]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/volumes.c
Btrfs: avoid IO stalls behind congested devices in a multi-device FS
[net-next-2.6.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
f2d8d74d 21#include <linux/blkdev.h>
788f20eb 22#include <linux/random.h>
b765ead5 23#include <linux/iocontext.h>
593060d7 24#include <asm/div64.h>
4b4e25f2 25#include "compat.h"
0b86a832
CM
26#include "ctree.h"
27#include "extent_map.h"
28#include "disk-io.h"
29#include "transaction.h"
30#include "print-tree.h"
31#include "volumes.h"
8b712842 32#include "async-thread.h"
0b86a832 33
593060d7
CM
34struct map_lookup {
35 u64 type;
36 int io_align;
37 int io_width;
38 int stripe_len;
39 int sector_size;
40 int num_stripes;
321aecc6 41 int sub_stripes;
cea9e445 42 struct btrfs_bio_stripe stripes[];
593060d7
CM
43};
44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49
593060d7 50#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 51 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
a061fc8d
CM
56void btrfs_lock_volumes(void)
57{
58 mutex_lock(&uuid_mutex);
59}
60
61void btrfs_unlock_volumes(void)
62{
63 mutex_unlock(&uuid_mutex);
64}
65
7d9eb12c
CM
66static void lock_chunks(struct btrfs_root *root)
67{
7d9eb12c
CM
68 mutex_lock(&root->fs_info->chunk_mutex);
69}
70
71static void unlock_chunks(struct btrfs_root *root)
72{
7d9eb12c
CM
73 mutex_unlock(&root->fs_info->chunk_mutex);
74}
75
e4404d6e
YZ
76static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
77{
78 struct btrfs_device *device;
79 WARN_ON(fs_devices->opened);
80 while (!list_empty(&fs_devices->devices)) {
81 device = list_entry(fs_devices->devices.next,
82 struct btrfs_device, dev_list);
83 list_del(&device->dev_list);
84 kfree(device->name);
85 kfree(device);
86 }
87 kfree(fs_devices);
88}
89
8a4b83cc
CM
90int btrfs_cleanup_fs_uuids(void)
91{
92 struct btrfs_fs_devices *fs_devices;
8a4b83cc 93
2b82032c
YZ
94 while (!list_empty(&fs_uuids)) {
95 fs_devices = list_entry(fs_uuids.next,
96 struct btrfs_fs_devices, list);
97 list_del(&fs_devices->list);
e4404d6e 98 free_fs_devices(fs_devices);
8a4b83cc
CM
99 }
100 return 0;
101}
102
a1b32a59
CM
103static noinline struct btrfs_device *__find_device(struct list_head *head,
104 u64 devid, u8 *uuid)
8a4b83cc
CM
105{
106 struct btrfs_device *dev;
8a4b83cc 107
c6e30871 108 list_for_each_entry(dev, head, dev_list) {
a443755f 109 if (dev->devid == devid &&
8f18cf13 110 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 111 return dev;
a443755f 112 }
8a4b83cc
CM
113 }
114 return NULL;
115}
116
a1b32a59 117static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 118{
8a4b83cc
CM
119 struct btrfs_fs_devices *fs_devices;
120
c6e30871 121 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
122 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
123 return fs_devices;
124 }
125 return NULL;
126}
127
ffbd517d
CM
128static void requeue_list(struct btrfs_pending_bios *pending_bios,
129 struct bio *head, struct bio *tail)
130{
131
132 struct bio *old_head;
133
134 old_head = pending_bios->head;
135 pending_bios->head = head;
136 if (pending_bios->tail)
137 tail->bi_next = old_head;
138 else
139 pending_bios->tail = tail;
140}
141
8b712842
CM
142/*
143 * we try to collect pending bios for a device so we don't get a large
144 * number of procs sending bios down to the same device. This greatly
145 * improves the schedulers ability to collect and merge the bios.
146 *
147 * But, it also turns into a long list of bios to process and that is sure
148 * to eventually make the worker thread block. The solution here is to
149 * make some progress and then put this work struct back at the end of
150 * the list if the block device is congested. This way, multiple devices
151 * can make progress from a single worker thread.
152 */
d397712b 153static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
154{
155 struct bio *pending;
156 struct backing_dev_info *bdi;
b64a2851 157 struct btrfs_fs_info *fs_info;
ffbd517d 158 struct btrfs_pending_bios *pending_bios;
8b712842
CM
159 struct bio *tail;
160 struct bio *cur;
161 int again = 0;
ffbd517d
CM
162 unsigned long num_run;
163 unsigned long num_sync_run;
d644d8a1 164 unsigned long batch_run = 0;
b64a2851 165 unsigned long limit;
b765ead5 166 unsigned long last_waited = 0;
d84275c9 167 int force_reg = 0;
8b712842 168
bedf762b 169 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
170 fs_info = device->dev_root->fs_info;
171 limit = btrfs_async_submit_limit(fs_info);
172 limit = limit * 2 / 3;
173
ffbd517d
CM
174 /* we want to make sure that every time we switch from the sync
175 * list to the normal list, we unplug
176 */
177 num_sync_run = 0;
178
8b712842
CM
179loop:
180 spin_lock(&device->io_lock);
181
a6837051 182loop_lock:
d84275c9 183 num_run = 0;
ffbd517d 184
8b712842
CM
185 /* take all the bios off the list at once and process them
186 * later on (without the lock held). But, remember the
187 * tail and other pointers so the bios can be properly reinserted
188 * into the list if we hit congestion
189 */
d84275c9 190 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 191 pending_bios = &device->pending_sync_bios;
d84275c9
CM
192 force_reg = 1;
193 } else {
ffbd517d 194 pending_bios = &device->pending_bios;
d84275c9
CM
195 force_reg = 0;
196 }
ffbd517d
CM
197
198 pending = pending_bios->head;
199 tail = pending_bios->tail;
8b712842 200 WARN_ON(pending && !tail);
8b712842
CM
201
202 /*
203 * if pending was null this time around, no bios need processing
204 * at all and we can stop. Otherwise it'll loop back up again
205 * and do an additional check so no bios are missed.
206 *
207 * device->running_pending is used to synchronize with the
208 * schedule_bio code.
209 */
ffbd517d
CM
210 if (device->pending_sync_bios.head == NULL &&
211 device->pending_bios.head == NULL) {
8b712842
CM
212 again = 0;
213 device->running_pending = 0;
ffbd517d
CM
214 } else {
215 again = 1;
216 device->running_pending = 1;
8b712842 217 }
ffbd517d
CM
218
219 pending_bios->head = NULL;
220 pending_bios->tail = NULL;
221
8b712842
CM
222 spin_unlock(&device->io_lock);
223
ffbd517d
CM
224 /*
225 * if we're doing the regular priority list, make sure we unplug
226 * for any high prio bios we've sent down
227 */
228 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
229 num_sync_run = 0;
230 blk_run_backing_dev(bdi, NULL);
231 }
232
d397712b 233 while (pending) {
ffbd517d
CM
234
235 rmb();
d84275c9
CM
236 /* we want to work on both lists, but do more bios on the
237 * sync list than the regular list
238 */
239 if ((num_run > 32 &&
240 pending_bios != &device->pending_sync_bios &&
241 device->pending_sync_bios.head) ||
242 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
243 device->pending_bios.head)) {
ffbd517d
CM
244 spin_lock(&device->io_lock);
245 requeue_list(pending_bios, pending, tail);
246 goto loop_lock;
247 }
248
8b712842
CM
249 cur = pending;
250 pending = pending->bi_next;
251 cur->bi_next = NULL;
b64a2851
CM
252 atomic_dec(&fs_info->nr_async_bios);
253
254 if (atomic_read(&fs_info->nr_async_bios) < limit &&
255 waitqueue_active(&fs_info->async_submit_wait))
256 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
257
258 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
8b712842
CM
259 submit_bio(cur->bi_rw, cur);
260 num_run++;
d644d8a1
CM
261 batch_run++;
262
ffbd517d
CM
263 if (bio_sync(cur))
264 num_sync_run++;
265
266 if (need_resched()) {
267 if (num_sync_run) {
268 blk_run_backing_dev(bdi, NULL);
269 num_sync_run = 0;
270 }
271 cond_resched();
272 }
8b712842
CM
273
274 /*
275 * we made progress, there is more work to do and the bdi
276 * is now congested. Back off and let other work structs
277 * run instead
278 */
d644d8a1 279 if (pending && bdi_write_congested(bdi) && batch_run > 32 &&
5f2cc086 280 fs_info->fs_devices->open_devices > 1) {
b765ead5 281 struct io_context *ioc;
8b712842 282
b765ead5
CM
283 ioc = current->io_context;
284
285 /*
286 * the main goal here is that we don't want to
287 * block if we're going to be able to submit
288 * more requests without blocking.
289 *
290 * This code does two great things, it pokes into
291 * the elevator code from a filesystem _and_
292 * it makes assumptions about how batching works.
293 */
294 if (ioc && ioc->nr_batch_requests > 0 &&
295 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
296 (last_waited == 0 ||
297 ioc->last_waited == last_waited)) {
298 /*
299 * we want to go through our batch of
300 * requests and stop. So, we copy out
301 * the ioc->last_waited time and test
302 * against it before looping
303 */
304 last_waited = ioc->last_waited;
ffbd517d
CM
305 if (need_resched()) {
306 if (num_sync_run) {
307 blk_run_backing_dev(bdi, NULL);
308 num_sync_run = 0;
309 }
310 cond_resched();
311 }
b765ead5
CM
312 continue;
313 }
8b712842 314 spin_lock(&device->io_lock);
ffbd517d 315 requeue_list(pending_bios, pending, tail);
a6837051 316 device->running_pending = 1;
8b712842
CM
317
318 spin_unlock(&device->io_lock);
319 btrfs_requeue_work(&device->work);
320 goto done;
321 }
322 }
ffbd517d
CM
323
324 if (num_sync_run) {
325 num_sync_run = 0;
326 blk_run_backing_dev(bdi, NULL);
327 }
328
329 cond_resched();
8b712842
CM
330 if (again)
331 goto loop;
a6837051
CM
332
333 spin_lock(&device->io_lock);
ffbd517d 334 if (device->pending_bios.head || device->pending_sync_bios.head)
a6837051
CM
335 goto loop_lock;
336 spin_unlock(&device->io_lock);
bedf762b
CM
337
338 /*
339 * IO has already been through a long path to get here. Checksumming,
340 * async helper threads, perhaps compression. We've done a pretty
341 * good job of collecting a batch of IO and should just unplug
342 * the device right away.
343 *
344 * This will help anyone who is waiting on the IO, they might have
345 * already unplugged, but managed to do so before the bio they
346 * cared about found its way down here.
347 */
348 blk_run_backing_dev(bdi, NULL);
8b712842
CM
349done:
350 return 0;
351}
352
b2950863 353static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
354{
355 struct btrfs_device *device;
356
357 device = container_of(work, struct btrfs_device, work);
358 run_scheduled_bios(device);
359}
360
a1b32a59 361static noinline int device_list_add(const char *path,
8a4b83cc
CM
362 struct btrfs_super_block *disk_super,
363 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
364{
365 struct btrfs_device *device;
366 struct btrfs_fs_devices *fs_devices;
367 u64 found_transid = btrfs_super_generation(disk_super);
368
369 fs_devices = find_fsid(disk_super->fsid);
370 if (!fs_devices) {
515dc322 371 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
372 if (!fs_devices)
373 return -ENOMEM;
374 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 375 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
376 list_add(&fs_devices->list, &fs_uuids);
377 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
378 fs_devices->latest_devid = devid;
379 fs_devices->latest_trans = found_transid;
8a4b83cc
CM
380 device = NULL;
381 } else {
a443755f
CM
382 device = __find_device(&fs_devices->devices, devid,
383 disk_super->dev_item.uuid);
8a4b83cc
CM
384 }
385 if (!device) {
2b82032c
YZ
386 if (fs_devices->opened)
387 return -EBUSY;
388
8a4b83cc
CM
389 device = kzalloc(sizeof(*device), GFP_NOFS);
390 if (!device) {
391 /* we can safely leave the fs_devices entry around */
392 return -ENOMEM;
393 }
394 device->devid = devid;
8b712842 395 device->work.func = pending_bios_fn;
a443755f
CM
396 memcpy(device->uuid, disk_super->dev_item.uuid,
397 BTRFS_UUID_SIZE);
f2984462 398 device->barriers = 1;
b248a415 399 spin_lock_init(&device->io_lock);
8a4b83cc
CM
400 device->name = kstrdup(path, GFP_NOFS);
401 if (!device->name) {
402 kfree(device);
403 return -ENOMEM;
404 }
2b82032c 405 INIT_LIST_HEAD(&device->dev_alloc_list);
8a4b83cc 406 list_add(&device->dev_list, &fs_devices->devices);
2b82032c 407 device->fs_devices = fs_devices;
8a4b83cc
CM
408 fs_devices->num_devices++;
409 }
410
411 if (found_transid > fs_devices->latest_trans) {
412 fs_devices->latest_devid = devid;
413 fs_devices->latest_trans = found_transid;
414 }
8a4b83cc
CM
415 *fs_devices_ret = fs_devices;
416 return 0;
417}
418
e4404d6e
YZ
419static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
420{
421 struct btrfs_fs_devices *fs_devices;
422 struct btrfs_device *device;
423 struct btrfs_device *orig_dev;
424
425 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
426 if (!fs_devices)
427 return ERR_PTR(-ENOMEM);
428
429 INIT_LIST_HEAD(&fs_devices->devices);
430 INIT_LIST_HEAD(&fs_devices->alloc_list);
431 INIT_LIST_HEAD(&fs_devices->list);
432 fs_devices->latest_devid = orig->latest_devid;
433 fs_devices->latest_trans = orig->latest_trans;
434 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
435
436 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
437 device = kzalloc(sizeof(*device), GFP_NOFS);
438 if (!device)
439 goto error;
440
441 device->name = kstrdup(orig_dev->name, GFP_NOFS);
442 if (!device->name)
443 goto error;
444
445 device->devid = orig_dev->devid;
446 device->work.func = pending_bios_fn;
447 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
448 device->barriers = 1;
449 spin_lock_init(&device->io_lock);
450 INIT_LIST_HEAD(&device->dev_list);
451 INIT_LIST_HEAD(&device->dev_alloc_list);
452
453 list_add(&device->dev_list, &fs_devices->devices);
454 device->fs_devices = fs_devices;
455 fs_devices->num_devices++;
456 }
457 return fs_devices;
458error:
459 free_fs_devices(fs_devices);
460 return ERR_PTR(-ENOMEM);
461}
462
dfe25020
CM
463int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
464{
c6e30871 465 struct btrfs_device *device, *next;
dfe25020
CM
466
467 mutex_lock(&uuid_mutex);
468again:
c6e30871 469 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2b82032c
YZ
470 if (device->in_fs_metadata)
471 continue;
472
473 if (device->bdev) {
15916de8 474 close_bdev_exclusive(device->bdev, device->mode);
2b82032c
YZ
475 device->bdev = NULL;
476 fs_devices->open_devices--;
477 }
478 if (device->writeable) {
479 list_del_init(&device->dev_alloc_list);
480 device->writeable = 0;
481 fs_devices->rw_devices--;
482 }
e4404d6e
YZ
483 list_del_init(&device->dev_list);
484 fs_devices->num_devices--;
485 kfree(device->name);
486 kfree(device);
dfe25020 487 }
2b82032c
YZ
488
489 if (fs_devices->seed) {
490 fs_devices = fs_devices->seed;
2b82032c
YZ
491 goto again;
492 }
493
dfe25020
CM
494 mutex_unlock(&uuid_mutex);
495 return 0;
496}
a0af469b 497
2b82032c 498static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 499{
8a4b83cc 500 struct btrfs_device *device;
e4404d6e 501
2b82032c
YZ
502 if (--fs_devices->opened > 0)
503 return 0;
8a4b83cc 504
c6e30871 505 list_for_each_entry(device, &fs_devices->devices, dev_list) {
8a4b83cc 506 if (device->bdev) {
15916de8 507 close_bdev_exclusive(device->bdev, device->mode);
a0af469b 508 fs_devices->open_devices--;
8a4b83cc 509 }
2b82032c
YZ
510 if (device->writeable) {
511 list_del_init(&device->dev_alloc_list);
512 fs_devices->rw_devices--;
513 }
514
8a4b83cc 515 device->bdev = NULL;
2b82032c 516 device->writeable = 0;
dfe25020 517 device->in_fs_metadata = 0;
8a4b83cc 518 }
e4404d6e
YZ
519 WARN_ON(fs_devices->open_devices);
520 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
521 fs_devices->opened = 0;
522 fs_devices->seeding = 0;
2b82032c 523
8a4b83cc
CM
524 return 0;
525}
526
2b82032c
YZ
527int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
528{
e4404d6e 529 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
530 int ret;
531
532 mutex_lock(&uuid_mutex);
533 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
534 if (!fs_devices->opened) {
535 seed_devices = fs_devices->seed;
536 fs_devices->seed = NULL;
537 }
2b82032c 538 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
539
540 while (seed_devices) {
541 fs_devices = seed_devices;
542 seed_devices = fs_devices->seed;
543 __btrfs_close_devices(fs_devices);
544 free_fs_devices(fs_devices);
545 }
2b82032c
YZ
546 return ret;
547}
548
e4404d6e
YZ
549static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
550 fmode_t flags, void *holder)
8a4b83cc
CM
551{
552 struct block_device *bdev;
553 struct list_head *head = &fs_devices->devices;
8a4b83cc 554 struct btrfs_device *device;
a0af469b
CM
555 struct block_device *latest_bdev = NULL;
556 struct buffer_head *bh;
557 struct btrfs_super_block *disk_super;
558 u64 latest_devid = 0;
559 u64 latest_transid = 0;
a0af469b 560 u64 devid;
2b82032c 561 int seeding = 1;
a0af469b 562 int ret = 0;
8a4b83cc 563
c6e30871 564 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
565 if (device->bdev)
566 continue;
dfe25020
CM
567 if (!device->name)
568 continue;
569
15916de8 570 bdev = open_bdev_exclusive(device->name, flags, holder);
8a4b83cc 571 if (IS_ERR(bdev)) {
d397712b 572 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 573 goto error;
8a4b83cc 574 }
a061fc8d 575 set_blocksize(bdev, 4096);
a0af469b 576
a512bbf8 577 bh = btrfs_read_dev_super(bdev);
a0af469b
CM
578 if (!bh)
579 goto error_close;
580
581 disk_super = (struct btrfs_super_block *)bh->b_data;
a0af469b
CM
582 devid = le64_to_cpu(disk_super->dev_item.devid);
583 if (devid != device->devid)
584 goto error_brelse;
585
2b82032c
YZ
586 if (memcmp(device->uuid, disk_super->dev_item.uuid,
587 BTRFS_UUID_SIZE))
588 goto error_brelse;
589
590 device->generation = btrfs_super_generation(disk_super);
591 if (!latest_transid || device->generation > latest_transid) {
a0af469b 592 latest_devid = devid;
2b82032c 593 latest_transid = device->generation;
a0af469b
CM
594 latest_bdev = bdev;
595 }
596
2b82032c
YZ
597 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
598 device->writeable = 0;
599 } else {
600 device->writeable = !bdev_read_only(bdev);
601 seeding = 0;
602 }
603
8a4b83cc 604 device->bdev = bdev;
dfe25020 605 device->in_fs_metadata = 0;
15916de8
CM
606 device->mode = flags;
607
a0af469b 608 fs_devices->open_devices++;
2b82032c
YZ
609 if (device->writeable) {
610 fs_devices->rw_devices++;
611 list_add(&device->dev_alloc_list,
612 &fs_devices->alloc_list);
613 }
a0af469b 614 continue;
a061fc8d 615
a0af469b
CM
616error_brelse:
617 brelse(bh);
618error_close:
97288f2c 619 close_bdev_exclusive(bdev, FMODE_READ);
a0af469b
CM
620error:
621 continue;
8a4b83cc 622 }
a0af469b
CM
623 if (fs_devices->open_devices == 0) {
624 ret = -EIO;
625 goto out;
626 }
2b82032c
YZ
627 fs_devices->seeding = seeding;
628 fs_devices->opened = 1;
a0af469b
CM
629 fs_devices->latest_bdev = latest_bdev;
630 fs_devices->latest_devid = latest_devid;
631 fs_devices->latest_trans = latest_transid;
2b82032c 632 fs_devices->total_rw_bytes = 0;
a0af469b 633out:
2b82032c
YZ
634 return ret;
635}
636
637int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 638 fmode_t flags, void *holder)
2b82032c
YZ
639{
640 int ret;
641
642 mutex_lock(&uuid_mutex);
643 if (fs_devices->opened) {
e4404d6e
YZ
644 fs_devices->opened++;
645 ret = 0;
2b82032c 646 } else {
15916de8 647 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 648 }
8a4b83cc 649 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
650 return ret;
651}
652
97288f2c 653int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
654 struct btrfs_fs_devices **fs_devices_ret)
655{
656 struct btrfs_super_block *disk_super;
657 struct block_device *bdev;
658 struct buffer_head *bh;
659 int ret;
660 u64 devid;
f2984462 661 u64 transid;
8a4b83cc
CM
662
663 mutex_lock(&uuid_mutex);
664
15916de8 665 bdev = open_bdev_exclusive(path, flags, holder);
8a4b83cc
CM
666
667 if (IS_ERR(bdev)) {
8a4b83cc
CM
668 ret = PTR_ERR(bdev);
669 goto error;
670 }
671
672 ret = set_blocksize(bdev, 4096);
673 if (ret)
674 goto error_close;
a512bbf8 675 bh = btrfs_read_dev_super(bdev);
8a4b83cc
CM
676 if (!bh) {
677 ret = -EIO;
678 goto error_close;
679 }
680 disk_super = (struct btrfs_super_block *)bh->b_data;
8a4b83cc 681 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462 682 transid = btrfs_super_generation(disk_super);
7ae9c09d 683 if (disk_super->label[0])
d397712b 684 printk(KERN_INFO "device label %s ", disk_super->label);
7ae9c09d
CM
685 else {
686 /* FIXME, make a readl uuid parser */
d397712b 687 printk(KERN_INFO "device fsid %llx-%llx ",
7ae9c09d
CM
688 *(unsigned long long *)disk_super->fsid,
689 *(unsigned long long *)(disk_super->fsid + 8));
690 }
119e10cf 691 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 692 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
693 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
694
8a4b83cc
CM
695 brelse(bh);
696error_close:
15916de8 697 close_bdev_exclusive(bdev, flags);
8a4b83cc
CM
698error:
699 mutex_unlock(&uuid_mutex);
700 return ret;
701}
0b86a832
CM
702
703/*
704 * this uses a pretty simple search, the expectation is that it is
705 * called very infrequently and that a given device has a small number
706 * of extents
707 */
a1b32a59
CM
708static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
709 struct btrfs_device *device,
a1b32a59 710 u64 num_bytes, u64 *start)
0b86a832
CM
711{
712 struct btrfs_key key;
713 struct btrfs_root *root = device->dev_root;
714 struct btrfs_dev_extent *dev_extent = NULL;
2b82032c 715 struct btrfs_path *path;
0b86a832
CM
716 u64 hole_size = 0;
717 u64 last_byte = 0;
718 u64 search_start = 0;
719 u64 search_end = device->total_bytes;
720 int ret;
721 int slot = 0;
722 int start_found;
723 struct extent_buffer *l;
724
2b82032c
YZ
725 path = btrfs_alloc_path();
726 if (!path)
727 return -ENOMEM;
0b86a832 728 path->reada = 2;
2b82032c 729 start_found = 0;
0b86a832
CM
730
731 /* FIXME use last free of some kind */
732
8a4b83cc
CM
733 /* we don't want to overwrite the superblock on the drive,
734 * so we make sure to start at an offset of at least 1MB
735 */
736 search_start = max((u64)1024 * 1024, search_start);
8f18cf13
CM
737
738 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
739 search_start = max(root->fs_info->alloc_start, search_start);
740
0b86a832
CM
741 key.objectid = device->devid;
742 key.offset = search_start;
743 key.type = BTRFS_DEV_EXTENT_KEY;
744 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
745 if (ret < 0)
746 goto error;
747 ret = btrfs_previous_item(root, path, 0, key.type);
748 if (ret < 0)
749 goto error;
750 l = path->nodes[0];
751 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
752 while (1) {
753 l = path->nodes[0];
754 slot = path->slots[0];
755 if (slot >= btrfs_header_nritems(l)) {
756 ret = btrfs_next_leaf(root, path);
757 if (ret == 0)
758 continue;
759 if (ret < 0)
760 goto error;
761no_more_items:
762 if (!start_found) {
763 if (search_start >= search_end) {
764 ret = -ENOSPC;
765 goto error;
766 }
767 *start = search_start;
768 start_found = 1;
769 goto check_pending;
770 }
771 *start = last_byte > search_start ?
772 last_byte : search_start;
773 if (search_end <= *start) {
774 ret = -ENOSPC;
775 goto error;
776 }
777 goto check_pending;
778 }
779 btrfs_item_key_to_cpu(l, &key, slot);
780
781 if (key.objectid < device->devid)
782 goto next;
783
784 if (key.objectid > device->devid)
785 goto no_more_items;
786
787 if (key.offset >= search_start && key.offset > last_byte &&
788 start_found) {
789 if (last_byte < search_start)
790 last_byte = search_start;
791 hole_size = key.offset - last_byte;
792 if (key.offset > last_byte &&
793 hole_size >= num_bytes) {
794 *start = last_byte;
795 goto check_pending;
796 }
797 }
d397712b 798 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
0b86a832 799 goto next;
0b86a832
CM
800
801 start_found = 1;
802 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
803 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
804next:
805 path->slots[0]++;
806 cond_resched();
807 }
808check_pending:
809 /* we have to make sure we didn't find an extent that has already
810 * been allocated by the map tree or the original allocation
811 */
0b86a832
CM
812 BUG_ON(*start < search_start);
813
6324fbf3 814 if (*start + num_bytes > search_end) {
0b86a832
CM
815 ret = -ENOSPC;
816 goto error;
817 }
818 /* check for pending inserts here */
2b82032c 819 ret = 0;
0b86a832
CM
820
821error:
2b82032c 822 btrfs_free_path(path);
0b86a832
CM
823 return ret;
824}
825
b2950863 826static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
827 struct btrfs_device *device,
828 u64 start)
829{
830 int ret;
831 struct btrfs_path *path;
832 struct btrfs_root *root = device->dev_root;
833 struct btrfs_key key;
a061fc8d
CM
834 struct btrfs_key found_key;
835 struct extent_buffer *leaf = NULL;
836 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
837
838 path = btrfs_alloc_path();
839 if (!path)
840 return -ENOMEM;
841
842 key.objectid = device->devid;
843 key.offset = start;
844 key.type = BTRFS_DEV_EXTENT_KEY;
845
846 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
847 if (ret > 0) {
848 ret = btrfs_previous_item(root, path, key.objectid,
849 BTRFS_DEV_EXTENT_KEY);
850 BUG_ON(ret);
851 leaf = path->nodes[0];
852 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
853 extent = btrfs_item_ptr(leaf, path->slots[0],
854 struct btrfs_dev_extent);
855 BUG_ON(found_key.offset > start || found_key.offset +
856 btrfs_dev_extent_length(leaf, extent) < start);
857 ret = 0;
858 } else if (ret == 0) {
859 leaf = path->nodes[0];
860 extent = btrfs_item_ptr(leaf, path->slots[0],
861 struct btrfs_dev_extent);
862 }
8f18cf13
CM
863 BUG_ON(ret);
864
dfe25020
CM
865 if (device->bytes_used > 0)
866 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
867 ret = btrfs_del_item(trans, root, path);
868 BUG_ON(ret);
869
870 btrfs_free_path(path);
871 return ret;
872}
873
2b82032c 874int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 875 struct btrfs_device *device,
e17cade2 876 u64 chunk_tree, u64 chunk_objectid,
2b82032c 877 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
878{
879 int ret;
880 struct btrfs_path *path;
881 struct btrfs_root *root = device->dev_root;
882 struct btrfs_dev_extent *extent;
883 struct extent_buffer *leaf;
884 struct btrfs_key key;
885
dfe25020 886 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
887 path = btrfs_alloc_path();
888 if (!path)
889 return -ENOMEM;
890
0b86a832 891 key.objectid = device->devid;
2b82032c 892 key.offset = start;
0b86a832
CM
893 key.type = BTRFS_DEV_EXTENT_KEY;
894 ret = btrfs_insert_empty_item(trans, root, path, &key,
895 sizeof(*extent));
896 BUG_ON(ret);
897
898 leaf = path->nodes[0];
899 extent = btrfs_item_ptr(leaf, path->slots[0],
900 struct btrfs_dev_extent);
e17cade2
CM
901 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
902 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
903 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
904
905 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
906 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
907 BTRFS_UUID_SIZE);
908
0b86a832
CM
909 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
910 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
911 btrfs_free_path(path);
912 return ret;
913}
914
a1b32a59
CM
915static noinline int find_next_chunk(struct btrfs_root *root,
916 u64 objectid, u64 *offset)
0b86a832
CM
917{
918 struct btrfs_path *path;
919 int ret;
920 struct btrfs_key key;
e17cade2 921 struct btrfs_chunk *chunk;
0b86a832
CM
922 struct btrfs_key found_key;
923
924 path = btrfs_alloc_path();
925 BUG_ON(!path);
926
e17cade2 927 key.objectid = objectid;
0b86a832
CM
928 key.offset = (u64)-1;
929 key.type = BTRFS_CHUNK_ITEM_KEY;
930
931 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
932 if (ret < 0)
933 goto error;
934
935 BUG_ON(ret == 0);
936
937 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
938 if (ret) {
e17cade2 939 *offset = 0;
0b86a832
CM
940 } else {
941 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
942 path->slots[0]);
e17cade2
CM
943 if (found_key.objectid != objectid)
944 *offset = 0;
945 else {
946 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
947 struct btrfs_chunk);
948 *offset = found_key.offset +
949 btrfs_chunk_length(path->nodes[0], chunk);
950 }
0b86a832
CM
951 }
952 ret = 0;
953error:
954 btrfs_free_path(path);
955 return ret;
956}
957
2b82032c 958static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
959{
960 int ret;
961 struct btrfs_key key;
962 struct btrfs_key found_key;
2b82032c
YZ
963 struct btrfs_path *path;
964
965 root = root->fs_info->chunk_root;
966
967 path = btrfs_alloc_path();
968 if (!path)
969 return -ENOMEM;
0b86a832
CM
970
971 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
972 key.type = BTRFS_DEV_ITEM_KEY;
973 key.offset = (u64)-1;
974
975 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
976 if (ret < 0)
977 goto error;
978
979 BUG_ON(ret == 0);
980
981 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
982 BTRFS_DEV_ITEM_KEY);
983 if (ret) {
984 *objectid = 1;
985 } else {
986 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
987 path->slots[0]);
988 *objectid = found_key.offset + 1;
989 }
990 ret = 0;
991error:
2b82032c 992 btrfs_free_path(path);
0b86a832
CM
993 return ret;
994}
995
996/*
997 * the device information is stored in the chunk root
998 * the btrfs_device struct should be fully filled in
999 */
1000int btrfs_add_device(struct btrfs_trans_handle *trans,
1001 struct btrfs_root *root,
1002 struct btrfs_device *device)
1003{
1004 int ret;
1005 struct btrfs_path *path;
1006 struct btrfs_dev_item *dev_item;
1007 struct extent_buffer *leaf;
1008 struct btrfs_key key;
1009 unsigned long ptr;
0b86a832
CM
1010
1011 root = root->fs_info->chunk_root;
1012
1013 path = btrfs_alloc_path();
1014 if (!path)
1015 return -ENOMEM;
1016
0b86a832
CM
1017 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1018 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1019 key.offset = device->devid;
0b86a832
CM
1020
1021 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1022 sizeof(*dev_item));
0b86a832
CM
1023 if (ret)
1024 goto out;
1025
1026 leaf = path->nodes[0];
1027 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1028
1029 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1030 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1031 btrfs_set_device_type(leaf, dev_item, device->type);
1032 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1033 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1034 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1035 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1036 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1037 btrfs_set_device_group(leaf, dev_item, 0);
1038 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1039 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1040 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1041
0b86a832 1042 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1043 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1044 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1045 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1046 btrfs_mark_buffer_dirty(leaf);
0b86a832 1047
2b82032c 1048 ret = 0;
0b86a832
CM
1049out:
1050 btrfs_free_path(path);
1051 return ret;
1052}
8f18cf13 1053
a061fc8d
CM
1054static int btrfs_rm_dev_item(struct btrfs_root *root,
1055 struct btrfs_device *device)
1056{
1057 int ret;
1058 struct btrfs_path *path;
a061fc8d 1059 struct btrfs_key key;
a061fc8d
CM
1060 struct btrfs_trans_handle *trans;
1061
1062 root = root->fs_info->chunk_root;
1063
1064 path = btrfs_alloc_path();
1065 if (!path)
1066 return -ENOMEM;
1067
1068 trans = btrfs_start_transaction(root, 1);
1069 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1070 key.type = BTRFS_DEV_ITEM_KEY;
1071 key.offset = device->devid;
7d9eb12c 1072 lock_chunks(root);
a061fc8d
CM
1073
1074 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1075 if (ret < 0)
1076 goto out;
1077
1078 if (ret > 0) {
1079 ret = -ENOENT;
1080 goto out;
1081 }
1082
1083 ret = btrfs_del_item(trans, root, path);
1084 if (ret)
1085 goto out;
a061fc8d
CM
1086out:
1087 btrfs_free_path(path);
7d9eb12c 1088 unlock_chunks(root);
a061fc8d
CM
1089 btrfs_commit_transaction(trans, root);
1090 return ret;
1091}
1092
1093int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1094{
1095 struct btrfs_device *device;
2b82032c 1096 struct btrfs_device *next_device;
a061fc8d 1097 struct block_device *bdev;
dfe25020 1098 struct buffer_head *bh = NULL;
a061fc8d
CM
1099 struct btrfs_super_block *disk_super;
1100 u64 all_avail;
1101 u64 devid;
2b82032c
YZ
1102 u64 num_devices;
1103 u8 *dev_uuid;
a061fc8d
CM
1104 int ret = 0;
1105
a061fc8d 1106 mutex_lock(&uuid_mutex);
7d9eb12c 1107 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
1108
1109 all_avail = root->fs_info->avail_data_alloc_bits |
1110 root->fs_info->avail_system_alloc_bits |
1111 root->fs_info->avail_metadata_alloc_bits;
1112
1113 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
2b82032c 1114 root->fs_info->fs_devices->rw_devices <= 4) {
d397712b
CM
1115 printk(KERN_ERR "btrfs: unable to go below four devices "
1116 "on raid10\n");
a061fc8d
CM
1117 ret = -EINVAL;
1118 goto out;
1119 }
1120
1121 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
2b82032c 1122 root->fs_info->fs_devices->rw_devices <= 2) {
d397712b
CM
1123 printk(KERN_ERR "btrfs: unable to go below two "
1124 "devices on raid1\n");
a061fc8d
CM
1125 ret = -EINVAL;
1126 goto out;
1127 }
1128
dfe25020 1129 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1130 struct list_head *devices;
1131 struct btrfs_device *tmp;
a061fc8d 1132
dfe25020
CM
1133 device = NULL;
1134 devices = &root->fs_info->fs_devices->devices;
c6e30871 1135 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1136 if (tmp->in_fs_metadata && !tmp->bdev) {
1137 device = tmp;
1138 break;
1139 }
1140 }
1141 bdev = NULL;
1142 bh = NULL;
1143 disk_super = NULL;
1144 if (!device) {
d397712b
CM
1145 printk(KERN_ERR "btrfs: no missing devices found to "
1146 "remove\n");
dfe25020
CM
1147 goto out;
1148 }
dfe25020 1149 } else {
97288f2c 1150 bdev = open_bdev_exclusive(device_path, FMODE_READ,
dfe25020
CM
1151 root->fs_info->bdev_holder);
1152 if (IS_ERR(bdev)) {
1153 ret = PTR_ERR(bdev);
1154 goto out;
1155 }
a061fc8d 1156
2b82032c 1157 set_blocksize(bdev, 4096);
a512bbf8 1158 bh = btrfs_read_dev_super(bdev);
dfe25020
CM
1159 if (!bh) {
1160 ret = -EIO;
1161 goto error_close;
1162 }
1163 disk_super = (struct btrfs_super_block *)bh->b_data;
dfe25020 1164 devid = le64_to_cpu(disk_super->dev_item.devid);
2b82032c
YZ
1165 dev_uuid = disk_super->dev_item.uuid;
1166 device = btrfs_find_device(root, devid, dev_uuid,
1167 disk_super->fsid);
dfe25020
CM
1168 if (!device) {
1169 ret = -ENOENT;
1170 goto error_brelse;
1171 }
2b82032c 1172 }
dfe25020 1173
2b82032c 1174 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1175 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1176 "device\n");
2b82032c
YZ
1177 ret = -EINVAL;
1178 goto error_brelse;
1179 }
1180
1181 if (device->writeable) {
1182 list_del_init(&device->dev_alloc_list);
1183 root->fs_info->fs_devices->rw_devices--;
dfe25020 1184 }
a061fc8d
CM
1185
1186 ret = btrfs_shrink_device(device, 0);
1187 if (ret)
1188 goto error_brelse;
1189
a061fc8d
CM
1190 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1191 if (ret)
1192 goto error_brelse;
1193
2b82032c 1194 device->in_fs_metadata = 0;
e4404d6e
YZ
1195 list_del_init(&device->dev_list);
1196 device->fs_devices->num_devices--;
2b82032c
YZ
1197
1198 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1199 struct btrfs_device, dev_list);
1200 if (device->bdev == root->fs_info->sb->s_bdev)
1201 root->fs_info->sb->s_bdev = next_device->bdev;
1202 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1203 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1204
e4404d6e
YZ
1205 if (device->bdev) {
1206 close_bdev_exclusive(device->bdev, device->mode);
1207 device->bdev = NULL;
1208 device->fs_devices->open_devices--;
1209 }
1210
2b82032c
YZ
1211 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1212 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1213
e4404d6e
YZ
1214 if (device->fs_devices->open_devices == 0) {
1215 struct btrfs_fs_devices *fs_devices;
1216 fs_devices = root->fs_info->fs_devices;
1217 while (fs_devices) {
1218 if (fs_devices->seed == device->fs_devices)
1219 break;
1220 fs_devices = fs_devices->seed;
2b82032c 1221 }
e4404d6e
YZ
1222 fs_devices->seed = device->fs_devices->seed;
1223 device->fs_devices->seed = NULL;
1224 __btrfs_close_devices(device->fs_devices);
1225 free_fs_devices(device->fs_devices);
2b82032c
YZ
1226 }
1227
1228 /*
1229 * at this point, the device is zero sized. We want to
1230 * remove it from the devices list and zero out the old super
1231 */
1232 if (device->writeable) {
dfe25020
CM
1233 /* make sure this device isn't detected as part of
1234 * the FS anymore
1235 */
1236 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1237 set_buffer_dirty(bh);
1238 sync_dirty_buffer(bh);
dfe25020 1239 }
a061fc8d
CM
1240
1241 kfree(device->name);
1242 kfree(device);
1243 ret = 0;
a061fc8d
CM
1244
1245error_brelse:
1246 brelse(bh);
1247error_close:
dfe25020 1248 if (bdev)
97288f2c 1249 close_bdev_exclusive(bdev, FMODE_READ);
a061fc8d 1250out:
7d9eb12c 1251 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1252 mutex_unlock(&uuid_mutex);
a061fc8d
CM
1253 return ret;
1254}
1255
2b82032c
YZ
1256/*
1257 * does all the dirty work required for changing file system's UUID.
1258 */
1259static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1260 struct btrfs_root *root)
1261{
1262 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1263 struct btrfs_fs_devices *old_devices;
e4404d6e 1264 struct btrfs_fs_devices *seed_devices;
2b82032c
YZ
1265 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1266 struct btrfs_device *device;
1267 u64 super_flags;
1268
1269 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1270 if (!fs_devices->seeding)
2b82032c
YZ
1271 return -EINVAL;
1272
e4404d6e
YZ
1273 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1274 if (!seed_devices)
2b82032c
YZ
1275 return -ENOMEM;
1276
e4404d6e
YZ
1277 old_devices = clone_fs_devices(fs_devices);
1278 if (IS_ERR(old_devices)) {
1279 kfree(seed_devices);
1280 return PTR_ERR(old_devices);
2b82032c 1281 }
e4404d6e 1282
2b82032c
YZ
1283 list_add(&old_devices->list, &fs_uuids);
1284
e4404d6e
YZ
1285 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1286 seed_devices->opened = 1;
1287 INIT_LIST_HEAD(&seed_devices->devices);
1288 INIT_LIST_HEAD(&seed_devices->alloc_list);
1289 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1290 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1291 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1292 device->fs_devices = seed_devices;
1293 }
1294
2b82032c
YZ
1295 fs_devices->seeding = 0;
1296 fs_devices->num_devices = 0;
1297 fs_devices->open_devices = 0;
e4404d6e 1298 fs_devices->seed = seed_devices;
2b82032c
YZ
1299
1300 generate_random_uuid(fs_devices->fsid);
1301 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1302 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1303 super_flags = btrfs_super_flags(disk_super) &
1304 ~BTRFS_SUPER_FLAG_SEEDING;
1305 btrfs_set_super_flags(disk_super, super_flags);
1306
1307 return 0;
1308}
1309
1310/*
1311 * strore the expected generation for seed devices in device items.
1312 */
1313static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1314 struct btrfs_root *root)
1315{
1316 struct btrfs_path *path;
1317 struct extent_buffer *leaf;
1318 struct btrfs_dev_item *dev_item;
1319 struct btrfs_device *device;
1320 struct btrfs_key key;
1321 u8 fs_uuid[BTRFS_UUID_SIZE];
1322 u8 dev_uuid[BTRFS_UUID_SIZE];
1323 u64 devid;
1324 int ret;
1325
1326 path = btrfs_alloc_path();
1327 if (!path)
1328 return -ENOMEM;
1329
1330 root = root->fs_info->chunk_root;
1331 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1332 key.offset = 0;
1333 key.type = BTRFS_DEV_ITEM_KEY;
1334
1335 while (1) {
1336 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1337 if (ret < 0)
1338 goto error;
1339
1340 leaf = path->nodes[0];
1341next_slot:
1342 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1343 ret = btrfs_next_leaf(root, path);
1344 if (ret > 0)
1345 break;
1346 if (ret < 0)
1347 goto error;
1348 leaf = path->nodes[0];
1349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1350 btrfs_release_path(root, path);
1351 continue;
1352 }
1353
1354 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1355 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1356 key.type != BTRFS_DEV_ITEM_KEY)
1357 break;
1358
1359 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1360 struct btrfs_dev_item);
1361 devid = btrfs_device_id(leaf, dev_item);
1362 read_extent_buffer(leaf, dev_uuid,
1363 (unsigned long)btrfs_device_uuid(dev_item),
1364 BTRFS_UUID_SIZE);
1365 read_extent_buffer(leaf, fs_uuid,
1366 (unsigned long)btrfs_device_fsid(dev_item),
1367 BTRFS_UUID_SIZE);
1368 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1369 BUG_ON(!device);
1370
1371 if (device->fs_devices->seeding) {
1372 btrfs_set_device_generation(leaf, dev_item,
1373 device->generation);
1374 btrfs_mark_buffer_dirty(leaf);
1375 }
1376
1377 path->slots[0]++;
1378 goto next_slot;
1379 }
1380 ret = 0;
1381error:
1382 btrfs_free_path(path);
1383 return ret;
1384}
1385
788f20eb
CM
1386int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1387{
1388 struct btrfs_trans_handle *trans;
1389 struct btrfs_device *device;
1390 struct block_device *bdev;
788f20eb 1391 struct list_head *devices;
2b82032c 1392 struct super_block *sb = root->fs_info->sb;
788f20eb 1393 u64 total_bytes;
2b82032c 1394 int seeding_dev = 0;
788f20eb
CM
1395 int ret = 0;
1396
2b82032c
YZ
1397 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1398 return -EINVAL;
788f20eb 1399
15916de8 1400 bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
d397712b 1401 if (!bdev)
788f20eb 1402 return -EIO;
a2135011 1403
2b82032c
YZ
1404 if (root->fs_info->fs_devices->seeding) {
1405 seeding_dev = 1;
1406 down_write(&sb->s_umount);
1407 mutex_lock(&uuid_mutex);
1408 }
1409
8c8bee1d 1410 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1411 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1412
788f20eb 1413 devices = &root->fs_info->fs_devices->devices;
c6e30871 1414 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1415 if (device->bdev == bdev) {
1416 ret = -EEXIST;
2b82032c 1417 goto error;
788f20eb
CM
1418 }
1419 }
1420
1421 device = kzalloc(sizeof(*device), GFP_NOFS);
1422 if (!device) {
1423 /* we can safely leave the fs_devices entry around */
1424 ret = -ENOMEM;
2b82032c 1425 goto error;
788f20eb
CM
1426 }
1427
788f20eb
CM
1428 device->name = kstrdup(device_path, GFP_NOFS);
1429 if (!device->name) {
1430 kfree(device);
2b82032c
YZ
1431 ret = -ENOMEM;
1432 goto error;
788f20eb 1433 }
2b82032c
YZ
1434
1435 ret = find_next_devid(root, &device->devid);
1436 if (ret) {
1437 kfree(device);
1438 goto error;
1439 }
1440
1441 trans = btrfs_start_transaction(root, 1);
1442 lock_chunks(root);
1443
1444 device->barriers = 1;
1445 device->writeable = 1;
1446 device->work.func = pending_bios_fn;
1447 generate_random_uuid(device->uuid);
1448 spin_lock_init(&device->io_lock);
1449 device->generation = trans->transid;
788f20eb
CM
1450 device->io_width = root->sectorsize;
1451 device->io_align = root->sectorsize;
1452 device->sector_size = root->sectorsize;
1453 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1454 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1455 device->dev_root = root->fs_info->dev_root;
1456 device->bdev = bdev;
dfe25020 1457 device->in_fs_metadata = 1;
15916de8 1458 device->mode = 0;
2b82032c 1459 set_blocksize(device->bdev, 4096);
788f20eb 1460
2b82032c
YZ
1461 if (seeding_dev) {
1462 sb->s_flags &= ~MS_RDONLY;
1463 ret = btrfs_prepare_sprout(trans, root);
1464 BUG_ON(ret);
1465 }
788f20eb 1466
2b82032c
YZ
1467 device->fs_devices = root->fs_info->fs_devices;
1468 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1469 list_add(&device->dev_alloc_list,
1470 &root->fs_info->fs_devices->alloc_list);
1471 root->fs_info->fs_devices->num_devices++;
1472 root->fs_info->fs_devices->open_devices++;
1473 root->fs_info->fs_devices->rw_devices++;
1474 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1475
788f20eb
CM
1476 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1477 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1478 total_bytes + device->total_bytes);
1479
1480 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1481 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1482 total_bytes + 1);
1483
2b82032c
YZ
1484 if (seeding_dev) {
1485 ret = init_first_rw_device(trans, root, device);
1486 BUG_ON(ret);
1487 ret = btrfs_finish_sprout(trans, root);
1488 BUG_ON(ret);
1489 } else {
1490 ret = btrfs_add_device(trans, root, device);
1491 }
1492
913d952e
CM
1493 /*
1494 * we've got more storage, clear any full flags on the space
1495 * infos
1496 */
1497 btrfs_clear_space_info_full(root->fs_info);
1498
7d9eb12c 1499 unlock_chunks(root);
2b82032c 1500 btrfs_commit_transaction(trans, root);
a2135011 1501
2b82032c
YZ
1502 if (seeding_dev) {
1503 mutex_unlock(&uuid_mutex);
1504 up_write(&sb->s_umount);
788f20eb 1505
2b82032c
YZ
1506 ret = btrfs_relocate_sys_chunks(root);
1507 BUG_ON(ret);
1508 }
1509out:
1510 mutex_unlock(&root->fs_info->volume_mutex);
1511 return ret;
1512error:
15916de8 1513 close_bdev_exclusive(bdev, 0);
2b82032c
YZ
1514 if (seeding_dev) {
1515 mutex_unlock(&uuid_mutex);
1516 up_write(&sb->s_umount);
1517 }
788f20eb
CM
1518 goto out;
1519}
1520
d397712b
CM
1521static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1522 struct btrfs_device *device)
0b86a832
CM
1523{
1524 int ret;
1525 struct btrfs_path *path;
1526 struct btrfs_root *root;
1527 struct btrfs_dev_item *dev_item;
1528 struct extent_buffer *leaf;
1529 struct btrfs_key key;
1530
1531 root = device->dev_root->fs_info->chunk_root;
1532
1533 path = btrfs_alloc_path();
1534 if (!path)
1535 return -ENOMEM;
1536
1537 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1538 key.type = BTRFS_DEV_ITEM_KEY;
1539 key.offset = device->devid;
1540
1541 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1542 if (ret < 0)
1543 goto out;
1544
1545 if (ret > 0) {
1546 ret = -ENOENT;
1547 goto out;
1548 }
1549
1550 leaf = path->nodes[0];
1551 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1552
1553 btrfs_set_device_id(leaf, dev_item, device->devid);
1554 btrfs_set_device_type(leaf, dev_item, device->type);
1555 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1556 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1557 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1558 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1559 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1560 btrfs_mark_buffer_dirty(leaf);
1561
1562out:
1563 btrfs_free_path(path);
1564 return ret;
1565}
1566
7d9eb12c 1567static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1568 struct btrfs_device *device, u64 new_size)
1569{
1570 struct btrfs_super_block *super_copy =
1571 &device->dev_root->fs_info->super_copy;
1572 u64 old_total = btrfs_super_total_bytes(super_copy);
1573 u64 diff = new_size - device->total_bytes;
1574
2b82032c
YZ
1575 if (!device->writeable)
1576 return -EACCES;
1577 if (new_size <= device->total_bytes)
1578 return -EINVAL;
1579
8f18cf13 1580 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1581 device->fs_devices->total_rw_bytes += diff;
1582
1583 device->total_bytes = new_size;
4184ea7f
CM
1584 btrfs_clear_space_info_full(device->dev_root->fs_info);
1585
8f18cf13
CM
1586 return btrfs_update_device(trans, device);
1587}
1588
7d9eb12c
CM
1589int btrfs_grow_device(struct btrfs_trans_handle *trans,
1590 struct btrfs_device *device, u64 new_size)
1591{
1592 int ret;
1593 lock_chunks(device->dev_root);
1594 ret = __btrfs_grow_device(trans, device, new_size);
1595 unlock_chunks(device->dev_root);
1596 return ret;
1597}
1598
8f18cf13
CM
1599static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1600 struct btrfs_root *root,
1601 u64 chunk_tree, u64 chunk_objectid,
1602 u64 chunk_offset)
1603{
1604 int ret;
1605 struct btrfs_path *path;
1606 struct btrfs_key key;
1607
1608 root = root->fs_info->chunk_root;
1609 path = btrfs_alloc_path();
1610 if (!path)
1611 return -ENOMEM;
1612
1613 key.objectid = chunk_objectid;
1614 key.offset = chunk_offset;
1615 key.type = BTRFS_CHUNK_ITEM_KEY;
1616
1617 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1618 BUG_ON(ret);
1619
1620 ret = btrfs_del_item(trans, root, path);
1621 BUG_ON(ret);
1622
1623 btrfs_free_path(path);
1624 return 0;
1625}
1626
b2950863 1627static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1628 chunk_offset)
1629{
1630 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1631 struct btrfs_disk_key *disk_key;
1632 struct btrfs_chunk *chunk;
1633 u8 *ptr;
1634 int ret = 0;
1635 u32 num_stripes;
1636 u32 array_size;
1637 u32 len = 0;
1638 u32 cur;
1639 struct btrfs_key key;
1640
1641 array_size = btrfs_super_sys_array_size(super_copy);
1642
1643 ptr = super_copy->sys_chunk_array;
1644 cur = 0;
1645
1646 while (cur < array_size) {
1647 disk_key = (struct btrfs_disk_key *)ptr;
1648 btrfs_disk_key_to_cpu(&key, disk_key);
1649
1650 len = sizeof(*disk_key);
1651
1652 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1653 chunk = (struct btrfs_chunk *)(ptr + len);
1654 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1655 len += btrfs_chunk_item_size(num_stripes);
1656 } else {
1657 ret = -EIO;
1658 break;
1659 }
1660 if (key.objectid == chunk_objectid &&
1661 key.offset == chunk_offset) {
1662 memmove(ptr, ptr + len, array_size - (cur + len));
1663 array_size -= len;
1664 btrfs_set_super_sys_array_size(super_copy, array_size);
1665 } else {
1666 ptr += len;
1667 cur += len;
1668 }
1669 }
1670 return ret;
1671}
1672
b2950863 1673static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1674 u64 chunk_tree, u64 chunk_objectid,
1675 u64 chunk_offset)
1676{
1677 struct extent_map_tree *em_tree;
1678 struct btrfs_root *extent_root;
1679 struct btrfs_trans_handle *trans;
1680 struct extent_map *em;
1681 struct map_lookup *map;
1682 int ret;
1683 int i;
1684
1685 root = root->fs_info->chunk_root;
1686 extent_root = root->fs_info->extent_root;
1687 em_tree = &root->fs_info->mapping_tree.map_tree;
1688
1689 /* step one, relocate all the extents inside this chunk */
1a40e23b 1690 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
8f18cf13
CM
1691 BUG_ON(ret);
1692
1693 trans = btrfs_start_transaction(root, 1);
1694 BUG_ON(!trans);
1695
7d9eb12c
CM
1696 lock_chunks(root);
1697
8f18cf13
CM
1698 /*
1699 * step two, delete the device extents and the
1700 * chunk tree entries
1701 */
1702 spin_lock(&em_tree->lock);
1703 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1704 spin_unlock(&em_tree->lock);
1705
a061fc8d
CM
1706 BUG_ON(em->start > chunk_offset ||
1707 em->start + em->len < chunk_offset);
8f18cf13
CM
1708 map = (struct map_lookup *)em->bdev;
1709
1710 for (i = 0; i < map->num_stripes; i++) {
1711 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1712 map->stripes[i].physical);
1713 BUG_ON(ret);
a061fc8d 1714
dfe25020
CM
1715 if (map->stripes[i].dev) {
1716 ret = btrfs_update_device(trans, map->stripes[i].dev);
1717 BUG_ON(ret);
1718 }
8f18cf13
CM
1719 }
1720 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1721 chunk_offset);
1722
1723 BUG_ON(ret);
1724
1725 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1726 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1727 BUG_ON(ret);
8f18cf13
CM
1728 }
1729
2b82032c
YZ
1730 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1731 BUG_ON(ret);
1732
1733 spin_lock(&em_tree->lock);
1734 remove_extent_mapping(em_tree, em);
1735 spin_unlock(&em_tree->lock);
1736
1737 kfree(map);
1738 em->bdev = NULL;
1739
1740 /* once for the tree */
1741 free_extent_map(em);
1742 /* once for us */
1743 free_extent_map(em);
1744
1745 unlock_chunks(root);
1746 btrfs_end_transaction(trans, root);
1747 return 0;
1748}
1749
1750static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1751{
1752 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1753 struct btrfs_path *path;
1754 struct extent_buffer *leaf;
1755 struct btrfs_chunk *chunk;
1756 struct btrfs_key key;
1757 struct btrfs_key found_key;
1758 u64 chunk_tree = chunk_root->root_key.objectid;
1759 u64 chunk_type;
1760 int ret;
1761
1762 path = btrfs_alloc_path();
1763 if (!path)
1764 return -ENOMEM;
1765
1766 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1767 key.offset = (u64)-1;
1768 key.type = BTRFS_CHUNK_ITEM_KEY;
1769
1770 while (1) {
1771 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1772 if (ret < 0)
1773 goto error;
1774 BUG_ON(ret == 0);
1775
1776 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1777 key.type);
1778 if (ret < 0)
1779 goto error;
1780 if (ret > 0)
1781 break;
1a40e23b 1782
2b82032c
YZ
1783 leaf = path->nodes[0];
1784 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 1785
2b82032c
YZ
1786 chunk = btrfs_item_ptr(leaf, path->slots[0],
1787 struct btrfs_chunk);
1788 chunk_type = btrfs_chunk_type(leaf, chunk);
1789 btrfs_release_path(chunk_root, path);
8f18cf13 1790
2b82032c
YZ
1791 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1792 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1793 found_key.objectid,
1794 found_key.offset);
1795 BUG_ON(ret);
1796 }
8f18cf13 1797
2b82032c
YZ
1798 if (found_key.offset == 0)
1799 break;
1800 key.offset = found_key.offset - 1;
1801 }
1802 ret = 0;
1803error:
1804 btrfs_free_path(path);
1805 return ret;
8f18cf13
CM
1806}
1807
ec44a35c
CM
1808static u64 div_factor(u64 num, int factor)
1809{
1810 if (factor == 10)
1811 return num;
1812 num *= factor;
1813 do_div(num, 10);
1814 return num;
1815}
1816
ec44a35c
CM
1817int btrfs_balance(struct btrfs_root *dev_root)
1818{
1819 int ret;
ec44a35c
CM
1820 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1821 struct btrfs_device *device;
1822 u64 old_size;
1823 u64 size_to_free;
1824 struct btrfs_path *path;
1825 struct btrfs_key key;
1826 struct btrfs_chunk *chunk;
1827 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1828 struct btrfs_trans_handle *trans;
1829 struct btrfs_key found_key;
1830
2b82032c
YZ
1831 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1832 return -EROFS;
ec44a35c 1833
7d9eb12c 1834 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1835 dev_root = dev_root->fs_info->dev_root;
1836
ec44a35c 1837 /* step one make some room on all the devices */
c6e30871 1838 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
1839 old_size = device->total_bytes;
1840 size_to_free = div_factor(old_size, 1);
1841 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
1842 if (!device->writeable ||
1843 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
1844 continue;
1845
1846 ret = btrfs_shrink_device(device, old_size - size_to_free);
1847 BUG_ON(ret);
1848
1849 trans = btrfs_start_transaction(dev_root, 1);
1850 BUG_ON(!trans);
1851
1852 ret = btrfs_grow_device(trans, device, old_size);
1853 BUG_ON(ret);
1854
1855 btrfs_end_transaction(trans, dev_root);
1856 }
1857
1858 /* step two, relocate all the chunks */
1859 path = btrfs_alloc_path();
1860 BUG_ON(!path);
1861
1862 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1863 key.offset = (u64)-1;
1864 key.type = BTRFS_CHUNK_ITEM_KEY;
1865
d397712b 1866 while (1) {
ec44a35c
CM
1867 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1868 if (ret < 0)
1869 goto error;
1870
1871 /*
1872 * this shouldn't happen, it means the last relocate
1873 * failed
1874 */
1875 if (ret == 0)
1876 break;
1877
1878 ret = btrfs_previous_item(chunk_root, path, 0,
1879 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 1880 if (ret)
ec44a35c 1881 break;
7d9eb12c 1882
ec44a35c
CM
1883 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1884 path->slots[0]);
1885 if (found_key.objectid != key.objectid)
1886 break;
7d9eb12c 1887
ec44a35c
CM
1888 chunk = btrfs_item_ptr(path->nodes[0],
1889 path->slots[0],
1890 struct btrfs_chunk);
1891 key.offset = found_key.offset;
1892 /* chunk zero is special */
1893 if (key.offset == 0)
1894 break;
1895
7d9eb12c 1896 btrfs_release_path(chunk_root, path);
ec44a35c
CM
1897 ret = btrfs_relocate_chunk(chunk_root,
1898 chunk_root->root_key.objectid,
1899 found_key.objectid,
1900 found_key.offset);
1901 BUG_ON(ret);
ec44a35c
CM
1902 }
1903 ret = 0;
1904error:
1905 btrfs_free_path(path);
7d9eb12c 1906 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
1907 return ret;
1908}
1909
8f18cf13
CM
1910/*
1911 * shrinking a device means finding all of the device extents past
1912 * the new size, and then following the back refs to the chunks.
1913 * The chunk relocation code actually frees the device extent
1914 */
1915int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1916{
1917 struct btrfs_trans_handle *trans;
1918 struct btrfs_root *root = device->dev_root;
1919 struct btrfs_dev_extent *dev_extent = NULL;
1920 struct btrfs_path *path;
1921 u64 length;
1922 u64 chunk_tree;
1923 u64 chunk_objectid;
1924 u64 chunk_offset;
1925 int ret;
1926 int slot;
1927 struct extent_buffer *l;
1928 struct btrfs_key key;
1929 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1930 u64 old_total = btrfs_super_total_bytes(super_copy);
1931 u64 diff = device->total_bytes - new_size;
1932
2b82032c
YZ
1933 if (new_size >= device->total_bytes)
1934 return -EINVAL;
8f18cf13
CM
1935
1936 path = btrfs_alloc_path();
1937 if (!path)
1938 return -ENOMEM;
1939
1940 trans = btrfs_start_transaction(root, 1);
1941 if (!trans) {
1942 ret = -ENOMEM;
1943 goto done;
1944 }
1945
1946 path->reada = 2;
1947
7d9eb12c
CM
1948 lock_chunks(root);
1949
8f18cf13 1950 device->total_bytes = new_size;
2b82032c
YZ
1951 if (device->writeable)
1952 device->fs_devices->total_rw_bytes -= diff;
7d9eb12c 1953 unlock_chunks(root);
8f18cf13
CM
1954 btrfs_end_transaction(trans, root);
1955
1956 key.objectid = device->devid;
1957 key.offset = (u64)-1;
1958 key.type = BTRFS_DEV_EXTENT_KEY;
1959
1960 while (1) {
1961 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1962 if (ret < 0)
1963 goto done;
1964
1965 ret = btrfs_previous_item(root, path, 0, key.type);
1966 if (ret < 0)
1967 goto done;
1968 if (ret) {
1969 ret = 0;
1970 goto done;
1971 }
1972
1973 l = path->nodes[0];
1974 slot = path->slots[0];
1975 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1976
1977 if (key.objectid != device->devid)
1978 goto done;
1979
1980 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1981 length = btrfs_dev_extent_length(l, dev_extent);
1982
1983 if (key.offset + length <= new_size)
d6397bae 1984 break;
8f18cf13
CM
1985
1986 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1987 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1988 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1989 btrfs_release_path(root, path);
1990
1991 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1992 chunk_offset);
1993 if (ret)
1994 goto done;
1995 }
1996
d6397bae
CB
1997 /* Shrinking succeeded, else we would be at "done". */
1998 trans = btrfs_start_transaction(root, 1);
1999 if (!trans) {
2000 ret = -ENOMEM;
2001 goto done;
2002 }
2003 lock_chunks(root);
2004
2005 device->disk_total_bytes = new_size;
2006 /* Now btrfs_update_device() will change the on-disk size. */
2007 ret = btrfs_update_device(trans, device);
2008 if (ret) {
2009 unlock_chunks(root);
2010 btrfs_end_transaction(trans, root);
2011 goto done;
2012 }
2013 WARN_ON(diff > old_total);
2014 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2015 unlock_chunks(root);
2016 btrfs_end_transaction(trans, root);
8f18cf13
CM
2017done:
2018 btrfs_free_path(path);
2019 return ret;
2020}
2021
b2950863 2022static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
2023 struct btrfs_root *root,
2024 struct btrfs_key *key,
2025 struct btrfs_chunk *chunk, int item_size)
2026{
2027 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2028 struct btrfs_disk_key disk_key;
2029 u32 array_size;
2030 u8 *ptr;
2031
2032 array_size = btrfs_super_sys_array_size(super_copy);
2033 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2034 return -EFBIG;
2035
2036 ptr = super_copy->sys_chunk_array + array_size;
2037 btrfs_cpu_key_to_disk(&disk_key, key);
2038 memcpy(ptr, &disk_key, sizeof(disk_key));
2039 ptr += sizeof(disk_key);
2040 memcpy(ptr, chunk, item_size);
2041 item_size += sizeof(disk_key);
2042 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2043 return 0;
2044}
2045
d397712b 2046static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
a1b32a59 2047 int num_stripes, int sub_stripes)
9b3f68b9
CM
2048{
2049 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2050 return calc_size;
2051 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2052 return calc_size * (num_stripes / sub_stripes);
2053 else
2054 return calc_size * num_stripes;
2055}
2056
2b82032c
YZ
2057static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2058 struct btrfs_root *extent_root,
2059 struct map_lookup **map_ret,
2060 u64 *num_bytes, u64 *stripe_size,
2061 u64 start, u64 type)
0b86a832 2062{
593060d7 2063 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832 2064 struct btrfs_device *device = NULL;
2b82032c 2065 struct btrfs_fs_devices *fs_devices = info->fs_devices;
6324fbf3 2066 struct list_head *cur;
2b82032c 2067 struct map_lookup *map = NULL;
0b86a832 2068 struct extent_map_tree *em_tree;
0b86a832 2069 struct extent_map *em;
2b82032c 2070 struct list_head private_devs;
a40a90a0 2071 int min_stripe_size = 1 * 1024 * 1024;
0b86a832 2072 u64 calc_size = 1024 * 1024 * 1024;
9b3f68b9
CM
2073 u64 max_chunk_size = calc_size;
2074 u64 min_free;
6324fbf3
CM
2075 u64 avail;
2076 u64 max_avail = 0;
2b82032c 2077 u64 dev_offset;
6324fbf3 2078 int num_stripes = 1;
a40a90a0 2079 int min_stripes = 1;
321aecc6 2080 int sub_stripes = 0;
6324fbf3 2081 int looped = 0;
0b86a832 2082 int ret;
6324fbf3 2083 int index;
593060d7 2084 int stripe_len = 64 * 1024;
0b86a832 2085
ec44a35c
CM
2086 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2087 (type & BTRFS_BLOCK_GROUP_DUP)) {
2088 WARN_ON(1);
2089 type &= ~BTRFS_BLOCK_GROUP_DUP;
2090 }
2b82032c 2091 if (list_empty(&fs_devices->alloc_list))
6324fbf3 2092 return -ENOSPC;
593060d7 2093
a40a90a0 2094 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2b82032c 2095 num_stripes = fs_devices->rw_devices;
a40a90a0
CM
2096 min_stripes = 2;
2097 }
2098 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
611f0e00 2099 num_stripes = 2;
a40a90a0
CM
2100 min_stripes = 2;
2101 }
8790d502 2102 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2b82032c 2103 num_stripes = min_t(u64, 2, fs_devices->rw_devices);
9b3f68b9
CM
2104 if (num_stripes < 2)
2105 return -ENOSPC;
a40a90a0 2106 min_stripes = 2;
8790d502 2107 }
321aecc6 2108 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2b82032c 2109 num_stripes = fs_devices->rw_devices;
321aecc6
CM
2110 if (num_stripes < 4)
2111 return -ENOSPC;
2112 num_stripes &= ~(u32)1;
2113 sub_stripes = 2;
a40a90a0 2114 min_stripes = 4;
321aecc6 2115 }
9b3f68b9
CM
2116
2117 if (type & BTRFS_BLOCK_GROUP_DATA) {
2118 max_chunk_size = 10 * calc_size;
a40a90a0 2119 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9
CM
2120 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2121 max_chunk_size = 4 * calc_size;
a40a90a0
CM
2122 min_stripe_size = 32 * 1024 * 1024;
2123 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2124 calc_size = 8 * 1024 * 1024;
2125 max_chunk_size = calc_size * 2;
2126 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
2127 }
2128
2b82032c
YZ
2129 /* we don't want a chunk larger than 10% of writeable space */
2130 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2131 max_chunk_size);
9b3f68b9 2132
a40a90a0 2133again:
2b82032c
YZ
2134 if (!map || map->num_stripes != num_stripes) {
2135 kfree(map);
2136 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2137 if (!map)
2138 return -ENOMEM;
2139 map->num_stripes = num_stripes;
2140 }
2141
9b3f68b9
CM
2142 if (calc_size * num_stripes > max_chunk_size) {
2143 calc_size = max_chunk_size;
2144 do_div(calc_size, num_stripes);
2145 do_div(calc_size, stripe_len);
2146 calc_size *= stripe_len;
2147 }
2148 /* we don't want tiny stripes */
a40a90a0 2149 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 2150
9b3f68b9
CM
2151 do_div(calc_size, stripe_len);
2152 calc_size *= stripe_len;
2153
2b82032c 2154 cur = fs_devices->alloc_list.next;
6324fbf3 2155 index = 0;
611f0e00
CM
2156
2157 if (type & BTRFS_BLOCK_GROUP_DUP)
2158 min_free = calc_size * 2;
9b3f68b9
CM
2159 else
2160 min_free = calc_size;
611f0e00 2161
0f9dd46c
JB
2162 /*
2163 * we add 1MB because we never use the first 1MB of the device, unless
2164 * we've looped, then we are likely allocating the maximum amount of
2165 * space left already
2166 */
2167 if (!looped)
2168 min_free += 1024 * 1024;
ad5bd91e 2169
2b82032c 2170 INIT_LIST_HEAD(&private_devs);
d397712b 2171 while (index < num_stripes) {
b3075717 2172 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2b82032c 2173 BUG_ON(!device->writeable);
dfe25020
CM
2174 if (device->total_bytes > device->bytes_used)
2175 avail = device->total_bytes - device->bytes_used;
2176 else
2177 avail = 0;
6324fbf3 2178 cur = cur->next;
8f18cf13 2179
dfe25020 2180 if (device->in_fs_metadata && avail >= min_free) {
2b82032c
YZ
2181 ret = find_free_dev_extent(trans, device,
2182 min_free, &dev_offset);
8f18cf13
CM
2183 if (ret == 0) {
2184 list_move_tail(&device->dev_alloc_list,
2185 &private_devs);
2b82032c
YZ
2186 map->stripes[index].dev = device;
2187 map->stripes[index].physical = dev_offset;
611f0e00 2188 index++;
2b82032c
YZ
2189 if (type & BTRFS_BLOCK_GROUP_DUP) {
2190 map->stripes[index].dev = device;
2191 map->stripes[index].physical =
2192 dev_offset + calc_size;
8f18cf13 2193 index++;
2b82032c 2194 }
8f18cf13 2195 }
dfe25020 2196 } else if (device->in_fs_metadata && avail > max_avail)
a40a90a0 2197 max_avail = avail;
2b82032c 2198 if (cur == &fs_devices->alloc_list)
6324fbf3
CM
2199 break;
2200 }
2b82032c 2201 list_splice(&private_devs, &fs_devices->alloc_list);
6324fbf3 2202 if (index < num_stripes) {
a40a90a0
CM
2203 if (index >= min_stripes) {
2204 num_stripes = index;
2205 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2206 num_stripes /= sub_stripes;
2207 num_stripes *= sub_stripes;
2208 }
2209 looped = 1;
2210 goto again;
2211 }
6324fbf3
CM
2212 if (!looped && max_avail > 0) {
2213 looped = 1;
2214 calc_size = max_avail;
2215 goto again;
2216 }
2b82032c 2217 kfree(map);
6324fbf3
CM
2218 return -ENOSPC;
2219 }
2b82032c
YZ
2220 map->sector_size = extent_root->sectorsize;
2221 map->stripe_len = stripe_len;
2222 map->io_align = stripe_len;
2223 map->io_width = stripe_len;
2224 map->type = type;
2225 map->num_stripes = num_stripes;
2226 map->sub_stripes = sub_stripes;
0b86a832 2227
2b82032c
YZ
2228 *map_ret = map;
2229 *stripe_size = calc_size;
2230 *num_bytes = chunk_bytes_by_type(type, calc_size,
2231 num_stripes, sub_stripes);
0b86a832 2232
2b82032c
YZ
2233 em = alloc_extent_map(GFP_NOFS);
2234 if (!em) {
2235 kfree(map);
593060d7
CM
2236 return -ENOMEM;
2237 }
2b82032c
YZ
2238 em->bdev = (struct block_device *)map;
2239 em->start = start;
2240 em->len = *num_bytes;
2241 em->block_start = 0;
2242 em->block_len = em->len;
593060d7 2243
2b82032c
YZ
2244 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2245 spin_lock(&em_tree->lock);
2246 ret = add_extent_mapping(em_tree, em);
2247 spin_unlock(&em_tree->lock);
2248 BUG_ON(ret);
2249 free_extent_map(em);
0b86a832 2250
2b82032c
YZ
2251 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2252 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2253 start, *num_bytes);
2254 BUG_ON(ret);
611f0e00 2255
2b82032c
YZ
2256 index = 0;
2257 while (index < map->num_stripes) {
2258 device = map->stripes[index].dev;
2259 dev_offset = map->stripes[index].physical;
0b86a832
CM
2260
2261 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2262 info->chunk_root->root_key.objectid,
2263 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2264 start, dev_offset, calc_size);
0b86a832 2265 BUG_ON(ret);
2b82032c
YZ
2266 index++;
2267 }
2268
2269 return 0;
2270}
2271
2272static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2273 struct btrfs_root *extent_root,
2274 struct map_lookup *map, u64 chunk_offset,
2275 u64 chunk_size, u64 stripe_size)
2276{
2277 u64 dev_offset;
2278 struct btrfs_key key;
2279 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2280 struct btrfs_device *device;
2281 struct btrfs_chunk *chunk;
2282 struct btrfs_stripe *stripe;
2283 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2284 int index = 0;
2285 int ret;
2286
2287 chunk = kzalloc(item_size, GFP_NOFS);
2288 if (!chunk)
2289 return -ENOMEM;
2290
2291 index = 0;
2292 while (index < map->num_stripes) {
2293 device = map->stripes[index].dev;
2294 device->bytes_used += stripe_size;
0b86a832
CM
2295 ret = btrfs_update_device(trans, device);
2296 BUG_ON(ret);
2b82032c
YZ
2297 index++;
2298 }
2299
2300 index = 0;
2301 stripe = &chunk->stripe;
2302 while (index < map->num_stripes) {
2303 device = map->stripes[index].dev;
2304 dev_offset = map->stripes[index].physical;
0b86a832 2305
e17cade2
CM
2306 btrfs_set_stack_stripe_devid(stripe, device->devid);
2307 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2308 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2309 stripe++;
0b86a832
CM
2310 index++;
2311 }
2312
2b82032c 2313 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2314 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2315 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2316 btrfs_set_stack_chunk_type(chunk, map->type);
2317 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2318 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2319 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2320 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2321 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2322
2b82032c
YZ
2323 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2324 key.type = BTRFS_CHUNK_ITEM_KEY;
2325 key.offset = chunk_offset;
0b86a832 2326
2b82032c
YZ
2327 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2328 BUG_ON(ret);
0b86a832 2329
2b82032c
YZ
2330 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2331 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2332 item_size);
8f18cf13
CM
2333 BUG_ON(ret);
2334 }
0b86a832 2335 kfree(chunk);
2b82032c
YZ
2336 return 0;
2337}
0b86a832 2338
2b82032c
YZ
2339/*
2340 * Chunk allocation falls into two parts. The first part does works
2341 * that make the new allocated chunk useable, but not do any operation
2342 * that modifies the chunk tree. The second part does the works that
2343 * require modifying the chunk tree. This division is important for the
2344 * bootstrap process of adding storage to a seed btrfs.
2345 */
2346int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2347 struct btrfs_root *extent_root, u64 type)
2348{
2349 u64 chunk_offset;
2350 u64 chunk_size;
2351 u64 stripe_size;
2352 struct map_lookup *map;
2353 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2354 int ret;
2355
2356 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2357 &chunk_offset);
2358 if (ret)
2359 return ret;
2360
2361 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2362 &stripe_size, chunk_offset, type);
2363 if (ret)
2364 return ret;
2365
2366 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2367 chunk_size, stripe_size);
2368 BUG_ON(ret);
2369 return 0;
2370}
2371
d397712b 2372static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
2373 struct btrfs_root *root,
2374 struct btrfs_device *device)
2375{
2376 u64 chunk_offset;
2377 u64 sys_chunk_offset;
2378 u64 chunk_size;
2379 u64 sys_chunk_size;
2380 u64 stripe_size;
2381 u64 sys_stripe_size;
2382 u64 alloc_profile;
2383 struct map_lookup *map;
2384 struct map_lookup *sys_map;
2385 struct btrfs_fs_info *fs_info = root->fs_info;
2386 struct btrfs_root *extent_root = fs_info->extent_root;
2387 int ret;
2388
2389 ret = find_next_chunk(fs_info->chunk_root,
2390 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2391 BUG_ON(ret);
2392
2393 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2394 (fs_info->metadata_alloc_profile &
2395 fs_info->avail_metadata_alloc_bits);
2396 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2397
2398 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2399 &stripe_size, chunk_offset, alloc_profile);
2400 BUG_ON(ret);
2401
2402 sys_chunk_offset = chunk_offset + chunk_size;
2403
2404 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2405 (fs_info->system_alloc_profile &
2406 fs_info->avail_system_alloc_bits);
2407 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2408
2409 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2410 &sys_chunk_size, &sys_stripe_size,
2411 sys_chunk_offset, alloc_profile);
2412 BUG_ON(ret);
2413
2414 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2415 BUG_ON(ret);
2416
2417 /*
2418 * Modifying chunk tree needs allocating new blocks from both
2419 * system block group and metadata block group. So we only can
2420 * do operations require modifying the chunk tree after both
2421 * block groups were created.
2422 */
2423 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2424 chunk_size, stripe_size);
2425 BUG_ON(ret);
2426
2427 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2428 sys_chunk_offset, sys_chunk_size,
2429 sys_stripe_size);
b248a415 2430 BUG_ON(ret);
2b82032c
YZ
2431 return 0;
2432}
2433
2434int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2435{
2436 struct extent_map *em;
2437 struct map_lookup *map;
2438 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2439 int readonly = 0;
2440 int i;
2441
2442 spin_lock(&map_tree->map_tree.lock);
2443 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2444 spin_unlock(&map_tree->map_tree.lock);
2445 if (!em)
2446 return 1;
2447
2448 map = (struct map_lookup *)em->bdev;
2449 for (i = 0; i < map->num_stripes; i++) {
2450 if (!map->stripes[i].dev->writeable) {
2451 readonly = 1;
2452 break;
2453 }
2454 }
0b86a832 2455 free_extent_map(em);
2b82032c 2456 return readonly;
0b86a832
CM
2457}
2458
2459void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2460{
2461 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2462}
2463
2464void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2465{
2466 struct extent_map *em;
2467
d397712b 2468 while (1) {
0b86a832
CM
2469 spin_lock(&tree->map_tree.lock);
2470 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2471 if (em)
2472 remove_extent_mapping(&tree->map_tree, em);
2473 spin_unlock(&tree->map_tree.lock);
2474 if (!em)
2475 break;
2476 kfree(em->bdev);
2477 /* once for us */
2478 free_extent_map(em);
2479 /* once for the tree */
2480 free_extent_map(em);
2481 }
2482}
2483
f188591e
CM
2484int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2485{
2486 struct extent_map *em;
2487 struct map_lookup *map;
2488 struct extent_map_tree *em_tree = &map_tree->map_tree;
2489 int ret;
2490
2491 spin_lock(&em_tree->lock);
2492 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 2493 spin_unlock(&em_tree->lock);
f188591e
CM
2494 BUG_ON(!em);
2495
2496 BUG_ON(em->start > logical || em->start + em->len < logical);
2497 map = (struct map_lookup *)em->bdev;
2498 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2499 ret = map->num_stripes;
321aecc6
CM
2500 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2501 ret = map->sub_stripes;
f188591e
CM
2502 else
2503 ret = 1;
2504 free_extent_map(em);
f188591e
CM
2505 return ret;
2506}
2507
dfe25020
CM
2508static int find_live_mirror(struct map_lookup *map, int first, int num,
2509 int optimal)
2510{
2511 int i;
2512 if (map->stripes[optimal].dev->bdev)
2513 return optimal;
2514 for (i = first; i < first + num; i++) {
2515 if (map->stripes[i].dev->bdev)
2516 return i;
2517 }
2518 /* we couldn't find one that doesn't fail. Just return something
2519 * and the io error handling code will clean up eventually
2520 */
2521 return optimal;
2522}
2523
f2d8d74d
CM
2524static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2525 u64 logical, u64 *length,
2526 struct btrfs_multi_bio **multi_ret,
2527 int mirror_num, struct page *unplug_page)
0b86a832
CM
2528{
2529 struct extent_map *em;
2530 struct map_lookup *map;
2531 struct extent_map_tree *em_tree = &map_tree->map_tree;
2532 u64 offset;
593060d7
CM
2533 u64 stripe_offset;
2534 u64 stripe_nr;
cea9e445 2535 int stripes_allocated = 8;
321aecc6 2536 int stripes_required = 1;
593060d7 2537 int stripe_index;
cea9e445 2538 int i;
f2d8d74d 2539 int num_stripes;
a236aed1 2540 int max_errors = 0;
cea9e445 2541 struct btrfs_multi_bio *multi = NULL;
0b86a832 2542
d397712b 2543 if (multi_ret && !(rw & (1 << BIO_RW)))
cea9e445 2544 stripes_allocated = 1;
cea9e445
CM
2545again:
2546 if (multi_ret) {
2547 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2548 GFP_NOFS);
2549 if (!multi)
2550 return -ENOMEM;
a236aed1
CM
2551
2552 atomic_set(&multi->error, 0);
cea9e445 2553 }
0b86a832
CM
2554
2555 spin_lock(&em_tree->lock);
2556 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 2557 spin_unlock(&em_tree->lock);
f2d8d74d
CM
2558
2559 if (!em && unplug_page)
2560 return 0;
2561
3b951516 2562 if (!em) {
d397712b
CM
2563 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2564 (unsigned long long)logical,
2565 (unsigned long long)*length);
f2d8d74d 2566 BUG();
3b951516 2567 }
0b86a832
CM
2568
2569 BUG_ON(em->start > logical || em->start + em->len < logical);
2570 map = (struct map_lookup *)em->bdev;
2571 offset = logical - em->start;
593060d7 2572
f188591e
CM
2573 if (mirror_num > map->num_stripes)
2574 mirror_num = 0;
2575
cea9e445 2576 /* if our multi bio struct is too small, back off and try again */
321aecc6
CM
2577 if (rw & (1 << BIO_RW)) {
2578 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2579 BTRFS_BLOCK_GROUP_DUP)) {
2580 stripes_required = map->num_stripes;
a236aed1 2581 max_errors = 1;
321aecc6
CM
2582 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2583 stripes_required = map->sub_stripes;
a236aed1 2584 max_errors = 1;
321aecc6
CM
2585 }
2586 }
ffbd517d 2587 if (multi_ret && (rw & (1 << BIO_RW)) &&
321aecc6 2588 stripes_allocated < stripes_required) {
cea9e445 2589 stripes_allocated = map->num_stripes;
cea9e445
CM
2590 free_extent_map(em);
2591 kfree(multi);
2592 goto again;
2593 }
593060d7
CM
2594 stripe_nr = offset;
2595 /*
2596 * stripe_nr counts the total number of stripes we have to stride
2597 * to get to this block
2598 */
2599 do_div(stripe_nr, map->stripe_len);
2600
2601 stripe_offset = stripe_nr * map->stripe_len;
2602 BUG_ON(offset < stripe_offset);
2603
2604 /* stripe_offset is the offset of this block in its stripe*/
2605 stripe_offset = offset - stripe_offset;
2606
cea9e445 2607 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 2608 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
2609 BTRFS_BLOCK_GROUP_DUP)) {
2610 /* we limit the length of each bio to what fits in a stripe */
2611 *length = min_t(u64, em->len - offset,
2612 map->stripe_len - stripe_offset);
2613 } else {
2614 *length = em->len - offset;
2615 }
f2d8d74d
CM
2616
2617 if (!multi_ret && !unplug_page)
cea9e445
CM
2618 goto out;
2619
f2d8d74d 2620 num_stripes = 1;
cea9e445 2621 stripe_index = 0;
8790d502 2622 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
f2d8d74d
CM
2623 if (unplug_page || (rw & (1 << BIO_RW)))
2624 num_stripes = map->num_stripes;
2fff734f 2625 else if (mirror_num)
f188591e 2626 stripe_index = mirror_num - 1;
dfe25020
CM
2627 else {
2628 stripe_index = find_live_mirror(map, 0,
2629 map->num_stripes,
2630 current->pid % map->num_stripes);
2631 }
2fff734f 2632
611f0e00 2633 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445 2634 if (rw & (1 << BIO_RW))
f2d8d74d 2635 num_stripes = map->num_stripes;
f188591e
CM
2636 else if (mirror_num)
2637 stripe_index = mirror_num - 1;
2fff734f 2638
321aecc6
CM
2639 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2640 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
2641
2642 stripe_index = do_div(stripe_nr, factor);
2643 stripe_index *= map->sub_stripes;
2644
f2d8d74d
CM
2645 if (unplug_page || (rw & (1 << BIO_RW)))
2646 num_stripes = map->sub_stripes;
321aecc6
CM
2647 else if (mirror_num)
2648 stripe_index += mirror_num - 1;
dfe25020
CM
2649 else {
2650 stripe_index = find_live_mirror(map, stripe_index,
2651 map->sub_stripes, stripe_index +
2652 current->pid % map->sub_stripes);
2653 }
8790d502
CM
2654 } else {
2655 /*
2656 * after this do_div call, stripe_nr is the number of stripes
2657 * on this device we have to walk to find the data, and
2658 * stripe_index is the number of our device in the stripe array
2659 */
2660 stripe_index = do_div(stripe_nr, map->num_stripes);
2661 }
593060d7 2662 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 2663
f2d8d74d
CM
2664 for (i = 0; i < num_stripes; i++) {
2665 if (unplug_page) {
2666 struct btrfs_device *device;
2667 struct backing_dev_info *bdi;
2668
2669 device = map->stripes[stripe_index].dev;
dfe25020
CM
2670 if (device->bdev) {
2671 bdi = blk_get_backing_dev_info(device->bdev);
d397712b 2672 if (bdi->unplug_io_fn)
dfe25020 2673 bdi->unplug_io_fn(bdi, unplug_page);
f2d8d74d
CM
2674 }
2675 } else {
2676 multi->stripes[i].physical =
2677 map->stripes[stripe_index].physical +
2678 stripe_offset + stripe_nr * map->stripe_len;
2679 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2680 }
cea9e445 2681 stripe_index++;
593060d7 2682 }
f2d8d74d
CM
2683 if (multi_ret) {
2684 *multi_ret = multi;
2685 multi->num_stripes = num_stripes;
a236aed1 2686 multi->max_errors = max_errors;
f2d8d74d 2687 }
cea9e445 2688out:
0b86a832 2689 free_extent_map(em);
0b86a832
CM
2690 return 0;
2691}
2692
f2d8d74d
CM
2693int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2694 u64 logical, u64 *length,
2695 struct btrfs_multi_bio **multi_ret, int mirror_num)
2696{
2697 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2698 mirror_num, NULL);
2699}
2700
a512bbf8
YZ
2701int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2702 u64 chunk_start, u64 physical, u64 devid,
2703 u64 **logical, int *naddrs, int *stripe_len)
2704{
2705 struct extent_map_tree *em_tree = &map_tree->map_tree;
2706 struct extent_map *em;
2707 struct map_lookup *map;
2708 u64 *buf;
2709 u64 bytenr;
2710 u64 length;
2711 u64 stripe_nr;
2712 int i, j, nr = 0;
2713
2714 spin_lock(&em_tree->lock);
2715 em = lookup_extent_mapping(em_tree, chunk_start, 1);
2716 spin_unlock(&em_tree->lock);
2717
2718 BUG_ON(!em || em->start != chunk_start);
2719 map = (struct map_lookup *)em->bdev;
2720
2721 length = em->len;
2722 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2723 do_div(length, map->num_stripes / map->sub_stripes);
2724 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2725 do_div(length, map->num_stripes);
2726
2727 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2728 BUG_ON(!buf);
2729
2730 for (i = 0; i < map->num_stripes; i++) {
2731 if (devid && map->stripes[i].dev->devid != devid)
2732 continue;
2733 if (map->stripes[i].physical > physical ||
2734 map->stripes[i].physical + length <= physical)
2735 continue;
2736
2737 stripe_nr = physical - map->stripes[i].physical;
2738 do_div(stripe_nr, map->stripe_len);
2739
2740 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2741 stripe_nr = stripe_nr * map->num_stripes + i;
2742 do_div(stripe_nr, map->sub_stripes);
2743 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2744 stripe_nr = stripe_nr * map->num_stripes + i;
2745 }
2746 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 2747 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
2748 for (j = 0; j < nr; j++) {
2749 if (buf[j] == bytenr)
2750 break;
2751 }
934d375b
CM
2752 if (j == nr) {
2753 WARN_ON(nr >= map->num_stripes);
a512bbf8 2754 buf[nr++] = bytenr;
934d375b 2755 }
a512bbf8
YZ
2756 }
2757
2758 for (i = 0; i > nr; i++) {
2759 struct btrfs_multi_bio *multi;
2760 struct btrfs_bio_stripe *stripe;
2761 int ret;
2762
2763 length = 1;
2764 ret = btrfs_map_block(map_tree, WRITE, buf[i],
2765 &length, &multi, 0);
2766 BUG_ON(ret);
2767
2768 stripe = multi->stripes;
2769 for (j = 0; j < multi->num_stripes; j++) {
2770 if (stripe->physical >= physical &&
2771 physical < stripe->physical + length)
2772 break;
2773 }
2774 BUG_ON(j >= multi->num_stripes);
2775 kfree(multi);
2776 }
2777
2778 *logical = buf;
2779 *naddrs = nr;
2780 *stripe_len = map->stripe_len;
2781
2782 free_extent_map(em);
2783 return 0;
2784}
2785
f2d8d74d
CM
2786int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2787 u64 logical, struct page *page)
2788{
2789 u64 length = PAGE_CACHE_SIZE;
2790 return __btrfs_map_block(map_tree, READ, logical, &length,
2791 NULL, 0, page);
2792}
2793
8790d502 2794static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 2795{
cea9e445 2796 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 2797 int is_orig_bio = 0;
8790d502 2798
8790d502 2799 if (err)
a236aed1 2800 atomic_inc(&multi->error);
8790d502 2801
7d2b4daa
CM
2802 if (bio == multi->orig_bio)
2803 is_orig_bio = 1;
2804
cea9e445 2805 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
2806 if (!is_orig_bio) {
2807 bio_put(bio);
2808 bio = multi->orig_bio;
2809 }
8790d502
CM
2810 bio->bi_private = multi->private;
2811 bio->bi_end_io = multi->end_io;
a236aed1
CM
2812 /* only send an error to the higher layers if it is
2813 * beyond the tolerance of the multi-bio
2814 */
1259ab75 2815 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 2816 err = -EIO;
1259ab75
CM
2817 } else if (err) {
2818 /*
2819 * this bio is actually up to date, we didn't
2820 * go over the max number of errors
2821 */
2822 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 2823 err = 0;
1259ab75 2824 }
8790d502
CM
2825 kfree(multi);
2826
2827 bio_endio(bio, err);
7d2b4daa 2828 } else if (!is_orig_bio) {
8790d502
CM
2829 bio_put(bio);
2830 }
8790d502
CM
2831}
2832
8b712842
CM
2833struct async_sched {
2834 struct bio *bio;
2835 int rw;
2836 struct btrfs_fs_info *info;
2837 struct btrfs_work work;
2838};
2839
2840/*
2841 * see run_scheduled_bios for a description of why bios are collected for
2842 * async submit.
2843 *
2844 * This will add one bio to the pending list for a device and make sure
2845 * the work struct is scheduled.
2846 */
d397712b 2847static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
2848 struct btrfs_device *device,
2849 int rw, struct bio *bio)
8b712842
CM
2850{
2851 int should_queue = 1;
ffbd517d 2852 struct btrfs_pending_bios *pending_bios;
8b712842
CM
2853
2854 /* don't bother with additional async steps for reads, right now */
2855 if (!(rw & (1 << BIO_RW))) {
492bb6de 2856 bio_get(bio);
8b712842 2857 submit_bio(rw, bio);
492bb6de 2858 bio_put(bio);
8b712842
CM
2859 return 0;
2860 }
2861
2862 /*
0986fe9e 2863 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
2864 * higher layers. Otherwise, the async bio makes it appear we have
2865 * made progress against dirty pages when we've really just put it
2866 * on a queue for later
2867 */
0986fe9e 2868 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 2869 WARN_ON(bio->bi_next);
8b712842
CM
2870 bio->bi_next = NULL;
2871 bio->bi_rw |= rw;
2872
2873 spin_lock(&device->io_lock);
ffbd517d
CM
2874 if (bio_sync(bio))
2875 pending_bios = &device->pending_sync_bios;
2876 else
2877 pending_bios = &device->pending_bios;
8b712842 2878
ffbd517d
CM
2879 if (pending_bios->tail)
2880 pending_bios->tail->bi_next = bio;
8b712842 2881
ffbd517d
CM
2882 pending_bios->tail = bio;
2883 if (!pending_bios->head)
2884 pending_bios->head = bio;
8b712842
CM
2885 if (device->running_pending)
2886 should_queue = 0;
2887
2888 spin_unlock(&device->io_lock);
2889
2890 if (should_queue)
1cc127b5
CM
2891 btrfs_queue_worker(&root->fs_info->submit_workers,
2892 &device->work);
8b712842
CM
2893 return 0;
2894}
2895
f188591e 2896int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 2897 int mirror_num, int async_submit)
0b86a832
CM
2898{
2899 struct btrfs_mapping_tree *map_tree;
2900 struct btrfs_device *dev;
8790d502 2901 struct bio *first_bio = bio;
a62b9401 2902 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
2903 u64 length = 0;
2904 u64 map_length;
cea9e445 2905 struct btrfs_multi_bio *multi = NULL;
0b86a832 2906 int ret;
8790d502
CM
2907 int dev_nr = 0;
2908 int total_devs = 1;
0b86a832 2909
f2d8d74d 2910 length = bio->bi_size;
0b86a832
CM
2911 map_tree = &root->fs_info->mapping_tree;
2912 map_length = length;
cea9e445 2913
f188591e
CM
2914 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2915 mirror_num);
cea9e445
CM
2916 BUG_ON(ret);
2917
2918 total_devs = multi->num_stripes;
2919 if (map_length < length) {
d397712b
CM
2920 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
2921 "len %llu\n", (unsigned long long)logical,
2922 (unsigned long long)length,
2923 (unsigned long long)map_length);
cea9e445
CM
2924 BUG();
2925 }
2926 multi->end_io = first_bio->bi_end_io;
2927 multi->private = first_bio->bi_private;
7d2b4daa 2928 multi->orig_bio = first_bio;
cea9e445
CM
2929 atomic_set(&multi->stripes_pending, multi->num_stripes);
2930
d397712b 2931 while (dev_nr < total_devs) {
8790d502 2932 if (total_devs > 1) {
8790d502
CM
2933 if (dev_nr < total_devs - 1) {
2934 bio = bio_clone(first_bio, GFP_NOFS);
2935 BUG_ON(!bio);
2936 } else {
2937 bio = first_bio;
2938 }
2939 bio->bi_private = multi;
2940 bio->bi_end_io = end_bio_multi_stripe;
2941 }
cea9e445
CM
2942 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2943 dev = multi->stripes[dev_nr].dev;
2b82032c 2944 BUG_ON(rw == WRITE && !dev->writeable);
dfe25020
CM
2945 if (dev && dev->bdev) {
2946 bio->bi_bdev = dev->bdev;
8b712842
CM
2947 if (async_submit)
2948 schedule_bio(root, dev, rw, bio);
2949 else
2950 submit_bio(rw, bio);
dfe25020
CM
2951 } else {
2952 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2953 bio->bi_sector = logical >> 9;
dfe25020 2954 bio_endio(bio, -EIO);
dfe25020 2955 }
8790d502
CM
2956 dev_nr++;
2957 }
cea9e445
CM
2958 if (total_devs == 1)
2959 kfree(multi);
0b86a832
CM
2960 return 0;
2961}
2962
a443755f 2963struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 2964 u8 *uuid, u8 *fsid)
0b86a832 2965{
2b82032c
YZ
2966 struct btrfs_device *device;
2967 struct btrfs_fs_devices *cur_devices;
2968
2969 cur_devices = root->fs_info->fs_devices;
2970 while (cur_devices) {
2971 if (!fsid ||
2972 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
2973 device = __find_device(&cur_devices->devices,
2974 devid, uuid);
2975 if (device)
2976 return device;
2977 }
2978 cur_devices = cur_devices->seed;
2979 }
2980 return NULL;
0b86a832
CM
2981}
2982
dfe25020
CM
2983static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2984 u64 devid, u8 *dev_uuid)
2985{
2986 struct btrfs_device *device;
2987 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2988
2989 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 2990 if (!device)
2991 return NULL;
dfe25020
CM
2992 list_add(&device->dev_list,
2993 &fs_devices->devices);
dfe25020
CM
2994 device->barriers = 1;
2995 device->dev_root = root->fs_info->dev_root;
2996 device->devid = devid;
8b712842 2997 device->work.func = pending_bios_fn;
e4404d6e 2998 device->fs_devices = fs_devices;
dfe25020
CM
2999 fs_devices->num_devices++;
3000 spin_lock_init(&device->io_lock);
d20f7043 3001 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
3002 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3003 return device;
3004}
3005
0b86a832
CM
3006static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3007 struct extent_buffer *leaf,
3008 struct btrfs_chunk *chunk)
3009{
3010 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3011 struct map_lookup *map;
3012 struct extent_map *em;
3013 u64 logical;
3014 u64 length;
3015 u64 devid;
a443755f 3016 u8 uuid[BTRFS_UUID_SIZE];
593060d7 3017 int num_stripes;
0b86a832 3018 int ret;
593060d7 3019 int i;
0b86a832 3020
e17cade2
CM
3021 logical = key->offset;
3022 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 3023
0b86a832
CM
3024 spin_lock(&map_tree->map_tree.lock);
3025 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 3026 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
3027
3028 /* already mapped? */
3029 if (em && em->start <= logical && em->start + em->len > logical) {
3030 free_extent_map(em);
0b86a832
CM
3031 return 0;
3032 } else if (em) {
3033 free_extent_map(em);
3034 }
0b86a832 3035
0b86a832
CM
3036 em = alloc_extent_map(GFP_NOFS);
3037 if (!em)
3038 return -ENOMEM;
593060d7
CM
3039 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3040 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
3041 if (!map) {
3042 free_extent_map(em);
3043 return -ENOMEM;
3044 }
3045
3046 em->bdev = (struct block_device *)map;
3047 em->start = logical;
3048 em->len = length;
3049 em->block_start = 0;
c8b97818 3050 em->block_len = em->len;
0b86a832 3051
593060d7
CM
3052 map->num_stripes = num_stripes;
3053 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3054 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3055 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3056 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3057 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 3058 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
3059 for (i = 0; i < num_stripes; i++) {
3060 map->stripes[i].physical =
3061 btrfs_stripe_offset_nr(leaf, chunk, i);
3062 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
3063 read_extent_buffer(leaf, uuid, (unsigned long)
3064 btrfs_stripe_dev_uuid_nr(chunk, i),
3065 BTRFS_UUID_SIZE);
2b82032c
YZ
3066 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3067 NULL);
dfe25020 3068 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
3069 kfree(map);
3070 free_extent_map(em);
3071 return -EIO;
3072 }
dfe25020
CM
3073 if (!map->stripes[i].dev) {
3074 map->stripes[i].dev =
3075 add_missing_dev(root, devid, uuid);
3076 if (!map->stripes[i].dev) {
3077 kfree(map);
3078 free_extent_map(em);
3079 return -EIO;
3080 }
3081 }
3082 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
3083 }
3084
3085 spin_lock(&map_tree->map_tree.lock);
3086 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 3087 spin_unlock(&map_tree->map_tree.lock);
b248a415 3088 BUG_ON(ret);
0b86a832
CM
3089 free_extent_map(em);
3090
3091 return 0;
3092}
3093
3094static int fill_device_from_item(struct extent_buffer *leaf,
3095 struct btrfs_dev_item *dev_item,
3096 struct btrfs_device *device)
3097{
3098 unsigned long ptr;
0b86a832
CM
3099
3100 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
3101 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3102 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
3103 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3104 device->type = btrfs_device_type(leaf, dev_item);
3105 device->io_align = btrfs_device_io_align(leaf, dev_item);
3106 device->io_width = btrfs_device_io_width(leaf, dev_item);
3107 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
3108
3109 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 3110 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 3111
0b86a832
CM
3112 return 0;
3113}
3114
2b82032c
YZ
3115static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3116{
3117 struct btrfs_fs_devices *fs_devices;
3118 int ret;
3119
3120 mutex_lock(&uuid_mutex);
3121
3122 fs_devices = root->fs_info->fs_devices->seed;
3123 while (fs_devices) {
3124 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3125 ret = 0;
3126 goto out;
3127 }
3128 fs_devices = fs_devices->seed;
3129 }
3130
3131 fs_devices = find_fsid(fsid);
3132 if (!fs_devices) {
3133 ret = -ENOENT;
3134 goto out;
3135 }
e4404d6e
YZ
3136
3137 fs_devices = clone_fs_devices(fs_devices);
3138 if (IS_ERR(fs_devices)) {
3139 ret = PTR_ERR(fs_devices);
2b82032c
YZ
3140 goto out;
3141 }
3142
97288f2c 3143 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 3144 root->fs_info->bdev_holder);
2b82032c
YZ
3145 if (ret)
3146 goto out;
3147
3148 if (!fs_devices->seeding) {
3149 __btrfs_close_devices(fs_devices);
e4404d6e 3150 free_fs_devices(fs_devices);
2b82032c
YZ
3151 ret = -EINVAL;
3152 goto out;
3153 }
3154
3155 fs_devices->seed = root->fs_info->fs_devices->seed;
3156 root->fs_info->fs_devices->seed = fs_devices;
2b82032c
YZ
3157out:
3158 mutex_unlock(&uuid_mutex);
3159 return ret;
3160}
3161
0d81ba5d 3162static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3163 struct extent_buffer *leaf,
3164 struct btrfs_dev_item *dev_item)
3165{
3166 struct btrfs_device *device;
3167 u64 devid;
3168 int ret;
2b82032c 3169 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3170 u8 dev_uuid[BTRFS_UUID_SIZE];
3171
0b86a832 3172 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3173 read_extent_buffer(leaf, dev_uuid,
3174 (unsigned long)btrfs_device_uuid(dev_item),
3175 BTRFS_UUID_SIZE);
2b82032c
YZ
3176 read_extent_buffer(leaf, fs_uuid,
3177 (unsigned long)btrfs_device_fsid(dev_item),
3178 BTRFS_UUID_SIZE);
3179
3180 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3181 ret = open_seed_devices(root, fs_uuid);
e4404d6e 3182 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 3183 return ret;
2b82032c
YZ
3184 }
3185
3186 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3187 if (!device || !device->bdev) {
e4404d6e 3188 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
3189 return -EIO;
3190
3191 if (!device) {
d397712b
CM
3192 printk(KERN_WARNING "warning devid %llu missing\n",
3193 (unsigned long long)devid);
2b82032c
YZ
3194 device = add_missing_dev(root, devid, dev_uuid);
3195 if (!device)
3196 return -ENOMEM;
3197 }
3198 }
3199
3200 if (device->fs_devices != root->fs_info->fs_devices) {
3201 BUG_ON(device->writeable);
3202 if (device->generation !=
3203 btrfs_device_generation(leaf, dev_item))
3204 return -EINVAL;
6324fbf3 3205 }
0b86a832
CM
3206
3207 fill_device_from_item(leaf, dev_item, device);
3208 device->dev_root = root->fs_info->dev_root;
dfe25020 3209 device->in_fs_metadata = 1;
2b82032c
YZ
3210 if (device->writeable)
3211 device->fs_devices->total_rw_bytes += device->total_bytes;
0b86a832 3212 ret = 0;
0b86a832
CM
3213 return ret;
3214}
3215
0d81ba5d
CM
3216int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3217{
3218 struct btrfs_dev_item *dev_item;
3219
3220 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3221 dev_item);
3222 return read_one_dev(root, buf, dev_item);
3223}
3224
e4404d6e 3225int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832
CM
3226{
3227 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 3228 struct extent_buffer *sb;
0b86a832 3229 struct btrfs_disk_key *disk_key;
0b86a832 3230 struct btrfs_chunk *chunk;
84eed90f
CM
3231 u8 *ptr;
3232 unsigned long sb_ptr;
3233 int ret = 0;
0b86a832
CM
3234 u32 num_stripes;
3235 u32 array_size;
3236 u32 len = 0;
0b86a832 3237 u32 cur;
84eed90f 3238 struct btrfs_key key;
0b86a832 3239
e4404d6e 3240 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
3241 BTRFS_SUPER_INFO_SIZE);
3242 if (!sb)
3243 return -ENOMEM;
3244 btrfs_set_buffer_uptodate(sb);
4008c04a
CM
3245 btrfs_set_buffer_lockdep_class(sb, 0);
3246
a061fc8d 3247 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3248 array_size = btrfs_super_sys_array_size(super_copy);
3249
0b86a832
CM
3250 ptr = super_copy->sys_chunk_array;
3251 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3252 cur = 0;
3253
3254 while (cur < array_size) {
3255 disk_key = (struct btrfs_disk_key *)ptr;
3256 btrfs_disk_key_to_cpu(&key, disk_key);
3257
a061fc8d 3258 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3259 sb_ptr += len;
3260 cur += len;
3261
0d81ba5d 3262 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3263 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3264 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3265 if (ret)
3266 break;
0b86a832
CM
3267 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3268 len = btrfs_chunk_item_size(num_stripes);
3269 } else {
84eed90f
CM
3270 ret = -EIO;
3271 break;
0b86a832
CM
3272 }
3273 ptr += len;
3274 sb_ptr += len;
3275 cur += len;
3276 }
a061fc8d 3277 free_extent_buffer(sb);
84eed90f 3278 return ret;
0b86a832
CM
3279}
3280
3281int btrfs_read_chunk_tree(struct btrfs_root *root)
3282{
3283 struct btrfs_path *path;
3284 struct extent_buffer *leaf;
3285 struct btrfs_key key;
3286 struct btrfs_key found_key;
3287 int ret;
3288 int slot;
3289
3290 root = root->fs_info->chunk_root;
3291
3292 path = btrfs_alloc_path();
3293 if (!path)
3294 return -ENOMEM;
3295
3296 /* first we search for all of the device items, and then we
3297 * read in all of the chunk items. This way we can create chunk
3298 * mappings that reference all of the devices that are afound
3299 */
3300 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3301 key.offset = 0;
3302 key.type = 0;
3303again:
3304 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
d397712b 3305 while (1) {
0b86a832
CM
3306 leaf = path->nodes[0];
3307 slot = path->slots[0];
3308 if (slot >= btrfs_header_nritems(leaf)) {
3309 ret = btrfs_next_leaf(root, path);
3310 if (ret == 0)
3311 continue;
3312 if (ret < 0)
3313 goto error;
3314 break;
3315 }
3316 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3317 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3318 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3319 break;
3320 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3321 struct btrfs_dev_item *dev_item;
3322 dev_item = btrfs_item_ptr(leaf, slot,
3323 struct btrfs_dev_item);
0d81ba5d 3324 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3325 if (ret)
3326 goto error;
0b86a832
CM
3327 }
3328 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3329 struct btrfs_chunk *chunk;
3330 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3331 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3332 if (ret)
3333 goto error;
0b86a832
CM
3334 }
3335 path->slots[0]++;
3336 }
3337 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3338 key.objectid = 0;
3339 btrfs_release_path(root, path);
3340 goto again;
3341 }
0b86a832
CM
3342 ret = 0;
3343error:
2b82032c 3344 btrfs_free_path(path);
0b86a832
CM
3345 return ret;
3346}