]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ceph/messenger.c
ceph: remove bad calls to ceph_con_shutdown
[net-next-2.6.git] / fs / ceph / messenger.c
CommitLineData
31b8006e
SW
1#include "ceph_debug.h"
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/socket.h>
10#include <linux/string.h>
11#include <net/tcp.h>
12
13#include "super.h"
14#include "messenger.h"
63f2d211 15#include "decode.h"
31b8006e
SW
16
17/*
18 * Ceph uses the messenger to exchange ceph_msg messages with other
19 * hosts in the system. The messenger provides ordered and reliable
20 * delivery. We tolerate TCP disconnects by reconnecting (with
21 * exponential backoff) in the case of a fault (disconnection, bad
22 * crc, protocol error). Acks allow sent messages to be discarded by
23 * the sender.
24 */
25
26/* static tag bytes (protocol control messages) */
27static char tag_msg = CEPH_MSGR_TAG_MSG;
28static char tag_ack = CEPH_MSGR_TAG_ACK;
29static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
30
31
32static void queue_con(struct ceph_connection *con);
33static void con_work(struct work_struct *);
34static void ceph_fault(struct ceph_connection *con);
35
36const char *ceph_name_type_str(int t)
37{
38 switch (t) {
39 case CEPH_ENTITY_TYPE_MON: return "mon";
40 case CEPH_ENTITY_TYPE_MDS: return "mds";
41 case CEPH_ENTITY_TYPE_OSD: return "osd";
42 case CEPH_ENTITY_TYPE_CLIENT: return "client";
43 case CEPH_ENTITY_TYPE_ADMIN: return "admin";
44 default: return "???";
45 }
46}
47
48/*
49 * nicely render a sockaddr as a string.
50 */
51#define MAX_ADDR_STR 20
52static char addr_str[MAX_ADDR_STR][40];
53static DEFINE_SPINLOCK(addr_str_lock);
54static int last_addr_str;
55
56const char *pr_addr(const struct sockaddr_storage *ss)
57{
58 int i;
59 char *s;
60 struct sockaddr_in *in4 = (void *)ss;
61 unsigned char *quad = (void *)&in4->sin_addr.s_addr;
62 struct sockaddr_in6 *in6 = (void *)ss;
63
64 spin_lock(&addr_str_lock);
65 i = last_addr_str++;
66 if (last_addr_str == MAX_ADDR_STR)
67 last_addr_str = 0;
68 spin_unlock(&addr_str_lock);
69 s = addr_str[i];
70
71 switch (ss->ss_family) {
72 case AF_INET:
73 sprintf(s, "%u.%u.%u.%u:%u",
74 (unsigned int)quad[0],
75 (unsigned int)quad[1],
76 (unsigned int)quad[2],
77 (unsigned int)quad[3],
78 (unsigned int)ntohs(in4->sin_port));
79 break;
80
81 case AF_INET6:
82 sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u",
83 in6->sin6_addr.s6_addr16[0],
84 in6->sin6_addr.s6_addr16[1],
85 in6->sin6_addr.s6_addr16[2],
86 in6->sin6_addr.s6_addr16[3],
87 in6->sin6_addr.s6_addr16[4],
88 in6->sin6_addr.s6_addr16[5],
89 in6->sin6_addr.s6_addr16[6],
90 in6->sin6_addr.s6_addr16[7],
91 (unsigned int)ntohs(in6->sin6_port));
92 break;
93
94 default:
95 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
96 }
97
98 return s;
99}
100
63f2d211
SW
101static void encode_my_addr(struct ceph_messenger *msgr)
102{
103 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
104 ceph_encode_addr(&msgr->my_enc_addr);
105}
106
31b8006e
SW
107/*
108 * work queue for all reading and writing to/from the socket.
109 */
110struct workqueue_struct *ceph_msgr_wq;
111
112int __init ceph_msgr_init(void)
113{
114 ceph_msgr_wq = create_workqueue("ceph-msgr");
115 if (IS_ERR(ceph_msgr_wq)) {
116 int ret = PTR_ERR(ceph_msgr_wq);
117 pr_err("msgr_init failed to create workqueue: %d\n", ret);
118 ceph_msgr_wq = NULL;
119 return ret;
120 }
121 return 0;
122}
123
124void ceph_msgr_exit(void)
125{
126 destroy_workqueue(ceph_msgr_wq);
127}
128
129/*
130 * socket callback functions
131 */
132
133/* data available on socket, or listen socket received a connect */
134static void ceph_data_ready(struct sock *sk, int count_unused)
135{
136 struct ceph_connection *con =
137 (struct ceph_connection *)sk->sk_user_data;
138 if (sk->sk_state != TCP_CLOSE_WAIT) {
139 dout("ceph_data_ready on %p state = %lu, queueing work\n",
140 con, con->state);
141 queue_con(con);
142 }
143}
144
145/* socket has buffer space for writing */
146static void ceph_write_space(struct sock *sk)
147{
148 struct ceph_connection *con =
149 (struct ceph_connection *)sk->sk_user_data;
150
151 /* only queue to workqueue if there is data we want to write. */
152 if (test_bit(WRITE_PENDING, &con->state)) {
153 dout("ceph_write_space %p queueing write work\n", con);
154 queue_con(con);
155 } else {
156 dout("ceph_write_space %p nothing to write\n", con);
157 }
158
159 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
160 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
161}
162
163/* socket's state has changed */
164static void ceph_state_change(struct sock *sk)
165{
166 struct ceph_connection *con =
167 (struct ceph_connection *)sk->sk_user_data;
168
169 dout("ceph_state_change %p state = %lu sk_state = %u\n",
170 con, con->state, sk->sk_state);
171
172 if (test_bit(CLOSED, &con->state))
173 return;
174
175 switch (sk->sk_state) {
176 case TCP_CLOSE:
177 dout("ceph_state_change TCP_CLOSE\n");
178 case TCP_CLOSE_WAIT:
179 dout("ceph_state_change TCP_CLOSE_WAIT\n");
180 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
181 if (test_bit(CONNECTING, &con->state))
182 con->error_msg = "connection failed";
183 else
184 con->error_msg = "socket closed";
185 queue_con(con);
186 }
187 break;
188 case TCP_ESTABLISHED:
189 dout("ceph_state_change TCP_ESTABLISHED\n");
190 queue_con(con);
191 break;
192 }
193}
194
195/*
196 * set up socket callbacks
197 */
198static void set_sock_callbacks(struct socket *sock,
199 struct ceph_connection *con)
200{
201 struct sock *sk = sock->sk;
202 sk->sk_user_data = (void *)con;
203 sk->sk_data_ready = ceph_data_ready;
204 sk->sk_write_space = ceph_write_space;
205 sk->sk_state_change = ceph_state_change;
206}
207
208
209/*
210 * socket helpers
211 */
212
213/*
214 * initiate connection to a remote socket.
215 */
216static struct socket *ceph_tcp_connect(struct ceph_connection *con)
217{
218 struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr;
219 struct socket *sock;
220 int ret;
221
222 BUG_ON(con->sock);
223 ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
224 if (ret)
225 return ERR_PTR(ret);
226 con->sock = sock;
227 sock->sk->sk_allocation = GFP_NOFS;
228
229 set_sock_callbacks(sock, con);
230
231 dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
232
233 ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK);
234 if (ret == -EINPROGRESS) {
235 dout("connect %s EINPROGRESS sk_state = %u\n",
236 pr_addr(&con->peer_addr.in_addr),
237 sock->sk->sk_state);
238 ret = 0;
239 }
240 if (ret < 0) {
241 pr_err("connect %s error %d\n",
242 pr_addr(&con->peer_addr.in_addr), ret);
243 sock_release(sock);
244 con->sock = NULL;
245 con->error_msg = "connect error";
246 }
247
248 if (ret < 0)
249 return ERR_PTR(ret);
250 return sock;
251}
252
253static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
254{
255 struct kvec iov = {buf, len};
256 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
257
258 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
259}
260
261/*
262 * write something. @more is true if caller will be sending more data
263 * shortly.
264 */
265static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
266 size_t kvlen, size_t len, int more)
267{
268 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
269
270 if (more)
271 msg.msg_flags |= MSG_MORE;
272 else
273 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
274
275 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
276}
277
278
279/*
280 * Shutdown/close the socket for the given connection.
281 */
282static int con_close_socket(struct ceph_connection *con)
283{
284 int rc;
285
286 dout("con_close_socket on %p sock %p\n", con, con->sock);
287 if (!con->sock)
288 return 0;
289 set_bit(SOCK_CLOSED, &con->state);
290 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
291 sock_release(con->sock);
292 con->sock = NULL;
293 clear_bit(SOCK_CLOSED, &con->state);
294 return rc;
295}
296
297/*
298 * Reset a connection. Discard all incoming and outgoing messages
299 * and clear *_seq state.
300 */
301static void ceph_msg_remove(struct ceph_msg *msg)
302{
303 list_del_init(&msg->list_head);
304 ceph_msg_put(msg);
305}
306static void ceph_msg_remove_list(struct list_head *head)
307{
308 while (!list_empty(head)) {
309 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
310 list_head);
311 ceph_msg_remove(msg);
312 }
313}
314
315static void reset_connection(struct ceph_connection *con)
316{
317 /* reset connection, out_queue, msg_ and connect_seq */
318 /* discard existing out_queue and msg_seq */
319 mutex_lock(&con->out_mutex);
320 ceph_msg_remove_list(&con->out_queue);
321 ceph_msg_remove_list(&con->out_sent);
322
323 con->connect_seq = 0;
324 con->out_seq = 0;
325 con->out_msg = NULL;
326 con->in_seq = 0;
327 mutex_unlock(&con->out_mutex);
328}
329
330/*
331 * mark a peer down. drop any open connections.
332 */
333void ceph_con_close(struct ceph_connection *con)
334{
335 dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
336 set_bit(CLOSED, &con->state); /* in case there's queued work */
337 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
338 reset_connection(con);
339 queue_con(con);
340}
341
342/*
343 * clean up connection state
344 */
345void ceph_con_shutdown(struct ceph_connection *con)
346{
347 dout("con_shutdown %p\n", con);
348 reset_connection(con);
349 set_bit(DEAD, &con->state);
350 con_close_socket(con); /* silently ignore errors */
351}
352
353/*
354 * Reopen a closed connection, with a new peer address.
355 */
356void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
357{
358 dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
359 set_bit(OPENING, &con->state);
360 clear_bit(CLOSED, &con->state);
361 memcpy(&con->peer_addr, addr, sizeof(*addr));
362 queue_con(con);
363}
364
365/*
366 * generic get/put
367 */
368struct ceph_connection *ceph_con_get(struct ceph_connection *con)
369{
370 dout("con_get %p nref = %d -> %d\n", con,
371 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
372 if (atomic_inc_not_zero(&con->nref))
373 return con;
374 return NULL;
375}
376
377void ceph_con_put(struct ceph_connection *con)
378{
379 dout("con_put %p nref = %d -> %d\n", con,
380 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
381 BUG_ON(atomic_read(&con->nref) == 0);
382 if (atomic_dec_and_test(&con->nref)) {
383 ceph_con_shutdown(con);
384 kfree(con);
385 }
386}
387
388/*
389 * initialize a new connection.
390 */
391void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
392{
393 dout("con_init %p\n", con);
394 memset(con, 0, sizeof(*con));
395 atomic_set(&con->nref, 1);
396 con->msgr = msgr;
397 mutex_init(&con->out_mutex);
398 INIT_LIST_HEAD(&con->out_queue);
399 INIT_LIST_HEAD(&con->out_sent);
400 INIT_DELAYED_WORK(&con->work, con_work);
401}
402
403
404/*
405 * We maintain a global counter to order connection attempts. Get
406 * a unique seq greater than @gt.
407 */
408static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
409{
410 u32 ret;
411
412 spin_lock(&msgr->global_seq_lock);
413 if (msgr->global_seq < gt)
414 msgr->global_seq = gt;
415 ret = ++msgr->global_seq;
416 spin_unlock(&msgr->global_seq_lock);
417 return ret;
418}
419
420
421/*
422 * Prepare footer for currently outgoing message, and finish things
423 * off. Assumes out_kvec* are already valid.. we just add on to the end.
424 */
425static void prepare_write_message_footer(struct ceph_connection *con, int v)
426{
427 struct ceph_msg *m = con->out_msg;
428
429 dout("prepare_write_message_footer %p\n", con);
430 con->out_kvec_is_msg = true;
431 con->out_kvec[v].iov_base = &m->footer;
432 con->out_kvec[v].iov_len = sizeof(m->footer);
433 con->out_kvec_bytes += sizeof(m->footer);
434 con->out_kvec_left++;
435 con->out_more = m->more_to_follow;
436 con->out_msg = NULL; /* we're done with this one */
437}
438
439/*
440 * Prepare headers for the next outgoing message.
441 */
442static void prepare_write_message(struct ceph_connection *con)
443{
444 struct ceph_msg *m;
445 int v = 0;
446
447 con->out_kvec_bytes = 0;
448 con->out_kvec_is_msg = true;
449
450 /* Sneak an ack in there first? If we can get it into the same
451 * TCP packet that's a good thing. */
452 if (con->in_seq > con->in_seq_acked) {
453 con->in_seq_acked = con->in_seq;
454 con->out_kvec[v].iov_base = &tag_ack;
455 con->out_kvec[v++].iov_len = 1;
456 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
457 con->out_kvec[v].iov_base = &con->out_temp_ack;
458 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
459 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
460 }
461
462 /* move message to sending/sent list */
463 m = list_first_entry(&con->out_queue,
464 struct ceph_msg, list_head);
465 list_move_tail(&m->list_head, &con->out_sent);
466 con->out_msg = m; /* we don't bother taking a reference here. */
467
468 m->hdr.seq = cpu_to_le64(++con->out_seq);
469
470 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
471 m, con->out_seq, le16_to_cpu(m->hdr.type),
472 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
473 le32_to_cpu(m->hdr.data_len),
474 m->nr_pages);
475 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
476
477 /* tag + hdr + front + middle */
478 con->out_kvec[v].iov_base = &tag_msg;
479 con->out_kvec[v++].iov_len = 1;
480 con->out_kvec[v].iov_base = &m->hdr;
481 con->out_kvec[v++].iov_len = sizeof(m->hdr);
482 con->out_kvec[v++] = m->front;
483 if (m->middle)
484 con->out_kvec[v++] = m->middle->vec;
485 con->out_kvec_left = v;
486 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
487 (m->middle ? m->middle->vec.iov_len : 0);
488 con->out_kvec_cur = con->out_kvec;
489
490 /* fill in crc (except data pages), footer */
491 con->out_msg->hdr.crc =
492 cpu_to_le32(crc32c(0, (void *)&m->hdr,
493 sizeof(m->hdr) - sizeof(m->hdr.crc)));
494 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
495 con->out_msg->footer.front_crc =
496 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
497 if (m->middle)
498 con->out_msg->footer.middle_crc =
499 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
500 m->middle->vec.iov_len));
501 else
502 con->out_msg->footer.middle_crc = 0;
503 con->out_msg->footer.data_crc = 0;
504 dout("prepare_write_message front_crc %u data_crc %u\n",
505 le32_to_cpu(con->out_msg->footer.front_crc),
506 le32_to_cpu(con->out_msg->footer.middle_crc));
507
508 /* is there a data payload? */
509 if (le32_to_cpu(m->hdr.data_len) > 0) {
510 /* initialize page iterator */
511 con->out_msg_pos.page = 0;
512 con->out_msg_pos.page_pos =
513 le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
514 con->out_msg_pos.data_pos = 0;
515 con->out_msg_pos.did_page_crc = 0;
516 con->out_more = 1; /* data + footer will follow */
517 } else {
518 /* no, queue up footer too and be done */
519 prepare_write_message_footer(con, v);
520 }
521
522 set_bit(WRITE_PENDING, &con->state);
523}
524
525/*
526 * Prepare an ack.
527 */
528static void prepare_write_ack(struct ceph_connection *con)
529{
530 dout("prepare_write_ack %p %llu -> %llu\n", con,
531 con->in_seq_acked, con->in_seq);
532 con->in_seq_acked = con->in_seq;
533
534 con->out_kvec[0].iov_base = &tag_ack;
535 con->out_kvec[0].iov_len = 1;
536 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
537 con->out_kvec[1].iov_base = &con->out_temp_ack;
538 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
539 con->out_kvec_left = 2;
540 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
541 con->out_kvec_cur = con->out_kvec;
542 con->out_more = 1; /* more will follow.. eventually.. */
543 set_bit(WRITE_PENDING, &con->state);
544}
545
546/*
547 * Prepare to write keepalive byte.
548 */
549static void prepare_write_keepalive(struct ceph_connection *con)
550{
551 dout("prepare_write_keepalive %p\n", con);
552 con->out_kvec[0].iov_base = &tag_keepalive;
553 con->out_kvec[0].iov_len = 1;
554 con->out_kvec_left = 1;
555 con->out_kvec_bytes = 1;
556 con->out_kvec_cur = con->out_kvec;
557 set_bit(WRITE_PENDING, &con->state);
558}
559
560/*
561 * Connection negotiation.
562 */
563
564/*
565 * We connected to a peer and are saying hello.
566 */
eed0ef2c
SW
567static void prepare_write_banner(struct ceph_messenger *msgr,
568 struct ceph_connection *con)
31b8006e
SW
569{
570 int len = strlen(CEPH_BANNER);
eed0ef2c
SW
571
572 con->out_kvec[0].iov_base = CEPH_BANNER;
573 con->out_kvec[0].iov_len = len;
574 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
575 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
576 con->out_kvec_left = 2;
577 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
578 con->out_kvec_cur = con->out_kvec;
579 con->out_more = 0;
580 set_bit(WRITE_PENDING, &con->state);
581}
582
583static void prepare_write_connect(struct ceph_messenger *msgr,
584 struct ceph_connection *con,
585 int after_banner)
586{
31b8006e
SW
587 unsigned global_seq = get_global_seq(con->msgr, 0);
588 int proto;
589
590 switch (con->peer_name.type) {
591 case CEPH_ENTITY_TYPE_MON:
592 proto = CEPH_MONC_PROTOCOL;
593 break;
594 case CEPH_ENTITY_TYPE_OSD:
595 proto = CEPH_OSDC_PROTOCOL;
596 break;
597 case CEPH_ENTITY_TYPE_MDS:
598 proto = CEPH_MDSC_PROTOCOL;
599 break;
600 default:
601 BUG();
602 }
603
604 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
605 con->connect_seq, global_seq, proto);
606 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
607 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
608 con->out_connect.global_seq = cpu_to_le32(global_seq);
609 con->out_connect.protocol_version = cpu_to_le32(proto);
610 con->out_connect.flags = 0;
611 if (test_bit(LOSSYTX, &con->state))
612 con->out_connect.flags = CEPH_MSG_CONNECT_LOSSY;
613
eed0ef2c
SW
614 if (!after_banner) {
615 con->out_kvec_left = 0;
616 con->out_kvec_bytes = 0;
617 }
618 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
619 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
620 con->out_kvec_left++;
621 con->out_kvec_bytes += sizeof(con->out_connect);
31b8006e
SW
622 con->out_kvec_cur = con->out_kvec;
623 con->out_more = 0;
624 set_bit(WRITE_PENDING, &con->state);
625}
626
627
628/*
629 * write as much of pending kvecs to the socket as we can.
630 * 1 -> done
631 * 0 -> socket full, but more to do
632 * <0 -> error
633 */
634static int write_partial_kvec(struct ceph_connection *con)
635{
636 int ret;
637
638 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
639 while (con->out_kvec_bytes > 0) {
640 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
641 con->out_kvec_left, con->out_kvec_bytes,
642 con->out_more);
643 if (ret <= 0)
644 goto out;
645 con->out_kvec_bytes -= ret;
646 if (con->out_kvec_bytes == 0)
647 break; /* done */
648 while (ret > 0) {
649 if (ret >= con->out_kvec_cur->iov_len) {
650 ret -= con->out_kvec_cur->iov_len;
651 con->out_kvec_cur++;
652 con->out_kvec_left--;
653 } else {
654 con->out_kvec_cur->iov_len -= ret;
655 con->out_kvec_cur->iov_base += ret;
656 ret = 0;
657 break;
658 }
659 }
660 }
661 con->out_kvec_left = 0;
662 con->out_kvec_is_msg = false;
663 ret = 1;
664out:
665 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
666 con->out_kvec_bytes, con->out_kvec_left, ret);
667 return ret; /* done! */
668}
669
670/*
671 * Write as much message data payload as we can. If we finish, queue
672 * up the footer.
673 * 1 -> done, footer is now queued in out_kvec[].
674 * 0 -> socket full, but more to do
675 * <0 -> error
676 */
677static int write_partial_msg_pages(struct ceph_connection *con)
678{
679 struct ceph_msg *msg = con->out_msg;
680 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
681 size_t len;
682 int crc = con->msgr->nocrc;
683 int ret;
684
685 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
686 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
687 con->out_msg_pos.page_pos);
688
689 while (con->out_msg_pos.page < con->out_msg->nr_pages) {
690 struct page *page = NULL;
691 void *kaddr = NULL;
692
693 /*
694 * if we are calculating the data crc (the default), we need
695 * to map the page. if our pages[] has been revoked, use the
696 * zero page.
697 */
698 if (msg->pages) {
699 page = msg->pages[con->out_msg_pos.page];
700 if (crc)
701 kaddr = kmap(page);
702 } else {
703 page = con->msgr->zero_page;
704 if (crc)
705 kaddr = page_address(con->msgr->zero_page);
706 }
707 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
708 (int)(data_len - con->out_msg_pos.data_pos));
709 if (crc && !con->out_msg_pos.did_page_crc) {
710 void *base = kaddr + con->out_msg_pos.page_pos;
711 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
712
713 BUG_ON(kaddr == NULL);
714 con->out_msg->footer.data_crc =
715 cpu_to_le32(crc32c(tmpcrc, base, len));
716 con->out_msg_pos.did_page_crc = 1;
717 }
718
719 ret = kernel_sendpage(con->sock, page,
720 con->out_msg_pos.page_pos, len,
721 MSG_DONTWAIT | MSG_NOSIGNAL |
722 MSG_MORE);
723
724 if (crc && msg->pages)
725 kunmap(page);
726
727 if (ret <= 0)
728 goto out;
729
730 con->out_msg_pos.data_pos += ret;
731 con->out_msg_pos.page_pos += ret;
732 if (ret == len) {
733 con->out_msg_pos.page_pos = 0;
734 con->out_msg_pos.page++;
735 con->out_msg_pos.did_page_crc = 0;
736 }
737 }
738
739 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
740
741 /* prepare and queue up footer, too */
742 if (!crc)
743 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
744 con->out_kvec_bytes = 0;
745 con->out_kvec_left = 0;
746 con->out_kvec_cur = con->out_kvec;
747 prepare_write_message_footer(con, 0);
748 ret = 1;
749out:
750 return ret;
751}
752
753/*
754 * write some zeros
755 */
756static int write_partial_skip(struct ceph_connection *con)
757{
758 int ret;
759
760 while (con->out_skip > 0) {
761 struct kvec iov = {
762 .iov_base = page_address(con->msgr->zero_page),
763 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
764 };
765
766 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
767 if (ret <= 0)
768 goto out;
769 con->out_skip -= ret;
770 }
771 ret = 1;
772out:
773 return ret;
774}
775
776/*
777 * Prepare to read connection handshake, or an ack.
778 */
eed0ef2c
SW
779static void prepare_read_banner(struct ceph_connection *con)
780{
781 dout("prepare_read_banner %p\n", con);
782 con->in_base_pos = 0;
783}
784
31b8006e
SW
785static void prepare_read_connect(struct ceph_connection *con)
786{
787 dout("prepare_read_connect %p\n", con);
788 con->in_base_pos = 0;
789}
790
791static void prepare_read_ack(struct ceph_connection *con)
792{
793 dout("prepare_read_ack %p\n", con);
794 con->in_base_pos = 0;
795}
796
797static void prepare_read_tag(struct ceph_connection *con)
798{
799 dout("prepare_read_tag %p\n", con);
800 con->in_base_pos = 0;
801 con->in_tag = CEPH_MSGR_TAG_READY;
802}
803
804/*
805 * Prepare to read a message.
806 */
807static int prepare_read_message(struct ceph_connection *con)
808{
809 dout("prepare_read_message %p\n", con);
810 BUG_ON(con->in_msg != NULL);
811 con->in_base_pos = 0;
812 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
813 return 0;
814}
815
816
817static int read_partial(struct ceph_connection *con,
818 int *to, int size, void *object)
819{
820 *to += size;
821 while (con->in_base_pos < *to) {
822 int left = *to - con->in_base_pos;
823 int have = size - left;
824 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
825 if (ret <= 0)
826 return ret;
827 con->in_base_pos += ret;
828 }
829 return 1;
830}
831
832
833/*
834 * Read all or part of the connect-side handshake on a new connection
835 */
eed0ef2c 836static int read_partial_banner(struct ceph_connection *con)
31b8006e
SW
837{
838 int ret, to = 0;
839
eed0ef2c 840 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
31b8006e
SW
841
842 /* peer's banner */
843 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
844 if (ret <= 0)
845 goto out;
846 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
847 &con->actual_peer_addr);
848 if (ret <= 0)
849 goto out;
850 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
851 &con->peer_addr_for_me);
852 if (ret <= 0)
853 goto out;
eed0ef2c
SW
854out:
855 return ret;
856}
857
858static int read_partial_connect(struct ceph_connection *con)
859{
860 int ret, to = 0;
861
862 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
863
31b8006e
SW
864 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
865 if (ret <= 0)
866 goto out;
867
868 dout("read_partial_connect %p connect_seq = %u, global_seq = %u\n",
869 con, le32_to_cpu(con->in_reply.connect_seq),
870 le32_to_cpu(con->in_reply.global_seq));
871out:
872 return ret;
eed0ef2c 873
31b8006e
SW
874}
875
876/*
877 * Verify the hello banner looks okay.
878 */
879static int verify_hello(struct ceph_connection *con)
880{
881 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
13e38c8a 882 pr_err("connect to %s got bad banner\n",
31b8006e
SW
883 pr_addr(&con->peer_addr.in_addr));
884 con->error_msg = "protocol error, bad banner";
885 return -1;
886 }
887 return 0;
888}
889
890static bool addr_is_blank(struct sockaddr_storage *ss)
891{
892 switch (ss->ss_family) {
893 case AF_INET:
894 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
895 case AF_INET6:
896 return
897 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
898 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
899 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
900 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
901 }
902 return false;
903}
904
905static int addr_port(struct sockaddr_storage *ss)
906{
907 switch (ss->ss_family) {
908 case AF_INET:
f28bcfbe 909 return ntohs(((struct sockaddr_in *)ss)->sin_port);
31b8006e 910 case AF_INET6:
f28bcfbe 911 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
31b8006e
SW
912 }
913 return 0;
914}
915
916static void addr_set_port(struct sockaddr_storage *ss, int p)
917{
918 switch (ss->ss_family) {
919 case AF_INET:
920 ((struct sockaddr_in *)ss)->sin_port = htons(p);
921 case AF_INET6:
922 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
923 }
924}
925
926/*
927 * Parse an ip[:port] list into an addr array. Use the default
928 * monitor port if a port isn't specified.
929 */
930int ceph_parse_ips(const char *c, const char *end,
931 struct ceph_entity_addr *addr,
932 int max_count, int *count)
933{
934 int i;
935 const char *p = c;
936
937 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
938 for (i = 0; i < max_count; i++) {
939 const char *ipend;
940 struct sockaddr_storage *ss = &addr[i].in_addr;
941 struct sockaddr_in *in4 = (void *)ss;
942 struct sockaddr_in6 *in6 = (void *)ss;
943 int port;
944
945 memset(ss, 0, sizeof(*ss));
946 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
947 ',', &ipend)) {
948 ss->ss_family = AF_INET;
949 } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
950 ',', &ipend)) {
951 ss->ss_family = AF_INET6;
952 } else {
953 goto bad;
954 }
955 p = ipend;
956
957 /* port? */
958 if (p < end && *p == ':') {
959 port = 0;
960 p++;
961 while (p < end && *p >= '0' && *p <= '9') {
962 port = (port * 10) + (*p - '0');
963 p++;
964 }
965 if (port > 65535 || port == 0)
966 goto bad;
967 } else {
968 port = CEPH_MON_PORT;
969 }
970
971 addr_set_port(ss, port);
972
973 dout("parse_ips got %s\n", pr_addr(ss));
974
975 if (p == end)
976 break;
977 if (*p != ',')
978 goto bad;
979 p++;
980 }
981
982 if (p != end)
983 goto bad;
984
985 if (count)
986 *count = i + 1;
987 return 0;
988
989bad:
990 pr_err("parse_ips bad ip '%s'\n", c);
991 return -EINVAL;
992}
993
eed0ef2c 994static int process_banner(struct ceph_connection *con)
31b8006e 995{
eed0ef2c 996 dout("process_banner on %p\n", con);
31b8006e
SW
997
998 if (verify_hello(con) < 0)
999 return -1;
1000
63f2d211
SW
1001 ceph_decode_addr(&con->actual_peer_addr);
1002 ceph_decode_addr(&con->peer_addr_for_me);
1003
31b8006e
SW
1004 /*
1005 * Make sure the other end is who we wanted. note that the other
1006 * end may not yet know their ip address, so if it's 0.0.0.0, give
1007 * them the benefit of the doubt.
1008 */
1009 if (!ceph_entity_addr_is_local(&con->peer_addr,
1010 &con->actual_peer_addr) &&
1011 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1012 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1013 pr_err("wrong peer, want %s/%d, "
1014 "got %s/%d, wtf\n",
1015 pr_addr(&con->peer_addr.in_addr),
1016 con->peer_addr.nonce,
1017 pr_addr(&con->actual_peer_addr.in_addr),
1018 con->actual_peer_addr.nonce);
1019 con->error_msg = "protocol error, wrong peer";
1020 return -1;
1021 }
1022
1023 /*
1024 * did we learn our address?
1025 */
1026 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1027 int port = addr_port(&con->msgr->inst.addr.in_addr);
1028
1029 memcpy(&con->msgr->inst.addr.in_addr,
1030 &con->peer_addr_for_me.in_addr,
1031 sizeof(con->peer_addr_for_me.in_addr));
1032 addr_set_port(&con->msgr->inst.addr.in_addr, port);
63f2d211 1033 encode_my_addr(con->msgr);
eed0ef2c 1034 dout("process_banner learned my addr is %s\n",
31b8006e
SW
1035 pr_addr(&con->msgr->inst.addr.in_addr));
1036 }
1037
eed0ef2c
SW
1038 set_bit(NEGOTIATING, &con->state);
1039 prepare_read_connect(con);
1040 return 0;
1041}
1042
1043static int process_connect(struct ceph_connection *con)
1044{
1045 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1046
31b8006e
SW
1047 switch (con->in_reply.tag) {
1048 case CEPH_MSGR_TAG_BADPROTOVER:
1049 dout("process_connect got BADPROTOVER my %d != their %d\n",
1050 le32_to_cpu(con->out_connect.protocol_version),
1051 le32_to_cpu(con->in_reply.protocol_version));
1052 pr_err("%s%lld %s protocol version mismatch,"
1053 " my %d != server's %d\n",
1054 ENTITY_NAME(con->peer_name),
1055 pr_addr(&con->peer_addr.in_addr),
1056 le32_to_cpu(con->out_connect.protocol_version),
1057 le32_to_cpu(con->in_reply.protocol_version));
1058 con->error_msg = "protocol version mismatch";
1059 if (con->ops->bad_proto)
1060 con->ops->bad_proto(con);
1061 reset_connection(con);
1062 set_bit(CLOSED, &con->state); /* in case there's queued work */
1063 return -1;
1064
1065
1066 case CEPH_MSGR_TAG_RESETSESSION:
1067 /*
1068 * If we connected with a large connect_seq but the peer
1069 * has no record of a session with us (no connection, or
1070 * connect_seq == 0), they will send RESETSESION to indicate
1071 * that they must have reset their session, and may have
1072 * dropped messages.
1073 */
1074 dout("process_connect got RESET peer seq %u\n",
1075 le32_to_cpu(con->in_connect.connect_seq));
1076 pr_err("%s%lld %s connection reset\n",
1077 ENTITY_NAME(con->peer_name),
1078 pr_addr(&con->peer_addr.in_addr));
1079 reset_connection(con);
eed0ef2c 1080 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1081 prepare_read_connect(con);
1082
1083 /* Tell ceph about it. */
1084 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1085 if (con->ops->peer_reset)
1086 con->ops->peer_reset(con);
1087 break;
1088
1089 case CEPH_MSGR_TAG_RETRY_SESSION:
1090 /*
1091 * If we sent a smaller connect_seq than the peer has, try
1092 * again with a larger value.
1093 */
1094 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1095 le32_to_cpu(con->out_connect.connect_seq),
1096 le32_to_cpu(con->in_connect.connect_seq));
1097 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
eed0ef2c 1098 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1099 prepare_read_connect(con);
1100 break;
1101
1102 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1103 /*
1104 * If we sent a smaller global_seq than the peer has, try
1105 * again with a larger value.
1106 */
eed0ef2c 1107 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
31b8006e
SW
1108 con->peer_global_seq,
1109 le32_to_cpu(con->in_connect.global_seq));
1110 get_global_seq(con->msgr,
1111 le32_to_cpu(con->in_connect.global_seq));
eed0ef2c 1112 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1113 prepare_read_connect(con);
1114 break;
1115
1116 case CEPH_MSGR_TAG_READY:
1117 clear_bit(CONNECTING, &con->state);
31b8006e
SW
1118 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1119 con->connect_seq++;
1120 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1121 con->peer_global_seq,
1122 le32_to_cpu(con->in_reply.connect_seq),
1123 con->connect_seq);
1124 WARN_ON(con->connect_seq !=
1125 le32_to_cpu(con->in_reply.connect_seq));
1126
1127 con->delay = 0; /* reset backoff memory */
1128 prepare_read_tag(con);
1129 break;
1130
1131 case CEPH_MSGR_TAG_WAIT:
1132 /*
1133 * If there is a connection race (we are opening
1134 * connections to each other), one of us may just have
1135 * to WAIT. This shouldn't happen if we are the
1136 * client.
1137 */
1138 pr_err("process_connect peer connecting WAIT\n");
1139
1140 default:
1141 pr_err("connect protocol error, will retry\n");
1142 con->error_msg = "protocol error, garbage tag during connect";
1143 return -1;
1144 }
1145 return 0;
1146}
1147
1148
1149/*
1150 * read (part of) an ack
1151 */
1152static int read_partial_ack(struct ceph_connection *con)
1153{
1154 int to = 0;
1155
1156 return read_partial(con, &to, sizeof(con->in_temp_ack),
1157 &con->in_temp_ack);
1158}
1159
1160
1161/*
1162 * We can finally discard anything that's been acked.
1163 */
1164static void process_ack(struct ceph_connection *con)
1165{
1166 struct ceph_msg *m;
1167 u64 ack = le64_to_cpu(con->in_temp_ack);
1168 u64 seq;
1169
1170 mutex_lock(&con->out_mutex);
1171 while (!list_empty(&con->out_sent)) {
1172 m = list_first_entry(&con->out_sent, struct ceph_msg,
1173 list_head);
1174 seq = le64_to_cpu(m->hdr.seq);
1175 if (seq > ack)
1176 break;
1177 dout("got ack for seq %llu type %d at %p\n", seq,
1178 le16_to_cpu(m->hdr.type), m);
1179 ceph_msg_remove(m);
1180 }
1181 mutex_unlock(&con->out_mutex);
1182 prepare_read_tag(con);
1183}
1184
1185
1186
1187
1188
1189
1190/*
1191 * read (part of) a message.
1192 */
1193static int read_partial_message(struct ceph_connection *con)
1194{
1195 struct ceph_msg *m = con->in_msg;
1196 void *p;
1197 int ret;
1198 int to, want, left;
1199 unsigned front_len, middle_len, data_len, data_off;
1200 int datacrc = con->msgr->nocrc;
1201
1202 dout("read_partial_message con %p msg %p\n", con, m);
1203
1204 /* header */
1205 while (con->in_base_pos < sizeof(con->in_hdr)) {
1206 left = sizeof(con->in_hdr) - con->in_base_pos;
1207 ret = ceph_tcp_recvmsg(con->sock,
1208 (char *)&con->in_hdr + con->in_base_pos,
1209 left);
1210 if (ret <= 0)
1211 return ret;
1212 con->in_base_pos += ret;
1213 if (con->in_base_pos == sizeof(con->in_hdr)) {
1214 u32 crc = crc32c(0, (void *)&con->in_hdr,
1215 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1216 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1217 pr_err("read_partial_message bad hdr "
1218 " crc %u != expected %u\n",
1219 crc, con->in_hdr.crc);
1220 return -EBADMSG;
1221 }
1222 }
1223 }
1224
1225 front_len = le32_to_cpu(con->in_hdr.front_len);
1226 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1227 return -EIO;
1228 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1229 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1230 return -EIO;
1231 data_len = le32_to_cpu(con->in_hdr.data_len);
1232 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1233 return -EIO;
1234
1235 /* allocate message? */
1236 if (!con->in_msg) {
1237 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1238 con->in_hdr.front_len, con->in_hdr.data_len);
1239 con->in_msg = con->ops->alloc_msg(con, &con->in_hdr);
1240 if (!con->in_msg) {
1241 /* skip this message */
1242 dout("alloc_msg returned NULL, skipping message\n");
1243 con->in_base_pos = -front_len - middle_len - data_len -
1244 sizeof(m->footer);
1245 con->in_tag = CEPH_MSGR_TAG_READY;
1246 return 0;
1247 }
1248 if (IS_ERR(con->in_msg)) {
1249 ret = PTR_ERR(con->in_msg);
1250 con->in_msg = NULL;
1251 con->error_msg = "out of memory for incoming message";
1252 return ret;
1253 }
1254 m = con->in_msg;
1255 m->front.iov_len = 0; /* haven't read it yet */
1256 memcpy(&m->hdr, &con->in_hdr, sizeof(con->in_hdr));
1257 }
1258
1259 /* front */
1260 while (m->front.iov_len < front_len) {
1261 BUG_ON(m->front.iov_base == NULL);
1262 left = front_len - m->front.iov_len;
1263 ret = ceph_tcp_recvmsg(con->sock, (char *)m->front.iov_base +
1264 m->front.iov_len, left);
1265 if (ret <= 0)
1266 return ret;
1267 m->front.iov_len += ret;
1268 if (m->front.iov_len == front_len)
1269 con->in_front_crc = crc32c(0, m->front.iov_base,
1270 m->front.iov_len);
1271 }
1272
1273 /* middle */
1274 while (middle_len > 0 && (!m->middle ||
1275 m->middle->vec.iov_len < middle_len)) {
1276 if (m->middle == NULL) {
1277 ret = -EOPNOTSUPP;
1278 if (con->ops->alloc_middle)
1279 ret = con->ops->alloc_middle(con, m);
1280 if (ret < 0) {
1281 dout("alloc_middle failed, skipping payload\n");
1282 con->in_base_pos = -middle_len - data_len
1283 - sizeof(m->footer);
1284 ceph_msg_put(con->in_msg);
1285 con->in_msg = NULL;
1286 con->in_tag = CEPH_MSGR_TAG_READY;
1287 return 0;
1288 }
1289 m->middle->vec.iov_len = 0;
1290 }
1291 left = middle_len - m->middle->vec.iov_len;
1292 ret = ceph_tcp_recvmsg(con->sock,
1293 (char *)m->middle->vec.iov_base +
1294 m->middle->vec.iov_len, left);
1295 if (ret <= 0)
1296 return ret;
1297 m->middle->vec.iov_len += ret;
1298 if (m->middle->vec.iov_len == middle_len)
1299 con->in_middle_crc = crc32c(0, m->middle->vec.iov_base,
1300 m->middle->vec.iov_len);
1301 }
1302
1303 /* (page) data */
1304 data_off = le16_to_cpu(m->hdr.data_off);
1305 if (data_len == 0)
1306 goto no_data;
1307
1308 if (m->nr_pages == 0) {
1309 con->in_msg_pos.page = 0;
1310 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1311 con->in_msg_pos.data_pos = 0;
1312 /* find pages for data payload */
1313 want = calc_pages_for(data_off & ~PAGE_MASK, data_len);
1314 ret = -1;
1315 if (con->ops->prepare_pages)
1316 ret = con->ops->prepare_pages(con, m, want);
1317 if (ret < 0) {
1318 dout("%p prepare_pages failed, skipping payload\n", m);
1319 con->in_base_pos = -data_len - sizeof(m->footer);
1320 ceph_msg_put(con->in_msg);
1321 con->in_msg = NULL;
1322 con->in_tag = CEPH_MSGR_TAG_READY;
1323 return 0;
1324 }
1325 BUG_ON(m->nr_pages < want);
1326 }
1327 while (con->in_msg_pos.data_pos < data_len) {
1328 left = min((int)(data_len - con->in_msg_pos.data_pos),
1329 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1330 BUG_ON(m->pages == NULL);
1331 p = kmap(m->pages[con->in_msg_pos.page]);
1332 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1333 left);
1334 if (ret > 0 && datacrc)
1335 con->in_data_crc =
1336 crc32c(con->in_data_crc,
1337 p + con->in_msg_pos.page_pos, ret);
1338 kunmap(m->pages[con->in_msg_pos.page]);
1339 if (ret <= 0)
1340 return ret;
1341 con->in_msg_pos.data_pos += ret;
1342 con->in_msg_pos.page_pos += ret;
1343 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1344 con->in_msg_pos.page_pos = 0;
1345 con->in_msg_pos.page++;
1346 }
1347 }
1348
1349no_data:
1350 /* footer */
1351 to = sizeof(m->hdr) + sizeof(m->footer);
1352 while (con->in_base_pos < to) {
1353 left = to - con->in_base_pos;
1354 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1355 (con->in_base_pos - sizeof(m->hdr)),
1356 left);
1357 if (ret <= 0)
1358 return ret;
1359 con->in_base_pos += ret;
1360 }
1361 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1362 m, front_len, m->footer.front_crc, middle_len,
1363 m->footer.middle_crc, data_len, m->footer.data_crc);
1364
1365 /* crc ok? */
1366 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1367 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1368 m, con->in_front_crc, m->footer.front_crc);
1369 return -EBADMSG;
1370 }
1371 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1372 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1373 m, con->in_middle_crc, m->footer.middle_crc);
1374 return -EBADMSG;
1375 }
1376 if (datacrc &&
1377 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1378 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1379 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1380 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1381 return -EBADMSG;
1382 }
1383
1384 return 1; /* done! */
1385}
1386
1387/*
1388 * Process message. This happens in the worker thread. The callback should
1389 * be careful not to do anything that waits on other incoming messages or it
1390 * may deadlock.
1391 */
1392static void process_message(struct ceph_connection *con)
1393{
1394 struct ceph_msg *msg = con->in_msg;
1395
1396 con->in_msg = NULL;
1397
1398 /* if first message, set peer_name */
1399 if (con->peer_name.type == 0)
1400 con->peer_name = msg->hdr.src.name;
1401
1402 mutex_lock(&con->out_mutex);
1403 con->in_seq++;
1404 mutex_unlock(&con->out_mutex);
1405
1406 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1407 msg, le64_to_cpu(msg->hdr.seq),
1408 ENTITY_NAME(msg->hdr.src.name),
1409 le16_to_cpu(msg->hdr.type),
1410 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1411 le32_to_cpu(msg->hdr.front_len),
1412 le32_to_cpu(msg->hdr.data_len),
1413 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1414 con->ops->dispatch(con, msg);
1415 prepare_read_tag(con);
1416}
1417
1418
1419/*
1420 * Write something to the socket. Called in a worker thread when the
1421 * socket appears to be writeable and we have something ready to send.
1422 */
1423static int try_write(struct ceph_connection *con)
1424{
1425 struct ceph_messenger *msgr = con->msgr;
1426 int ret = 1;
1427
1428 dout("try_write start %p state %lu nref %d\n", con, con->state,
1429 atomic_read(&con->nref));
1430
1431 mutex_lock(&con->out_mutex);
1432more:
1433 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1434
1435 /* open the socket first? */
1436 if (con->sock == NULL) {
1437 /*
1438 * if we were STANDBY and are reconnecting _this_
1439 * connection, bump connect_seq now. Always bump
1440 * global_seq.
1441 */
1442 if (test_and_clear_bit(STANDBY, &con->state))
1443 con->connect_seq++;
1444
eed0ef2c
SW
1445 prepare_write_banner(msgr, con);
1446 prepare_write_connect(msgr, con, 1);
1447 prepare_read_banner(con);
31b8006e 1448 set_bit(CONNECTING, &con->state);
eed0ef2c 1449 clear_bit(NEGOTIATING, &con->state);
31b8006e
SW
1450
1451 con->in_tag = CEPH_MSGR_TAG_READY;
1452 dout("try_write initiating connect on %p new state %lu\n",
1453 con, con->state);
1454 con->sock = ceph_tcp_connect(con);
1455 if (IS_ERR(con->sock)) {
1456 con->sock = NULL;
1457 con->error_msg = "connect error";
1458 ret = -1;
1459 goto out;
1460 }
1461 }
1462
1463more_kvec:
1464 /* kvec data queued? */
1465 if (con->out_skip) {
1466 ret = write_partial_skip(con);
1467 if (ret <= 0)
1468 goto done;
1469 if (ret < 0) {
1470 dout("try_write write_partial_skip err %d\n", ret);
1471 goto done;
1472 }
1473 }
1474 if (con->out_kvec_left) {
1475 ret = write_partial_kvec(con);
1476 if (ret <= 0)
1477 goto done;
1478 if (ret < 0) {
1479 dout("try_write write_partial_kvec err %d\n", ret);
1480 goto done;
1481 }
1482 }
1483
1484 /* msg pages? */
1485 if (con->out_msg) {
1486 ret = write_partial_msg_pages(con);
1487 if (ret == 1)
1488 goto more_kvec; /* we need to send the footer, too! */
1489 if (ret == 0)
1490 goto done;
1491 if (ret < 0) {
1492 dout("try_write write_partial_msg_pages err %d\n",
1493 ret);
1494 goto done;
1495 }
1496 }
1497
1498 if (!test_bit(CONNECTING, &con->state)) {
1499 /* is anything else pending? */
1500 if (!list_empty(&con->out_queue)) {
1501 prepare_write_message(con);
1502 goto more;
1503 }
1504 if (con->in_seq > con->in_seq_acked) {
1505 prepare_write_ack(con);
1506 goto more;
1507 }
1508 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1509 prepare_write_keepalive(con);
1510 goto more;
1511 }
1512 }
1513
1514 /* Nothing to do! */
1515 clear_bit(WRITE_PENDING, &con->state);
1516 dout("try_write nothing else to write.\n");
1517done:
1518 ret = 0;
1519out:
1520 mutex_unlock(&con->out_mutex);
1521 dout("try_write done on %p\n", con);
1522 return ret;
1523}
1524
1525
1526
1527/*
1528 * Read what we can from the socket.
1529 */
1530static int try_read(struct ceph_connection *con)
1531{
1532 struct ceph_messenger *msgr;
1533 int ret = -1;
1534
1535 if (!con->sock)
1536 return 0;
1537
1538 if (test_bit(STANDBY, &con->state))
1539 return 0;
1540
1541 dout("try_read start on %p\n", con);
1542 msgr = con->msgr;
1543
1544more:
1545 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1546 con->in_base_pos);
1547 if (test_bit(CONNECTING, &con->state)) {
eed0ef2c
SW
1548 if (!test_bit(NEGOTIATING, &con->state)) {
1549 dout("try_read connecting\n");
1550 ret = read_partial_banner(con);
1551 if (ret <= 0)
1552 goto done;
1553 if (process_banner(con) < 0) {
1554 ret = -1;
1555 goto out;
1556 }
1557 }
31b8006e
SW
1558 ret = read_partial_connect(con);
1559 if (ret <= 0)
1560 goto done;
1561 if (process_connect(con) < 0) {
1562 ret = -1;
1563 goto out;
1564 }
1565 goto more;
1566 }
1567
1568 if (con->in_base_pos < 0) {
1569 /*
1570 * skipping + discarding content.
1571 *
1572 * FIXME: there must be a better way to do this!
1573 */
1574 static char buf[1024];
1575 int skip = min(1024, -con->in_base_pos);
1576 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1577 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1578 if (ret <= 0)
1579 goto done;
1580 con->in_base_pos += ret;
1581 if (con->in_base_pos)
1582 goto more;
1583 }
1584 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1585 /*
1586 * what's next?
1587 */
1588 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1589 if (ret <= 0)
1590 goto done;
1591 dout("try_read got tag %d\n", (int)con->in_tag);
1592 switch (con->in_tag) {
1593 case CEPH_MSGR_TAG_MSG:
1594 prepare_read_message(con);
1595 break;
1596 case CEPH_MSGR_TAG_ACK:
1597 prepare_read_ack(con);
1598 break;
1599 case CEPH_MSGR_TAG_CLOSE:
1600 set_bit(CLOSED, &con->state); /* fixme */
1601 goto done;
1602 default:
1603 goto bad_tag;
1604 }
1605 }
1606 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1607 ret = read_partial_message(con);
1608 if (ret <= 0) {
1609 switch (ret) {
1610 case -EBADMSG:
1611 con->error_msg = "bad crc";
1612 ret = -EIO;
1613 goto out;
1614 case -EIO:
1615 con->error_msg = "io error";
1616 goto out;
1617 default:
1618 goto done;
1619 }
1620 }
1621 if (con->in_tag == CEPH_MSGR_TAG_READY)
1622 goto more;
1623 process_message(con);
1624 goto more;
1625 }
1626 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1627 ret = read_partial_ack(con);
1628 if (ret <= 0)
1629 goto done;
1630 process_ack(con);
1631 goto more;
1632 }
1633
1634done:
1635 ret = 0;
1636out:
1637 dout("try_read done on %p\n", con);
1638 return ret;
1639
1640bad_tag:
1641 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1642 con->error_msg = "protocol error, garbage tag";
1643 ret = -1;
1644 goto out;
1645}
1646
1647
1648/*
1649 * Atomically queue work on a connection. Bump @con reference to
1650 * avoid races with connection teardown.
1651 *
1652 * There is some trickery going on with QUEUED and BUSY because we
1653 * only want a _single_ thread operating on each connection at any
1654 * point in time, but we want to use all available CPUs.
1655 *
1656 * The worker thread only proceeds if it can atomically set BUSY. It
1657 * clears QUEUED and does it's thing. When it thinks it's done, it
1658 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1659 * (tries again to set BUSY).
1660 *
1661 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1662 * try to queue work. If that fails (work is already queued, or BUSY)
1663 * we give up (work also already being done or is queued) but leave QUEUED
1664 * set so that the worker thread will loop if necessary.
1665 */
1666static void queue_con(struct ceph_connection *con)
1667{
1668 if (test_bit(DEAD, &con->state)) {
1669 dout("queue_con %p ignoring: DEAD\n",
1670 con);
1671 return;
1672 }
1673
1674 if (!con->ops->get(con)) {
1675 dout("queue_con %p ref count 0\n", con);
1676 return;
1677 }
1678
1679 set_bit(QUEUED, &con->state);
1680 if (test_bit(BUSY, &con->state)) {
1681 dout("queue_con %p - already BUSY\n", con);
1682 con->ops->put(con);
1683 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1684 dout("queue_con %p - already queued\n", con);
1685 con->ops->put(con);
1686 } else {
1687 dout("queue_con %p\n", con);
1688 }
1689}
1690
1691/*
1692 * Do some work on a connection. Drop a connection ref when we're done.
1693 */
1694static void con_work(struct work_struct *work)
1695{
1696 struct ceph_connection *con = container_of(work, struct ceph_connection,
1697 work.work);
1698 int backoff = 0;
1699
1700more:
1701 if (test_and_set_bit(BUSY, &con->state) != 0) {
1702 dout("con_work %p BUSY already set\n", con);
1703 goto out;
1704 }
1705 dout("con_work %p start, clearing QUEUED\n", con);
1706 clear_bit(QUEUED, &con->state);
1707
1708 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1709 dout("con_work CLOSED\n");
1710 con_close_socket(con);
1711 goto done;
1712 }
1713 if (test_and_clear_bit(OPENING, &con->state)) {
1714 /* reopen w/ new peer */
1715 dout("con_work OPENING\n");
1716 con_close_socket(con);
1717 }
1718
1719 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1720 try_read(con) < 0 ||
1721 try_write(con) < 0) {
1722 backoff = 1;
1723 ceph_fault(con); /* error/fault path */
1724 }
1725
1726done:
1727 clear_bit(BUSY, &con->state);
1728 dout("con->state=%lu\n", con->state);
1729 if (test_bit(QUEUED, &con->state)) {
1730 if (!backoff) {
1731 dout("con_work %p QUEUED reset, looping\n", con);
1732 goto more;
1733 }
1734 dout("con_work %p QUEUED reset, but just faulted\n", con);
1735 clear_bit(QUEUED, &con->state);
1736 }
1737 dout("con_work %p done\n", con);
1738
1739out:
1740 con->ops->put(con);
1741}
1742
1743
1744/*
1745 * Generic error/fault handler. A retry mechanism is used with
1746 * exponential backoff
1747 */
1748static void ceph_fault(struct ceph_connection *con)
1749{
1750 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1751 pr_addr(&con->peer_addr.in_addr), con->error_msg);
1752 dout("fault %p state %lu to peer %s\n",
1753 con, con->state, pr_addr(&con->peer_addr.in_addr));
1754
1755 if (test_bit(LOSSYTX, &con->state)) {
1756 dout("fault on LOSSYTX channel\n");
1757 goto out;
1758 }
1759
1760 clear_bit(BUSY, &con->state); /* to avoid an improbable race */
1761
1762 con_close_socket(con);
1763 con->in_msg = NULL;
1764
1765 /* If there are no messages in the queue, place the connection
1766 * in a STANDBY state (i.e., don't try to reconnect just yet). */
1767 mutex_lock(&con->out_mutex);
1768 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1769 dout("fault setting STANDBY\n");
1770 set_bit(STANDBY, &con->state);
1771 mutex_unlock(&con->out_mutex);
1772 goto out;
1773 }
1774
1775 /* Requeue anything that hasn't been acked, and retry after a
1776 * delay. */
1777 list_splice_init(&con->out_sent, &con->out_queue);
1778 mutex_unlock(&con->out_mutex);
1779
1780 if (con->delay == 0)
1781 con->delay = BASE_DELAY_INTERVAL;
1782 else if (con->delay < MAX_DELAY_INTERVAL)
1783 con->delay *= 2;
1784
1785 /* explicitly schedule work to try to reconnect again later. */
1786 dout("fault queueing %p delay %lu\n", con, con->delay);
1787 con->ops->get(con);
1788 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1789 round_jiffies_relative(con->delay)) == 0)
1790 con->ops->put(con);
1791
1792out:
1793 if (con->ops->fault)
1794 con->ops->fault(con);
1795}
1796
1797
1798
1799/*
1800 * create a new messenger instance
1801 */
1802struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1803{
1804 struct ceph_messenger *msgr;
1805
1806 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1807 if (msgr == NULL)
1808 return ERR_PTR(-ENOMEM);
1809
1810 spin_lock_init(&msgr->global_seq_lock);
1811
1812 /* the zero page is needed if a request is "canceled" while the message
1813 * is being written over the socket */
1814 msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1815 if (!msgr->zero_page) {
1816 kfree(msgr);
1817 return ERR_PTR(-ENOMEM);
1818 }
1819 kmap(msgr->zero_page);
1820
1821 if (myaddr)
1822 msgr->inst.addr = *myaddr;
1823
1824 /* select a random nonce */
1825 get_random_bytes(&msgr->inst.addr.nonce,
1826 sizeof(msgr->inst.addr.nonce));
63f2d211 1827 encode_my_addr(msgr);
31b8006e
SW
1828
1829 dout("messenger_create %p\n", msgr);
1830 return msgr;
1831}
1832
1833void ceph_messenger_destroy(struct ceph_messenger *msgr)
1834{
1835 dout("destroy %p\n", msgr);
1836 kunmap(msgr->zero_page);
1837 __free_page(msgr->zero_page);
1838 kfree(msgr);
1839 dout("destroyed messenger %p\n", msgr);
1840}
1841
1842/*
1843 * Queue up an outgoing message on the given connection.
1844 */
1845void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1846{
1847 if (test_bit(CLOSED, &con->state)) {
1848 dout("con_send %p closed, dropping %p\n", con, msg);
1849 ceph_msg_put(msg);
1850 return;
1851 }
1852
1853 /* set src+dst */
63f2d211
SW
1854 msg->hdr.src.name = con->msgr->inst.name;
1855 msg->hdr.src.addr = con->msgr->my_enc_addr;
1856 msg->hdr.orig_src = msg->hdr.src;
31b8006e
SW
1857 msg->hdr.dst_erank = con->peer_addr.erank;
1858
1859 /* queue */
1860 mutex_lock(&con->out_mutex);
1861 BUG_ON(!list_empty(&msg->list_head));
1862 list_add_tail(&msg->list_head, &con->out_queue);
1863 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1864 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1865 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1866 le32_to_cpu(msg->hdr.front_len),
1867 le32_to_cpu(msg->hdr.middle_len),
1868 le32_to_cpu(msg->hdr.data_len));
1869 mutex_unlock(&con->out_mutex);
1870
1871 /* if there wasn't anything waiting to send before, queue
1872 * new work */
1873 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1874 queue_con(con);
1875}
1876
1877/*
1878 * Revoke a message that was previously queued for send
1879 */
1880void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
1881{
1882 mutex_lock(&con->out_mutex);
1883 if (!list_empty(&msg->list_head)) {
1884 dout("con_revoke %p msg %p\n", con, msg);
1885 list_del_init(&msg->list_head);
1886 ceph_msg_put(msg);
1887 msg->hdr.seq = 0;
1888 if (con->out_msg == msg)
1889 con->out_msg = NULL;
1890 if (con->out_kvec_is_msg) {
1891 con->out_skip = con->out_kvec_bytes;
1892 con->out_kvec_is_msg = false;
1893 }
1894 } else {
1895 dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg);
1896 }
1897 mutex_unlock(&con->out_mutex);
1898}
1899
1900/*
1901 * Queue a keepalive byte to ensure the tcp connection is alive.
1902 */
1903void ceph_con_keepalive(struct ceph_connection *con)
1904{
1905 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
1906 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1907 queue_con(con);
1908}
1909
1910
1911/*
1912 * construct a new message with given type, size
1913 * the new msg has a ref count of 1.
1914 */
1915struct ceph_msg *ceph_msg_new(int type, int front_len,
1916 int page_len, int page_off, struct page **pages)
1917{
1918 struct ceph_msg *m;
1919
1920 m = kmalloc(sizeof(*m), GFP_NOFS);
1921 if (m == NULL)
1922 goto out;
1923 atomic_set(&m->nref, 1);
1924 INIT_LIST_HEAD(&m->list_head);
1925
1926 m->hdr.type = cpu_to_le16(type);
1927 m->hdr.front_len = cpu_to_le32(front_len);
1928 m->hdr.middle_len = 0;
1929 m->hdr.data_len = cpu_to_le32(page_len);
1930 m->hdr.data_off = cpu_to_le16(page_off);
1931 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1932 m->footer.front_crc = 0;
1933 m->footer.middle_crc = 0;
1934 m->footer.data_crc = 0;
1935 m->front_max = front_len;
1936 m->front_is_vmalloc = false;
1937 m->more_to_follow = false;
1938 m->pool = NULL;
1939
1940 /* front */
1941 if (front_len) {
1942 if (front_len > PAGE_CACHE_SIZE) {
1943 m->front.iov_base = __vmalloc(front_len, GFP_NOFS,
1944 PAGE_KERNEL);
1945 m->front_is_vmalloc = true;
1946 } else {
1947 m->front.iov_base = kmalloc(front_len, GFP_NOFS);
1948 }
1949 if (m->front.iov_base == NULL) {
1950 pr_err("msg_new can't allocate %d bytes\n",
1951 front_len);
1952 goto out2;
1953 }
1954 } else {
1955 m->front.iov_base = NULL;
1956 }
1957 m->front.iov_len = front_len;
1958
1959 /* middle */
1960 m->middle = NULL;
1961
1962 /* data */
1963 m->nr_pages = calc_pages_for(page_off, page_len);
1964 m->pages = pages;
1965
1966 dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len,
1967 m->nr_pages);
1968 return m;
1969
1970out2:
1971 ceph_msg_put(m);
1972out:
1973 pr_err("msg_new can't create type %d len %d\n", type, front_len);
1974 return ERR_PTR(-ENOMEM);
1975}
1976
1977/*
1978 * Generic message allocator, for incoming messages.
1979 */
1980struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1981 struct ceph_msg_header *hdr)
1982{
1983 int type = le16_to_cpu(hdr->type);
1984 int front_len = le32_to_cpu(hdr->front_len);
1985 struct ceph_msg *msg = ceph_msg_new(type, front_len, 0, 0, NULL);
1986
1987 if (!msg) {
1988 pr_err("unable to allocate msg type %d len %d\n",
1989 type, front_len);
1990 return ERR_PTR(-ENOMEM);
1991 }
1992 return msg;
1993}
1994
1995/*
1996 * Allocate "middle" portion of a message, if it is needed and wasn't
1997 * allocated by alloc_msg. This allows us to read a small fixed-size
1998 * per-type header in the front and then gracefully fail (i.e.,
1999 * propagate the error to the caller based on info in the front) when
2000 * the middle is too large.
2001 */
2002int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2003{
2004 int type = le16_to_cpu(msg->hdr.type);
2005 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2006
2007 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2008 ceph_msg_type_name(type), middle_len);
2009 BUG_ON(!middle_len);
2010 BUG_ON(msg->middle);
2011
2012 msg->middle = ceph_buffer_new_alloc(middle_len, GFP_NOFS);
2013 if (!msg->middle)
2014 return -ENOMEM;
2015 return 0;
2016}
2017
2018
2019/*
2020 * Free a generically kmalloc'd message.
2021 */
2022void ceph_msg_kfree(struct ceph_msg *m)
2023{
2024 dout("msg_kfree %p\n", m);
2025 if (m->front_is_vmalloc)
2026 vfree(m->front.iov_base);
2027 else
2028 kfree(m->front.iov_base);
2029 kfree(m);
2030}
2031
2032/*
2033 * Drop a msg ref. Destroy as needed.
2034 */
2035void ceph_msg_put(struct ceph_msg *m)
2036{
2037 dout("ceph_msg_put %p %d -> %d\n", m, atomic_read(&m->nref),
2038 atomic_read(&m->nref)-1);
2039 if (atomic_read(&m->nref) <= 0) {
2040 pr_err("bad ceph_msg_put on %p %llu %d=%s %d+%d\n",
2041 m, le64_to_cpu(m->hdr.seq),
2042 le16_to_cpu(m->hdr.type),
2043 ceph_msg_type_name(le16_to_cpu(m->hdr.type)),
2044 le32_to_cpu(m->hdr.front_len),
2045 le32_to_cpu(m->hdr.data_len));
2046 WARN_ON(1);
2047 }
2048 if (atomic_dec_and_test(&m->nref)) {
2049 dout("ceph_msg_put last one on %p\n", m);
2050 WARN_ON(!list_empty(&m->list_head));
2051
2052 /* drop middle, data, if any */
2053 if (m->middle) {
2054 ceph_buffer_put(m->middle);
2055 m->middle = NULL;
2056 }
2057 m->nr_pages = 0;
2058 m->pages = NULL;
2059
2060 if (m->pool)
2061 ceph_msgpool_put(m->pool, m);
2062 else
2063 ceph_msg_kfree(m);
2064 }
2065}