]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/buffer.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86
[net-next-2.6.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
1da177e4
LT
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
55
56static int sync_buffer(void *word)
57{
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
61
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
68}
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4
LT
71{
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
74}
75EXPORT_SYMBOL(__lock_buffer);
76
fc9b52cd 77void unlock_buffer(struct buffer_head *bh)
1da177e4 78{
72ed3d03 79 smp_mb__before_clear_bit();
1da177e4
LT
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83}
84
85/*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90void __wait_on_buffer(struct buffer_head * bh)
91{
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93}
94
95static void
96__clear_page_buffers(struct page *page)
97{
98 ClearPagePrivate(page);
4c21e2f2 99 set_page_private(page, 0);
1da177e4
LT
100 page_cache_release(page);
101}
102
103static void buffer_io_error(struct buffer_head *bh)
104{
105 char b[BDEVNAME_SIZE];
106
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
110}
111
112/*
68671f35
DM
113 * End-of-IO handler helper function which does not touch the bh after
114 * unlocking it.
115 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116 * a race there is benign: unlock_buffer() only use the bh's address for
117 * hashing after unlocking the buffer, so it doesn't actually touch the bh
118 * itself.
1da177e4 119 */
68671f35 120static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
121{
122 if (uptodate) {
123 set_buffer_uptodate(bh);
124 } else {
125 /* This happens, due to failed READA attempts. */
126 clear_buffer_uptodate(bh);
127 }
128 unlock_buffer(bh);
68671f35
DM
129}
130
131/*
132 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
133 * unlock the buffer. This is what ll_rw_block uses too.
134 */
135void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136{
137 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
138 put_bh(bh);
139}
140
141void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142{
143 char b[BDEVNAME_SIZE];
144
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
148 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149 buffer_io_error(bh);
150 printk(KERN_WARNING "lost page write due to "
151 "I/O error on %s\n",
152 bdevname(bh->b_bdev, b));
153 }
154 set_buffer_write_io_error(bh);
155 clear_buffer_uptodate(bh);
156 }
157 unlock_buffer(bh);
158 put_bh(bh);
159}
160
161/*
162 * Write out and wait upon all the dirty data associated with a block
163 * device via its mapping. Does not take the superblock lock.
164 */
165int sync_blockdev(struct block_device *bdev)
166{
167 int ret = 0;
168
28fd1298
OH
169 if (bdev)
170 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
1da177e4
LT
171 return ret;
172}
173EXPORT_SYMBOL(sync_blockdev);
174
1da177e4
LT
175/*
176 * Write out and wait upon all dirty data associated with this
177 * device. Filesystem data as well as the underlying block
178 * device. Takes the superblock lock.
179 */
180int fsync_bdev(struct block_device *bdev)
181{
182 struct super_block *sb = get_super(bdev);
183 if (sb) {
184 int res = fsync_super(sb);
185 drop_super(sb);
186 return res;
187 }
188 return sync_blockdev(bdev);
189}
190
191/**
192 * freeze_bdev -- lock a filesystem and force it into a consistent state
193 * @bdev: blockdevice to lock
194 *
f73ca1b7 195 * This takes the block device bd_mount_sem to make sure no new mounts
1da177e4
LT
196 * happen on bdev until thaw_bdev() is called.
197 * If a superblock is found on this device, we take the s_umount semaphore
198 * on it to make sure nobody unmounts until the snapshot creation is done.
199 */
200struct super_block *freeze_bdev(struct block_device *bdev)
201{
202 struct super_block *sb;
203
f73ca1b7 204 down(&bdev->bd_mount_sem);
1da177e4
LT
205 sb = get_super(bdev);
206 if (sb && !(sb->s_flags & MS_RDONLY)) {
207 sb->s_frozen = SB_FREEZE_WRITE;
d59dd462 208 smp_wmb();
1da177e4 209
d25b9a1f 210 __fsync_super(sb);
1da177e4
LT
211
212 sb->s_frozen = SB_FREEZE_TRANS;
d59dd462 213 smp_wmb();
1da177e4
LT
214
215 sync_blockdev(sb->s_bdev);
216
217 if (sb->s_op->write_super_lockfs)
218 sb->s_op->write_super_lockfs(sb);
219 }
220
221 sync_blockdev(bdev);
222 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
223}
224EXPORT_SYMBOL(freeze_bdev);
225
226/**
227 * thaw_bdev -- unlock filesystem
228 * @bdev: blockdevice to unlock
229 * @sb: associated superblock
230 *
231 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232 */
233void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234{
235 if (sb) {
236 BUG_ON(sb->s_bdev != bdev);
237
238 if (sb->s_op->unlockfs)
239 sb->s_op->unlockfs(sb);
240 sb->s_frozen = SB_UNFROZEN;
d59dd462 241 smp_wmb();
1da177e4
LT
242 wake_up(&sb->s_wait_unfrozen);
243 drop_super(sb);
244 }
245
f73ca1b7 246 up(&bdev->bd_mount_sem);
1da177e4
LT
247}
248EXPORT_SYMBOL(thaw_bdev);
249
1da177e4
LT
250/*
251 * Various filesystems appear to want __find_get_block to be non-blocking.
252 * But it's the page lock which protects the buffers. To get around this,
253 * we get exclusion from try_to_free_buffers with the blockdev mapping's
254 * private_lock.
255 *
256 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257 * may be quite high. This code could TryLock the page, and if that
258 * succeeds, there is no need to take private_lock. (But if
259 * private_lock is contended then so is mapping->tree_lock).
260 */
261static struct buffer_head *
385fd4c5 262__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
263{
264 struct inode *bd_inode = bdev->bd_inode;
265 struct address_space *bd_mapping = bd_inode->i_mapping;
266 struct buffer_head *ret = NULL;
267 pgoff_t index;
268 struct buffer_head *bh;
269 struct buffer_head *head;
270 struct page *page;
271 int all_mapped = 1;
272
273 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274 page = find_get_page(bd_mapping, index);
275 if (!page)
276 goto out;
277
278 spin_lock(&bd_mapping->private_lock);
279 if (!page_has_buffers(page))
280 goto out_unlock;
281 head = page_buffers(page);
282 bh = head;
283 do {
284 if (bh->b_blocknr == block) {
285 ret = bh;
286 get_bh(bh);
287 goto out_unlock;
288 }
289 if (!buffer_mapped(bh))
290 all_mapped = 0;
291 bh = bh->b_this_page;
292 } while (bh != head);
293
294 /* we might be here because some of the buffers on this page are
295 * not mapped. This is due to various races between
296 * file io on the block device and getblk. It gets dealt with
297 * elsewhere, don't buffer_error if we had some unmapped buffers
298 */
299 if (all_mapped) {
300 printk("__find_get_block_slow() failed. "
301 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
302 (unsigned long long)block,
303 (unsigned long long)bh->b_blocknr);
304 printk("b_state=0x%08lx, b_size=%zu\n",
305 bh->b_state, bh->b_size);
1da177e4
LT
306 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307 }
308out_unlock:
309 spin_unlock(&bd_mapping->private_lock);
310 page_cache_release(page);
311out:
312 return ret;
313}
314
315/* If invalidate_buffers() will trash dirty buffers, it means some kind
316 of fs corruption is going on. Trashing dirty data always imply losing
317 information that was supposed to be just stored on the physical layer
318 by the user.
319
320 Thus invalidate_buffers in general usage is not allwowed to trash
321 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322 be preserved. These buffers are simply skipped.
323
324 We also skip buffers which are still in use. For example this can
325 happen if a userspace program is reading the block device.
326
327 NOTE: In the case where the user removed a removable-media-disk even if
328 there's still dirty data not synced on disk (due a bug in the device driver
329 or due an error of the user), by not destroying the dirty buffers we could
330 generate corruption also on the next media inserted, thus a parameter is
331 necessary to handle this case in the most safe way possible (trying
332 to not corrupt also the new disk inserted with the data belonging to
333 the old now corrupted disk). Also for the ramdisk the natural thing
334 to do in order to release the ramdisk memory is to destroy dirty buffers.
335
336 These are two special cases. Normal usage imply the device driver
337 to issue a sync on the device (without waiting I/O completion) and
338 then an invalidate_buffers call that doesn't trash dirty buffers.
339
340 For handling cache coherency with the blkdev pagecache the 'update' case
341 is been introduced. It is needed to re-read from disk any pinned
342 buffer. NOTE: re-reading from disk is destructive so we can do it only
343 when we assume nobody is changing the buffercache under our I/O and when
344 we think the disk contains more recent information than the buffercache.
345 The update == 1 pass marks the buffers we need to update, the update == 2
346 pass does the actual I/O. */
f98393a6 347void invalidate_bdev(struct block_device *bdev)
1da177e4 348{
0e1dfc66
AM
349 struct address_space *mapping = bdev->bd_inode->i_mapping;
350
351 if (mapping->nrpages == 0)
352 return;
353
1da177e4 354 invalidate_bh_lrus();
fc0ecff6 355 invalidate_mapping_pages(mapping, 0, -1);
1da177e4
LT
356}
357
358/*
359 * Kick pdflush then try to free up some ZONE_NORMAL memory.
360 */
361static void free_more_memory(void)
362{
363 struct zone **zones;
364 pg_data_t *pgdat;
365
687a21ce 366 wakeup_pdflush(1024);
1da177e4
LT
367 yield();
368
ec936fc5 369 for_each_online_pgdat(pgdat) {
af4ca457 370 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
1da177e4 371 if (*zones)
5ad333eb 372 try_to_free_pages(zones, 0, GFP_NOFS);
1da177e4
LT
373 }
374}
375
376/*
377 * I/O completion handler for block_read_full_page() - pages
378 * which come unlocked at the end of I/O.
379 */
380static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
381{
1da177e4 382 unsigned long flags;
a3972203 383 struct buffer_head *first;
1da177e4
LT
384 struct buffer_head *tmp;
385 struct page *page;
386 int page_uptodate = 1;
387
388 BUG_ON(!buffer_async_read(bh));
389
390 page = bh->b_page;
391 if (uptodate) {
392 set_buffer_uptodate(bh);
393 } else {
394 clear_buffer_uptodate(bh);
395 if (printk_ratelimit())
396 buffer_io_error(bh);
397 SetPageError(page);
398 }
399
400 /*
401 * Be _very_ careful from here on. Bad things can happen if
402 * two buffer heads end IO at almost the same time and both
403 * decide that the page is now completely done.
404 */
a3972203
NP
405 first = page_buffers(page);
406 local_irq_save(flags);
407 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
408 clear_buffer_async_read(bh);
409 unlock_buffer(bh);
410 tmp = bh;
411 do {
412 if (!buffer_uptodate(tmp))
413 page_uptodate = 0;
414 if (buffer_async_read(tmp)) {
415 BUG_ON(!buffer_locked(tmp));
416 goto still_busy;
417 }
418 tmp = tmp->b_this_page;
419 } while (tmp != bh);
a3972203
NP
420 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421 local_irq_restore(flags);
1da177e4
LT
422
423 /*
424 * If none of the buffers had errors and they are all
425 * uptodate then we can set the page uptodate.
426 */
427 if (page_uptodate && !PageError(page))
428 SetPageUptodate(page);
429 unlock_page(page);
430 return;
431
432still_busy:
a3972203
NP
433 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434 local_irq_restore(flags);
1da177e4
LT
435 return;
436}
437
438/*
439 * Completion handler for block_write_full_page() - pages which are unlocked
440 * during I/O, and which have PageWriteback cleared upon I/O completion.
441 */
b6cd0b77 442static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
443{
444 char b[BDEVNAME_SIZE];
1da177e4 445 unsigned long flags;
a3972203 446 struct buffer_head *first;
1da177e4
LT
447 struct buffer_head *tmp;
448 struct page *page;
449
450 BUG_ON(!buffer_async_write(bh));
451
452 page = bh->b_page;
453 if (uptodate) {
454 set_buffer_uptodate(bh);
455 } else {
456 if (printk_ratelimit()) {
457 buffer_io_error(bh);
458 printk(KERN_WARNING "lost page write due to "
459 "I/O error on %s\n",
460 bdevname(bh->b_bdev, b));
461 }
462 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 463 set_buffer_write_io_error(bh);
1da177e4
LT
464 clear_buffer_uptodate(bh);
465 SetPageError(page);
466 }
467
a3972203
NP
468 first = page_buffers(page);
469 local_irq_save(flags);
470 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
471
1da177e4
LT
472 clear_buffer_async_write(bh);
473 unlock_buffer(bh);
474 tmp = bh->b_this_page;
475 while (tmp != bh) {
476 if (buffer_async_write(tmp)) {
477 BUG_ON(!buffer_locked(tmp));
478 goto still_busy;
479 }
480 tmp = tmp->b_this_page;
481 }
a3972203
NP
482 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483 local_irq_restore(flags);
1da177e4
LT
484 end_page_writeback(page);
485 return;
486
487still_busy:
a3972203
NP
488 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489 local_irq_restore(flags);
1da177e4
LT
490 return;
491}
492
493/*
494 * If a page's buffers are under async readin (end_buffer_async_read
495 * completion) then there is a possibility that another thread of
496 * control could lock one of the buffers after it has completed
497 * but while some of the other buffers have not completed. This
498 * locked buffer would confuse end_buffer_async_read() into not unlocking
499 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
500 * that this buffer is not under async I/O.
501 *
502 * The page comes unlocked when it has no locked buffer_async buffers
503 * left.
504 *
505 * PageLocked prevents anyone starting new async I/O reads any of
506 * the buffers.
507 *
508 * PageWriteback is used to prevent simultaneous writeout of the same
509 * page.
510 *
511 * PageLocked prevents anyone from starting writeback of a page which is
512 * under read I/O (PageWriteback is only ever set against a locked page).
513 */
514static void mark_buffer_async_read(struct buffer_head *bh)
515{
516 bh->b_end_io = end_buffer_async_read;
517 set_buffer_async_read(bh);
518}
519
520void mark_buffer_async_write(struct buffer_head *bh)
521{
522 bh->b_end_io = end_buffer_async_write;
523 set_buffer_async_write(bh);
524}
525EXPORT_SYMBOL(mark_buffer_async_write);
526
527
528/*
529 * fs/buffer.c contains helper functions for buffer-backed address space's
530 * fsync functions. A common requirement for buffer-based filesystems is
531 * that certain data from the backing blockdev needs to be written out for
532 * a successful fsync(). For example, ext2 indirect blocks need to be
533 * written back and waited upon before fsync() returns.
534 *
535 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537 * management of a list of dependent buffers at ->i_mapping->private_list.
538 *
539 * Locking is a little subtle: try_to_free_buffers() will remove buffers
540 * from their controlling inode's queue when they are being freed. But
541 * try_to_free_buffers() will be operating against the *blockdev* mapping
542 * at the time, not against the S_ISREG file which depends on those buffers.
543 * So the locking for private_list is via the private_lock in the address_space
544 * which backs the buffers. Which is different from the address_space
545 * against which the buffers are listed. So for a particular address_space,
546 * mapping->private_lock does *not* protect mapping->private_list! In fact,
547 * mapping->private_list will always be protected by the backing blockdev's
548 * ->private_lock.
549 *
550 * Which introduces a requirement: all buffers on an address_space's
551 * ->private_list must be from the same address_space: the blockdev's.
552 *
553 * address_spaces which do not place buffers at ->private_list via these
554 * utility functions are free to use private_lock and private_list for
555 * whatever they want. The only requirement is that list_empty(private_list)
556 * be true at clear_inode() time.
557 *
558 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
559 * filesystems should do that. invalidate_inode_buffers() should just go
560 * BUG_ON(!list_empty).
561 *
562 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
563 * take an address_space, not an inode. And it should be called
564 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
565 * queued up.
566 *
567 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568 * list if it is already on a list. Because if the buffer is on a list,
569 * it *must* already be on the right one. If not, the filesystem is being
570 * silly. This will save a ton of locking. But first we have to ensure
571 * that buffers are taken *off* the old inode's list when they are freed
572 * (presumably in truncate). That requires careful auditing of all
573 * filesystems (do it inside bforget()). It could also be done by bringing
574 * b_inode back.
575 */
576
577/*
578 * The buffer's backing address_space's private_lock must be held
579 */
580static inline void __remove_assoc_queue(struct buffer_head *bh)
581{
582 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
583 WARN_ON(!bh->b_assoc_map);
584 if (buffer_write_io_error(bh))
585 set_bit(AS_EIO, &bh->b_assoc_map->flags);
586 bh->b_assoc_map = NULL;
1da177e4
LT
587}
588
589int inode_has_buffers(struct inode *inode)
590{
591 return !list_empty(&inode->i_data.private_list);
592}
593
594/*
595 * osync is designed to support O_SYNC io. It waits synchronously for
596 * all already-submitted IO to complete, but does not queue any new
597 * writes to the disk.
598 *
599 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600 * you dirty the buffers, and then use osync_inode_buffers to wait for
601 * completion. Any other dirty buffers which are not yet queued for
602 * write will not be flushed to disk by the osync.
603 */
604static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
605{
606 struct buffer_head *bh;
607 struct list_head *p;
608 int err = 0;
609
610 spin_lock(lock);
611repeat:
612 list_for_each_prev(p, list) {
613 bh = BH_ENTRY(p);
614 if (buffer_locked(bh)) {
615 get_bh(bh);
616 spin_unlock(lock);
617 wait_on_buffer(bh);
618 if (!buffer_uptodate(bh))
619 err = -EIO;
620 brelse(bh);
621 spin_lock(lock);
622 goto repeat;
623 }
624 }
625 spin_unlock(lock);
626 return err;
627}
628
629/**
630 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
631 * buffers
67be2dd1 632 * @mapping: the mapping which wants those buffers written
1da177e4
LT
633 *
634 * Starts I/O against the buffers at mapping->private_list, and waits upon
635 * that I/O.
636 *
67be2dd1
MW
637 * Basically, this is a convenience function for fsync().
638 * @mapping is a file or directory which needs those buffers to be written for
639 * a successful fsync().
1da177e4
LT
640 */
641int sync_mapping_buffers(struct address_space *mapping)
642{
643 struct address_space *buffer_mapping = mapping->assoc_mapping;
644
645 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
646 return 0;
647
648 return fsync_buffers_list(&buffer_mapping->private_lock,
649 &mapping->private_list);
650}
651EXPORT_SYMBOL(sync_mapping_buffers);
652
653/*
654 * Called when we've recently written block `bblock', and it is known that
655 * `bblock' was for a buffer_boundary() buffer. This means that the block at
656 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
657 * dirty, schedule it for IO. So that indirects merge nicely with their data.
658 */
659void write_boundary_block(struct block_device *bdev,
660 sector_t bblock, unsigned blocksize)
661{
662 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663 if (bh) {
664 if (buffer_dirty(bh))
665 ll_rw_block(WRITE, 1, &bh);
666 put_bh(bh);
667 }
668}
669
670void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671{
672 struct address_space *mapping = inode->i_mapping;
673 struct address_space *buffer_mapping = bh->b_page->mapping;
674
675 mark_buffer_dirty(bh);
676 if (!mapping->assoc_mapping) {
677 mapping->assoc_mapping = buffer_mapping;
678 } else {
e827f923 679 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4 680 }
535ee2fb 681 if (!bh->b_assoc_map) {
1da177e4
LT
682 spin_lock(&buffer_mapping->private_lock);
683 list_move_tail(&bh->b_assoc_buffers,
684 &mapping->private_list);
58ff407b 685 bh->b_assoc_map = mapping;
1da177e4
LT
686 spin_unlock(&buffer_mapping->private_lock);
687 }
688}
689EXPORT_SYMBOL(mark_buffer_dirty_inode);
690
787d2214
NP
691/*
692 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
693 * dirty.
694 *
695 * If warn is true, then emit a warning if the page is not uptodate and has
696 * not been truncated.
697 */
698static int __set_page_dirty(struct page *page,
699 struct address_space *mapping, int warn)
700{
701 if (unlikely(!mapping))
702 return !TestSetPageDirty(page);
703
704 if (TestSetPageDirty(page))
705 return 0;
706
707 write_lock_irq(&mapping->tree_lock);
708 if (page->mapping) { /* Race with truncate? */
709 WARN_ON_ONCE(warn && !PageUptodate(page));
710
711 if (mapping_cap_account_dirty(mapping)) {
712 __inc_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
713 __inc_bdi_stat(mapping->backing_dev_info,
714 BDI_RECLAIMABLE);
787d2214
NP
715 task_io_account_write(PAGE_CACHE_SIZE);
716 }
717 radix_tree_tag_set(&mapping->page_tree,
718 page_index(page), PAGECACHE_TAG_DIRTY);
719 }
720 write_unlock_irq(&mapping->tree_lock);
721 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
722
723 return 1;
724}
725
1da177e4
LT
726/*
727 * Add a page to the dirty page list.
728 *
729 * It is a sad fact of life that this function is called from several places
730 * deeply under spinlocking. It may not sleep.
731 *
732 * If the page has buffers, the uptodate buffers are set dirty, to preserve
733 * dirty-state coherency between the page and the buffers. It the page does
734 * not have buffers then when they are later attached they will all be set
735 * dirty.
736 *
737 * The buffers are dirtied before the page is dirtied. There's a small race
738 * window in which a writepage caller may see the page cleanness but not the
739 * buffer dirtiness. That's fine. If this code were to set the page dirty
740 * before the buffers, a concurrent writepage caller could clear the page dirty
741 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
742 * page on the dirty page list.
743 *
744 * We use private_lock to lock against try_to_free_buffers while using the
745 * page's buffer list. Also use this to protect against clean buffers being
746 * added to the page after it was set dirty.
747 *
748 * FIXME: may need to call ->reservepage here as well. That's rather up to the
749 * address_space though.
750 */
751int __set_page_dirty_buffers(struct page *page)
752{
787d2214 753 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
754
755 if (unlikely(!mapping))
756 return !TestSetPageDirty(page);
1da177e4
LT
757
758 spin_lock(&mapping->private_lock);
759 if (page_has_buffers(page)) {
760 struct buffer_head *head = page_buffers(page);
761 struct buffer_head *bh = head;
762
763 do {
764 set_buffer_dirty(bh);
765 bh = bh->b_this_page;
766 } while (bh != head);
767 }
768 spin_unlock(&mapping->private_lock);
769
787d2214 770 return __set_page_dirty(page, mapping, 1);
1da177e4
LT
771}
772EXPORT_SYMBOL(__set_page_dirty_buffers);
773
774/*
775 * Write out and wait upon a list of buffers.
776 *
777 * We have conflicting pressures: we want to make sure that all
778 * initially dirty buffers get waited on, but that any subsequently
779 * dirtied buffers don't. After all, we don't want fsync to last
780 * forever if somebody is actively writing to the file.
781 *
782 * Do this in two main stages: first we copy dirty buffers to a
783 * temporary inode list, queueing the writes as we go. Then we clean
784 * up, waiting for those writes to complete.
785 *
786 * During this second stage, any subsequent updates to the file may end
787 * up refiling the buffer on the original inode's dirty list again, so
788 * there is a chance we will end up with a buffer queued for write but
789 * not yet completed on that list. So, as a final cleanup we go through
790 * the osync code to catch these locked, dirty buffers without requeuing
791 * any newly dirty buffers for write.
792 */
793static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
794{
795 struct buffer_head *bh;
796 struct list_head tmp;
535ee2fb 797 struct address_space *mapping;
1da177e4
LT
798 int err = 0, err2;
799
800 INIT_LIST_HEAD(&tmp);
801
802 spin_lock(lock);
803 while (!list_empty(list)) {
804 bh = BH_ENTRY(list->next);
535ee2fb 805 mapping = bh->b_assoc_map;
58ff407b 806 __remove_assoc_queue(bh);
535ee2fb
JK
807 /* Avoid race with mark_buffer_dirty_inode() which does
808 * a lockless check and we rely on seeing the dirty bit */
809 smp_mb();
1da177e4
LT
810 if (buffer_dirty(bh) || buffer_locked(bh)) {
811 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 812 bh->b_assoc_map = mapping;
1da177e4
LT
813 if (buffer_dirty(bh)) {
814 get_bh(bh);
815 spin_unlock(lock);
816 /*
817 * Ensure any pending I/O completes so that
818 * ll_rw_block() actually writes the current
819 * contents - it is a noop if I/O is still in
820 * flight on potentially older contents.
821 */
a7662236 822 ll_rw_block(SWRITE, 1, &bh);
1da177e4
LT
823 brelse(bh);
824 spin_lock(lock);
825 }
826 }
827 }
828
829 while (!list_empty(&tmp)) {
830 bh = BH_ENTRY(tmp.prev);
1da177e4 831 get_bh(bh);
535ee2fb
JK
832 mapping = bh->b_assoc_map;
833 __remove_assoc_queue(bh);
834 /* Avoid race with mark_buffer_dirty_inode() which does
835 * a lockless check and we rely on seeing the dirty bit */
836 smp_mb();
837 if (buffer_dirty(bh)) {
838 list_add(&bh->b_assoc_buffers,
839 &bh->b_assoc_map->private_list);
840 bh->b_assoc_map = mapping;
841 }
1da177e4
LT
842 spin_unlock(lock);
843 wait_on_buffer(bh);
844 if (!buffer_uptodate(bh))
845 err = -EIO;
846 brelse(bh);
847 spin_lock(lock);
848 }
849
850 spin_unlock(lock);
851 err2 = osync_buffers_list(lock, list);
852 if (err)
853 return err;
854 else
855 return err2;
856}
857
858/*
859 * Invalidate any and all dirty buffers on a given inode. We are
860 * probably unmounting the fs, but that doesn't mean we have already
861 * done a sync(). Just drop the buffers from the inode list.
862 *
863 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
864 * assumes that all the buffers are against the blockdev. Not true
865 * for reiserfs.
866 */
867void invalidate_inode_buffers(struct inode *inode)
868{
869 if (inode_has_buffers(inode)) {
870 struct address_space *mapping = &inode->i_data;
871 struct list_head *list = &mapping->private_list;
872 struct address_space *buffer_mapping = mapping->assoc_mapping;
873
874 spin_lock(&buffer_mapping->private_lock);
875 while (!list_empty(list))
876 __remove_assoc_queue(BH_ENTRY(list->next));
877 spin_unlock(&buffer_mapping->private_lock);
878 }
879}
880
881/*
882 * Remove any clean buffers from the inode's buffer list. This is called
883 * when we're trying to free the inode itself. Those buffers can pin it.
884 *
885 * Returns true if all buffers were removed.
886 */
887int remove_inode_buffers(struct inode *inode)
888{
889 int ret = 1;
890
891 if (inode_has_buffers(inode)) {
892 struct address_space *mapping = &inode->i_data;
893 struct list_head *list = &mapping->private_list;
894 struct address_space *buffer_mapping = mapping->assoc_mapping;
895
896 spin_lock(&buffer_mapping->private_lock);
897 while (!list_empty(list)) {
898 struct buffer_head *bh = BH_ENTRY(list->next);
899 if (buffer_dirty(bh)) {
900 ret = 0;
901 break;
902 }
903 __remove_assoc_queue(bh);
904 }
905 spin_unlock(&buffer_mapping->private_lock);
906 }
907 return ret;
908}
909
910/*
911 * Create the appropriate buffers when given a page for data area and
912 * the size of each buffer.. Use the bh->b_this_page linked list to
913 * follow the buffers created. Return NULL if unable to create more
914 * buffers.
915 *
916 * The retry flag is used to differentiate async IO (paging, swapping)
917 * which may not fail from ordinary buffer allocations.
918 */
919struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
920 int retry)
921{
922 struct buffer_head *bh, *head;
923 long offset;
924
925try_again:
926 head = NULL;
927 offset = PAGE_SIZE;
928 while ((offset -= size) >= 0) {
929 bh = alloc_buffer_head(GFP_NOFS);
930 if (!bh)
931 goto no_grow;
932
933 bh->b_bdev = NULL;
934 bh->b_this_page = head;
935 bh->b_blocknr = -1;
936 head = bh;
937
938 bh->b_state = 0;
939 atomic_set(&bh->b_count, 0);
fc5cd582 940 bh->b_private = NULL;
1da177e4
LT
941 bh->b_size = size;
942
943 /* Link the buffer to its page */
944 set_bh_page(bh, page, offset);
945
01ffe339 946 init_buffer(bh, NULL, NULL);
1da177e4
LT
947 }
948 return head;
949/*
950 * In case anything failed, we just free everything we got.
951 */
952no_grow:
953 if (head) {
954 do {
955 bh = head;
956 head = head->b_this_page;
957 free_buffer_head(bh);
958 } while (head);
959 }
960
961 /*
962 * Return failure for non-async IO requests. Async IO requests
963 * are not allowed to fail, so we have to wait until buffer heads
964 * become available. But we don't want tasks sleeping with
965 * partially complete buffers, so all were released above.
966 */
967 if (!retry)
968 return NULL;
969
970 /* We're _really_ low on memory. Now we just
971 * wait for old buffer heads to become free due to
972 * finishing IO. Since this is an async request and
973 * the reserve list is empty, we're sure there are
974 * async buffer heads in use.
975 */
976 free_more_memory();
977 goto try_again;
978}
979EXPORT_SYMBOL_GPL(alloc_page_buffers);
980
981static inline void
982link_dev_buffers(struct page *page, struct buffer_head *head)
983{
984 struct buffer_head *bh, *tail;
985
986 bh = head;
987 do {
988 tail = bh;
989 bh = bh->b_this_page;
990 } while (bh);
991 tail->b_this_page = head;
992 attach_page_buffers(page, head);
993}
994
995/*
996 * Initialise the state of a blockdev page's buffers.
997 */
998static void
999init_page_buffers(struct page *page, struct block_device *bdev,
1000 sector_t block, int size)
1001{
1002 struct buffer_head *head = page_buffers(page);
1003 struct buffer_head *bh = head;
1004 int uptodate = PageUptodate(page);
1005
1006 do {
1007 if (!buffer_mapped(bh)) {
1008 init_buffer(bh, NULL, NULL);
1009 bh->b_bdev = bdev;
1010 bh->b_blocknr = block;
1011 if (uptodate)
1012 set_buffer_uptodate(bh);
1013 set_buffer_mapped(bh);
1014 }
1015 block++;
1016 bh = bh->b_this_page;
1017 } while (bh != head);
1018}
1019
1020/*
1021 * Create the page-cache page that contains the requested block.
1022 *
1023 * This is user purely for blockdev mappings.
1024 */
1025static struct page *
1026grow_dev_page(struct block_device *bdev, sector_t block,
1027 pgoff_t index, int size)
1028{
1029 struct inode *inode = bdev->bd_inode;
1030 struct page *page;
1031 struct buffer_head *bh;
1032
ea125892 1033 page = find_or_create_page(inode->i_mapping, index,
769848c0 1034 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4
LT
1035 if (!page)
1036 return NULL;
1037
e827f923 1038 BUG_ON(!PageLocked(page));
1da177e4
LT
1039
1040 if (page_has_buffers(page)) {
1041 bh = page_buffers(page);
1042 if (bh->b_size == size) {
1043 init_page_buffers(page, bdev, block, size);
1044 return page;
1045 }
1046 if (!try_to_free_buffers(page))
1047 goto failed;
1048 }
1049
1050 /*
1051 * Allocate some buffers for this page
1052 */
1053 bh = alloc_page_buffers(page, size, 0);
1054 if (!bh)
1055 goto failed;
1056
1057 /*
1058 * Link the page to the buffers and initialise them. Take the
1059 * lock to be atomic wrt __find_get_block(), which does not
1060 * run under the page lock.
1061 */
1062 spin_lock(&inode->i_mapping->private_lock);
1063 link_dev_buffers(page, bh);
1064 init_page_buffers(page, bdev, block, size);
1065 spin_unlock(&inode->i_mapping->private_lock);
1066 return page;
1067
1068failed:
1069 BUG();
1070 unlock_page(page);
1071 page_cache_release(page);
1072 return NULL;
1073}
1074
1075/*
1076 * Create buffers for the specified block device block's page. If
1077 * that page was dirty, the buffers are set dirty also.
1da177e4 1078 */
858119e1 1079static int
1da177e4
LT
1080grow_buffers(struct block_device *bdev, sector_t block, int size)
1081{
1082 struct page *page;
1083 pgoff_t index;
1084 int sizebits;
1085
1086 sizebits = -1;
1087 do {
1088 sizebits++;
1089 } while ((size << sizebits) < PAGE_SIZE);
1090
1091 index = block >> sizebits;
1da177e4 1092
e5657933
AM
1093 /*
1094 * Check for a block which wants to lie outside our maximum possible
1095 * pagecache index. (this comparison is done using sector_t types).
1096 */
1097 if (unlikely(index != block >> sizebits)) {
1098 char b[BDEVNAME_SIZE];
1099
1100 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1101 "device %s\n",
1102 __FUNCTION__, (unsigned long long)block,
1103 bdevname(bdev, b));
1104 return -EIO;
1105 }
1106 block = index << sizebits;
1da177e4
LT
1107 /* Create a page with the proper size buffers.. */
1108 page = grow_dev_page(bdev, block, index, size);
1109 if (!page)
1110 return 0;
1111 unlock_page(page);
1112 page_cache_release(page);
1113 return 1;
1114}
1115
75c96f85 1116static struct buffer_head *
1da177e4
LT
1117__getblk_slow(struct block_device *bdev, sector_t block, int size)
1118{
1119 /* Size must be multiple of hard sectorsize */
1120 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1121 (size < 512 || size > PAGE_SIZE))) {
1122 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1123 size);
1124 printk(KERN_ERR "hardsect size: %d\n",
1125 bdev_hardsect_size(bdev));
1126
1127 dump_stack();
1128 return NULL;
1129 }
1130
1131 for (;;) {
1132 struct buffer_head * bh;
e5657933 1133 int ret;
1da177e4
LT
1134
1135 bh = __find_get_block(bdev, block, size);
1136 if (bh)
1137 return bh;
1138
e5657933
AM
1139 ret = grow_buffers(bdev, block, size);
1140 if (ret < 0)
1141 return NULL;
1142 if (ret == 0)
1da177e4
LT
1143 free_more_memory();
1144 }
1145}
1146
1147/*
1148 * The relationship between dirty buffers and dirty pages:
1149 *
1150 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1151 * the page is tagged dirty in its radix tree.
1152 *
1153 * At all times, the dirtiness of the buffers represents the dirtiness of
1154 * subsections of the page. If the page has buffers, the page dirty bit is
1155 * merely a hint about the true dirty state.
1156 *
1157 * When a page is set dirty in its entirety, all its buffers are marked dirty
1158 * (if the page has buffers).
1159 *
1160 * When a buffer is marked dirty, its page is dirtied, but the page's other
1161 * buffers are not.
1162 *
1163 * Also. When blockdev buffers are explicitly read with bread(), they
1164 * individually become uptodate. But their backing page remains not
1165 * uptodate - even if all of its buffers are uptodate. A subsequent
1166 * block_read_full_page() against that page will discover all the uptodate
1167 * buffers, will set the page uptodate and will perform no I/O.
1168 */
1169
1170/**
1171 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1172 * @bh: the buffer_head to mark dirty
1da177e4
LT
1173 *
1174 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1175 * backing page dirty, then tag the page as dirty in its address_space's radix
1176 * tree and then attach the address_space's inode to its superblock's dirty
1177 * inode list.
1178 *
1179 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1180 * mapping->tree_lock and the global inode_lock.
1181 */
fc9b52cd 1182void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1183{
787d2214 1184 WARN_ON_ONCE(!buffer_uptodate(bh));
1da177e4 1185 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
787d2214 1186 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1da177e4
LT
1187}
1188
1189/*
1190 * Decrement a buffer_head's reference count. If all buffers against a page
1191 * have zero reference count, are clean and unlocked, and if the page is clean
1192 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1193 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1194 * a page but it ends up not being freed, and buffers may later be reattached).
1195 */
1196void __brelse(struct buffer_head * buf)
1197{
1198 if (atomic_read(&buf->b_count)) {
1199 put_bh(buf);
1200 return;
1201 }
1202 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1203 WARN_ON(1);
1204}
1205
1206/*
1207 * bforget() is like brelse(), except it discards any
1208 * potentially dirty data.
1209 */
1210void __bforget(struct buffer_head *bh)
1211{
1212 clear_buffer_dirty(bh);
535ee2fb 1213 if (bh->b_assoc_map) {
1da177e4
LT
1214 struct address_space *buffer_mapping = bh->b_page->mapping;
1215
1216 spin_lock(&buffer_mapping->private_lock);
1217 list_del_init(&bh->b_assoc_buffers);
58ff407b 1218 bh->b_assoc_map = NULL;
1da177e4
LT
1219 spin_unlock(&buffer_mapping->private_lock);
1220 }
1221 __brelse(bh);
1222}
1223
1224static struct buffer_head *__bread_slow(struct buffer_head *bh)
1225{
1226 lock_buffer(bh);
1227 if (buffer_uptodate(bh)) {
1228 unlock_buffer(bh);
1229 return bh;
1230 } else {
1231 get_bh(bh);
1232 bh->b_end_io = end_buffer_read_sync;
1233 submit_bh(READ, bh);
1234 wait_on_buffer(bh);
1235 if (buffer_uptodate(bh))
1236 return bh;
1237 }
1238 brelse(bh);
1239 return NULL;
1240}
1241
1242/*
1243 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1244 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1245 * refcount elevated by one when they're in an LRU. A buffer can only appear
1246 * once in a particular CPU's LRU. A single buffer can be present in multiple
1247 * CPU's LRUs at the same time.
1248 *
1249 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1250 * sb_find_get_block().
1251 *
1252 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1253 * a local interrupt disable for that.
1254 */
1255
1256#define BH_LRU_SIZE 8
1257
1258struct bh_lru {
1259 struct buffer_head *bhs[BH_LRU_SIZE];
1260};
1261
1262static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1263
1264#ifdef CONFIG_SMP
1265#define bh_lru_lock() local_irq_disable()
1266#define bh_lru_unlock() local_irq_enable()
1267#else
1268#define bh_lru_lock() preempt_disable()
1269#define bh_lru_unlock() preempt_enable()
1270#endif
1271
1272static inline void check_irqs_on(void)
1273{
1274#ifdef irqs_disabled
1275 BUG_ON(irqs_disabled());
1276#endif
1277}
1278
1279/*
1280 * The LRU management algorithm is dopey-but-simple. Sorry.
1281 */
1282static void bh_lru_install(struct buffer_head *bh)
1283{
1284 struct buffer_head *evictee = NULL;
1285 struct bh_lru *lru;
1286
1287 check_irqs_on();
1288 bh_lru_lock();
1289 lru = &__get_cpu_var(bh_lrus);
1290 if (lru->bhs[0] != bh) {
1291 struct buffer_head *bhs[BH_LRU_SIZE];
1292 int in;
1293 int out = 0;
1294
1295 get_bh(bh);
1296 bhs[out++] = bh;
1297 for (in = 0; in < BH_LRU_SIZE; in++) {
1298 struct buffer_head *bh2 = lru->bhs[in];
1299
1300 if (bh2 == bh) {
1301 __brelse(bh2);
1302 } else {
1303 if (out >= BH_LRU_SIZE) {
1304 BUG_ON(evictee != NULL);
1305 evictee = bh2;
1306 } else {
1307 bhs[out++] = bh2;
1308 }
1309 }
1310 }
1311 while (out < BH_LRU_SIZE)
1312 bhs[out++] = NULL;
1313 memcpy(lru->bhs, bhs, sizeof(bhs));
1314 }
1315 bh_lru_unlock();
1316
1317 if (evictee)
1318 __brelse(evictee);
1319}
1320
1321/*
1322 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1323 */
858119e1 1324static struct buffer_head *
3991d3bd 1325lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1326{
1327 struct buffer_head *ret = NULL;
1328 struct bh_lru *lru;
3991d3bd 1329 unsigned int i;
1da177e4
LT
1330
1331 check_irqs_on();
1332 bh_lru_lock();
1333 lru = &__get_cpu_var(bh_lrus);
1334 for (i = 0; i < BH_LRU_SIZE; i++) {
1335 struct buffer_head *bh = lru->bhs[i];
1336
1337 if (bh && bh->b_bdev == bdev &&
1338 bh->b_blocknr == block && bh->b_size == size) {
1339 if (i) {
1340 while (i) {
1341 lru->bhs[i] = lru->bhs[i - 1];
1342 i--;
1343 }
1344 lru->bhs[0] = bh;
1345 }
1346 get_bh(bh);
1347 ret = bh;
1348 break;
1349 }
1350 }
1351 bh_lru_unlock();
1352 return ret;
1353}
1354
1355/*
1356 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1357 * it in the LRU and mark it as accessed. If it is not present then return
1358 * NULL
1359 */
1360struct buffer_head *
3991d3bd 1361__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1362{
1363 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1364
1365 if (bh == NULL) {
385fd4c5 1366 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1367 if (bh)
1368 bh_lru_install(bh);
1369 }
1370 if (bh)
1371 touch_buffer(bh);
1372 return bh;
1373}
1374EXPORT_SYMBOL(__find_get_block);
1375
1376/*
1377 * __getblk will locate (and, if necessary, create) the buffer_head
1378 * which corresponds to the passed block_device, block and size. The
1379 * returned buffer has its reference count incremented.
1380 *
1381 * __getblk() cannot fail - it just keeps trying. If you pass it an
1382 * illegal block number, __getblk() will happily return a buffer_head
1383 * which represents the non-existent block. Very weird.
1384 *
1385 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1386 * attempt is failing. FIXME, perhaps?
1387 */
1388struct buffer_head *
3991d3bd 1389__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1390{
1391 struct buffer_head *bh = __find_get_block(bdev, block, size);
1392
1393 might_sleep();
1394 if (bh == NULL)
1395 bh = __getblk_slow(bdev, block, size);
1396 return bh;
1397}
1398EXPORT_SYMBOL(__getblk);
1399
1400/*
1401 * Do async read-ahead on a buffer..
1402 */
3991d3bd 1403void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1404{
1405 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1406 if (likely(bh)) {
1407 ll_rw_block(READA, 1, &bh);
1408 brelse(bh);
1409 }
1da177e4
LT
1410}
1411EXPORT_SYMBOL(__breadahead);
1412
1413/**
1414 * __bread() - reads a specified block and returns the bh
67be2dd1 1415 * @bdev: the block_device to read from
1da177e4
LT
1416 * @block: number of block
1417 * @size: size (in bytes) to read
1418 *
1419 * Reads a specified block, and returns buffer head that contains it.
1420 * It returns NULL if the block was unreadable.
1421 */
1422struct buffer_head *
3991d3bd 1423__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1424{
1425 struct buffer_head *bh = __getblk(bdev, block, size);
1426
a3e713b5 1427 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1428 bh = __bread_slow(bh);
1429 return bh;
1430}
1431EXPORT_SYMBOL(__bread);
1432
1433/*
1434 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1435 * This doesn't race because it runs in each cpu either in irq
1436 * or with preempt disabled.
1437 */
1438static void invalidate_bh_lru(void *arg)
1439{
1440 struct bh_lru *b = &get_cpu_var(bh_lrus);
1441 int i;
1442
1443 for (i = 0; i < BH_LRU_SIZE; i++) {
1444 brelse(b->bhs[i]);
1445 b->bhs[i] = NULL;
1446 }
1447 put_cpu_var(bh_lrus);
1448}
1449
f9a14399 1450void invalidate_bh_lrus(void)
1da177e4
LT
1451{
1452 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1453}
9db5579b 1454EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1455
1456void set_bh_page(struct buffer_head *bh,
1457 struct page *page, unsigned long offset)
1458{
1459 bh->b_page = page;
e827f923 1460 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1461 if (PageHighMem(page))
1462 /*
1463 * This catches illegal uses and preserves the offset:
1464 */
1465 bh->b_data = (char *)(0 + offset);
1466 else
1467 bh->b_data = page_address(page) + offset;
1468}
1469EXPORT_SYMBOL(set_bh_page);
1470
1471/*
1472 * Called when truncating a buffer on a page completely.
1473 */
858119e1 1474static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1475{
1476 lock_buffer(bh);
1477 clear_buffer_dirty(bh);
1478 bh->b_bdev = NULL;
1479 clear_buffer_mapped(bh);
1480 clear_buffer_req(bh);
1481 clear_buffer_new(bh);
1482 clear_buffer_delay(bh);
33a266dd 1483 clear_buffer_unwritten(bh);
1da177e4
LT
1484 unlock_buffer(bh);
1485}
1486
1da177e4
LT
1487/**
1488 * block_invalidatepage - invalidate part of all of a buffer-backed page
1489 *
1490 * @page: the page which is affected
1491 * @offset: the index of the truncation point
1492 *
1493 * block_invalidatepage() is called when all or part of the page has become
1494 * invalidatedby a truncate operation.
1495 *
1496 * block_invalidatepage() does not have to release all buffers, but it must
1497 * ensure that no dirty buffer is left outside @offset and that no I/O
1498 * is underway against any of the blocks which are outside the truncation
1499 * point. Because the caller is about to free (and possibly reuse) those
1500 * blocks on-disk.
1501 */
2ff28e22 1502void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1503{
1504 struct buffer_head *head, *bh, *next;
1505 unsigned int curr_off = 0;
1da177e4
LT
1506
1507 BUG_ON(!PageLocked(page));
1508 if (!page_has_buffers(page))
1509 goto out;
1510
1511 head = page_buffers(page);
1512 bh = head;
1513 do {
1514 unsigned int next_off = curr_off + bh->b_size;
1515 next = bh->b_this_page;
1516
1517 /*
1518 * is this block fully invalidated?
1519 */
1520 if (offset <= curr_off)
1521 discard_buffer(bh);
1522 curr_off = next_off;
1523 bh = next;
1524 } while (bh != head);
1525
1526 /*
1527 * We release buffers only if the entire page is being invalidated.
1528 * The get_block cached value has been unconditionally invalidated,
1529 * so real IO is not possible anymore.
1530 */
1531 if (offset == 0)
2ff28e22 1532 try_to_release_page(page, 0);
1da177e4 1533out:
2ff28e22 1534 return;
1da177e4
LT
1535}
1536EXPORT_SYMBOL(block_invalidatepage);
1537
1538/*
1539 * We attach and possibly dirty the buffers atomically wrt
1540 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1541 * is already excluded via the page lock.
1542 */
1543void create_empty_buffers(struct page *page,
1544 unsigned long blocksize, unsigned long b_state)
1545{
1546 struct buffer_head *bh, *head, *tail;
1547
1548 head = alloc_page_buffers(page, blocksize, 1);
1549 bh = head;
1550 do {
1551 bh->b_state |= b_state;
1552 tail = bh;
1553 bh = bh->b_this_page;
1554 } while (bh);
1555 tail->b_this_page = head;
1556
1557 spin_lock(&page->mapping->private_lock);
1558 if (PageUptodate(page) || PageDirty(page)) {
1559 bh = head;
1560 do {
1561 if (PageDirty(page))
1562 set_buffer_dirty(bh);
1563 if (PageUptodate(page))
1564 set_buffer_uptodate(bh);
1565 bh = bh->b_this_page;
1566 } while (bh != head);
1567 }
1568 attach_page_buffers(page, head);
1569 spin_unlock(&page->mapping->private_lock);
1570}
1571EXPORT_SYMBOL(create_empty_buffers);
1572
1573/*
1574 * We are taking a block for data and we don't want any output from any
1575 * buffer-cache aliases starting from return from that function and
1576 * until the moment when something will explicitly mark the buffer
1577 * dirty (hopefully that will not happen until we will free that block ;-)
1578 * We don't even need to mark it not-uptodate - nobody can expect
1579 * anything from a newly allocated buffer anyway. We used to used
1580 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1581 * don't want to mark the alias unmapped, for example - it would confuse
1582 * anyone who might pick it with bread() afterwards...
1583 *
1584 * Also.. Note that bforget() doesn't lock the buffer. So there can
1585 * be writeout I/O going on against recently-freed buffers. We don't
1586 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1587 * only if we really need to. That happens here.
1588 */
1589void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1590{
1591 struct buffer_head *old_bh;
1592
1593 might_sleep();
1594
385fd4c5 1595 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1596 if (old_bh) {
1597 clear_buffer_dirty(old_bh);
1598 wait_on_buffer(old_bh);
1599 clear_buffer_req(old_bh);
1600 __brelse(old_bh);
1601 }
1602}
1603EXPORT_SYMBOL(unmap_underlying_metadata);
1604
1605/*
1606 * NOTE! All mapped/uptodate combinations are valid:
1607 *
1608 * Mapped Uptodate Meaning
1609 *
1610 * No No "unknown" - must do get_block()
1611 * No Yes "hole" - zero-filled
1612 * Yes No "allocated" - allocated on disk, not read in
1613 * Yes Yes "valid" - allocated and up-to-date in memory.
1614 *
1615 * "Dirty" is valid only with the last case (mapped+uptodate).
1616 */
1617
1618/*
1619 * While block_write_full_page is writing back the dirty buffers under
1620 * the page lock, whoever dirtied the buffers may decide to clean them
1621 * again at any time. We handle that by only looking at the buffer
1622 * state inside lock_buffer().
1623 *
1624 * If block_write_full_page() is called for regular writeback
1625 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1626 * locked buffer. This only can happen if someone has written the buffer
1627 * directly, with submit_bh(). At the address_space level PageWriteback
1628 * prevents this contention from occurring.
1629 */
1630static int __block_write_full_page(struct inode *inode, struct page *page,
1631 get_block_t *get_block, struct writeback_control *wbc)
1632{
1633 int err;
1634 sector_t block;
1635 sector_t last_block;
f0fbd5fc 1636 struct buffer_head *bh, *head;
b0cf2321 1637 const unsigned blocksize = 1 << inode->i_blkbits;
1da177e4
LT
1638 int nr_underway = 0;
1639
1640 BUG_ON(!PageLocked(page));
1641
1642 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1643
1644 if (!page_has_buffers(page)) {
b0cf2321 1645 create_empty_buffers(page, blocksize,
1da177e4
LT
1646 (1 << BH_Dirty)|(1 << BH_Uptodate));
1647 }
1648
1649 /*
1650 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1651 * here, and the (potentially unmapped) buffers may become dirty at
1652 * any time. If a buffer becomes dirty here after we've inspected it
1653 * then we just miss that fact, and the page stays dirty.
1654 *
1655 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1656 * handle that here by just cleaning them.
1657 */
1658
54b21a79 1659 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1660 head = page_buffers(page);
1661 bh = head;
1662
1663 /*
1664 * Get all the dirty buffers mapped to disk addresses and
1665 * handle any aliases from the underlying blockdev's mapping.
1666 */
1667 do {
1668 if (block > last_block) {
1669 /*
1670 * mapped buffers outside i_size will occur, because
1671 * this page can be outside i_size when there is a
1672 * truncate in progress.
1673 */
1674 /*
1675 * The buffer was zeroed by block_write_full_page()
1676 */
1677 clear_buffer_dirty(bh);
1678 set_buffer_uptodate(bh);
1679 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
b0cf2321 1680 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1681 err = get_block(inode, block, bh, 1);
1682 if (err)
1683 goto recover;
1684 if (buffer_new(bh)) {
1685 /* blockdev mappings never come here */
1686 clear_buffer_new(bh);
1687 unmap_underlying_metadata(bh->b_bdev,
1688 bh->b_blocknr);
1689 }
1690 }
1691 bh = bh->b_this_page;
1692 block++;
1693 } while (bh != head);
1694
1695 do {
1da177e4
LT
1696 if (!buffer_mapped(bh))
1697 continue;
1698 /*
1699 * If it's a fully non-blocking write attempt and we cannot
1700 * lock the buffer then redirty the page. Note that this can
1701 * potentially cause a busy-wait loop from pdflush and kswapd
1702 * activity, but those code paths have their own higher-level
1703 * throttling.
1704 */
1705 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1706 lock_buffer(bh);
1707 } else if (test_set_buffer_locked(bh)) {
1708 redirty_page_for_writepage(wbc, page);
1709 continue;
1710 }
1711 if (test_clear_buffer_dirty(bh)) {
1712 mark_buffer_async_write(bh);
1713 } else {
1714 unlock_buffer(bh);
1715 }
1716 } while ((bh = bh->b_this_page) != head);
1717
1718 /*
1719 * The page and its buffers are protected by PageWriteback(), so we can
1720 * drop the bh refcounts early.
1721 */
1722 BUG_ON(PageWriteback(page));
1723 set_page_writeback(page);
1da177e4
LT
1724
1725 do {
1726 struct buffer_head *next = bh->b_this_page;
1727 if (buffer_async_write(bh)) {
1728 submit_bh(WRITE, bh);
1729 nr_underway++;
1730 }
1da177e4
LT
1731 bh = next;
1732 } while (bh != head);
05937baa 1733 unlock_page(page);
1da177e4
LT
1734
1735 err = 0;
1736done:
1737 if (nr_underway == 0) {
1738 /*
1739 * The page was marked dirty, but the buffers were
1740 * clean. Someone wrote them back by hand with
1741 * ll_rw_block/submit_bh. A rare case.
1742 */
1da177e4 1743 end_page_writeback(page);
3d67f2d7 1744
1da177e4
LT
1745 /*
1746 * The page and buffer_heads can be released at any time from
1747 * here on.
1748 */
1da177e4
LT
1749 }
1750 return err;
1751
1752recover:
1753 /*
1754 * ENOSPC, or some other error. We may already have added some
1755 * blocks to the file, so we need to write these out to avoid
1756 * exposing stale data.
1757 * The page is currently locked and not marked for writeback
1758 */
1759 bh = head;
1760 /* Recovery: lock and submit the mapped buffers */
1761 do {
1da177e4
LT
1762 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1763 lock_buffer(bh);
1764 mark_buffer_async_write(bh);
1765 } else {
1766 /*
1767 * The buffer may have been set dirty during
1768 * attachment to a dirty page.
1769 */
1770 clear_buffer_dirty(bh);
1771 }
1772 } while ((bh = bh->b_this_page) != head);
1773 SetPageError(page);
1774 BUG_ON(PageWriteback(page));
7e4c3690 1775 mapping_set_error(page->mapping, err);
1da177e4 1776 set_page_writeback(page);
1da177e4
LT
1777 do {
1778 struct buffer_head *next = bh->b_this_page;
1779 if (buffer_async_write(bh)) {
1780 clear_buffer_dirty(bh);
1781 submit_bh(WRITE, bh);
1782 nr_underway++;
1783 }
1da177e4
LT
1784 bh = next;
1785 } while (bh != head);
ffda9d30 1786 unlock_page(page);
1da177e4
LT
1787 goto done;
1788}
1789
afddba49
NP
1790/*
1791 * If a page has any new buffers, zero them out here, and mark them uptodate
1792 * and dirty so they'll be written out (in order to prevent uninitialised
1793 * block data from leaking). And clear the new bit.
1794 */
1795void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1796{
1797 unsigned int block_start, block_end;
1798 struct buffer_head *head, *bh;
1799
1800 BUG_ON(!PageLocked(page));
1801 if (!page_has_buffers(page))
1802 return;
1803
1804 bh = head = page_buffers(page);
1805 block_start = 0;
1806 do {
1807 block_end = block_start + bh->b_size;
1808
1809 if (buffer_new(bh)) {
1810 if (block_end > from && block_start < to) {
1811 if (!PageUptodate(page)) {
1812 unsigned start, size;
1813
1814 start = max(from, block_start);
1815 size = min(to, block_end) - start;
1816
eebd2aa3 1817 zero_user(page, start, size);
afddba49
NP
1818 set_buffer_uptodate(bh);
1819 }
1820
1821 clear_buffer_new(bh);
1822 mark_buffer_dirty(bh);
1823 }
1824 }
1825
1826 block_start = block_end;
1827 bh = bh->b_this_page;
1828 } while (bh != head);
1829}
1830EXPORT_SYMBOL(page_zero_new_buffers);
1831
1da177e4
LT
1832static int __block_prepare_write(struct inode *inode, struct page *page,
1833 unsigned from, unsigned to, get_block_t *get_block)
1834{
1835 unsigned block_start, block_end;
1836 sector_t block;
1837 int err = 0;
1838 unsigned blocksize, bbits;
1839 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1840
1841 BUG_ON(!PageLocked(page));
1842 BUG_ON(from > PAGE_CACHE_SIZE);
1843 BUG_ON(to > PAGE_CACHE_SIZE);
1844 BUG_ON(from > to);
1845
1846 blocksize = 1 << inode->i_blkbits;
1847 if (!page_has_buffers(page))
1848 create_empty_buffers(page, blocksize, 0);
1849 head = page_buffers(page);
1850
1851 bbits = inode->i_blkbits;
1852 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1853
1854 for(bh = head, block_start = 0; bh != head || !block_start;
1855 block++, block_start=block_end, bh = bh->b_this_page) {
1856 block_end = block_start + blocksize;
1857 if (block_end <= from || block_start >= to) {
1858 if (PageUptodate(page)) {
1859 if (!buffer_uptodate(bh))
1860 set_buffer_uptodate(bh);
1861 }
1862 continue;
1863 }
1864 if (buffer_new(bh))
1865 clear_buffer_new(bh);
1866 if (!buffer_mapped(bh)) {
b0cf2321 1867 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1868 err = get_block(inode, block, bh, 1);
1869 if (err)
f3ddbdc6 1870 break;
1da177e4 1871 if (buffer_new(bh)) {
1da177e4
LT
1872 unmap_underlying_metadata(bh->b_bdev,
1873 bh->b_blocknr);
1874 if (PageUptodate(page)) {
637aff46 1875 clear_buffer_new(bh);
1da177e4 1876 set_buffer_uptodate(bh);
637aff46 1877 mark_buffer_dirty(bh);
1da177e4
LT
1878 continue;
1879 }
eebd2aa3
CL
1880 if (block_end > to || block_start < from)
1881 zero_user_segments(page,
1882 to, block_end,
1883 block_start, from);
1da177e4
LT
1884 continue;
1885 }
1886 }
1887 if (PageUptodate(page)) {
1888 if (!buffer_uptodate(bh))
1889 set_buffer_uptodate(bh);
1890 continue;
1891 }
1892 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1893 !buffer_unwritten(bh) &&
1da177e4
LT
1894 (block_start < from || block_end > to)) {
1895 ll_rw_block(READ, 1, &bh);
1896 *wait_bh++=bh;
1897 }
1898 }
1899 /*
1900 * If we issued read requests - let them complete.
1901 */
1902 while(wait_bh > wait) {
1903 wait_on_buffer(*--wait_bh);
1904 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1905 err = -EIO;
1da177e4 1906 }
afddba49
NP
1907 if (unlikely(err))
1908 page_zero_new_buffers(page, from, to);
1da177e4
LT
1909 return err;
1910}
1911
1912static int __block_commit_write(struct inode *inode, struct page *page,
1913 unsigned from, unsigned to)
1914{
1915 unsigned block_start, block_end;
1916 int partial = 0;
1917 unsigned blocksize;
1918 struct buffer_head *bh, *head;
1919
1920 blocksize = 1 << inode->i_blkbits;
1921
1922 for(bh = head = page_buffers(page), block_start = 0;
1923 bh != head || !block_start;
1924 block_start=block_end, bh = bh->b_this_page) {
1925 block_end = block_start + blocksize;
1926 if (block_end <= from || block_start >= to) {
1927 if (!buffer_uptodate(bh))
1928 partial = 1;
1929 } else {
1930 set_buffer_uptodate(bh);
1931 mark_buffer_dirty(bh);
1932 }
afddba49 1933 clear_buffer_new(bh);
1da177e4
LT
1934 }
1935
1936 /*
1937 * If this is a partial write which happened to make all buffers
1938 * uptodate then we can optimize away a bogus readpage() for
1939 * the next read(). Here we 'discover' whether the page went
1940 * uptodate as a result of this (potentially partial) write.
1941 */
1942 if (!partial)
1943 SetPageUptodate(page);
1944 return 0;
1945}
1946
afddba49
NP
1947/*
1948 * block_write_begin takes care of the basic task of block allocation and
1949 * bringing partial write blocks uptodate first.
1950 *
1951 * If *pagep is not NULL, then block_write_begin uses the locked page
1952 * at *pagep rather than allocating its own. In this case, the page will
1953 * not be unlocked or deallocated on failure.
1954 */
1955int block_write_begin(struct file *file, struct address_space *mapping,
1956 loff_t pos, unsigned len, unsigned flags,
1957 struct page **pagep, void **fsdata,
1958 get_block_t *get_block)
1959{
1960 struct inode *inode = mapping->host;
1961 int status = 0;
1962 struct page *page;
1963 pgoff_t index;
1964 unsigned start, end;
1965 int ownpage = 0;
1966
1967 index = pos >> PAGE_CACHE_SHIFT;
1968 start = pos & (PAGE_CACHE_SIZE - 1);
1969 end = start + len;
1970
1971 page = *pagep;
1972 if (page == NULL) {
1973 ownpage = 1;
1974 page = __grab_cache_page(mapping, index);
1975 if (!page) {
1976 status = -ENOMEM;
1977 goto out;
1978 }
1979 *pagep = page;
1980 } else
1981 BUG_ON(!PageLocked(page));
1982
1983 status = __block_prepare_write(inode, page, start, end, get_block);
1984 if (unlikely(status)) {
1985 ClearPageUptodate(page);
1986
1987 if (ownpage) {
1988 unlock_page(page);
1989 page_cache_release(page);
1990 *pagep = NULL;
1991
1992 /*
1993 * prepare_write() may have instantiated a few blocks
1994 * outside i_size. Trim these off again. Don't need
1995 * i_size_read because we hold i_mutex.
1996 */
1997 if (pos + len > inode->i_size)
1998 vmtruncate(inode, inode->i_size);
1999 }
2000 goto out;
2001 }
2002
2003out:
2004 return status;
2005}
2006EXPORT_SYMBOL(block_write_begin);
2007
2008int block_write_end(struct file *file, struct address_space *mapping,
2009 loff_t pos, unsigned len, unsigned copied,
2010 struct page *page, void *fsdata)
2011{
2012 struct inode *inode = mapping->host;
2013 unsigned start;
2014
2015 start = pos & (PAGE_CACHE_SIZE - 1);
2016
2017 if (unlikely(copied < len)) {
2018 /*
2019 * The buffers that were written will now be uptodate, so we
2020 * don't have to worry about a readpage reading them and
2021 * overwriting a partial write. However if we have encountered
2022 * a short write and only partially written into a buffer, it
2023 * will not be marked uptodate, so a readpage might come in and
2024 * destroy our partial write.
2025 *
2026 * Do the simplest thing, and just treat any short write to a
2027 * non uptodate page as a zero-length write, and force the
2028 * caller to redo the whole thing.
2029 */
2030 if (!PageUptodate(page))
2031 copied = 0;
2032
2033 page_zero_new_buffers(page, start+copied, start+len);
2034 }
2035 flush_dcache_page(page);
2036
2037 /* This could be a short (even 0-length) commit */
2038 __block_commit_write(inode, page, start, start+copied);
2039
2040 return copied;
2041}
2042EXPORT_SYMBOL(block_write_end);
2043
2044int generic_write_end(struct file *file, struct address_space *mapping,
2045 loff_t pos, unsigned len, unsigned copied,
2046 struct page *page, void *fsdata)
2047{
2048 struct inode *inode = mapping->host;
2049
2050 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2051
2052 /*
2053 * No need to use i_size_read() here, the i_size
2054 * cannot change under us because we hold i_mutex.
2055 *
2056 * But it's important to update i_size while still holding page lock:
2057 * page writeout could otherwise come in and zero beyond i_size.
2058 */
2059 if (pos+copied > inode->i_size) {
2060 i_size_write(inode, pos+copied);
2061 mark_inode_dirty(inode);
2062 }
2063
2064 unlock_page(page);
2065 page_cache_release(page);
2066
2067 return copied;
2068}
2069EXPORT_SYMBOL(generic_write_end);
2070
1da177e4
LT
2071/*
2072 * Generic "read page" function for block devices that have the normal
2073 * get_block functionality. This is most of the block device filesystems.
2074 * Reads the page asynchronously --- the unlock_buffer() and
2075 * set/clear_buffer_uptodate() functions propagate buffer state into the
2076 * page struct once IO has completed.
2077 */
2078int block_read_full_page(struct page *page, get_block_t *get_block)
2079{
2080 struct inode *inode = page->mapping->host;
2081 sector_t iblock, lblock;
2082 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2083 unsigned int blocksize;
2084 int nr, i;
2085 int fully_mapped = 1;
2086
cd7619d6 2087 BUG_ON(!PageLocked(page));
1da177e4
LT
2088 blocksize = 1 << inode->i_blkbits;
2089 if (!page_has_buffers(page))
2090 create_empty_buffers(page, blocksize, 0);
2091 head = page_buffers(page);
2092
2093 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2094 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2095 bh = head;
2096 nr = 0;
2097 i = 0;
2098
2099 do {
2100 if (buffer_uptodate(bh))
2101 continue;
2102
2103 if (!buffer_mapped(bh)) {
c64610ba
AM
2104 int err = 0;
2105
1da177e4
LT
2106 fully_mapped = 0;
2107 if (iblock < lblock) {
b0cf2321 2108 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2109 err = get_block(inode, iblock, bh, 0);
2110 if (err)
1da177e4
LT
2111 SetPageError(page);
2112 }
2113 if (!buffer_mapped(bh)) {
eebd2aa3 2114 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2115 if (!err)
2116 set_buffer_uptodate(bh);
1da177e4
LT
2117 continue;
2118 }
2119 /*
2120 * get_block() might have updated the buffer
2121 * synchronously
2122 */
2123 if (buffer_uptodate(bh))
2124 continue;
2125 }
2126 arr[nr++] = bh;
2127 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2128
2129 if (fully_mapped)
2130 SetPageMappedToDisk(page);
2131
2132 if (!nr) {
2133 /*
2134 * All buffers are uptodate - we can set the page uptodate
2135 * as well. But not if get_block() returned an error.
2136 */
2137 if (!PageError(page))
2138 SetPageUptodate(page);
2139 unlock_page(page);
2140 return 0;
2141 }
2142
2143 /* Stage two: lock the buffers */
2144 for (i = 0; i < nr; i++) {
2145 bh = arr[i];
2146 lock_buffer(bh);
2147 mark_buffer_async_read(bh);
2148 }
2149
2150 /*
2151 * Stage 3: start the IO. Check for uptodateness
2152 * inside the buffer lock in case another process reading
2153 * the underlying blockdev brought it uptodate (the sct fix).
2154 */
2155 for (i = 0; i < nr; i++) {
2156 bh = arr[i];
2157 if (buffer_uptodate(bh))
2158 end_buffer_async_read(bh, 1);
2159 else
2160 submit_bh(READ, bh);
2161 }
2162 return 0;
2163}
2164
2165/* utility function for filesystems that need to do work on expanding
89e10787 2166 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2167 * deal with the hole.
2168 */
89e10787 2169int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2170{
2171 struct address_space *mapping = inode->i_mapping;
2172 struct page *page;
89e10787 2173 void *fsdata;
05eb0b51 2174 unsigned long limit;
1da177e4
LT
2175 int err;
2176
2177 err = -EFBIG;
2178 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2179 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2180 send_sig(SIGXFSZ, current, 0);
2181 goto out;
2182 }
2183 if (size > inode->i_sb->s_maxbytes)
2184 goto out;
2185
89e10787
NP
2186 err = pagecache_write_begin(NULL, mapping, size, 0,
2187 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2188 &page, &fsdata);
2189 if (err)
05eb0b51 2190 goto out;
05eb0b51 2191
89e10787
NP
2192 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2193 BUG_ON(err > 0);
05eb0b51 2194
1da177e4
LT
2195out:
2196 return err;
2197}
2198
89e10787
NP
2199int cont_expand_zero(struct file *file, struct address_space *mapping,
2200 loff_t pos, loff_t *bytes)
1da177e4 2201{
1da177e4 2202 struct inode *inode = mapping->host;
1da177e4 2203 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2204 struct page *page;
2205 void *fsdata;
2206 pgoff_t index, curidx;
2207 loff_t curpos;
2208 unsigned zerofrom, offset, len;
2209 int err = 0;
1da177e4 2210
89e10787
NP
2211 index = pos >> PAGE_CACHE_SHIFT;
2212 offset = pos & ~PAGE_CACHE_MASK;
2213
2214 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2215 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2216 if (zerofrom & (blocksize-1)) {
2217 *bytes |= (blocksize-1);
2218 (*bytes)++;
2219 }
89e10787 2220 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2221
89e10787
NP
2222 err = pagecache_write_begin(file, mapping, curpos, len,
2223 AOP_FLAG_UNINTERRUPTIBLE,
2224 &page, &fsdata);
2225 if (err)
2226 goto out;
eebd2aa3 2227 zero_user(page, zerofrom, len);
89e10787
NP
2228 err = pagecache_write_end(file, mapping, curpos, len, len,
2229 page, fsdata);
2230 if (err < 0)
2231 goto out;
2232 BUG_ON(err != len);
2233 err = 0;
2234 }
1da177e4 2235
89e10787
NP
2236 /* page covers the boundary, find the boundary offset */
2237 if (index == curidx) {
2238 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2239 /* if we will expand the thing last block will be filled */
89e10787
NP
2240 if (offset <= zerofrom) {
2241 goto out;
2242 }
2243 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2244 *bytes |= (blocksize-1);
2245 (*bytes)++;
2246 }
89e10787 2247 len = offset - zerofrom;
1da177e4 2248
89e10787
NP
2249 err = pagecache_write_begin(file, mapping, curpos, len,
2250 AOP_FLAG_UNINTERRUPTIBLE,
2251 &page, &fsdata);
2252 if (err)
2253 goto out;
eebd2aa3 2254 zero_user(page, zerofrom, len);
89e10787
NP
2255 err = pagecache_write_end(file, mapping, curpos, len, len,
2256 page, fsdata);
2257 if (err < 0)
2258 goto out;
2259 BUG_ON(err != len);
2260 err = 0;
1da177e4 2261 }
89e10787
NP
2262out:
2263 return err;
2264}
2265
2266/*
2267 * For moronic filesystems that do not allow holes in file.
2268 * We may have to extend the file.
2269 */
2270int cont_write_begin(struct file *file, struct address_space *mapping,
2271 loff_t pos, unsigned len, unsigned flags,
2272 struct page **pagep, void **fsdata,
2273 get_block_t *get_block, loff_t *bytes)
2274{
2275 struct inode *inode = mapping->host;
2276 unsigned blocksize = 1 << inode->i_blkbits;
2277 unsigned zerofrom;
2278 int err;
2279
2280 err = cont_expand_zero(file, mapping, pos, bytes);
2281 if (err)
2282 goto out;
2283
2284 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2285 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2286 *bytes |= (blocksize-1);
2287 (*bytes)++;
1da177e4 2288 }
1da177e4 2289
89e10787
NP
2290 *pagep = NULL;
2291 err = block_write_begin(file, mapping, pos, len,
2292 flags, pagep, fsdata, get_block);
1da177e4 2293out:
89e10787 2294 return err;
1da177e4
LT
2295}
2296
2297int block_prepare_write(struct page *page, unsigned from, unsigned to,
2298 get_block_t *get_block)
2299{
2300 struct inode *inode = page->mapping->host;
2301 int err = __block_prepare_write(inode, page, from, to, get_block);
2302 if (err)
2303 ClearPageUptodate(page);
2304 return err;
2305}
2306
2307int block_commit_write(struct page *page, unsigned from, unsigned to)
2308{
2309 struct inode *inode = page->mapping->host;
2310 __block_commit_write(inode,page,from,to);
2311 return 0;
2312}
2313
2314int generic_commit_write(struct file *file, struct page *page,
2315 unsigned from, unsigned to)
2316{
2317 struct inode *inode = page->mapping->host;
2318 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2319 __block_commit_write(inode,page,from,to);
2320 /*
2321 * No need to use i_size_read() here, the i_size
1b1dcc1b 2322 * cannot change under us because we hold i_mutex.
1da177e4
LT
2323 */
2324 if (pos > inode->i_size) {
2325 i_size_write(inode, pos);
2326 mark_inode_dirty(inode);
2327 }
2328 return 0;
2329}
2330
54171690
DC
2331/*
2332 * block_page_mkwrite() is not allowed to change the file size as it gets
2333 * called from a page fault handler when a page is first dirtied. Hence we must
2334 * be careful to check for EOF conditions here. We set the page up correctly
2335 * for a written page which means we get ENOSPC checking when writing into
2336 * holes and correct delalloc and unwritten extent mapping on filesystems that
2337 * support these features.
2338 *
2339 * We are not allowed to take the i_mutex here so we have to play games to
2340 * protect against truncate races as the page could now be beyond EOF. Because
2341 * vmtruncate() writes the inode size before removing pages, once we have the
2342 * page lock we can determine safely if the page is beyond EOF. If it is not
2343 * beyond EOF, then the page is guaranteed safe against truncation until we
2344 * unlock the page.
2345 */
2346int
2347block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2348 get_block_t get_block)
2349{
2350 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2351 unsigned long end;
2352 loff_t size;
2353 int ret = -EINVAL;
2354
2355 lock_page(page);
2356 size = i_size_read(inode);
2357 if ((page->mapping != inode->i_mapping) ||
18336338 2358 (page_offset(page) > size)) {
54171690
DC
2359 /* page got truncated out from underneath us */
2360 goto out_unlock;
2361 }
2362
2363 /* page is wholly or partially inside EOF */
2364 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2365 end = size & ~PAGE_CACHE_MASK;
2366 else
2367 end = PAGE_CACHE_SIZE;
2368
2369 ret = block_prepare_write(page, 0, end, get_block);
2370 if (!ret)
2371 ret = block_commit_write(page, 0, end);
2372
2373out_unlock:
2374 unlock_page(page);
2375 return ret;
2376}
1da177e4
LT
2377
2378/*
03158cd7 2379 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2380 * immediately, while under the page lock. So it needs a special end_io
2381 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2382 */
2383static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2384{
68671f35 2385 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2386}
2387
03158cd7
NP
2388/*
2389 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2390 * the page (converting it to circular linked list and taking care of page
2391 * dirty races).
2392 */
2393static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2394{
2395 struct buffer_head *bh;
2396
2397 BUG_ON(!PageLocked(page));
2398
2399 spin_lock(&page->mapping->private_lock);
2400 bh = head;
2401 do {
2402 if (PageDirty(page))
2403 set_buffer_dirty(bh);
2404 if (!bh->b_this_page)
2405 bh->b_this_page = head;
2406 bh = bh->b_this_page;
2407 } while (bh != head);
2408 attach_page_buffers(page, head);
2409 spin_unlock(&page->mapping->private_lock);
2410}
2411
1da177e4
LT
2412/*
2413 * On entry, the page is fully not uptodate.
2414 * On exit the page is fully uptodate in the areas outside (from,to)
2415 */
03158cd7
NP
2416int nobh_write_begin(struct file *file, struct address_space *mapping,
2417 loff_t pos, unsigned len, unsigned flags,
2418 struct page **pagep, void **fsdata,
1da177e4
LT
2419 get_block_t *get_block)
2420{
03158cd7 2421 struct inode *inode = mapping->host;
1da177e4
LT
2422 const unsigned blkbits = inode->i_blkbits;
2423 const unsigned blocksize = 1 << blkbits;
a4b0672d 2424 struct buffer_head *head, *bh;
03158cd7
NP
2425 struct page *page;
2426 pgoff_t index;
2427 unsigned from, to;
1da177e4 2428 unsigned block_in_page;
a4b0672d 2429 unsigned block_start, block_end;
1da177e4 2430 sector_t block_in_file;
1da177e4 2431 int nr_reads = 0;
1da177e4
LT
2432 int ret = 0;
2433 int is_mapped_to_disk = 1;
1da177e4 2434
03158cd7
NP
2435 index = pos >> PAGE_CACHE_SHIFT;
2436 from = pos & (PAGE_CACHE_SIZE - 1);
2437 to = from + len;
2438
2439 page = __grab_cache_page(mapping, index);
2440 if (!page)
2441 return -ENOMEM;
2442 *pagep = page;
2443 *fsdata = NULL;
2444
2445 if (page_has_buffers(page)) {
2446 unlock_page(page);
2447 page_cache_release(page);
2448 *pagep = NULL;
2449 return block_write_begin(file, mapping, pos, len, flags, pagep,
2450 fsdata, get_block);
2451 }
a4b0672d 2452
1da177e4
LT
2453 if (PageMappedToDisk(page))
2454 return 0;
2455
a4b0672d
NP
2456 /*
2457 * Allocate buffers so that we can keep track of state, and potentially
2458 * attach them to the page if an error occurs. In the common case of
2459 * no error, they will just be freed again without ever being attached
2460 * to the page (which is all OK, because we're under the page lock).
2461 *
2462 * Be careful: the buffer linked list is a NULL terminated one, rather
2463 * than the circular one we're used to.
2464 */
2465 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2466 if (!head) {
2467 ret = -ENOMEM;
2468 goto out_release;
2469 }
a4b0672d 2470
1da177e4 2471 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2472
2473 /*
2474 * We loop across all blocks in the page, whether or not they are
2475 * part of the affected region. This is so we can discover if the
2476 * page is fully mapped-to-disk.
2477 */
a4b0672d 2478 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2479 block_start < PAGE_CACHE_SIZE;
a4b0672d 2480 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2481 int create;
2482
a4b0672d
NP
2483 block_end = block_start + blocksize;
2484 bh->b_state = 0;
1da177e4
LT
2485 create = 1;
2486 if (block_start >= to)
2487 create = 0;
2488 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2489 bh, create);
1da177e4
LT
2490 if (ret)
2491 goto failed;
a4b0672d 2492 if (!buffer_mapped(bh))
1da177e4 2493 is_mapped_to_disk = 0;
a4b0672d
NP
2494 if (buffer_new(bh))
2495 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2496 if (PageUptodate(page)) {
2497 set_buffer_uptodate(bh);
1da177e4 2498 continue;
a4b0672d
NP
2499 }
2500 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2501 zero_user_segments(page, block_start, from,
2502 to, block_end);
1da177e4
LT
2503 continue;
2504 }
a4b0672d 2505 if (buffer_uptodate(bh))
1da177e4
LT
2506 continue; /* reiserfs does this */
2507 if (block_start < from || block_end > to) {
a4b0672d
NP
2508 lock_buffer(bh);
2509 bh->b_end_io = end_buffer_read_nobh;
2510 submit_bh(READ, bh);
2511 nr_reads++;
1da177e4
LT
2512 }
2513 }
2514
2515 if (nr_reads) {
1da177e4
LT
2516 /*
2517 * The page is locked, so these buffers are protected from
2518 * any VM or truncate activity. Hence we don't need to care
2519 * for the buffer_head refcounts.
2520 */
a4b0672d 2521 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2522 wait_on_buffer(bh);
2523 if (!buffer_uptodate(bh))
2524 ret = -EIO;
1da177e4
LT
2525 }
2526 if (ret)
2527 goto failed;
2528 }
2529
2530 if (is_mapped_to_disk)
2531 SetPageMappedToDisk(page);
1da177e4 2532
03158cd7 2533 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2534
1da177e4
LT
2535 return 0;
2536
2537failed:
03158cd7 2538 BUG_ON(!ret);
1da177e4 2539 /*
a4b0672d
NP
2540 * Error recovery is a bit difficult. We need to zero out blocks that
2541 * were newly allocated, and dirty them to ensure they get written out.
2542 * Buffers need to be attached to the page at this point, otherwise
2543 * the handling of potential IO errors during writeout would be hard
2544 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2545 */
03158cd7
NP
2546 attach_nobh_buffers(page, head);
2547 page_zero_new_buffers(page, from, to);
a4b0672d 2548
03158cd7
NP
2549out_release:
2550 unlock_page(page);
2551 page_cache_release(page);
2552 *pagep = NULL;
a4b0672d 2553
03158cd7
NP
2554 if (pos + len > inode->i_size)
2555 vmtruncate(inode, inode->i_size);
a4b0672d 2556
1da177e4
LT
2557 return ret;
2558}
03158cd7 2559EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2560
03158cd7
NP
2561int nobh_write_end(struct file *file, struct address_space *mapping,
2562 loff_t pos, unsigned len, unsigned copied,
2563 struct page *page, void *fsdata)
1da177e4
LT
2564{
2565 struct inode *inode = page->mapping->host;
efdc3131 2566 struct buffer_head *head = fsdata;
03158cd7 2567 struct buffer_head *bh;
1da177e4 2568
03158cd7
NP
2569 if (!PageMappedToDisk(page)) {
2570 if (unlikely(copied < len) && !page_has_buffers(page))
2571 attach_nobh_buffers(page, head);
2572 if (page_has_buffers(page))
2573 return generic_write_end(file, mapping, pos, len,
2574 copied, page, fsdata);
2575 }
a4b0672d 2576
22c8ca78 2577 SetPageUptodate(page);
1da177e4 2578 set_page_dirty(page);
03158cd7
NP
2579 if (pos+copied > inode->i_size) {
2580 i_size_write(inode, pos+copied);
1da177e4
LT
2581 mark_inode_dirty(inode);
2582 }
03158cd7
NP
2583
2584 unlock_page(page);
2585 page_cache_release(page);
2586
03158cd7
NP
2587 while (head) {
2588 bh = head;
2589 head = head->b_this_page;
2590 free_buffer_head(bh);
2591 }
2592
2593 return copied;
1da177e4 2594}
03158cd7 2595EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2596
2597/*
2598 * nobh_writepage() - based on block_full_write_page() except
2599 * that it tries to operate without attaching bufferheads to
2600 * the page.
2601 */
2602int nobh_writepage(struct page *page, get_block_t *get_block,
2603 struct writeback_control *wbc)
2604{
2605 struct inode * const inode = page->mapping->host;
2606 loff_t i_size = i_size_read(inode);
2607 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2608 unsigned offset;
1da177e4
LT
2609 int ret;
2610
2611 /* Is the page fully inside i_size? */
2612 if (page->index < end_index)
2613 goto out;
2614
2615 /* Is the page fully outside i_size? (truncate in progress) */
2616 offset = i_size & (PAGE_CACHE_SIZE-1);
2617 if (page->index >= end_index+1 || !offset) {
2618 /*
2619 * The page may have dirty, unmapped buffers. For example,
2620 * they may have been added in ext3_writepage(). Make them
2621 * freeable here, so the page does not leak.
2622 */
2623#if 0
2624 /* Not really sure about this - do we need this ? */
2625 if (page->mapping->a_ops->invalidatepage)
2626 page->mapping->a_ops->invalidatepage(page, offset);
2627#endif
2628 unlock_page(page);
2629 return 0; /* don't care */
2630 }
2631
2632 /*
2633 * The page straddles i_size. It must be zeroed out on each and every
2634 * writepage invocation because it may be mmapped. "A file is mapped
2635 * in multiples of the page size. For a file that is not a multiple of
2636 * the page size, the remaining memory is zeroed when mapped, and
2637 * writes to that region are not written out to the file."
2638 */
eebd2aa3 2639 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2640out:
2641 ret = mpage_writepage(page, get_block, wbc);
2642 if (ret == -EAGAIN)
2643 ret = __block_write_full_page(inode, page, get_block, wbc);
2644 return ret;
2645}
2646EXPORT_SYMBOL(nobh_writepage);
2647
03158cd7
NP
2648int nobh_truncate_page(struct address_space *mapping,
2649 loff_t from, get_block_t *get_block)
1da177e4 2650{
1da177e4
LT
2651 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2652 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2653 unsigned blocksize;
2654 sector_t iblock;
2655 unsigned length, pos;
2656 struct inode *inode = mapping->host;
1da177e4 2657 struct page *page;
03158cd7
NP
2658 struct buffer_head map_bh;
2659 int err;
1da177e4 2660
03158cd7
NP
2661 blocksize = 1 << inode->i_blkbits;
2662 length = offset & (blocksize - 1);
2663
2664 /* Block boundary? Nothing to do */
2665 if (!length)
2666 return 0;
2667
2668 length = blocksize - length;
2669 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2670
1da177e4 2671 page = grab_cache_page(mapping, index);
03158cd7 2672 err = -ENOMEM;
1da177e4
LT
2673 if (!page)
2674 goto out;
2675
03158cd7
NP
2676 if (page_has_buffers(page)) {
2677has_buffers:
2678 unlock_page(page);
2679 page_cache_release(page);
2680 return block_truncate_page(mapping, from, get_block);
2681 }
2682
2683 /* Find the buffer that contains "offset" */
2684 pos = blocksize;
2685 while (offset >= pos) {
2686 iblock++;
2687 pos += blocksize;
2688 }
2689
2690 err = get_block(inode, iblock, &map_bh, 0);
2691 if (err)
2692 goto unlock;
2693 /* unmapped? It's a hole - nothing to do */
2694 if (!buffer_mapped(&map_bh))
2695 goto unlock;
2696
2697 /* Ok, it's mapped. Make sure it's up-to-date */
2698 if (!PageUptodate(page)) {
2699 err = mapping->a_ops->readpage(NULL, page);
2700 if (err) {
2701 page_cache_release(page);
2702 goto out;
2703 }
2704 lock_page(page);
2705 if (!PageUptodate(page)) {
2706 err = -EIO;
2707 goto unlock;
2708 }
2709 if (page_has_buffers(page))
2710 goto has_buffers;
1da177e4 2711 }
eebd2aa3 2712 zero_user(page, offset, length);
03158cd7
NP
2713 set_page_dirty(page);
2714 err = 0;
2715
2716unlock:
1da177e4
LT
2717 unlock_page(page);
2718 page_cache_release(page);
2719out:
03158cd7 2720 return err;
1da177e4
LT
2721}
2722EXPORT_SYMBOL(nobh_truncate_page);
2723
2724int block_truncate_page(struct address_space *mapping,
2725 loff_t from, get_block_t *get_block)
2726{
2727 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2728 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2729 unsigned blocksize;
54b21a79 2730 sector_t iblock;
1da177e4
LT
2731 unsigned length, pos;
2732 struct inode *inode = mapping->host;
2733 struct page *page;
2734 struct buffer_head *bh;
1da177e4
LT
2735 int err;
2736
2737 blocksize = 1 << inode->i_blkbits;
2738 length = offset & (blocksize - 1);
2739
2740 /* Block boundary? Nothing to do */
2741 if (!length)
2742 return 0;
2743
2744 length = blocksize - length;
54b21a79 2745 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2746
2747 page = grab_cache_page(mapping, index);
2748 err = -ENOMEM;
2749 if (!page)
2750 goto out;
2751
2752 if (!page_has_buffers(page))
2753 create_empty_buffers(page, blocksize, 0);
2754
2755 /* Find the buffer that contains "offset" */
2756 bh = page_buffers(page);
2757 pos = blocksize;
2758 while (offset >= pos) {
2759 bh = bh->b_this_page;
2760 iblock++;
2761 pos += blocksize;
2762 }
2763
2764 err = 0;
2765 if (!buffer_mapped(bh)) {
b0cf2321 2766 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2767 err = get_block(inode, iblock, bh, 0);
2768 if (err)
2769 goto unlock;
2770 /* unmapped? It's a hole - nothing to do */
2771 if (!buffer_mapped(bh))
2772 goto unlock;
2773 }
2774
2775 /* Ok, it's mapped. Make sure it's up-to-date */
2776 if (PageUptodate(page))
2777 set_buffer_uptodate(bh);
2778
33a266dd 2779 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2780 err = -EIO;
2781 ll_rw_block(READ, 1, &bh);
2782 wait_on_buffer(bh);
2783 /* Uhhuh. Read error. Complain and punt. */
2784 if (!buffer_uptodate(bh))
2785 goto unlock;
2786 }
2787
eebd2aa3 2788 zero_user(page, offset, length);
1da177e4
LT
2789 mark_buffer_dirty(bh);
2790 err = 0;
2791
2792unlock:
2793 unlock_page(page);
2794 page_cache_release(page);
2795out:
2796 return err;
2797}
2798
2799/*
2800 * The generic ->writepage function for buffer-backed address_spaces
2801 */
2802int block_write_full_page(struct page *page, get_block_t *get_block,
2803 struct writeback_control *wbc)
2804{
2805 struct inode * const inode = page->mapping->host;
2806 loff_t i_size = i_size_read(inode);
2807 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2808 unsigned offset;
1da177e4
LT
2809
2810 /* Is the page fully inside i_size? */
2811 if (page->index < end_index)
2812 return __block_write_full_page(inode, page, get_block, wbc);
2813
2814 /* Is the page fully outside i_size? (truncate in progress) */
2815 offset = i_size & (PAGE_CACHE_SIZE-1);
2816 if (page->index >= end_index+1 || !offset) {
2817 /*
2818 * The page may have dirty, unmapped buffers. For example,
2819 * they may have been added in ext3_writepage(). Make them
2820 * freeable here, so the page does not leak.
2821 */
aaa4059b 2822 do_invalidatepage(page, 0);
1da177e4
LT
2823 unlock_page(page);
2824 return 0; /* don't care */
2825 }
2826
2827 /*
2828 * The page straddles i_size. It must be zeroed out on each and every
2829 * writepage invokation because it may be mmapped. "A file is mapped
2830 * in multiples of the page size. For a file that is not a multiple of
2831 * the page size, the remaining memory is zeroed when mapped, and
2832 * writes to that region are not written out to the file."
2833 */
eebd2aa3 2834 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2835 return __block_write_full_page(inode, page, get_block, wbc);
2836}
2837
2838sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2839 get_block_t *get_block)
2840{
2841 struct buffer_head tmp;
2842 struct inode *inode = mapping->host;
2843 tmp.b_state = 0;
2844 tmp.b_blocknr = 0;
b0cf2321 2845 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2846 get_block(inode, block, &tmp, 0);
2847 return tmp.b_blocknr;
2848}
2849
6712ecf8 2850static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2851{
2852 struct buffer_head *bh = bio->bi_private;
2853
1da177e4
LT
2854 if (err == -EOPNOTSUPP) {
2855 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2856 set_bit(BH_Eopnotsupp, &bh->b_state);
2857 }
2858
2859 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2860 bio_put(bio);
1da177e4
LT
2861}
2862
2863int submit_bh(int rw, struct buffer_head * bh)
2864{
2865 struct bio *bio;
2866 int ret = 0;
2867
2868 BUG_ON(!buffer_locked(bh));
2869 BUG_ON(!buffer_mapped(bh));
2870 BUG_ON(!bh->b_end_io);
2871
2872 if (buffer_ordered(bh) && (rw == WRITE))
2873 rw = WRITE_BARRIER;
2874
2875 /*
2876 * Only clear out a write error when rewriting, should this
2877 * include WRITE_SYNC as well?
2878 */
2879 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2880 clear_buffer_write_io_error(bh);
2881
2882 /*
2883 * from here on down, it's all bio -- do the initial mapping,
2884 * submit_bio -> generic_make_request may further map this bio around
2885 */
2886 bio = bio_alloc(GFP_NOIO, 1);
2887
2888 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2889 bio->bi_bdev = bh->b_bdev;
2890 bio->bi_io_vec[0].bv_page = bh->b_page;
2891 bio->bi_io_vec[0].bv_len = bh->b_size;
2892 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2893
2894 bio->bi_vcnt = 1;
2895 bio->bi_idx = 0;
2896 bio->bi_size = bh->b_size;
2897
2898 bio->bi_end_io = end_bio_bh_io_sync;
2899 bio->bi_private = bh;
2900
2901 bio_get(bio);
2902 submit_bio(rw, bio);
2903
2904 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2905 ret = -EOPNOTSUPP;
2906
2907 bio_put(bio);
2908 return ret;
2909}
2910
2911/**
2912 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 2913 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
2914 * @nr: number of &struct buffer_heads in the array
2915 * @bhs: array of pointers to &struct buffer_head
2916 *
a7662236
JK
2917 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2918 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2919 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2920 * are sent to disk. The fourth %READA option is described in the documentation
2921 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
2922 *
2923 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
2924 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2925 * clean when doing a write request, and any buffer that appears to be
2926 * up-to-date when doing read request. Further it marks as clean buffers that
2927 * are processed for writing (the buffer cache won't assume that they are
2928 * actually clean until the buffer gets unlocked).
1da177e4
LT
2929 *
2930 * ll_rw_block sets b_end_io to simple completion handler that marks
2931 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2932 * any waiters.
2933 *
2934 * All of the buffers must be for the same device, and must also be a
2935 * multiple of the current approved size for the device.
2936 */
2937void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2938{
2939 int i;
2940
2941 for (i = 0; i < nr; i++) {
2942 struct buffer_head *bh = bhs[i];
2943
a7662236
JK
2944 if (rw == SWRITE)
2945 lock_buffer(bh);
2946 else if (test_set_buffer_locked(bh))
1da177e4
LT
2947 continue;
2948
a7662236 2949 if (rw == WRITE || rw == SWRITE) {
1da177e4 2950 if (test_clear_buffer_dirty(bh)) {
76c3073a 2951 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2952 get_bh(bh);
1da177e4
LT
2953 submit_bh(WRITE, bh);
2954 continue;
2955 }
2956 } else {
1da177e4 2957 if (!buffer_uptodate(bh)) {
76c3073a 2958 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2959 get_bh(bh);
1da177e4
LT
2960 submit_bh(rw, bh);
2961 continue;
2962 }
2963 }
2964 unlock_buffer(bh);
1da177e4
LT
2965 }
2966}
2967
2968/*
2969 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2970 * and then start new I/O and then wait upon it. The caller must have a ref on
2971 * the buffer_head.
2972 */
2973int sync_dirty_buffer(struct buffer_head *bh)
2974{
2975 int ret = 0;
2976
2977 WARN_ON(atomic_read(&bh->b_count) < 1);
2978 lock_buffer(bh);
2979 if (test_clear_buffer_dirty(bh)) {
2980 get_bh(bh);
2981 bh->b_end_io = end_buffer_write_sync;
2982 ret = submit_bh(WRITE, bh);
2983 wait_on_buffer(bh);
2984 if (buffer_eopnotsupp(bh)) {
2985 clear_buffer_eopnotsupp(bh);
2986 ret = -EOPNOTSUPP;
2987 }
2988 if (!ret && !buffer_uptodate(bh))
2989 ret = -EIO;
2990 } else {
2991 unlock_buffer(bh);
2992 }
2993 return ret;
2994}
2995
2996/*
2997 * try_to_free_buffers() checks if all the buffers on this particular page
2998 * are unused, and releases them if so.
2999 *
3000 * Exclusion against try_to_free_buffers may be obtained by either
3001 * locking the page or by holding its mapping's private_lock.
3002 *
3003 * If the page is dirty but all the buffers are clean then we need to
3004 * be sure to mark the page clean as well. This is because the page
3005 * may be against a block device, and a later reattachment of buffers
3006 * to a dirty page will set *all* buffers dirty. Which would corrupt
3007 * filesystem data on the same device.
3008 *
3009 * The same applies to regular filesystem pages: if all the buffers are
3010 * clean then we set the page clean and proceed. To do that, we require
3011 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3012 * private_lock.
3013 *
3014 * try_to_free_buffers() is non-blocking.
3015 */
3016static inline int buffer_busy(struct buffer_head *bh)
3017{
3018 return atomic_read(&bh->b_count) |
3019 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3020}
3021
3022static int
3023drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3024{
3025 struct buffer_head *head = page_buffers(page);
3026 struct buffer_head *bh;
3027
3028 bh = head;
3029 do {
de7d5a3b 3030 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3031 set_bit(AS_EIO, &page->mapping->flags);
3032 if (buffer_busy(bh))
3033 goto failed;
3034 bh = bh->b_this_page;
3035 } while (bh != head);
3036
3037 do {
3038 struct buffer_head *next = bh->b_this_page;
3039
535ee2fb 3040 if (bh->b_assoc_map)
1da177e4
LT
3041 __remove_assoc_queue(bh);
3042 bh = next;
3043 } while (bh != head);
3044 *buffers_to_free = head;
3045 __clear_page_buffers(page);
3046 return 1;
3047failed:
3048 return 0;
3049}
3050
3051int try_to_free_buffers(struct page *page)
3052{
3053 struct address_space * const mapping = page->mapping;
3054 struct buffer_head *buffers_to_free = NULL;
3055 int ret = 0;
3056
3057 BUG_ON(!PageLocked(page));
ecdfc978 3058 if (PageWriteback(page))
1da177e4
LT
3059 return 0;
3060
3061 if (mapping == NULL) { /* can this still happen? */
3062 ret = drop_buffers(page, &buffers_to_free);
3063 goto out;
3064 }
3065
3066 spin_lock(&mapping->private_lock);
3067 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3068
3069 /*
3070 * If the filesystem writes its buffers by hand (eg ext3)
3071 * then we can have clean buffers against a dirty page. We
3072 * clean the page here; otherwise the VM will never notice
3073 * that the filesystem did any IO at all.
3074 *
3075 * Also, during truncate, discard_buffer will have marked all
3076 * the page's buffers clean. We discover that here and clean
3077 * the page also.
87df7241
NP
3078 *
3079 * private_lock must be held over this entire operation in order
3080 * to synchronise against __set_page_dirty_buffers and prevent the
3081 * dirty bit from being lost.
ecdfc978
LT
3082 */
3083 if (ret)
3084 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3085 spin_unlock(&mapping->private_lock);
1da177e4
LT
3086out:
3087 if (buffers_to_free) {
3088 struct buffer_head *bh = buffers_to_free;
3089
3090 do {
3091 struct buffer_head *next = bh->b_this_page;
3092 free_buffer_head(bh);
3093 bh = next;
3094 } while (bh != buffers_to_free);
3095 }
3096 return ret;
3097}
3098EXPORT_SYMBOL(try_to_free_buffers);
3099
3978d717 3100void block_sync_page(struct page *page)
1da177e4
LT
3101{
3102 struct address_space *mapping;
3103
3104 smp_mb();
3105 mapping = page_mapping(page);
3106 if (mapping)
3107 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4
LT
3108}
3109
3110/*
3111 * There are no bdflush tunables left. But distributions are
3112 * still running obsolete flush daemons, so we terminate them here.
3113 *
3114 * Use of bdflush() is deprecated and will be removed in a future kernel.
3115 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3116 */
3117asmlinkage long sys_bdflush(int func, long data)
3118{
3119 static int msg_count;
3120
3121 if (!capable(CAP_SYS_ADMIN))
3122 return -EPERM;
3123
3124 if (msg_count < 5) {
3125 msg_count++;
3126 printk(KERN_INFO
3127 "warning: process `%s' used the obsolete bdflush"
3128 " system call\n", current->comm);
3129 printk(KERN_INFO "Fix your initscripts?\n");
3130 }
3131
3132 if (func == 1)
3133 do_exit(0);
3134 return 0;
3135}
3136
3137/*
3138 * Buffer-head allocation
3139 */
e18b890b 3140static struct kmem_cache *bh_cachep;
1da177e4
LT
3141
3142/*
3143 * Once the number of bh's in the machine exceeds this level, we start
3144 * stripping them in writeback.
3145 */
3146static int max_buffer_heads;
3147
3148int buffer_heads_over_limit;
3149
3150struct bh_accounting {
3151 int nr; /* Number of live bh's */
3152 int ratelimit; /* Limit cacheline bouncing */
3153};
3154
3155static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3156
3157static void recalc_bh_state(void)
3158{
3159 int i;
3160 int tot = 0;
3161
3162 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3163 return;
3164 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 3165 for_each_online_cpu(i)
1da177e4
LT
3166 tot += per_cpu(bh_accounting, i).nr;
3167 buffer_heads_over_limit = (tot > max_buffer_heads);
3168}
3169
dd0fc66f 3170struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3171{
b98938c3 3172 struct buffer_head *ret = kmem_cache_alloc(bh_cachep,
e12ba74d 3173 set_migrateflags(gfp_flags, __GFP_RECLAIMABLE));
1da177e4 3174 if (ret) {
a35afb83 3175 INIT_LIST_HEAD(&ret->b_assoc_buffers);
736c7b80 3176 get_cpu_var(bh_accounting).nr++;
1da177e4 3177 recalc_bh_state();
736c7b80 3178 put_cpu_var(bh_accounting);
1da177e4
LT
3179 }
3180 return ret;
3181}
3182EXPORT_SYMBOL(alloc_buffer_head);
3183
3184void free_buffer_head(struct buffer_head *bh)
3185{
3186 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3187 kmem_cache_free(bh_cachep, bh);
736c7b80 3188 get_cpu_var(bh_accounting).nr--;
1da177e4 3189 recalc_bh_state();
736c7b80 3190 put_cpu_var(bh_accounting);
1da177e4
LT
3191}
3192EXPORT_SYMBOL(free_buffer_head);
3193
1da177e4
LT
3194static void buffer_exit_cpu(int cpu)
3195{
3196 int i;
3197 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3198
3199 for (i = 0; i < BH_LRU_SIZE; i++) {
3200 brelse(b->bhs[i]);
3201 b->bhs[i] = NULL;
3202 }
8a143426
ED
3203 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3204 per_cpu(bh_accounting, cpu).nr = 0;
3205 put_cpu_var(bh_accounting);
1da177e4
LT
3206}
3207
3208static int buffer_cpu_notify(struct notifier_block *self,
3209 unsigned long action, void *hcpu)
3210{
8bb78442 3211 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3212 buffer_exit_cpu((unsigned long)hcpu);
3213 return NOTIFY_OK;
3214}
1da177e4 3215
389d1b08
AK
3216/**
3217 * bh_uptodate_or_lock: Test whether the buffer is uptodate
3218 * @bh: struct buffer_head
3219 *
3220 * Return true if the buffer is up-to-date and false,
3221 * with the buffer locked, if not.
3222 */
3223int bh_uptodate_or_lock(struct buffer_head *bh)
3224{
3225 if (!buffer_uptodate(bh)) {
3226 lock_buffer(bh);
3227 if (!buffer_uptodate(bh))
3228 return 0;
3229 unlock_buffer(bh);
3230 }
3231 return 1;
3232}
3233EXPORT_SYMBOL(bh_uptodate_or_lock);
3234
3235/**
3236 * bh_submit_read: Submit a locked buffer for reading
3237 * @bh: struct buffer_head
3238 *
3239 * Returns zero on success and -EIO on error.
3240 */
3241int bh_submit_read(struct buffer_head *bh)
3242{
3243 BUG_ON(!buffer_locked(bh));
3244
3245 if (buffer_uptodate(bh)) {
3246 unlock_buffer(bh);
3247 return 0;
3248 }
3249
3250 get_bh(bh);
3251 bh->b_end_io = end_buffer_read_sync;
3252 submit_bh(READ, bh);
3253 wait_on_buffer(bh);
3254 if (buffer_uptodate(bh))
3255 return 0;
3256 return -EIO;
3257}
3258EXPORT_SYMBOL(bh_submit_read);
3259
b98938c3
CL
3260static void
3261init_buffer_head(struct kmem_cache *cachep, void *data)
3262{
3263 struct buffer_head *bh = data;
3264
3265 memset(bh, 0, sizeof(*bh));
3266 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3267}
3268
1da177e4
LT
3269void __init buffer_init(void)
3270{
3271 int nrpages;
3272
b98938c3
CL
3273 bh_cachep = kmem_cache_create("buffer_head",
3274 sizeof(struct buffer_head), 0,
3275 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3276 SLAB_MEM_SPREAD),
3277 init_buffer_head);
1da177e4
LT
3278
3279 /*
3280 * Limit the bh occupancy to 10% of ZONE_NORMAL
3281 */
3282 nrpages = (nr_free_buffer_pages() * 10) / 100;
3283 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3284 hotcpu_notifier(buffer_cpu_notify, 0);
3285}
3286
3287EXPORT_SYMBOL(__bforget);
3288EXPORT_SYMBOL(__brelse);
3289EXPORT_SYMBOL(__wait_on_buffer);
3290EXPORT_SYMBOL(block_commit_write);
3291EXPORT_SYMBOL(block_prepare_write);
54171690 3292EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
3293EXPORT_SYMBOL(block_read_full_page);
3294EXPORT_SYMBOL(block_sync_page);
3295EXPORT_SYMBOL(block_truncate_page);
3296EXPORT_SYMBOL(block_write_full_page);
89e10787 3297EXPORT_SYMBOL(cont_write_begin);
1da177e4
LT
3298EXPORT_SYMBOL(end_buffer_read_sync);
3299EXPORT_SYMBOL(end_buffer_write_sync);
3300EXPORT_SYMBOL(file_fsync);
3301EXPORT_SYMBOL(fsync_bdev);
3302EXPORT_SYMBOL(generic_block_bmap);
3303EXPORT_SYMBOL(generic_commit_write);
05eb0b51 3304EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4
LT
3305EXPORT_SYMBOL(init_buffer);
3306EXPORT_SYMBOL(invalidate_bdev);
3307EXPORT_SYMBOL(ll_rw_block);
3308EXPORT_SYMBOL(mark_buffer_dirty);
3309EXPORT_SYMBOL(submit_bh);
3310EXPORT_SYMBOL(sync_dirty_buffer);
3311EXPORT_SYMBOL(unlock_buffer);