]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/volumes.c
Btrfs: A few updates for 2.6.18 and versions older than 2.6.25
[net-next-2.6.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
593060d7 21#include <asm/div64.h>
0b86a832
CM
22#include "ctree.h"
23#include "extent_map.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "print-tree.h"
27#include "volumes.h"
28
593060d7
CM
29struct map_lookup {
30 u64 type;
31 int io_align;
32 int io_width;
33 int stripe_len;
34 int sector_size;
35 int num_stripes;
cea9e445 36 struct btrfs_bio_stripe stripes[];
593060d7
CM
37};
38
39#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 40 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 41
8a4b83cc
CM
42static DEFINE_MUTEX(uuid_mutex);
43static LIST_HEAD(fs_uuids);
44
45int btrfs_cleanup_fs_uuids(void)
46{
47 struct btrfs_fs_devices *fs_devices;
48 struct list_head *uuid_cur;
49 struct list_head *devices_cur;
50 struct btrfs_device *dev;
51
52 list_for_each(uuid_cur, &fs_uuids) {
53 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
54 list);
55 while(!list_empty(&fs_devices->devices)) {
56 devices_cur = fs_devices->devices.next;
57 dev = list_entry(devices_cur, struct btrfs_device,
58 dev_list);
59 printk("uuid cleanup finds %s\n", dev->name);
60 if (dev->bdev) {
61 printk("closing\n");
62 close_bdev_excl(dev->bdev);
63 }
64 list_del(&dev->dev_list);
65 kfree(dev);
66 }
67 }
68 return 0;
69}
70
71static struct btrfs_device *__find_device(struct list_head *head, u64 devid)
72{
73 struct btrfs_device *dev;
74 struct list_head *cur;
75
76 list_for_each(cur, head) {
77 dev = list_entry(cur, struct btrfs_device, dev_list);
78 if (dev->devid == devid)
79 return dev;
80 }
81 return NULL;
82}
83
84static struct btrfs_fs_devices *find_fsid(u8 *fsid)
85{
86 struct list_head *cur;
87 struct btrfs_fs_devices *fs_devices;
88
89 list_for_each(cur, &fs_uuids) {
90 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
91 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
92 return fs_devices;
93 }
94 return NULL;
95}
96
97static int device_list_add(const char *path,
98 struct btrfs_super_block *disk_super,
99 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
100{
101 struct btrfs_device *device;
102 struct btrfs_fs_devices *fs_devices;
103 u64 found_transid = btrfs_super_generation(disk_super);
104
105 fs_devices = find_fsid(disk_super->fsid);
106 if (!fs_devices) {
107 fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
108 if (!fs_devices)
109 return -ENOMEM;
110 INIT_LIST_HEAD(&fs_devices->devices);
111 list_add(&fs_devices->list, &fs_uuids);
112 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
113 fs_devices->latest_devid = devid;
114 fs_devices->latest_trans = found_transid;
115 fs_devices->lowest_devid = (u64)-1;
116 fs_devices->num_devices = 0;
117 device = NULL;
118 } else {
119 device = __find_device(&fs_devices->devices, devid);
120 }
121 if (!device) {
122 device = kzalloc(sizeof(*device), GFP_NOFS);
123 if (!device) {
124 /* we can safely leave the fs_devices entry around */
125 return -ENOMEM;
126 }
127 device->devid = devid;
f2984462 128 device->barriers = 1;
b248a415 129 spin_lock_init(&device->io_lock);
8a4b83cc
CM
130 device->name = kstrdup(path, GFP_NOFS);
131 if (!device->name) {
132 kfree(device);
133 return -ENOMEM;
134 }
135 list_add(&device->dev_list, &fs_devices->devices);
136 fs_devices->num_devices++;
137 }
138
139 if (found_transid > fs_devices->latest_trans) {
140 fs_devices->latest_devid = devid;
141 fs_devices->latest_trans = found_transid;
142 }
143 if (fs_devices->lowest_devid > devid) {
144 fs_devices->lowest_devid = devid;
145 printk("lowest devid now %Lu\n", devid);
146 }
147 *fs_devices_ret = fs_devices;
148 return 0;
149}
150
151int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
152{
153 struct list_head *head = &fs_devices->devices;
154 struct list_head *cur;
155 struct btrfs_device *device;
156
157 mutex_lock(&uuid_mutex);
158 list_for_each(cur, head) {
159 device = list_entry(cur, struct btrfs_device, dev_list);
160 if (device->bdev) {
161 close_bdev_excl(device->bdev);
162 printk("close devices closes %s\n", device->name);
163 }
164 device->bdev = NULL;
165 }
166 mutex_unlock(&uuid_mutex);
167 return 0;
168}
169
170int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
171 int flags, void *holder)
172{
173 struct block_device *bdev;
174 struct list_head *head = &fs_devices->devices;
175 struct list_head *cur;
176 struct btrfs_device *device;
177 int ret;
178
179 mutex_lock(&uuid_mutex);
180 list_for_each(cur, head) {
181 device = list_entry(cur, struct btrfs_device, dev_list);
182 bdev = open_bdev_excl(device->name, flags, holder);
183printk("opening %s devid %Lu\n", device->name, device->devid);
184 if (IS_ERR(bdev)) {
185 printk("open %s failed\n", device->name);
186 ret = PTR_ERR(bdev);
187 goto fail;
188 }
189 if (device->devid == fs_devices->latest_devid)
190 fs_devices->latest_bdev = bdev;
191 if (device->devid == fs_devices->lowest_devid) {
192 fs_devices->lowest_bdev = bdev;
193printk("lowest bdev %s\n", device->name);
194 }
195 device->bdev = bdev;
196 }
197 mutex_unlock(&uuid_mutex);
198 return 0;
199fail:
200 mutex_unlock(&uuid_mutex);
201 btrfs_close_devices(fs_devices);
202 return ret;
203}
204
205int btrfs_scan_one_device(const char *path, int flags, void *holder,
206 struct btrfs_fs_devices **fs_devices_ret)
207{
208 struct btrfs_super_block *disk_super;
209 struct block_device *bdev;
210 struct buffer_head *bh;
211 int ret;
212 u64 devid;
f2984462 213 u64 transid;
8a4b83cc
CM
214
215 mutex_lock(&uuid_mutex);
216
217 printk("scan one opens %s\n", path);
218 bdev = open_bdev_excl(path, flags, holder);
219
220 if (IS_ERR(bdev)) {
221 printk("open failed\n");
222 ret = PTR_ERR(bdev);
223 goto error;
224 }
225
226 ret = set_blocksize(bdev, 4096);
227 if (ret)
228 goto error_close;
229 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
230 if (!bh) {
231 ret = -EIO;
232 goto error_close;
233 }
234 disk_super = (struct btrfs_super_block *)bh->b_data;
235 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
236 sizeof(disk_super->magic))) {
237 printk("no btrfs found on %s\n", path);
e58ca020 238 ret = -EINVAL;
8a4b83cc
CM
239 goto error_brelse;
240 }
241 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462
CM
242 transid = btrfs_super_generation(disk_super);
243 printk("found device %Lu transid %Lu on %s\n", devid, transid, path);
8a4b83cc
CM
244 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
245
246error_brelse:
247 brelse(bh);
248error_close:
249 close_bdev_excl(bdev);
8a4b83cc
CM
250error:
251 mutex_unlock(&uuid_mutex);
252 return ret;
253}
0b86a832
CM
254
255/*
256 * this uses a pretty simple search, the expectation is that it is
257 * called very infrequently and that a given device has a small number
258 * of extents
259 */
260static int find_free_dev_extent(struct btrfs_trans_handle *trans,
261 struct btrfs_device *device,
262 struct btrfs_path *path,
263 u64 num_bytes, u64 *start)
264{
265 struct btrfs_key key;
266 struct btrfs_root *root = device->dev_root;
267 struct btrfs_dev_extent *dev_extent = NULL;
268 u64 hole_size = 0;
269 u64 last_byte = 0;
270 u64 search_start = 0;
271 u64 search_end = device->total_bytes;
272 int ret;
273 int slot = 0;
274 int start_found;
275 struct extent_buffer *l;
276
277 start_found = 0;
278 path->reada = 2;
279
280 /* FIXME use last free of some kind */
281
8a4b83cc
CM
282 /* we don't want to overwrite the superblock on the drive,
283 * so we make sure to start at an offset of at least 1MB
284 */
285 search_start = max((u64)1024 * 1024, search_start);
0b86a832
CM
286 key.objectid = device->devid;
287 key.offset = search_start;
288 key.type = BTRFS_DEV_EXTENT_KEY;
289 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
290 if (ret < 0)
291 goto error;
292 ret = btrfs_previous_item(root, path, 0, key.type);
293 if (ret < 0)
294 goto error;
295 l = path->nodes[0];
296 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
297 while (1) {
298 l = path->nodes[0];
299 slot = path->slots[0];
300 if (slot >= btrfs_header_nritems(l)) {
301 ret = btrfs_next_leaf(root, path);
302 if (ret == 0)
303 continue;
304 if (ret < 0)
305 goto error;
306no_more_items:
307 if (!start_found) {
308 if (search_start >= search_end) {
309 ret = -ENOSPC;
310 goto error;
311 }
312 *start = search_start;
313 start_found = 1;
314 goto check_pending;
315 }
316 *start = last_byte > search_start ?
317 last_byte : search_start;
318 if (search_end <= *start) {
319 ret = -ENOSPC;
320 goto error;
321 }
322 goto check_pending;
323 }
324 btrfs_item_key_to_cpu(l, &key, slot);
325
326 if (key.objectid < device->devid)
327 goto next;
328
329 if (key.objectid > device->devid)
330 goto no_more_items;
331
332 if (key.offset >= search_start && key.offset > last_byte &&
333 start_found) {
334 if (last_byte < search_start)
335 last_byte = search_start;
336 hole_size = key.offset - last_byte;
337 if (key.offset > last_byte &&
338 hole_size >= num_bytes) {
339 *start = last_byte;
340 goto check_pending;
341 }
342 }
343 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
344 goto next;
345 }
346
347 start_found = 1;
348 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
349 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
350next:
351 path->slots[0]++;
352 cond_resched();
353 }
354check_pending:
355 /* we have to make sure we didn't find an extent that has already
356 * been allocated by the map tree or the original allocation
357 */
358 btrfs_release_path(root, path);
359 BUG_ON(*start < search_start);
360
6324fbf3 361 if (*start + num_bytes > search_end) {
0b86a832
CM
362 ret = -ENOSPC;
363 goto error;
364 }
365 /* check for pending inserts here */
366 return 0;
367
368error:
369 btrfs_release_path(root, path);
370 return ret;
371}
372
373int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
374 struct btrfs_device *device,
375 u64 owner, u64 num_bytes, u64 *start)
376{
377 int ret;
378 struct btrfs_path *path;
379 struct btrfs_root *root = device->dev_root;
380 struct btrfs_dev_extent *extent;
381 struct extent_buffer *leaf;
382 struct btrfs_key key;
383
384 path = btrfs_alloc_path();
385 if (!path)
386 return -ENOMEM;
387
388 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 389 if (ret) {
0b86a832 390 goto err;
6324fbf3 391 }
0b86a832
CM
392
393 key.objectid = device->devid;
394 key.offset = *start;
395 key.type = BTRFS_DEV_EXTENT_KEY;
396 ret = btrfs_insert_empty_item(trans, root, path, &key,
397 sizeof(*extent));
398 BUG_ON(ret);
399
400 leaf = path->nodes[0];
401 extent = btrfs_item_ptr(leaf, path->slots[0],
402 struct btrfs_dev_extent);
403 btrfs_set_dev_extent_owner(leaf, extent, owner);
404 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
405 btrfs_mark_buffer_dirty(leaf);
406err:
407 btrfs_free_path(path);
408 return ret;
409}
410
411static int find_next_chunk(struct btrfs_root *root, u64 *objectid)
412{
413 struct btrfs_path *path;
414 int ret;
415 struct btrfs_key key;
416 struct btrfs_key found_key;
417
418 path = btrfs_alloc_path();
419 BUG_ON(!path);
420
421 key.objectid = (u64)-1;
422 key.offset = (u64)-1;
423 key.type = BTRFS_CHUNK_ITEM_KEY;
424
425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
426 if (ret < 0)
427 goto error;
428
429 BUG_ON(ret == 0);
430
431 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
432 if (ret) {
433 *objectid = 0;
434 } else {
435 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
436 path->slots[0]);
437 *objectid = found_key.objectid + found_key.offset;
438 }
439 ret = 0;
440error:
441 btrfs_free_path(path);
442 return ret;
443}
444
0b86a832
CM
445static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
446 u64 *objectid)
447{
448 int ret;
449 struct btrfs_key key;
450 struct btrfs_key found_key;
451
452 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
453 key.type = BTRFS_DEV_ITEM_KEY;
454 key.offset = (u64)-1;
455
456 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
457 if (ret < 0)
458 goto error;
459
460 BUG_ON(ret == 0);
461
462 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
463 BTRFS_DEV_ITEM_KEY);
464 if (ret) {
465 *objectid = 1;
466 } else {
467 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
468 path->slots[0]);
469 *objectid = found_key.offset + 1;
470 }
471 ret = 0;
472error:
473 btrfs_release_path(root, path);
474 return ret;
475}
476
477/*
478 * the device information is stored in the chunk root
479 * the btrfs_device struct should be fully filled in
480 */
481int btrfs_add_device(struct btrfs_trans_handle *trans,
482 struct btrfs_root *root,
483 struct btrfs_device *device)
484{
485 int ret;
486 struct btrfs_path *path;
487 struct btrfs_dev_item *dev_item;
488 struct extent_buffer *leaf;
489 struct btrfs_key key;
490 unsigned long ptr;
491 u64 free_devid;
492
493 root = root->fs_info->chunk_root;
494
495 path = btrfs_alloc_path();
496 if (!path)
497 return -ENOMEM;
498
499 ret = find_next_devid(root, path, &free_devid);
500 if (ret)
501 goto out;
502
503 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
504 key.type = BTRFS_DEV_ITEM_KEY;
505 key.offset = free_devid;
506
507 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 508 sizeof(*dev_item));
0b86a832
CM
509 if (ret)
510 goto out;
511
512 leaf = path->nodes[0];
513 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
514
8a4b83cc 515 device->devid = free_devid;
0b86a832
CM
516 btrfs_set_device_id(leaf, dev_item, device->devid);
517 btrfs_set_device_type(leaf, dev_item, device->type);
518 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
519 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
520 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
521 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
522 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
523
0b86a832
CM
524 ptr = (unsigned long)btrfs_device_uuid(dev_item);
525 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
526 btrfs_mark_buffer_dirty(leaf);
527 ret = 0;
528
529out:
530 btrfs_free_path(path);
531 return ret;
532}
533int btrfs_update_device(struct btrfs_trans_handle *trans,
534 struct btrfs_device *device)
535{
536 int ret;
537 struct btrfs_path *path;
538 struct btrfs_root *root;
539 struct btrfs_dev_item *dev_item;
540 struct extent_buffer *leaf;
541 struct btrfs_key key;
542
543 root = device->dev_root->fs_info->chunk_root;
544
545 path = btrfs_alloc_path();
546 if (!path)
547 return -ENOMEM;
548
549 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
550 key.type = BTRFS_DEV_ITEM_KEY;
551 key.offset = device->devid;
552
553 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
554 if (ret < 0)
555 goto out;
556
557 if (ret > 0) {
558 ret = -ENOENT;
559 goto out;
560 }
561
562 leaf = path->nodes[0];
563 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
564
565 btrfs_set_device_id(leaf, dev_item, device->devid);
566 btrfs_set_device_type(leaf, dev_item, device->type);
567 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
568 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
569 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
570 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
571 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
572 btrfs_mark_buffer_dirty(leaf);
573
574out:
575 btrfs_free_path(path);
576 return ret;
577}
578
579int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
580 struct btrfs_root *root,
581 struct btrfs_key *key,
582 struct btrfs_chunk *chunk, int item_size)
583{
584 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
585 struct btrfs_disk_key disk_key;
586 u32 array_size;
587 u8 *ptr;
588
589 array_size = btrfs_super_sys_array_size(super_copy);
590 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
591 return -EFBIG;
592
593 ptr = super_copy->sys_chunk_array + array_size;
594 btrfs_cpu_key_to_disk(&disk_key, key);
595 memcpy(ptr, &disk_key, sizeof(disk_key));
596 ptr += sizeof(disk_key);
597 memcpy(ptr, chunk, item_size);
598 item_size += sizeof(disk_key);
599 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
600 return 0;
601}
602
603int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
604 struct btrfs_root *extent_root, u64 *start,
6324fbf3 605 u64 *num_bytes, u64 type)
0b86a832
CM
606{
607 u64 dev_offset;
593060d7 608 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832
CM
609 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
610 struct btrfs_stripe *stripes;
611 struct btrfs_device *device = NULL;
612 struct btrfs_chunk *chunk;
6324fbf3 613 struct list_head private_devs;
8a4b83cc 614 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
6324fbf3 615 struct list_head *cur;
0b86a832
CM
616 struct extent_map_tree *em_tree;
617 struct map_lookup *map;
618 struct extent_map *em;
619 u64 physical;
620 u64 calc_size = 1024 * 1024 * 1024;
611f0e00 621 u64 min_free = calc_size;
6324fbf3
CM
622 u64 avail;
623 u64 max_avail = 0;
624 int num_stripes = 1;
625 int looped = 0;
0b86a832 626 int ret;
6324fbf3 627 int index;
593060d7 628 int stripe_len = 64 * 1024;
0b86a832
CM
629 struct btrfs_key key;
630
6324fbf3
CM
631 if (list_empty(dev_list))
632 return -ENOSPC;
593060d7 633
8790d502 634 if (type & (BTRFS_BLOCK_GROUP_RAID0))
593060d7 635 num_stripes = btrfs_super_num_devices(&info->super_copy);
611f0e00
CM
636 if (type & (BTRFS_BLOCK_GROUP_DUP))
637 num_stripes = 2;
8790d502
CM
638 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
639 num_stripes = min_t(u64, 2,
640 btrfs_super_num_devices(&info->super_copy));
641 }
6324fbf3
CM
642again:
643 INIT_LIST_HEAD(&private_devs);
644 cur = dev_list->next;
645 index = 0;
611f0e00
CM
646
647 if (type & BTRFS_BLOCK_GROUP_DUP)
648 min_free = calc_size * 2;
649
6324fbf3
CM
650 /* build a private list of devices we will allocate from */
651 while(index < num_stripes) {
652 device = list_entry(cur, struct btrfs_device, dev_list);
611f0e00 653
6324fbf3
CM
654 avail = device->total_bytes - device->bytes_used;
655 cur = cur->next;
656 if (avail > max_avail)
657 max_avail = avail;
611f0e00 658 if (avail >= min_free) {
6324fbf3
CM
659 list_move_tail(&device->dev_list, &private_devs);
660 index++;
611f0e00
CM
661 if (type & BTRFS_BLOCK_GROUP_DUP)
662 index++;
6324fbf3
CM
663 }
664 if (cur == dev_list)
665 break;
666 }
667 if (index < num_stripes) {
668 list_splice(&private_devs, dev_list);
669 if (!looped && max_avail > 0) {
670 looped = 1;
671 calc_size = max_avail;
672 goto again;
673 }
674 return -ENOSPC;
675 }
0b86a832
CM
676
677 ret = find_next_chunk(chunk_root, &key.objectid);
678 if (ret)
679 return ret;
680
0b86a832
CM
681 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
682 if (!chunk)
683 return -ENOMEM;
684
593060d7
CM
685 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
686 if (!map) {
687 kfree(chunk);
688 return -ENOMEM;
689 }
690
0b86a832
CM
691 stripes = &chunk->stripe;
692
611f0e00 693 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
8790d502
CM
694 *num_bytes = calc_size;
695 else
696 *num_bytes = calc_size * num_stripes;
697
6324fbf3 698 index = 0;
611f0e00 699printk("new chunk type %Lu start %Lu size %Lu\n", type, key.objectid, *num_bytes);
0b86a832 700 while(index < num_stripes) {
6324fbf3
CM
701 BUG_ON(list_empty(&private_devs));
702 cur = private_devs.next;
703 device = list_entry(cur, struct btrfs_device, dev_list);
611f0e00
CM
704
705 /* loop over this device again if we're doing a dup group */
706 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
707 (index == num_stripes - 1))
708 list_move_tail(&device->dev_list, dev_list);
0b86a832
CM
709
710 ret = btrfs_alloc_dev_extent(trans, device,
711 key.objectid,
712 calc_size, &dev_offset);
713 BUG_ON(ret);
8790d502 714printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.objectid, calc_size, device->devid, type);
0b86a832
CM
715 device->bytes_used += calc_size;
716 ret = btrfs_update_device(trans, device);
717 BUG_ON(ret);
718
593060d7
CM
719 map->stripes[index].dev = device;
720 map->stripes[index].physical = dev_offset;
0b86a832
CM
721 btrfs_set_stack_stripe_devid(stripes + index, device->devid);
722 btrfs_set_stack_stripe_offset(stripes + index, dev_offset);
723 physical = dev_offset;
724 index++;
725 }
6324fbf3 726 BUG_ON(!list_empty(&private_devs));
0b86a832
CM
727
728 /* key.objectid was set above */
729 key.offset = *num_bytes;
730 key.type = BTRFS_CHUNK_ITEM_KEY;
731 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 732 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
733 btrfs_set_stack_chunk_type(chunk, type);
734 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
735 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
736 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 737 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
593060d7
CM
738 map->sector_size = extent_root->sectorsize;
739 map->stripe_len = stripe_len;
740 map->io_align = stripe_len;
741 map->io_width = stripe_len;
742 map->type = type;
743 map->num_stripes = num_stripes;
0b86a832
CM
744
745 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
746 btrfs_chunk_item_size(num_stripes));
747 BUG_ON(ret);
748 *start = key.objectid;
749
750 em = alloc_extent_map(GFP_NOFS);
751 if (!em)
752 return -ENOMEM;
0b86a832
CM
753 em->bdev = (struct block_device *)map;
754 em->start = key.objectid;
755 em->len = key.offset;
756 em->block_start = 0;
757
0b86a832
CM
758 kfree(chunk);
759
760 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
761 spin_lock(&em_tree->lock);
762 ret = add_extent_mapping(em_tree, em);
0b86a832 763 spin_unlock(&em_tree->lock);
b248a415 764 BUG_ON(ret);
0b86a832
CM
765 free_extent_map(em);
766 return ret;
767}
768
769void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
770{
771 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
772}
773
774void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
775{
776 struct extent_map *em;
777
778 while(1) {
779 spin_lock(&tree->map_tree.lock);
780 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
781 if (em)
782 remove_extent_mapping(&tree->map_tree, em);
783 spin_unlock(&tree->map_tree.lock);
784 if (!em)
785 break;
786 kfree(em->bdev);
787 /* once for us */
788 free_extent_map(em);
789 /* once for the tree */
790 free_extent_map(em);
791 }
792}
793
f188591e
CM
794int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
795{
796 struct extent_map *em;
797 struct map_lookup *map;
798 struct extent_map_tree *em_tree = &map_tree->map_tree;
799 int ret;
800
801 spin_lock(&em_tree->lock);
802 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 803 spin_unlock(&em_tree->lock);
f188591e
CM
804 BUG_ON(!em);
805
806 BUG_ON(em->start > logical || em->start + em->len < logical);
807 map = (struct map_lookup *)em->bdev;
808 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
809 ret = map->num_stripes;
810 else
811 ret = 1;
812 free_extent_map(em);
f188591e
CM
813 return ret;
814}
815
8790d502 816int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
cea9e445 817 u64 logical, u64 *length,
f188591e 818 struct btrfs_multi_bio **multi_ret, int mirror_num)
0b86a832
CM
819{
820 struct extent_map *em;
821 struct map_lookup *map;
822 struct extent_map_tree *em_tree = &map_tree->map_tree;
823 u64 offset;
593060d7
CM
824 u64 stripe_offset;
825 u64 stripe_nr;
cea9e445 826 int stripes_allocated = 8;
593060d7 827 int stripe_index;
cea9e445
CM
828 int i;
829 struct btrfs_multi_bio *multi = NULL;
0b86a832 830
cea9e445
CM
831 if (multi_ret && !(rw & (1 << BIO_RW))) {
832 stripes_allocated = 1;
833 }
834again:
835 if (multi_ret) {
836 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
837 GFP_NOFS);
838 if (!multi)
839 return -ENOMEM;
840 }
0b86a832
CM
841
842 spin_lock(&em_tree->lock);
843 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 844 spin_unlock(&em_tree->lock);
0b86a832
CM
845 BUG_ON(!em);
846
847 BUG_ON(em->start > logical || em->start + em->len < logical);
848 map = (struct map_lookup *)em->bdev;
849 offset = logical - em->start;
593060d7 850
f188591e
CM
851 if (mirror_num > map->num_stripes)
852 mirror_num = 0;
853
cea9e445
CM
854 /* if our multi bio struct is too small, back off and try again */
855 if (multi_ret && (rw & (1 << BIO_RW)) &&
856 stripes_allocated < map->num_stripes &&
857 ((map->type & BTRFS_BLOCK_GROUP_RAID1) ||
858 (map->type & BTRFS_BLOCK_GROUP_DUP))) {
859 stripes_allocated = map->num_stripes;
cea9e445
CM
860 free_extent_map(em);
861 kfree(multi);
862 goto again;
863 }
593060d7
CM
864 stripe_nr = offset;
865 /*
866 * stripe_nr counts the total number of stripes we have to stride
867 * to get to this block
868 */
869 do_div(stripe_nr, map->stripe_len);
870
871 stripe_offset = stripe_nr * map->stripe_len;
872 BUG_ON(offset < stripe_offset);
873
874 /* stripe_offset is the offset of this block in its stripe*/
875 stripe_offset = offset - stripe_offset;
876
cea9e445
CM
877 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
878 BTRFS_BLOCK_GROUP_DUP)) {
879 /* we limit the length of each bio to what fits in a stripe */
880 *length = min_t(u64, em->len - offset,
881 map->stripe_len - stripe_offset);
882 } else {
883 *length = em->len - offset;
884 }
885 if (!multi_ret)
886 goto out;
887
888 multi->num_stripes = 1;
889 stripe_index = 0;
8790d502 890 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
8790d502 891 if (rw & (1 << BIO_RW))
cea9e445 892 multi->num_stripes = map->num_stripes;
f188591e
CM
893 else if (mirror_num) {
894 stripe_index = mirror_num - 1;
895 } else {
8790d502
CM
896 int i;
897 u64 least = (u64)-1;
898 struct btrfs_device *cur;
899
900 for (i = 0; i < map->num_stripes; i++) {
901 cur = map->stripes[i].dev;
902 spin_lock(&cur->io_lock);
903 if (cur->total_ios < least) {
904 least = cur->total_ios;
905 stripe_index = i;
906 }
907 spin_unlock(&cur->io_lock);
908 }
8790d502 909 }
611f0e00 910 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445
CM
911 if (rw & (1 << BIO_RW))
912 multi->num_stripes = map->num_stripes;
f188591e
CM
913 else if (mirror_num)
914 stripe_index = mirror_num - 1;
8790d502
CM
915 } else {
916 /*
917 * after this do_div call, stripe_nr is the number of stripes
918 * on this device we have to walk to find the data, and
919 * stripe_index is the number of our device in the stripe array
920 */
921 stripe_index = do_div(stripe_nr, map->num_stripes);
922 }
593060d7 923 BUG_ON(stripe_index >= map->num_stripes);
cea9e445
CM
924 BUG_ON(stripe_index != 0 && multi->num_stripes > 1);
925
926 for (i = 0; i < multi->num_stripes; i++) {
927 multi->stripes[i].physical =
928 map->stripes[stripe_index].physical + stripe_offset +
929 stripe_nr * map->stripe_len;
930 multi->stripes[i].dev = map->stripes[stripe_index].dev;
931 stripe_index++;
593060d7 932 }
cea9e445
CM
933 *multi_ret = multi;
934out:
0b86a832 935 free_extent_map(em);
0b86a832
CM
936 return 0;
937}
938
8790d502
CM
939#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
940static void end_bio_multi_stripe(struct bio *bio, int err)
941#else
942static int end_bio_multi_stripe(struct bio *bio,
943 unsigned int bytes_done, int err)
944#endif
945{
cea9e445 946 struct btrfs_multi_bio *multi = bio->bi_private;
8790d502
CM
947
948#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
949 if (bio->bi_size)
950 return 1;
951#endif
952 if (err)
953 multi->error = err;
954
cea9e445 955 if (atomic_dec_and_test(&multi->stripes_pending)) {
8790d502
CM
956 bio->bi_private = multi->private;
957 bio->bi_end_io = multi->end_io;
958
959 if (!err && multi->error)
960 err = multi->error;
961 kfree(multi);
962
73f61b2a
M
963#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
964 bio_endio(bio, bio->bi_size, err);
965#else
8790d502 966 bio_endio(bio, err);
73f61b2a 967#endif
8790d502
CM
968 } else {
969 bio_put(bio);
970 }
971#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
972 return 0;
973#endif
974}
975
f188591e
CM
976int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
977 int mirror_num)
0b86a832
CM
978{
979 struct btrfs_mapping_tree *map_tree;
980 struct btrfs_device *dev;
8790d502 981 struct bio *first_bio = bio;
0b86a832 982 u64 logical = bio->bi_sector << 9;
0b86a832
CM
983 u64 length = 0;
984 u64 map_length;
985 struct bio_vec *bvec;
cea9e445 986 struct btrfs_multi_bio *multi = NULL;
0b86a832
CM
987 int i;
988 int ret;
8790d502
CM
989 int dev_nr = 0;
990 int total_devs = 1;
0b86a832
CM
991
992 bio_for_each_segment(bvec, bio, i) {
993 length += bvec->bv_len;
994 }
8790d502 995
0b86a832
CM
996 map_tree = &root->fs_info->mapping_tree;
997 map_length = length;
cea9e445 998
f188591e
CM
999 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
1000 mirror_num);
cea9e445
CM
1001 BUG_ON(ret);
1002
1003 total_devs = multi->num_stripes;
1004 if (map_length < length) {
1005 printk("mapping failed logical %Lu bio len %Lu "
1006 "len %Lu\n", logical, length, map_length);
1007 BUG();
1008 }
1009 multi->end_io = first_bio->bi_end_io;
1010 multi->private = first_bio->bi_private;
1011 atomic_set(&multi->stripes_pending, multi->num_stripes);
1012
8790d502 1013 while(dev_nr < total_devs) {
8790d502 1014 if (total_devs > 1) {
8790d502
CM
1015 if (dev_nr < total_devs - 1) {
1016 bio = bio_clone(first_bio, GFP_NOFS);
1017 BUG_ON(!bio);
1018 } else {
1019 bio = first_bio;
1020 }
1021 bio->bi_private = multi;
1022 bio->bi_end_io = end_bio_multi_stripe;
1023 }
cea9e445
CM
1024 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
1025 dev = multi->stripes[dev_nr].dev;
8790d502
CM
1026 bio->bi_bdev = dev->bdev;
1027 spin_lock(&dev->io_lock);
1028 dev->total_ios++;
1029 spin_unlock(&dev->io_lock);
1030 submit_bio(rw, bio);
1031 dev_nr++;
1032 }
cea9e445
CM
1033 if (total_devs == 1)
1034 kfree(multi);
0b86a832
CM
1035 return 0;
1036}
1037
1038struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid)
1039{
8a4b83cc 1040 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 1041
8a4b83cc 1042 return __find_device(head, devid);
0b86a832
CM
1043}
1044
1045static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1046 struct extent_buffer *leaf,
1047 struct btrfs_chunk *chunk)
1048{
1049 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1050 struct map_lookup *map;
1051 struct extent_map *em;
1052 u64 logical;
1053 u64 length;
1054 u64 devid;
593060d7 1055 int num_stripes;
0b86a832 1056 int ret;
593060d7 1057 int i;
0b86a832
CM
1058
1059 logical = key->objectid;
1060 length = key->offset;
1061 spin_lock(&map_tree->map_tree.lock);
1062 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 1063 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
1064
1065 /* already mapped? */
1066 if (em && em->start <= logical && em->start + em->len > logical) {
1067 free_extent_map(em);
0b86a832
CM
1068 return 0;
1069 } else if (em) {
1070 free_extent_map(em);
1071 }
0b86a832
CM
1072
1073 map = kzalloc(sizeof(*map), GFP_NOFS);
1074 if (!map)
1075 return -ENOMEM;
1076
1077 em = alloc_extent_map(GFP_NOFS);
1078 if (!em)
1079 return -ENOMEM;
593060d7
CM
1080 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1081 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
1082 if (!map) {
1083 free_extent_map(em);
1084 return -ENOMEM;
1085 }
1086
1087 em->bdev = (struct block_device *)map;
1088 em->start = logical;
1089 em->len = length;
1090 em->block_start = 0;
1091
593060d7
CM
1092 map->num_stripes = num_stripes;
1093 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1094 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1095 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1096 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1097 map->type = btrfs_chunk_type(leaf, chunk);
1098 for (i = 0; i < num_stripes; i++) {
1099 map->stripes[i].physical =
1100 btrfs_stripe_offset_nr(leaf, chunk, i);
1101 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
1102 map->stripes[i].dev = btrfs_find_device(root, devid);
1103 if (!map->stripes[i].dev) {
1104 kfree(map);
1105 free_extent_map(em);
1106 return -EIO;
1107 }
0b86a832
CM
1108 }
1109
1110 spin_lock(&map_tree->map_tree.lock);
1111 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 1112 spin_unlock(&map_tree->map_tree.lock);
b248a415 1113 BUG_ON(ret);
0b86a832
CM
1114 free_extent_map(em);
1115
1116 return 0;
1117}
1118
1119static int fill_device_from_item(struct extent_buffer *leaf,
1120 struct btrfs_dev_item *dev_item,
1121 struct btrfs_device *device)
1122{
1123 unsigned long ptr;
0b86a832
CM
1124
1125 device->devid = btrfs_device_id(leaf, dev_item);
1126 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1127 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1128 device->type = btrfs_device_type(leaf, dev_item);
1129 device->io_align = btrfs_device_io_align(leaf, dev_item);
1130 device->io_width = btrfs_device_io_width(leaf, dev_item);
1131 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
1132
1133 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1134 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_DEV_UUID_SIZE);
1135
0b86a832
CM
1136 return 0;
1137}
1138
0d81ba5d 1139static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
1140 struct extent_buffer *leaf,
1141 struct btrfs_dev_item *dev_item)
1142{
1143 struct btrfs_device *device;
1144 u64 devid;
1145 int ret;
1146
1147 devid = btrfs_device_id(leaf, dev_item);
6324fbf3
CM
1148 device = btrfs_find_device(root, devid);
1149 if (!device) {
8a4b83cc 1150 printk("warning devid %Lu not found already\n", devid);
f2984462 1151 device = kzalloc(sizeof(*device), GFP_NOFS);
6324fbf3
CM
1152 if (!device)
1153 return -ENOMEM;
8a4b83cc
CM
1154 list_add(&device->dev_list,
1155 &root->fs_info->fs_devices->devices);
b248a415 1156 device->barriers = 1;
8790d502 1157 spin_lock_init(&device->io_lock);
6324fbf3 1158 }
0b86a832
CM
1159
1160 fill_device_from_item(leaf, dev_item, device);
1161 device->dev_root = root->fs_info->dev_root;
0b86a832
CM
1162 ret = 0;
1163#if 0
1164 ret = btrfs_open_device(device);
1165 if (ret) {
1166 kfree(device);
1167 }
1168#endif
1169 return ret;
1170}
1171
0d81ba5d
CM
1172int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1173{
1174 struct btrfs_dev_item *dev_item;
1175
1176 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1177 dev_item);
1178 return read_one_dev(root, buf, dev_item);
1179}
1180
0b86a832
CM
1181int btrfs_read_sys_array(struct btrfs_root *root)
1182{
1183 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1184 struct extent_buffer *sb = root->fs_info->sb_buffer;
1185 struct btrfs_disk_key *disk_key;
0b86a832
CM
1186 struct btrfs_chunk *chunk;
1187 struct btrfs_key key;
1188 u32 num_stripes;
1189 u32 array_size;
1190 u32 len = 0;
1191 u8 *ptr;
1192 unsigned long sb_ptr;
1193 u32 cur;
1194 int ret;
0b86a832
CM
1195
1196 array_size = btrfs_super_sys_array_size(super_copy);
1197
1198 /*
1199 * we do this loop twice, once for the device items and
1200 * once for all of the chunks. This way there are device
1201 * structs filled in for every chunk
1202 */
0b86a832
CM
1203 ptr = super_copy->sys_chunk_array;
1204 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1205 cur = 0;
1206
1207 while (cur < array_size) {
1208 disk_key = (struct btrfs_disk_key *)ptr;
1209 btrfs_disk_key_to_cpu(&key, disk_key);
1210
1211 len = sizeof(*disk_key);
1212 ptr += len;
1213 sb_ptr += len;
1214 cur += len;
1215
0d81ba5d 1216 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 1217 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d
CM
1218 ret = read_one_chunk(root, &key, sb, chunk);
1219 BUG_ON(ret);
0b86a832
CM
1220 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1221 len = btrfs_chunk_item_size(num_stripes);
1222 } else {
1223 BUG();
1224 }
1225 ptr += len;
1226 sb_ptr += len;
1227 cur += len;
1228 }
0b86a832
CM
1229 return 0;
1230}
1231
1232int btrfs_read_chunk_tree(struct btrfs_root *root)
1233{
1234 struct btrfs_path *path;
1235 struct extent_buffer *leaf;
1236 struct btrfs_key key;
1237 struct btrfs_key found_key;
1238 int ret;
1239 int slot;
1240
1241 root = root->fs_info->chunk_root;
1242
1243 path = btrfs_alloc_path();
1244 if (!path)
1245 return -ENOMEM;
1246
1247 /* first we search for all of the device items, and then we
1248 * read in all of the chunk items. This way we can create chunk
1249 * mappings that reference all of the devices that are afound
1250 */
1251 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1252 key.offset = 0;
1253 key.type = 0;
1254again:
1255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1256 while(1) {
1257 leaf = path->nodes[0];
1258 slot = path->slots[0];
1259 if (slot >= btrfs_header_nritems(leaf)) {
1260 ret = btrfs_next_leaf(root, path);
1261 if (ret == 0)
1262 continue;
1263 if (ret < 0)
1264 goto error;
1265 break;
1266 }
1267 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1268 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1269 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1270 break;
1271 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1272 struct btrfs_dev_item *dev_item;
1273 dev_item = btrfs_item_ptr(leaf, slot,
1274 struct btrfs_dev_item);
0d81ba5d 1275 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
1276 BUG_ON(ret);
1277 }
1278 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1279 struct btrfs_chunk *chunk;
1280 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1281 ret = read_one_chunk(root, &found_key, leaf, chunk);
1282 }
1283 path->slots[0]++;
1284 }
1285 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1286 key.objectid = 0;
1287 btrfs_release_path(root, path);
1288 goto again;
1289 }
1290
1291 btrfs_free_path(path);
1292 ret = 0;
1293error:
1294 return ret;
1295}
1296