = ext3_writeback_write_end,
1868 .bmap = ext3_bmap,
1869 .invalidatepage = ext3_invalidatepage,
1870 .releasepage = ext3_releasepage,
1871 .direct_IO = ext3_direct_IO,
1872 .migratepage = buffer_migrate_page,
1873 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1874 .error_remove_page = generic_error_remove_page,
1da177e4
LT
1875};
1876
f5e54d6e 1877static const struct address_space_operations ext3_journalled_aops = {
8ab22b9a
HH
1878 .readpage = ext3_readpage,
1879 .readpages = ext3_readpages,
1880 .writepage = ext3_journalled_writepage,
1881 .sync_page = block_sync_page,
1882 .write_begin = ext3_write_begin,
1883 .write_end = ext3_journalled_write_end,
1884 .set_page_dirty = ext3_journalled_set_page_dirty,
1885 .bmap = ext3_bmap,
1886 .invalidatepage = ext3_invalidatepage,
1887 .releasepage = ext3_releasepage,
1888 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1889 .error_remove_page = generic_error_remove_page,
1da177e4
LT
1890};
1891
1892void ext3_set_aops(struct inode *inode)
1893{
1894 if (ext3_should_order_data(inode))
1895 inode->i_mapping->a_ops = &ext3_ordered_aops;
1896 else if (ext3_should_writeback_data(inode))
1897 inode->i_mapping->a_ops = &ext3_writeback_aops;
1898 else
1899 inode->i_mapping->a_ops = &ext3_journalled_aops;
1900}
1901
1902/*
1903 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1904 * up to the end of the block which corresponds to `from'.
1905 * This required during truncate. We need to physically zero the tail end
1906 * of that block so it doesn't yield old data if the file is later grown.
1907 */
1908static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1909 struct address_space *mapping, loff_t from)
1910{
43d23f90 1911 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1da177e4
LT
1912 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1913 unsigned blocksize, iblock, length, pos;
1914 struct inode *inode = mapping->host;
1915 struct buffer_head *bh;
1916 int err = 0;
1da177e4
LT
1917
1918 blocksize = inode->i_sb->s_blocksize;
1919 length = blocksize - (offset & (blocksize - 1));
1920 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1921
1922 /*
1923 * For "nobh" option, we can only work if we don't need to
1924 * read-in the page - otherwise we create buffers to do the IO.
1925 */
cd6ef84e
BP
1926 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1927 ext3_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 1928 zero_user(page, offset, length);
cd6ef84e
BP
1929 set_page_dirty(page);
1930 goto unlock;
1da177e4
LT
1931 }
1932
1933 if (!page_has_buffers(page))
1934 create_empty_buffers(page, blocksize, 0);
1935
1936 /* Find the buffer that contains "offset" */
1937 bh = page_buffers(page);
1938 pos = blocksize;
1939 while (offset >= pos) {
1940 bh = bh->b_this_page;
1941 iblock++;
1942 pos += blocksize;
1943 }
1944
1945 err = 0;
1946 if (buffer_freed(bh)) {
1947 BUFFER_TRACE(bh, "freed: skip");
1948 goto unlock;
1949 }
1950
1951 if (!buffer_mapped(bh)) {
1952 BUFFER_TRACE(bh, "unmapped");
1953 ext3_get_block(inode, iblock, bh, 0);
1954 /* unmapped? It's a hole - nothing to do */
1955 if (!buffer_mapped(bh)) {
1956 BUFFER_TRACE(bh, "still unmapped");
1957 goto unlock;
1958 }
1959 }
1960
1961 /* Ok, it's mapped. Make sure it's up-to-date */
1962 if (PageUptodate(page))
1963 set_buffer_uptodate(bh);
1964
1965 if (!buffer_uptodate(bh)) {
1966 err = -EIO;
1967 ll_rw_block(READ, 1, &bh);
1968 wait_on_buffer(bh);
1969 /* Uhhuh. Read error. Complain and punt. */
1970 if (!buffer_uptodate(bh))
1971 goto unlock;
1972 }
1973
1974 if (ext3_should_journal_data(inode)) {
1975 BUFFER_TRACE(bh, "get write access");
1976 err = ext3_journal_get_write_access(handle, bh);
1977 if (err)
1978 goto unlock;
1979 }
1980
eebd2aa3 1981 zero_user(page, offset, length);
1da177e4
LT
1982 BUFFER_TRACE(bh, "zeroed end of block");
1983
1984 err = 0;
1985 if (ext3_should_journal_data(inode)) {
1986 err = ext3_journal_dirty_metadata(handle, bh);
1987 } else {
1988 if (ext3_should_order_data(inode))
1989 err = ext3_journal_dirty_data(handle, bh);
1990 mark_buffer_dirty(bh);
1991 }
1992
1993unlock:
1994 unlock_page(page);
1995 page_cache_release(page);
1996 return err;
1997}
1998
1999/*
2000 * Probably it should be a library function... search for first non-zero word
2001 * or memcmp with zero_page, whatever is better for particular architecture.
2002 * Linus?
2003 */
2004static inline int all_zeroes(__le32 *p, __le32 *q)
2005{
2006 while (p < q)
2007 if (*p++)
2008 return 0;
2009 return 1;
2010}
2011
2012/**
2013 * ext3_find_shared - find the indirect blocks for partial truncation.
2014 * @inode: inode in question
2015 * @depth: depth of the affected branch
2016 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2017 * @chain: place to store the pointers to partial indirect blocks
2018 * @top: place to the (detached) top of branch
2019 *
2020 * This is a helper function used by ext3_truncate().
2021 *
2022 * When we do truncate() we may have to clean the ends of several
2023 * indirect blocks but leave the blocks themselves alive. Block is
2024 * partially truncated if some data below the new i_size is refered
2025 * from it (and it is on the path to the first completely truncated
2026 * data block, indeed). We have to free the top of that path along
2027 * with everything to the right of the path. Since no allocation
2028 * past the truncation point is possible until ext3_truncate()
2029 * finishes, we may safely do the latter, but top of branch may
2030 * require special attention - pageout below the truncation point
2031 * might try to populate it.
2032 *
2033 * We atomically detach the top of branch from the tree, store the
2034 * block number of its root in *@top, pointers to buffer_heads of
2035 * partially truncated blocks - in @chain[].bh and pointers to
2036 * their last elements that should not be removed - in
2037 * @chain[].p. Return value is the pointer to last filled element
2038 * of @chain.
2039 *
2040 * The work left to caller to do the actual freeing of subtrees:
2041 * a) free the subtree starting from *@top
2042 * b) free the subtrees whose roots are stored in
2043 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2044 * c) free the subtrees growing from the inode past the @chain[0].
2045 * (no partially truncated stuff there). */
2046
d6859bfc
AM
2047static Indirect *ext3_find_shared(struct inode *inode, int depth,
2048 int offsets[4], Indirect chain[4], __le32 *top)
1da177e4
LT
2049{
2050 Indirect *partial, *p;
2051 int k, err;
2052
2053 *top = 0;
bf48aabb 2054 /* Make k index the deepest non-null offset + 1 */
1da177e4
LT
2055 for (k = depth; k > 1 && !offsets[k-1]; k--)
2056 ;
2057 partial = ext3_get_branch(inode, k, offsets, chain, &err);
2058 /* Writer: pointers */
2059 if (!partial)
2060 partial = chain + k-1;
2061 /*
2062 * If the branch acquired continuation since we've looked at it -
2063 * fine, it should all survive and (new) top doesn't belong to us.
2064 */
2065 if (!partial->key && *partial->p)
2066 /* Writer: end */
2067 goto no_top;
2068 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2069 ;
2070 /*
2071 * OK, we've found the last block that must survive. The rest of our
2072 * branch should be detached before unlocking. However, if that rest
2073 * of branch is all ours and does not grow immediately from the inode
2074 * it's easier to cheat and just decrement partial->p.
2075 */
2076 if (p == chain + k - 1 && p > chain) {
2077 p->p--;
2078 } else {
2079 *top = *p->p;
2080 /* Nope, don't do this in ext3. Must leave the tree intact */
2081#if 0
2082 *p->p = 0;
2083#endif
2084 }
2085 /* Writer: end */
2086
d6859bfc 2087 while(partial > p) {
1da177e4
LT
2088 brelse(partial->bh);
2089 partial--;
2090 }
2091no_top:
2092 return partial;
2093}
2094
2095/*
2096 * Zero a number of block pointers in either an inode or an indirect block.
2097 * If we restart the transaction we must again get write access to the
2098 * indirect block for further modification.
2099 *
2100 * We release `count' blocks on disk, but (last - first) may be greater
2101 * than `count' because there can be holes in there.
2102 */
d6859bfc 2103static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
43d23f90 2104 struct buffer_head *bh, ext3_fsblk_t block_to_free,
d6859bfc 2105 unsigned long count, __le32 *first, __le32 *last)
1da177e4
LT
2106{
2107 __le32 *p;
2108 if (try_to_extend_transaction(handle, inode)) {
2109 if (bh) {
2110 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2111 ext3_journal_dirty_metadata(handle, bh);
2112 }
2113 ext3_mark_inode_dirty(handle, inode);
00171d3c 2114 truncate_restart_transaction(handle, inode);
1da177e4
LT
2115 if (bh) {
2116 BUFFER_TRACE(bh, "retaking write access");
2117 ext3_journal_get_write_access(handle, bh);
2118 }
2119 }
2120
2121 /*
2122 * Any buffers which are on the journal will be in memory. We find
2123 * them on the hash table so journal_revoke() will run journal_forget()
2124 * on them. We've already detached each block from the file, so
2125 * bforget() in journal_forget() should be safe.
2126 *
2127 * AKPM: turn on bforget in journal_forget()!!!
2128 */
2129 for (p = first; p < last; p++) {
2130 u32 nr = le32_to_cpu(*p);
2131 if (nr) {
2132 struct buffer_head *bh;
2133
2134 *p = 0;
2135 bh = sb_find_get_block(inode->i_sb, nr);
2136 ext3_forget(handle, 0, inode, bh, nr);
2137 }
2138 }
2139
2140 ext3_free_blocks(handle, inode, block_to_free, count);
2141}
2142
2143/**
2144 * ext3_free_data - free a list of data blocks
2145 * @handle: handle for this transaction
2146 * @inode: inode we are dealing with
2147 * @this_bh: indirect buffer_head which contains *@first and *@last
2148 * @first: array of block numbers
2149 * @last: points immediately past the end of array
2150 *
2151 * We are freeing all blocks refered from that array (numbers are stored as
2152 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2153 *
2154 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2155 * blocks are contiguous then releasing them at one time will only affect one
2156 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2157 * actually use a lot of journal space.
2158 *
2159 * @this_bh will be %NULL if @first and @last point into the inode's direct
2160 * block pointers.
2161 */
2162static void ext3_free_data(handle_t *handle, struct inode *inode,
2163 struct buffer_head *this_bh,
2164 __le32 *first, __le32 *last)
2165{
43d23f90 2166 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
ae6ddcc5 2167 unsigned long count = 0; /* Number of blocks in the run */
1da177e4
LT
2168 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2169 corresponding to
2170 block_to_free */
43d23f90 2171 ext3_fsblk_t nr; /* Current block # */
1da177e4
LT
2172 __le32 *p; /* Pointer into inode/ind
2173 for current block */
2174 int err;
2175
2176 if (this_bh) { /* For indirect block */
2177 BUFFER_TRACE(this_bh, "get_write_access");
2178 err = ext3_journal_get_write_access(handle, this_bh);
2179 /* Important: if we can't update the indirect pointers
2180 * to the blocks, we can't free them. */
2181 if (err)
2182 return;
2183 }
2184
2185 for (p = first; p < last; p++) {
2186 nr = le32_to_cpu(*p);
2187 if (nr) {
2188 /* accumulate blocks to free if they're contiguous */
2189 if (count == 0) {
2190 block_to_free = nr;
2191 block_to_free_p = p;
2192 count = 1;
2193 } else if (nr == block_to_free + count) {
2194 count++;
2195 } else {
ae6ddcc5 2196 ext3_clear_blocks(handle, inode, this_bh,
1da177e4
LT
2197 block_to_free,
2198 count, block_to_free_p, p);
2199 block_to_free = nr;
2200 block_to_free_p = p;
2201 count = 1;
2202 }
2203 }
2204 }
2205
2206 if (count > 0)
2207 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2208 count, block_to_free_p, p);
2209
2210 if (this_bh) {
2211 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
3ccc3167
DG
2212
2213 /*
2214 * The buffer head should have an attached journal head at this
2215 * point. However, if the data is corrupted and an indirect
2216 * block pointed to itself, it would have been detached when
2217 * the block was cleared. Check for this instead of OOPSing.
2218 */
2219 if (bh2jh(this_bh))
2220 ext3_journal_dirty_metadata(handle, this_bh);
2221 else
2222 ext3_error(inode->i_sb, "ext3_free_data",
2223 "circular indirect block detected, "
2224 "inode=%lu, block=%llu",
2225 inode->i_ino,
2226 (unsigned long long)this_bh->b_blocknr);
1da177e4
LT
2227 }
2228}
2229
2230/**
2231 * ext3_free_branches - free an array of branches
2232 * @handle: JBD handle for this transaction
2233 * @inode: inode we are dealing with
2234 * @parent_bh: the buffer_head which contains *@first and *@last
2235 * @first: array of block numbers
2236 * @last: pointer immediately past the end of array
2237 * @depth: depth of the branches to free
2238 *
2239 * We are freeing all blocks refered from these branches (numbers are
2240 * stored as little-endian 32-bit) and updating @inode->i_blocks
2241 * appropriately.
2242 */
2243static void ext3_free_branches(handle_t *handle, struct inode *inode,
2244 struct buffer_head *parent_bh,
2245 __le32 *first, __le32 *last, int depth)
2246{
43d23f90 2247 ext3_fsblk_t nr;
1da177e4
LT
2248 __le32 *p;
2249
2250 if (is_handle_aborted(handle))
2251 return;
2252
2253 if (depth--) {
2254 struct buffer_head *bh;
2255 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2256 p = last;
2257 while (--p >= first) {
2258 nr = le32_to_cpu(*p);
2259 if (!nr)
2260 continue; /* A hole */
2261
2262 /* Go read the buffer for the next level down */
2263 bh = sb_bread(inode->i_sb, nr);
2264
2265 /*
2266 * A read failure? Report error and clear slot
2267 * (should be rare).
2268 */
2269 if (!bh) {
2270 ext3_error(inode->i_sb, "ext3_free_branches",
eee194e7 2271 "Read failure, inode=%lu, block="E3FSBLK,
1da177e4
LT
2272 inode->i_ino, nr);
2273 continue;
2274 }
2275
2276 /* This zaps the entire block. Bottom up. */
2277 BUFFER_TRACE(bh, "free child branches");
2278 ext3_free_branches(handle, inode, bh,
2279 (__le32*)bh->b_data,
2280 (__le32*)bh->b_data + addr_per_block,
2281 depth);
2282
2283 /*
2284 * We've probably journalled the indirect block several
2285 * times during the truncate. But it's no longer
2286 * needed and we now drop it from the transaction via
2287 * journal_revoke().
2288 *
2289 * That's easy if it's exclusively part of this
2290 * transaction. But if it's part of the committing
2291 * transaction then journal_forget() will simply
2292 * brelse() it. That means that if the underlying
2293 * block is reallocated in ext3_get_block(),
2294 * unmap_underlying_metadata() will find this block
2295 * and will try to get rid of it. damn, damn.
2296 *
2297 * If this block has already been committed to the
2298 * journal, a revoke record will be written. And
2299 * revoke records must be emitted *before* clearing
2300 * this block's bit in the bitmaps.
2301 */
2302 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2303
2304 /*
2305 * Everything below this this pointer has been
2306 * released. Now let this top-of-subtree go.
2307 *
2308 * We want the freeing of this indirect block to be
2309 * atomic in the journal with the updating of the
2310 * bitmap block which owns it. So make some room in
2311 * the journal.
2312 *
2313 * We zero the parent pointer *after* freeing its
2314 * pointee in the bitmaps, so if extend_transaction()
2315 * for some reason fails to put the bitmap changes and
2316 * the release into the same transaction, recovery
2317 * will merely complain about releasing a free block,
2318 * rather than leaking blocks.
2319 */
2320 if (is_handle_aborted(handle))
2321 return;
2322 if (try_to_extend_transaction(handle, inode)) {
2323 ext3_mark_inode_dirty(handle, inode);
00171d3c 2324 truncate_restart_transaction(handle, inode);
1da177e4
LT
2325 }
2326
2327 ext3_free_blocks(handle, inode, nr, 1);
2328
2329 if (parent_bh) {
2330 /*
2331 * The block which we have just freed is
2332 * pointed to by an indirect block: journal it
2333 */
2334 BUFFER_TRACE(parent_bh, "get_write_access");
2335 if (!ext3_journal_get_write_access(handle,
2336 parent_bh)){
2337 *p = 0;
2338 BUFFER_TRACE(parent_bh,
2339 "call ext3_journal_dirty_metadata");
ae6ddcc5 2340 ext3_journal_dirty_metadata(handle,
1da177e4
LT
2341 parent_bh);
2342 }
2343 }
2344 }
2345 } else {
2346 /* We have reached the bottom of the tree. */
2347 BUFFER_TRACE(parent_bh, "free data blocks");
2348 ext3_free_data(handle, inode, parent_bh, first, last);
2349 }
2350}
2351
ae76dd9a
DG
2352int ext3_can_truncate(struct inode *inode)
2353{
2354 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2355 return 0;
2356 if (S_ISREG(inode->i_mode))
2357 return 1;
2358 if (S_ISDIR(inode->i_mode))
2359 return 1;
2360 if (S_ISLNK(inode->i_mode))
2361 return !ext3_inode_is_fast_symlink(inode);
2362 return 0;
2363}
2364
1da177e4
LT
2365/*
2366 * ext3_truncate()
2367 *
2368 * We block out ext3_get_block() block instantiations across the entire
2369 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2370 * simultaneously on behalf of the same inode.
2371 *
2372 * As we work through the truncate and commmit bits of it to the journal there
2373 * is one core, guiding principle: the file's tree must always be consistent on
2374 * disk. We must be able to restart the truncate after a crash.
2375 *
2376 * The file's tree may be transiently inconsistent in memory (although it
2377 * probably isn't), but whenever we close off and commit a journal transaction,
2378 * the contents of (the filesystem + the journal) must be consistent and
2379 * restartable. It's pretty simple, really: bottom up, right to left (although
2380 * left-to-right works OK too).
2381 *
2382 * Note that at recovery time, journal replay occurs *before* the restart of
2383 * truncate against the orphan inode list.
2384 *
2385 * The committed inode has the new, desired i_size (which is the same as
2386 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2387 * that this inode's truncate did not complete and it will again call
2388 * ext3_truncate() to have another go. So there will be instantiated blocks
2389 * to the right of the truncation point in a crashed ext3 filesystem. But
2390 * that's fine - as long as they are linked from the inode, the post-crash
2391 * ext3_truncate() run will find them and release them.
2392 */
d6859bfc 2393void ext3_truncate(struct inode *inode)
1da177e4
LT
2394{
2395 handle_t *handle;
2396 struct ext3_inode_info *ei = EXT3_I(inode);
2397 __le32 *i_data = ei->i_data;
2398 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2399 struct address_space *mapping = inode->i_mapping;
2400 int offsets[4];
2401 Indirect chain[4];
2402 Indirect *partial;
2403 __le32 nr = 0;
2404 int n;
2405 long last_block;
2406 unsigned blocksize = inode->i_sb->s_blocksize;
2407 struct page *page;
2408
ae76dd9a 2409 if (!ext3_can_truncate(inode))
ef43618a 2410 goto out_notrans;
1da177e4 2411
f7ab34ea 2412 if (inode->i_size == 0 && ext3_should_writeback_data(inode))
9df93939 2413 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
f7ab34ea 2414
1da177e4
LT
2415 /*
2416 * We have to lock the EOF page here, because lock_page() nests
2417 * outside journal_start().
2418 */
2419 if ((inode->i_size & (blocksize - 1)) == 0) {
2420 /* Block boundary? Nothing to do */
2421 page = NULL;
2422 } else {
2423 page = grab_cache_page(mapping,
2424 inode->i_size >> PAGE_CACHE_SHIFT);
2425 if (!page)
ef43618a 2426 goto out_notrans;
1da177e4
LT
2427 }
2428
2429 handle = start_transaction(inode);
2430 if (IS_ERR(handle)) {
2431 if (page) {
2432 clear_highpage(page);
2433 flush_dcache_page(page);
2434 unlock_page(page);
2435 page_cache_release(page);
2436 }
ef43618a 2437 goto out_notrans;
1da177e4
LT
2438 }
2439
2440 last_block = (inode->i_size + blocksize-1)
2441 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2442
2443 if (page)
2444 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2445
2446 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2447 if (n == 0)
2448 goto out_stop; /* error */
2449
2450 /*
2451 * OK. This truncate is going to happen. We add the inode to the
2452 * orphan list, so that if this truncate spans multiple transactions,
2453 * and we crash, we will resume the truncate when the filesystem
2454 * recovers. It also marks the inode dirty, to catch the new size.
2455 *
2456 * Implication: the file must always be in a sane, consistent
2457 * truncatable state while each transaction commits.
2458 */
2459 if (ext3_orphan_add(handle, inode))
2460 goto out_stop;
2461
2462 /*
2463 * The orphan list entry will now protect us from any crash which
2464 * occurs before the truncate completes, so it is now safe to propagate
2465 * the new, shorter inode size (held for now in i_size) into the
2466 * on-disk inode. We do this via i_disksize, which is the value which
2467 * ext3 *really* writes onto the disk inode.
2468 */
2469 ei->i_disksize = inode->i_size;
2470
2471 /*
2472 * From here we block out all ext3_get_block() callers who want to
2473 * modify the block allocation tree.
2474 */
97461518 2475 mutex_lock(&ei->truncate_mutex);
1da177e4
LT
2476
2477 if (n == 1) { /* direct blocks */
2478 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2479 i_data + EXT3_NDIR_BLOCKS);
2480 goto do_indirects;
2481 }
2482
2483 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2484 /* Kill the top of shared branch (not detached) */
2485 if (nr) {
2486 if (partial == chain) {
2487 /* Shared branch grows from the inode */
2488 ext3_free_branches(handle, inode, NULL,
2489 &nr, &nr+1, (chain+n-1) - partial);
2490 *partial->p = 0;
2491 /*
2492 * We mark the inode dirty prior to restart,
2493 * and prior to stop. No need for it here.
2494 */
2495 } else {
2496 /* Shared branch grows from an indirect block */
2497 BUFFER_TRACE(partial->bh, "get_write_access");
2498 ext3_free_branches(handle, inode, partial->bh,
2499 partial->p,
2500 partial->p+1, (chain+n-1) - partial);
2501 }
2502 }
2503 /* Clear the ends of indirect blocks on the shared branch */
2504 while (partial > chain) {
2505 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2506 (__le32*)partial->bh->b_data+addr_per_block,
2507 (chain+n-1) - partial);
2508 BUFFER_TRACE(partial->bh, "call brelse");
2509 brelse (partial->bh);
2510 partial--;
2511 }
2512do_indirects:
2513 /* Kill the remaining (whole) subtrees */
2514 switch (offsets[0]) {
d6859bfc
AM
2515 default:
2516 nr = i_data[EXT3_IND_BLOCK];
2517 if (nr) {
2518 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2519 i_data[EXT3_IND_BLOCK] = 0;
2520 }
2521 case EXT3_IND_BLOCK:
2522 nr = i_data[EXT3_DIND_BLOCK];
2523 if (nr) {
2524 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2525 i_data[EXT3_DIND_BLOCK] = 0;
2526 }
2527 case EXT3_DIND_BLOCK:
2528 nr = i_data[EXT3_TIND_BLOCK];
2529 if (nr) {
2530 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2531 i_data[EXT3_TIND_BLOCK] = 0;
2532 }
2533 case EXT3_TIND_BLOCK:
2534 ;
1da177e4
LT
2535 }
2536
2537 ext3_discard_reservation(inode);
2538
97461518 2539 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
2540 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2541 ext3_mark_inode_dirty(handle, inode);
2542
d6859bfc
AM
2543 /*
2544 * In a multi-transaction truncate, we only make the final transaction
2545 * synchronous
2546 */
1da177e4
LT
2547 if (IS_SYNC(inode))
2548 handle->h_sync = 1;
2549out_stop:
2550 /*
2551 * If this was a simple ftruncate(), and the file will remain alive
2552 * then we need to clear up the orphan record which we created above.
2553 * However, if this was a real unlink then we were called by
2554 * ext3_delete_inode(), and we allow that function to clean up the
2555 * orphan info for us.
2556 */
2557 if (inode->i_nlink)
2558 ext3_orphan_del(handle, inode);
2559
2560 ext3_journal_stop(handle);
ef43618a
JK
2561 return;
2562out_notrans:
2563 /*
2564 * Delete the inode from orphan list so that it doesn't stay there
2565 * forever and trigger assertion on umount.
2566 */
2567 if (inode->i_nlink)
2568 ext3_orphan_del(NULL, inode);
1da177e4
LT
2569}
2570
43d23f90 2571static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
1da177e4
LT
2572 unsigned long ino, struct ext3_iloc *iloc)
2573{
e0e369a7 2574 unsigned long block_group;
43d23f90
MC
2575 unsigned long offset;
2576 ext3_fsblk_t block;
e0e369a7 2577 struct ext3_group_desc *gdp;
1da177e4 2578
2ccb48eb
NB
2579 if (!ext3_valid_inum(sb, ino)) {
2580 /*
2581 * This error is already checked for in namei.c unless we are
2582 * looking at an NFS filehandle, in which case no error
2583 * report is needed
2584 */
1da177e4
LT
2585 return 0;
2586 }
2ccb48eb 2587
1da177e4 2588 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
e0e369a7
AM
2589 gdp = ext3_get_group_desc(sb, block_group, NULL);
2590 if (!gdp)
1da177e4 2591 return 0;
1da177e4
LT
2592 /*
2593 * Figure out the offset within the block group inode table
2594 */
2595 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2596 EXT3_INODE_SIZE(sb);
e0e369a7 2597 block = le32_to_cpu(gdp->bg_inode_table) +
1da177e4
LT
2598 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2599
2600 iloc->block_group = block_group;
2601 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2602 return block;
2603}
2604
2605/*
2606 * ext3_get_inode_loc returns with an extra refcount against the inode's
2607 * underlying buffer_head on success. If 'in_mem' is true, we have all
2608 * data in memory that is needed to recreate the on-disk version of this
2609 * inode.
2610 */
2611static int __ext3_get_inode_loc(struct inode *inode,
2612 struct ext3_iloc *iloc, int in_mem)
2613{
43d23f90 2614 ext3_fsblk_t block;
1da177e4
LT
2615 struct buffer_head *bh;
2616
2617 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2618 if (!block)
2619 return -EIO;
2620
2621 bh = sb_getblk(inode->i_sb, block);
2622 if (!bh) {
2623 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2624 "unable to read inode block - "
43d23f90
MC
2625 "inode=%lu, block="E3FSBLK,
2626 inode->i_ino, block);
1da177e4
LT
2627 return -EIO;
2628 }
2629 if (!buffer_uptodate(bh)) {
2630 lock_buffer(bh);
95450f5a
HK
2631
2632 /*
2633 * If the buffer has the write error flag, we have failed
2634 * to write out another inode in the same block. In this
2635 * case, we don't have to read the block because we may
2636 * read the old inode data successfully.
2637 */
2638 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2639 set_buffer_uptodate(bh);
2640
1da177e4
LT
2641 if (buffer_uptodate(bh)) {
2642 /* someone brought it uptodate while we waited */
2643 unlock_buffer(bh);
2644 goto has_buffer;
2645 }
2646
2647 /*
2648 * If we have all information of the inode in memory and this
2649 * is the only valid inode in the block, we need not read the
2650 * block.
2651 */
2652 if (in_mem) {
2653 struct buffer_head *bitmap_bh;
2654 struct ext3_group_desc *desc;
2655 int inodes_per_buffer;
2656 int inode_offset, i;
2657 int block_group;
2658 int start;
2659
2660 block_group = (inode->i_ino - 1) /
2661 EXT3_INODES_PER_GROUP(inode->i_sb);
2662 inodes_per_buffer = bh->b_size /
2663 EXT3_INODE_SIZE(inode->i_sb);
2664 inode_offset = ((inode->i_ino - 1) %
2665 EXT3_INODES_PER_GROUP(inode->i_sb));
2666 start = inode_offset & ~(inodes_per_buffer - 1);
2667
2668 /* Is the inode bitmap in cache? */
2669 desc = ext3_get_group_desc(inode->i_sb,
2670 block_group, NULL);
2671 if (!desc)
2672 goto make_io;
2673
2674 bitmap_bh = sb_getblk(inode->i_sb,
2675 le32_to_cpu(desc->bg_inode_bitmap));
2676 if (!bitmap_bh)
2677 goto make_io;
2678
2679 /*
2680 * If the inode bitmap isn't in cache then the
2681 * optimisation may end up performing two reads instead
2682 * of one, so skip it.
2683 */
2684 if (!buffer_uptodate(bitmap_bh)) {
2685 brelse(bitmap_bh);
2686 goto make_io;
2687 }
2688 for (i = start; i < start + inodes_per_buffer; i++) {
2689 if (i == inode_offset)
2690 continue;
2691 if (ext3_test_bit(i, bitmap_bh->b_data))
2692 break;
2693 }
2694 brelse(bitmap_bh);
2695 if (i == start + inodes_per_buffer) {
2696 /* all other inodes are free, so skip I/O */
2697 memset(bh->b_data, 0, bh->b_size);
2698 set_buffer_uptodate(bh);
2699 unlock_buffer(bh);
2700 goto has_buffer;
2701 }
2702 }
2703
2704make_io:
2705 /*
2706 * There are other valid inodes in the buffer, this inode
2707 * has in-inode xattrs, or we don't have this inode in memory.
2708 * Read the block from disk.
2709 */
2710 get_bh(bh);
2711 bh->b_end_io = end_buffer_read_sync;
caa38fb0 2712 submit_bh(READ_META, bh);
1da177e4
LT
2713 wait_on_buffer(bh);
2714 if (!buffer_uptodate(bh)) {
2715 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2716 "unable to read inode block - "
43d23f90 2717 "inode=%lu, block="E3FSBLK,
1da177e4
LT
2718 inode->i_ino, block);
2719 brelse(bh);
2720 return -EIO;
2721 }
2722 }
2723has_buffer:
2724 iloc->bh = bh;
2725 return 0;
2726}
2727
2728int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2729{
2730 /* We have all inode data except xattrs in memory here. */
2731 return __ext3_get_inode_loc(inode, iloc,
9df93939 2732 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
1da177e4
LT
2733}
2734
2735void ext3_set_inode_flags(struct inode *inode)
2736{
2737 unsigned int flags = EXT3_I(inode)->i_flags;
2738
2739 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2740 if (flags & EXT3_SYNC_FL)
2741 inode->i_flags |= S_SYNC;
2742 if (flags & EXT3_APPEND_FL)
2743 inode->i_flags |= S_APPEND;
2744 if (flags & EXT3_IMMUTABLE_FL)
2745 inode->i_flags |= S_IMMUTABLE;
2746 if (flags & EXT3_NOATIME_FL)
2747 inode->i_flags |= S_NOATIME;
2748 if (flags & EXT3_DIRSYNC_FL)
2749 inode->i_flags |= S_DIRSYNC;
2750}
2751
28be5abb
JK
2752/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2753void ext3_get_inode_flags(struct ext3_inode_info *ei)
2754{
2755 unsigned int flags = ei->vfs_inode.i_flags;
2756
2757 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2758 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2759 if (flags & S_SYNC)
2760 ei->i_flags |= EXT3_SYNC_FL;
2761 if (flags & S_APPEND)
2762 ei->i_flags |= EXT3_APPEND_FL;
2763 if (flags & S_IMMUTABLE)
2764 ei->i_flags |= EXT3_IMMUTABLE_FL;
2765 if (flags & S_NOATIME)
2766 ei->i_flags |= EXT3_NOATIME_FL;
2767 if (flags & S_DIRSYNC)
2768 ei->i_flags |= EXT3_DIRSYNC_FL;
2769}
2770
473043dc 2771struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
1da177e4
LT
2772{
2773 struct ext3_iloc iloc;
2774 struct ext3_inode *raw_inode;
473043dc 2775 struct ext3_inode_info *ei;
1da177e4 2776 struct buffer_head *bh;
473043dc 2777 struct inode *inode;
fe8bc91c
JK
2778 journal_t *journal = EXT3_SB(sb)->s_journal;
2779 transaction_t *transaction;
473043dc 2780 long ret;
1da177e4
LT
2781 int block;
2782
473043dc
DH
2783 inode = iget_locked(sb, ino);
2784 if (!inode)
2785 return ERR_PTR(-ENOMEM);
2786 if (!(inode->i_state & I_NEW))
2787 return inode;
2788
2789 ei = EXT3_I(inode);
1da177e4
LT
2790 ei->i_block_alloc_info = NULL;
2791
473043dc
DH
2792 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2793 if (ret < 0)
1da177e4
LT
2794 goto bad_inode;
2795 bh = iloc.bh;
2796 raw_inode = ext3_raw_inode(&iloc);
2797 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2798 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2799 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2800 if(!(test_opt (inode->i_sb, NO_UID32))) {
2801 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2802 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2803 }
2804 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2805 inode->i_size = le32_to_cpu(raw_inode->i_size);
4d7bf11d
MR
2806 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2807 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2808 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1da177e4
LT
2809 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2810
2811 ei->i_state = 0;
2812 ei->i_dir_start_lookup = 0;
2813 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2814 /* We now have enough fields to check if the inode was active or not.
2815 * This is needed because nfsd might try to access dead inodes
2816 * the test is that same one that e2fsck uses
2817 * NeilBrown 1999oct15
2818 */
2819 if (inode->i_nlink == 0) {
2820 if (inode->i_mode == 0 ||
2821 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2822 /* this inode is deleted */
2823 brelse (bh);
473043dc 2824 ret = -ESTALE;
1da177e4
LT
2825 goto bad_inode;
2826 }
2827 /* The only unlinked inodes we let through here have
2828 * valid i_mode and are being read by the orphan
2829 * recovery code: that's fine, we're about to complete
2830 * the process of deleting those. */
2831 }
1da177e4
LT
2832 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2833 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2834#ifdef EXT3_FRAGMENTS
2835 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2836 ei->i_frag_no = raw_inode->i_frag;
2837 ei->i_frag_size = raw_inode->i_fsize;
2838#endif
2839 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2840 if (!S_ISREG(inode->i_mode)) {
2841 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2842 } else {
2843 inode->i_size |=
2844 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2845 }
2846 ei->i_disksize = inode->i_size;
2847 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2848 ei->i_block_group = iloc.block_group;
2849 /*
2850 * NOTE! The in-memory inode i_data array is in little-endian order
2851 * even on big-endian machines: we do NOT byteswap the block numbers!
2852 */
2853 for (block = 0; block < EXT3_N_BLOCKS; block++)
2854 ei->i_data[block] = raw_inode->i_block[block];
2855 INIT_LIST_HEAD(&ei->i_orphan);
2856
fe8bc91c
JK
2857 /*
2858 * Set transaction id's of transactions that have to be committed
2859 * to finish f[data]sync. We set them to currently running transaction
2860 * as we cannot be sure that the inode or some of its metadata isn't
2861 * part of the transaction - the inode could have been reclaimed and
2862 * now it is reread from disk.
2863 */
2864 if (journal) {
2865 tid_t tid;
2866
2867 spin_lock(&journal->j_state_lock);
2868 if (journal->j_running_transaction)
2869 transaction = journal->j_running_transaction;
2870 else
2871 transaction = journal->j_committing_transaction;
2872 if (transaction)
2873 tid = transaction->t_tid;
2874 else
2875 tid = journal->j_commit_sequence;
2876 spin_unlock(&journal->j_state_lock);
2877 atomic_set(&ei->i_sync_tid, tid);
2878 atomic_set(&ei->i_datasync_tid, tid);
2879 }
2880
1da177e4
LT
2881 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2882 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2883 /*
2884 * When mke2fs creates big inodes it does not zero out
2885 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2886 * so ignore those first few inodes.
2887 */
2888 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2889 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e4a10a36
KK
2890 EXT3_INODE_SIZE(inode->i_sb)) {
2891 brelse (bh);
473043dc 2892 ret = -EIO;
1da177e4 2893 goto bad_inode;
e4a10a36 2894 }
1da177e4
LT
2895 if (ei->i_extra_isize == 0) {
2896 /* The extra space is currently unused. Use it. */
2897 ei->i_extra_isize = sizeof(struct ext3_inode) -
2898 EXT3_GOOD_OLD_INODE_SIZE;
2899 } else {
2900 __le32 *magic = (void *)raw_inode +
2901 EXT3_GOOD_OLD_INODE_SIZE +
2902 ei->i_extra_isize;
2903 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
9df93939 2904 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
1da177e4
LT
2905 }
2906 } else
2907 ei->i_extra_isize = 0;
2908
2909 if (S_ISREG(inode->i_mode)) {
2910 inode->i_op = &ext3_file_inode_operations;
2911 inode->i_fop = &ext3_file_operations;
2912 ext3_set_aops(inode);
2913 } else if (S_ISDIR(inode->i_mode)) {
2914 inode->i_op = &ext3_dir_inode_operations;
2915 inode->i_fop = &ext3_dir_operations;
2916 } else if (S_ISLNK(inode->i_mode)) {
b5ed3112 2917 if (ext3_inode_is_fast_symlink(inode)) {
1da177e4 2918 inode->i_op = &ext3_fast_symlink_inode_operations;
b5ed3112
DG
2919 nd_terminate_link(ei->i_data, inode->i_size,
2920 sizeof(ei->i_data) - 1);
2921 } else {
1da177e4
LT
2922 inode->i_op = &ext3_symlink_inode_operations;
2923 ext3_set_aops(inode);
2924 }
2925 } else {
2926 inode->i_op = &ext3_special_inode_operations;
2927 if (raw_inode->i_block[0])
2928 init_special_inode(inode, inode->i_mode,
2929 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
ae6ddcc5 2930 else
1da177e4
LT
2931 init_special_inode(inode, inode->i_mode,
2932 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2933 }
2934 brelse (iloc.bh);
2935 ext3_set_inode_flags(inode);
473043dc
DH
2936 unlock_new_inode(inode);
2937 return inode;
1da177e4
LT
2938
2939bad_inode:
473043dc
DH
2940 iget_failed(inode);
2941 return ERR_PTR(ret);
1da177e4
LT
2942}
2943
2944/*
2945 * Post the struct inode info into an on-disk inode location in the
2946 * buffer-cache. This gobbles the caller's reference to the
2947 * buffer_head in the inode location struct.
2948 *
2949 * The caller must have write access to iloc->bh.
2950 */
ae6ddcc5
MC
2951static int ext3_do_update_inode(handle_t *handle,
2952 struct inode *inode,
1da177e4
LT
2953 struct ext3_iloc *iloc)
2954{
2955 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2956 struct ext3_inode_info *ei = EXT3_I(inode);
2957 struct buffer_head *bh = iloc->bh;
2958 int err = 0, rc, block;
2959
4f003fd3
CM
2960again:
2961 /* we can't allow multiple procs in here at once, its a bit racey */
2962 lock_buffer(bh);
2963
1da177e4
LT
2964 /* For fields not not tracking in the in-memory inode,
2965 * initialise them to zero for new inodes. */
9df93939 2966 if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
1da177e4
LT
2967 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2968
28be5abb 2969 ext3_get_inode_flags(ei);
1da177e4
LT
2970 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2971 if(!(test_opt(inode->i_sb, NO_UID32))) {
2972 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2973 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2974/*
2975 * Fix up interoperability with old kernels. Otherwise, old inodes get
2976 * re-used with the upper 16 bits of the uid/gid intact
2977 */
2978 if(!ei->i_dtime) {
2979 raw_inode->i_uid_high =
2980 cpu_to_le16(high_16_bits(inode->i_uid));
2981 raw_inode->i_gid_high =
2982 cpu_to_le16(high_16_bits(inode->i_gid));
2983 } else {
2984 raw_inode->i_uid_high = 0;
2985 raw_inode->i_gid_high = 0;
2986 }
2987 } else {
2988 raw_inode->i_uid_low =
2989 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2990 raw_inode->i_gid_low =
2991 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2992 raw_inode->i_uid_high = 0;
2993 raw_inode->i_gid_high = 0;
2994 }
2995 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2996 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2997 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2998 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2999 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3000 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3001 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3002 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3003#ifdef EXT3_FRAGMENTS
3004 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3005 raw_inode->i_frag = ei->i_frag_no;
3006 raw_inode->i_fsize = ei->i_frag_size;
3007#endif
3008 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3009 if (!S_ISREG(inode->i_mode)) {
3010 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3011 } else {
3012 raw_inode->i_size_high =
3013 cpu_to_le32(ei->i_disksize >> 32);
3014 if (ei->i_disksize > 0x7fffffffULL) {
3015 struct super_block *sb = inode->i_sb;
3016 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3017 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3018 EXT3_SB(sb)->s_es->s_rev_level ==
3019 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3020 /* If this is the first large file
3021 * created, add a flag to the superblock.
3022 */
4f003fd3 3023 unlock_buffer(bh);
1da177e4
LT
3024 err = ext3_journal_get_write_access(handle,
3025 EXT3_SB(sb)->s_sbh);
3026 if (err)
3027 goto out_brelse;
4f003fd3 3028
1da177e4
LT
3029 ext3_update_dynamic_rev(sb);
3030 EXT3_SET_RO_COMPAT_FEATURE(sb,
3031 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
1da177e4
LT
3032 handle->h_sync = 1;
3033 err = ext3_journal_dirty_metadata(handle,
3034 EXT3_SB(sb)->s_sbh);
4f003fd3
CM
3035 /* get our lock and start over */
3036 goto again;
1da177e4
LT
3037 }
3038 }
3039 }
3040 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3041 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3042 if (old_valid_dev(inode->i_rdev)) {
3043 raw_inode->i_block[0] =
3044 cpu_to_le32(old_encode_dev(inode->i_rdev));
3045 raw_inode->i_block[1] = 0;
3046 } else {
3047 raw_inode->i_block[0] = 0;
3048 raw_inode->i_block[1] =
3049 cpu_to_le32(new_encode_dev(inode->i_rdev));
3050 raw_inode->i_block[2] = 0;
3051 }
3052 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3053 raw_inode->i_block[block] = ei->i_data[block];
3054
ff87b37d 3055 if (ei->i_extra_isize)
1da177e4
LT
3056 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3057
3058 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
4f003fd3 3059 unlock_buffer(bh);
1da177e4
LT
3060 rc = ext3_journal_dirty_metadata(handle, bh);
3061 if (!err)
3062 err = rc;
9df93939 3063 ext3_clear_inode_state(inode, EXT3_STATE_NEW);
1da177e4 3064
fe8bc91c 3065 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
1da177e4
LT
3066out_brelse:
3067 brelse (bh);
3068 ext3_std_error(inode->i_sb, err);
3069 return err;
3070}
3071
3072/*
3073 * ext3_write_inode()
3074 *
3075 * We are called from a few places:
3076 *
3077 * - Within generic_file_write() for O_SYNC files.
3078 * Here, there will be no transaction running. We wait for any running
3079 * trasnaction to commit.
3080 *
3081 * - Within sys_sync(), kupdate and such.
3082 * We wait on commit, if tol to.
3083 *
3084 * - Within prune_icache() (PF_MEMALLOC == true)
3085 * Here we simply return. We can't afford to block kswapd on the
3086 * journal commit.
3087 *
3088 * In all cases it is actually safe for us to return without doing anything,
3089 * because the inode has been copied into a raw inode buffer in
3090 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3091 * knfsd.
3092 *
3093 * Note that we are absolutely dependent upon all inode dirtiers doing the
3094 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3095 * which we are interested.
3096 *
3097 * It would be a bug for them to not do this. The code:
3098 *
3099 * mark_inode_dirty(inode)
3100 * stuff();
3101 * inode->i_size = expr;
3102 *
3103 * is in error because a kswapd-driven write_inode() could occur while
3104 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3105 * will no longer be on the superblock's dirty inode list.
3106 */
3107int ext3_write_inode(struct inode *inode, int wait)
3108{
3109 if (current->flags & PF_MEMALLOC)
3110 return 0;
3111
3112 if (ext3_journal_current_handle()) {
9ad163ae 3113 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
1da177e4
LT
3114 dump_stack();
3115 return -EIO;
3116 }
3117
3118 if (!wait)
3119 return 0;
3120
3121 return ext3_force_commit(inode->i_sb);
3122}
3123
3124/*
3125 * ext3_setattr()
3126 *
3127 * Called from notify_change.
3128 *
3129 * We want to trap VFS attempts to truncate the file as soon as
3130 * possible. In particular, we want to make sure that when the VFS
3131 * shrinks i_size, we put the inode on the orphan list and modify
3132 * i_disksize immediately, so that during the subsequent flushing of
3133 * dirty pages and freeing of disk blocks, we can guarantee that any
3134 * commit will leave the blocks being flushed in an unused state on
3135 * disk. (On recovery, the inode will get truncated and the blocks will
3136 * be freed, so we have a strong guarantee that no future commit will
ae6ddcc5 3137 * leave these blocks visible to the user.)
1da177e4
LT
3138 *
3139 * Called with inode->sem down.
3140 */
3141int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3142{
3143 struct inode *inode = dentry->d_inode;
3144 int error, rc = 0;
3145 const unsigned int ia_valid = attr->ia_valid;
3146
3147 error = inode_change_ok(inode, attr);
3148 if (error)
3149 return error;
3150
3151 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3152 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3153 handle_t *handle;
3154
3155 /* (user+group)*(old+new) structure, inode write (sb,
3156 * inode block, ? - but truncate inode update has it) */
c459001f
DM
3157 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3158 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
1da177e4
LT
3159 if (IS_ERR(handle)) {
3160 error = PTR_ERR(handle);
3161 goto err_out;
3162 }
81a05227 3163 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
1da177e4
LT
3164 if (error) {
3165 ext3_journal_stop(handle);
3166 return error;
3167 }
3168 /* Update corresponding info in inode so that everything is in
3169 * one transaction */
3170 if (attr->ia_valid & ATTR_UID)
3171 inode->i_uid = attr->ia_uid;
3172 if (attr->ia_valid & ATTR_GID)
3173 inode->i_gid = attr->ia_gid;
3174 error = ext3_mark_inode_dirty(handle, inode);
3175 ext3_journal_stop(handle);
3176 }
3177
3178 if (S_ISREG(inode->i_mode) &&
3179 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3180 handle_t *handle;
3181
3182 handle = ext3_journal_start(inode, 3);
3183 if (IS_ERR(handle)) {
3184 error = PTR_ERR(handle);
3185 goto err_out;
3186 }
3187
3188 error = ext3_orphan_add(handle, inode);
3189 EXT3_I(inode)->i_disksize = attr->ia_size;
3190 rc = ext3_mark_inode_dirty(handle, inode);
3191 if (!error)
3192 error = rc;
3193 ext3_journal_stop(handle);
3194 }
3195
3196 rc = inode_setattr(inode, attr);
3197
1da177e4
LT
3198 if (!rc && (ia_valid & ATTR_MODE))
3199 rc = ext3_acl_chmod(inode);
3200
3201err_out:
3202 ext3_std_error(inode->i_sb, error);
3203 if (!error)
3204 error = rc;
3205 return error;
3206}
3207
3208
3209/*
d6859bfc 3210 * How many blocks doth make a writepage()?
1da177e4
LT
3211 *
3212 * With N blocks per page, it may be:
3213 * N data blocks
3214 * 2 indirect block
3215 * 2 dindirect
3216 * 1 tindirect
3217 * N+5 bitmap blocks (from the above)
3218 * N+5 group descriptor summary blocks
3219 * 1 inode block
3220 * 1 superblock.
3221 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3222 *
3223 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3224 *
3225 * With ordered or writeback data it's the same, less the N data blocks.
3226 *
3227 * If the inode's direct blocks can hold an integral number of pages then a
3228 * page cannot straddle two indirect blocks, and we can only touch one indirect
3229 * and dindirect block, and the "5" above becomes "3".
3230 *
3231 * This still overestimates under most circumstances. If we were to pass the
3232 * start and end offsets in here as well we could do block_to_path() on each
3233 * block and work out the exact number of indirects which are touched. Pah.
3234 */
3235
3236static int ext3_writepage_trans_blocks(struct inode *inode)
3237{
3238 int bpp = ext3_journal_blocks_per_page(inode);
3239 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3240 int ret;
3241
3242 if (ext3_should_journal_data(inode))
3243 ret = 3 * (bpp + indirects) + 2;
3244 else
3245 ret = 2 * (bpp + indirects) + 2;
3246
3247#ifdef CONFIG_QUOTA
81a05227 3248 /* We know that structure was already allocated during vfs_dq_init so
1da177e4 3249 * we will be updating only the data blocks + inodes */
c459001f 3250 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
1da177e4
LT
3251#endif
3252
3253 return ret;
3254}
3255
3256/*
3257 * The caller must have previously called ext3_reserve_inode_write().
3258 * Give this, we know that the caller already has write access to iloc->bh.
3259 */
3260int ext3_mark_iloc_dirty(handle_t *handle,
3261 struct inode *inode, struct ext3_iloc *iloc)
3262{
3263 int err = 0;
3264
3265 /* the do_update_inode consumes one bh->b_count */
3266 get_bh(iloc->bh);
3267
3268 /* ext3_do_update_inode() does journal_dirty_metadata */
3269 err = ext3_do_update_inode(handle, inode, iloc);
3270 put_bh(iloc->bh);
3271 return err;
3272}
3273
ae6ddcc5 3274/*
1da177e4 3275 * On success, We end up with an outstanding reference count against
ae6ddcc5 3276 * iloc->bh. This _must_ be cleaned up later.
1da177e4
LT
3277 */
3278
3279int
ae6ddcc5 3280ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
1da177e4
LT
3281 struct ext3_iloc *iloc)
3282{
3283 int err = 0;
3284 if (handle) {
3285 err = ext3_get_inode_loc(inode, iloc);
3286 if (!err) {
3287 BUFFER_TRACE(iloc->bh, "get_write_access");
3288 err = ext3_journal_get_write_access(handle, iloc->bh);
3289 if (err) {
3290 brelse(iloc->bh);
3291 iloc->bh = NULL;
3292 }
3293 }
3294 }
3295 ext3_std_error(inode->i_sb, err);
3296 return err;
3297}
3298
3299/*
d6859bfc
AM
3300 * What we do here is to mark the in-core inode as clean with respect to inode
3301 * dirtiness (it may still be data-dirty).
1da177e4
LT
3302 * This means that the in-core inode may be reaped by prune_icache
3303 * without having to perform any I/O. This is a very good thing,
3304 * because *any* task may call prune_icache - even ones which
3305 * have a transaction open against a different journal.
3306 *
3307 * Is this cheating? Not really. Sure, we haven't written the
3308 * inode out, but prune_icache isn't a user-visible syncing function.
3309 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3310 * we start and wait on commits.
3311 *
3312 * Is this efficient/effective? Well, we're being nice to the system
3313 * by cleaning up our inodes proactively so they can be reaped
3314 * without I/O. But we are potentially leaving up to five seconds'
3315 * worth of inodes floating about which prune_icache wants us to
3316 * write out. One way to fix that would be to get prune_icache()
3317 * to do a write_super() to free up some memory. It has the desired
3318 * effect.
3319 */
3320int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3321{
3322 struct ext3_iloc iloc;
3323 int err;
3324
3325 might_sleep();
3326 err = ext3_reserve_inode_write(handle, inode, &iloc);
3327 if (!err)
3328 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3329 return err;
3330}
3331
3332/*
d6859bfc 3333 * ext3_dirty_inode() is called from __mark_inode_dirty()
1da177e4
LT
3334 *
3335 * We're really interested in the case where a file is being extended.
3336 * i_size has been changed by generic_commit_write() and we thus need
3337 * to include the updated inode in the current transaction.
3338 *
5dd4056d 3339 * Also, dquot_alloc_space() will always dirty the inode when blocks
1da177e4
LT
3340 * are allocated to the file.
3341 *
3342 * If the inode is marked synchronous, we don't honour that here - doing
3343 * so would cause a commit on atime updates, which we don't bother doing.
3344 * We handle synchronous inodes at the highest possible level.
3345 */
3346void ext3_dirty_inode(struct inode *inode)
3347{
3348 handle_t *current_handle = ext3_journal_current_handle();
3349 handle_t *handle;
3350
3351 handle = ext3_journal_start(inode, 2);
3352 if (IS_ERR(handle))
3353 goto out;
3354 if (current_handle &&
3355 current_handle->h_transaction != handle->h_transaction) {
3356 /* This task has a transaction open against a different fs */
3357 printk(KERN_EMERG "%s: transactions do not match!\n",
e05b6b52 3358 __func__);
1da177e4
LT
3359 } else {
3360 jbd_debug(5, "marking dirty. outer handle=%p\n",
3361 current_handle);
3362 ext3_mark_inode_dirty(handle, inode);
3363 }
3364 ext3_journal_stop(handle);
3365out:
3366 return;
3367}
3368
d6859bfc 3369#if 0
ae6ddcc5 3370/*
1da177e4
LT
3371 * Bind an inode's backing buffer_head into this transaction, to prevent
3372 * it from being flushed to disk early. Unlike
3373 * ext3_reserve_inode_write, this leaves behind no bh reference and
3374 * returns no iloc structure, so the caller needs to repeat the iloc
3375 * lookup to mark the inode dirty later.
3376 */
d6859bfc 3377static int ext3_pin_inode(handle_t *handle, struct inode *inode)
1da177e4
LT
3378{
3379 struct ext3_iloc iloc;
3380
3381 int err = 0;
3382 if (handle) {
3383 err = ext3_get_inode_loc(inode, &iloc);
3384 if (!err) {
3385 BUFFER_TRACE(iloc.bh, "get_write_access");
3386 err = journal_get_write_access(handle, iloc.bh);
3387 if (!err)
ae6ddcc5 3388 err = ext3_journal_dirty_metadata(handle,
1da177e4
LT
3389 iloc.bh);
3390 brelse(iloc.bh);
3391 }
3392 }
3393 ext3_std_error(inode->i_sb, err);
3394 return err;
3395}
3396#endif
3397
3398int ext3_change_inode_journal_flag(struct inode *inode, int val)
3399{
3400 journal_t *journal;
3401 handle_t *handle;
3402 int err;
3403
3404 /*
3405 * We have to be very careful here: changing a data block's
3406 * journaling status dynamically is dangerous. If we write a
3407 * data block to the journal, change the status and then delete
3408 * that block, we risk forgetting to revoke the old log record
3409 * from the journal and so a subsequent replay can corrupt data.
3410 * So, first we make sure that the journal is empty and that
3411 * nobody is changing anything.
3412 */
3413
3414 journal = EXT3_JOURNAL(inode);
e3a68e30 3415 if (is_journal_aborted(journal))
1da177e4
LT
3416 return -EROFS;
3417
3418 journal_lock_updates(journal);
3419 journal_flush(journal);
3420
3421 /*
3422 * OK, there are no updates running now, and all cached data is
3423 * synced to disk. We are now in a completely consistent state
3424 * which doesn't have anything in the journal, and we know that
3425 * no filesystem updates are running, so it is safe to modify
3426 * the inode's in-core data-journaling state flag now.
3427 */
3428
3429 if (val)
3430 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3431 else
3432 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3433 ext3_set_aops(inode);
3434
3435 journal_unlock_updates(journal);
3436
3437 /* Finally we can mark the inode as dirty. */
3438
3439 handle = ext3_journal_start(inode, 1);
3440 if (IS_ERR(handle))
3441 return PTR_ERR(handle);
3442
3443 err = ext3_mark_inode_dirty(handle, inode);
3444 handle->h_sync = 1;
3445 ext3_journal_stop(handle);
3446 ext3_std_error(inode->i_sb, err);
3447
3448 return err;
3449}