]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/volumes.c
Btrfs: Fix deadlock while searching for dead roots on mount
[net-next-2.6.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
f2d8d74d 21#include <linux/blkdev.h>
788f20eb 22#include <linux/random.h>
593060d7 23#include <asm/div64.h>
0b86a832
CM
24#include "ctree.h"
25#include "extent_map.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "print-tree.h"
29#include "volumes.h"
8b712842 30#include "async-thread.h"
0b86a832 31
593060d7
CM
32struct map_lookup {
33 u64 type;
34 int io_align;
35 int io_width;
36 int stripe_len;
37 int sector_size;
38 int num_stripes;
321aecc6 39 int sub_stripes;
cea9e445 40 struct btrfs_bio_stripe stripes[];
593060d7
CM
41};
42
43#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 44 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 45
8a4b83cc
CM
46static DEFINE_MUTEX(uuid_mutex);
47static LIST_HEAD(fs_uuids);
48
a061fc8d
CM
49void btrfs_lock_volumes(void)
50{
51 mutex_lock(&uuid_mutex);
52}
53
54void btrfs_unlock_volumes(void)
55{
56 mutex_unlock(&uuid_mutex);
57}
58
8a4b83cc
CM
59int btrfs_cleanup_fs_uuids(void)
60{
61 struct btrfs_fs_devices *fs_devices;
62 struct list_head *uuid_cur;
63 struct list_head *devices_cur;
64 struct btrfs_device *dev;
65
66 list_for_each(uuid_cur, &fs_uuids) {
67 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
68 list);
69 while(!list_empty(&fs_devices->devices)) {
70 devices_cur = fs_devices->devices.next;
71 dev = list_entry(devices_cur, struct btrfs_device,
72 dev_list);
8a4b83cc 73 if (dev->bdev) {
8a4b83cc 74 close_bdev_excl(dev->bdev);
a0af469b 75 fs_devices->open_devices--;
8a4b83cc
CM
76 }
77 list_del(&dev->dev_list);
dfe25020 78 kfree(dev->name);
8a4b83cc
CM
79 kfree(dev);
80 }
81 }
82 return 0;
83}
84
a443755f
CM
85static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
86 u8 *uuid)
8a4b83cc
CM
87{
88 struct btrfs_device *dev;
89 struct list_head *cur;
90
91 list_for_each(cur, head) {
92 dev = list_entry(cur, struct btrfs_device, dev_list);
a443755f 93 if (dev->devid == devid &&
8f18cf13 94 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 95 return dev;
a443755f 96 }
8a4b83cc
CM
97 }
98 return NULL;
99}
100
101static struct btrfs_fs_devices *find_fsid(u8 *fsid)
102{
103 struct list_head *cur;
104 struct btrfs_fs_devices *fs_devices;
105
106 list_for_each(cur, &fs_uuids) {
107 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
108 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
109 return fs_devices;
110 }
111 return NULL;
112}
113
8b712842
CM
114/*
115 * we try to collect pending bios for a device so we don't get a large
116 * number of procs sending bios down to the same device. This greatly
117 * improves the schedulers ability to collect and merge the bios.
118 *
119 * But, it also turns into a long list of bios to process and that is sure
120 * to eventually make the worker thread block. The solution here is to
121 * make some progress and then put this work struct back at the end of
122 * the list if the block device is congested. This way, multiple devices
123 * can make progress from a single worker thread.
124 */
125int run_scheduled_bios(struct btrfs_device *device)
126{
127 struct bio *pending;
128 struct backing_dev_info *bdi;
129 struct bio *tail;
130 struct bio *cur;
131 int again = 0;
132 unsigned long num_run = 0;
133
134 bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
135loop:
136 spin_lock(&device->io_lock);
137
138 /* take all the bios off the list at once and process them
139 * later on (without the lock held). But, remember the
140 * tail and other pointers so the bios can be properly reinserted
141 * into the list if we hit congestion
142 */
143 pending = device->pending_bios;
144 tail = device->pending_bio_tail;
145 WARN_ON(pending && !tail);
146 device->pending_bios = NULL;
147 device->pending_bio_tail = NULL;
148
149 /*
150 * if pending was null this time around, no bios need processing
151 * at all and we can stop. Otherwise it'll loop back up again
152 * and do an additional check so no bios are missed.
153 *
154 * device->running_pending is used to synchronize with the
155 * schedule_bio code.
156 */
157 if (pending) {
158 again = 1;
159 device->running_pending = 1;
160 } else {
161 again = 0;
162 device->running_pending = 0;
163 }
164 spin_unlock(&device->io_lock);
165
166 while(pending) {
167 cur = pending;
168 pending = pending->bi_next;
169 cur->bi_next = NULL;
170 atomic_dec(&device->dev_root->fs_info->nr_async_submits);
171 submit_bio(cur->bi_rw, cur);
172 num_run++;
173
174 /*
175 * we made progress, there is more work to do and the bdi
176 * is now congested. Back off and let other work structs
177 * run instead
178 */
179 if (pending && num_run && bdi_write_congested(bdi)) {
180 struct bio *old_head;
181
182 spin_lock(&device->io_lock);
183 old_head = device->pending_bios;
184 device->pending_bios = pending;
185 if (device->pending_bio_tail)
186 tail->bi_next = old_head;
187 else
188 device->pending_bio_tail = tail;
189
190 spin_unlock(&device->io_lock);
191 btrfs_requeue_work(&device->work);
192 goto done;
193 }
194 }
195 if (again)
196 goto loop;
197done:
198 return 0;
199}
200
201void pending_bios_fn(struct btrfs_work *work)
202{
203 struct btrfs_device *device;
204
205 device = container_of(work, struct btrfs_device, work);
206 run_scheduled_bios(device);
207}
208
8a4b83cc
CM
209static int device_list_add(const char *path,
210 struct btrfs_super_block *disk_super,
211 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
212{
213 struct btrfs_device *device;
214 struct btrfs_fs_devices *fs_devices;
215 u64 found_transid = btrfs_super_generation(disk_super);
216
217 fs_devices = find_fsid(disk_super->fsid);
218 if (!fs_devices) {
515dc322 219 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
220 if (!fs_devices)
221 return -ENOMEM;
222 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 223 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
224 list_add(&fs_devices->list, &fs_uuids);
225 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
226 fs_devices->latest_devid = devid;
227 fs_devices->latest_trans = found_transid;
8a4b83cc
CM
228 device = NULL;
229 } else {
a443755f
CM
230 device = __find_device(&fs_devices->devices, devid,
231 disk_super->dev_item.uuid);
8a4b83cc
CM
232 }
233 if (!device) {
234 device = kzalloc(sizeof(*device), GFP_NOFS);
235 if (!device) {
236 /* we can safely leave the fs_devices entry around */
237 return -ENOMEM;
238 }
239 device->devid = devid;
8b712842 240 device->work.func = pending_bios_fn;
a443755f
CM
241 memcpy(device->uuid, disk_super->dev_item.uuid,
242 BTRFS_UUID_SIZE);
f2984462 243 device->barriers = 1;
b248a415 244 spin_lock_init(&device->io_lock);
8a4b83cc
CM
245 device->name = kstrdup(path, GFP_NOFS);
246 if (!device->name) {
247 kfree(device);
248 return -ENOMEM;
249 }
250 list_add(&device->dev_list, &fs_devices->devices);
b3075717 251 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
8a4b83cc
CM
252 fs_devices->num_devices++;
253 }
254
255 if (found_transid > fs_devices->latest_trans) {
256 fs_devices->latest_devid = devid;
257 fs_devices->latest_trans = found_transid;
258 }
8a4b83cc
CM
259 *fs_devices_ret = fs_devices;
260 return 0;
261}
262
dfe25020
CM
263int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
264{
265 struct list_head *head = &fs_devices->devices;
266 struct list_head *cur;
267 struct btrfs_device *device;
268
269 mutex_lock(&uuid_mutex);
270again:
271 list_for_each(cur, head) {
272 device = list_entry(cur, struct btrfs_device, dev_list);
273 if (!device->in_fs_metadata) {
a74a4b97 274 struct block_device *bdev;
dfe25020
CM
275 list_del(&device->dev_list);
276 list_del(&device->dev_alloc_list);
277 fs_devices->num_devices--;
a74a4b97
CM
278 if (device->bdev) {
279 bdev = device->bdev;
280 fs_devices->open_devices--;
281 mutex_unlock(&uuid_mutex);
282 close_bdev_excl(bdev);
283 mutex_lock(&uuid_mutex);
284 }
dfe25020
CM
285 kfree(device->name);
286 kfree(device);
287 goto again;
288 }
289 }
290 mutex_unlock(&uuid_mutex);
291 return 0;
292}
a0af469b 293
8a4b83cc
CM
294int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
295{
296 struct list_head *head = &fs_devices->devices;
297 struct list_head *cur;
298 struct btrfs_device *device;
299
300 mutex_lock(&uuid_mutex);
301 list_for_each(cur, head) {
302 device = list_entry(cur, struct btrfs_device, dev_list);
303 if (device->bdev) {
304 close_bdev_excl(device->bdev);
a0af469b 305 fs_devices->open_devices--;
8a4b83cc
CM
306 }
307 device->bdev = NULL;
dfe25020 308 device->in_fs_metadata = 0;
8a4b83cc 309 }
a0af469b 310 fs_devices->mounted = 0;
8a4b83cc
CM
311 mutex_unlock(&uuid_mutex);
312 return 0;
313}
314
315int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
316 int flags, void *holder)
317{
318 struct block_device *bdev;
319 struct list_head *head = &fs_devices->devices;
320 struct list_head *cur;
321 struct btrfs_device *device;
a0af469b
CM
322 struct block_device *latest_bdev = NULL;
323 struct buffer_head *bh;
324 struct btrfs_super_block *disk_super;
325 u64 latest_devid = 0;
326 u64 latest_transid = 0;
327 u64 transid;
328 u64 devid;
329 int ret = 0;
8a4b83cc
CM
330
331 mutex_lock(&uuid_mutex);
a0af469b
CM
332 if (fs_devices->mounted)
333 goto out;
334
8a4b83cc
CM
335 list_for_each(cur, head) {
336 device = list_entry(cur, struct btrfs_device, dev_list);
c1c4d91c
CM
337 if (device->bdev)
338 continue;
339
dfe25020
CM
340 if (!device->name)
341 continue;
342
8a4b83cc 343 bdev = open_bdev_excl(device->name, flags, holder);
e17cade2 344
8a4b83cc
CM
345 if (IS_ERR(bdev)) {
346 printk("open %s failed\n", device->name);
a0af469b 347 goto error;
8a4b83cc 348 }
a061fc8d 349 set_blocksize(bdev, 4096);
a0af469b
CM
350
351 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
352 if (!bh)
353 goto error_close;
354
355 disk_super = (struct btrfs_super_block *)bh->b_data;
356 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
357 sizeof(disk_super->magic)))
358 goto error_brelse;
359
360 devid = le64_to_cpu(disk_super->dev_item.devid);
361 if (devid != device->devid)
362 goto error_brelse;
363
364 transid = btrfs_super_generation(disk_super);
6af5ac3c 365 if (!latest_transid || transid > latest_transid) {
a0af469b
CM
366 latest_devid = devid;
367 latest_transid = transid;
368 latest_bdev = bdev;
369 }
370
8a4b83cc 371 device->bdev = bdev;
dfe25020 372 device->in_fs_metadata = 0;
a0af469b
CM
373 fs_devices->open_devices++;
374 continue;
a061fc8d 375
a0af469b
CM
376error_brelse:
377 brelse(bh);
378error_close:
379 close_bdev_excl(bdev);
380error:
381 continue;
8a4b83cc 382 }
a0af469b
CM
383 if (fs_devices->open_devices == 0) {
384 ret = -EIO;
385 goto out;
386 }
387 fs_devices->mounted = 1;
388 fs_devices->latest_bdev = latest_bdev;
389 fs_devices->latest_devid = latest_devid;
390 fs_devices->latest_trans = latest_transid;
391out:
8a4b83cc 392 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
393 return ret;
394}
395
396int btrfs_scan_one_device(const char *path, int flags, void *holder,
397 struct btrfs_fs_devices **fs_devices_ret)
398{
399 struct btrfs_super_block *disk_super;
400 struct block_device *bdev;
401 struct buffer_head *bh;
402 int ret;
403 u64 devid;
f2984462 404 u64 transid;
8a4b83cc
CM
405
406 mutex_lock(&uuid_mutex);
407
8a4b83cc
CM
408 bdev = open_bdev_excl(path, flags, holder);
409
410 if (IS_ERR(bdev)) {
8a4b83cc
CM
411 ret = PTR_ERR(bdev);
412 goto error;
413 }
414
415 ret = set_blocksize(bdev, 4096);
416 if (ret)
417 goto error_close;
418 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
419 if (!bh) {
420 ret = -EIO;
421 goto error_close;
422 }
423 disk_super = (struct btrfs_super_block *)bh->b_data;
424 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
425 sizeof(disk_super->magic))) {
e58ca020 426 ret = -EINVAL;
8a4b83cc
CM
427 goto error_brelse;
428 }
429 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462 430 transid = btrfs_super_generation(disk_super);
7ae9c09d
CM
431 if (disk_super->label[0])
432 printk("device label %s ", disk_super->label);
433 else {
434 /* FIXME, make a readl uuid parser */
435 printk("device fsid %llx-%llx ",
436 *(unsigned long long *)disk_super->fsid,
437 *(unsigned long long *)(disk_super->fsid + 8));
438 }
439 printk("devid %Lu transid %Lu %s\n", devid, transid, path);
8a4b83cc
CM
440 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
441
442error_brelse:
443 brelse(bh);
444error_close:
445 close_bdev_excl(bdev);
8a4b83cc
CM
446error:
447 mutex_unlock(&uuid_mutex);
448 return ret;
449}
0b86a832
CM
450
451/*
452 * this uses a pretty simple search, the expectation is that it is
453 * called very infrequently and that a given device has a small number
454 * of extents
455 */
456static int find_free_dev_extent(struct btrfs_trans_handle *trans,
457 struct btrfs_device *device,
458 struct btrfs_path *path,
459 u64 num_bytes, u64 *start)
460{
461 struct btrfs_key key;
462 struct btrfs_root *root = device->dev_root;
463 struct btrfs_dev_extent *dev_extent = NULL;
464 u64 hole_size = 0;
465 u64 last_byte = 0;
466 u64 search_start = 0;
467 u64 search_end = device->total_bytes;
468 int ret;
469 int slot = 0;
470 int start_found;
471 struct extent_buffer *l;
472
473 start_found = 0;
474 path->reada = 2;
475
476 /* FIXME use last free of some kind */
477
8a4b83cc
CM
478 /* we don't want to overwrite the superblock on the drive,
479 * so we make sure to start at an offset of at least 1MB
480 */
481 search_start = max((u64)1024 * 1024, search_start);
8f18cf13
CM
482
483 if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
484 search_start = max(root->fs_info->alloc_start, search_start);
485
0b86a832
CM
486 key.objectid = device->devid;
487 key.offset = search_start;
488 key.type = BTRFS_DEV_EXTENT_KEY;
489 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
490 if (ret < 0)
491 goto error;
492 ret = btrfs_previous_item(root, path, 0, key.type);
493 if (ret < 0)
494 goto error;
495 l = path->nodes[0];
496 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
497 while (1) {
498 l = path->nodes[0];
499 slot = path->slots[0];
500 if (slot >= btrfs_header_nritems(l)) {
501 ret = btrfs_next_leaf(root, path);
502 if (ret == 0)
503 continue;
504 if (ret < 0)
505 goto error;
506no_more_items:
507 if (!start_found) {
508 if (search_start >= search_end) {
509 ret = -ENOSPC;
510 goto error;
511 }
512 *start = search_start;
513 start_found = 1;
514 goto check_pending;
515 }
516 *start = last_byte > search_start ?
517 last_byte : search_start;
518 if (search_end <= *start) {
519 ret = -ENOSPC;
520 goto error;
521 }
522 goto check_pending;
523 }
524 btrfs_item_key_to_cpu(l, &key, slot);
525
526 if (key.objectid < device->devid)
527 goto next;
528
529 if (key.objectid > device->devid)
530 goto no_more_items;
531
532 if (key.offset >= search_start && key.offset > last_byte &&
533 start_found) {
534 if (last_byte < search_start)
535 last_byte = search_start;
536 hole_size = key.offset - last_byte;
537 if (key.offset > last_byte &&
538 hole_size >= num_bytes) {
539 *start = last_byte;
540 goto check_pending;
541 }
542 }
543 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
544 goto next;
545 }
546
547 start_found = 1;
548 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
549 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
550next:
551 path->slots[0]++;
552 cond_resched();
553 }
554check_pending:
555 /* we have to make sure we didn't find an extent that has already
556 * been allocated by the map tree or the original allocation
557 */
558 btrfs_release_path(root, path);
559 BUG_ON(*start < search_start);
560
6324fbf3 561 if (*start + num_bytes > search_end) {
0b86a832
CM
562 ret = -ENOSPC;
563 goto error;
564 }
565 /* check for pending inserts here */
566 return 0;
567
568error:
569 btrfs_release_path(root, path);
570 return ret;
571}
572
8f18cf13
CM
573int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
574 struct btrfs_device *device,
575 u64 start)
576{
577 int ret;
578 struct btrfs_path *path;
579 struct btrfs_root *root = device->dev_root;
580 struct btrfs_key key;
a061fc8d
CM
581 struct btrfs_key found_key;
582 struct extent_buffer *leaf = NULL;
583 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
584
585 path = btrfs_alloc_path();
586 if (!path)
587 return -ENOMEM;
588
589 key.objectid = device->devid;
590 key.offset = start;
591 key.type = BTRFS_DEV_EXTENT_KEY;
592
593 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
594 if (ret > 0) {
595 ret = btrfs_previous_item(root, path, key.objectid,
596 BTRFS_DEV_EXTENT_KEY);
597 BUG_ON(ret);
598 leaf = path->nodes[0];
599 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
600 extent = btrfs_item_ptr(leaf, path->slots[0],
601 struct btrfs_dev_extent);
602 BUG_ON(found_key.offset > start || found_key.offset +
603 btrfs_dev_extent_length(leaf, extent) < start);
604 ret = 0;
605 } else if (ret == 0) {
606 leaf = path->nodes[0];
607 extent = btrfs_item_ptr(leaf, path->slots[0],
608 struct btrfs_dev_extent);
609 }
8f18cf13
CM
610 BUG_ON(ret);
611
dfe25020
CM
612 if (device->bytes_used > 0)
613 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
614 ret = btrfs_del_item(trans, root, path);
615 BUG_ON(ret);
616
617 btrfs_free_path(path);
618 return ret;
619}
620
0b86a832
CM
621int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
622 struct btrfs_device *device,
e17cade2
CM
623 u64 chunk_tree, u64 chunk_objectid,
624 u64 chunk_offset,
625 u64 num_bytes, u64 *start)
0b86a832
CM
626{
627 int ret;
628 struct btrfs_path *path;
629 struct btrfs_root *root = device->dev_root;
630 struct btrfs_dev_extent *extent;
631 struct extent_buffer *leaf;
632 struct btrfs_key key;
633
dfe25020 634 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
635 path = btrfs_alloc_path();
636 if (!path)
637 return -ENOMEM;
638
639 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 640 if (ret) {
0b86a832 641 goto err;
6324fbf3 642 }
0b86a832
CM
643
644 key.objectid = device->devid;
645 key.offset = *start;
646 key.type = BTRFS_DEV_EXTENT_KEY;
647 ret = btrfs_insert_empty_item(trans, root, path, &key,
648 sizeof(*extent));
649 BUG_ON(ret);
650
651 leaf = path->nodes[0];
652 extent = btrfs_item_ptr(leaf, path->slots[0],
653 struct btrfs_dev_extent);
e17cade2
CM
654 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
655 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
656 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
657
658 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
659 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
660 BTRFS_UUID_SIZE);
661
0b86a832
CM
662 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
663 btrfs_mark_buffer_dirty(leaf);
664err:
665 btrfs_free_path(path);
666 return ret;
667}
668
e17cade2 669static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
0b86a832
CM
670{
671 struct btrfs_path *path;
672 int ret;
673 struct btrfs_key key;
e17cade2 674 struct btrfs_chunk *chunk;
0b86a832
CM
675 struct btrfs_key found_key;
676
677 path = btrfs_alloc_path();
678 BUG_ON(!path);
679
e17cade2 680 key.objectid = objectid;
0b86a832
CM
681 key.offset = (u64)-1;
682 key.type = BTRFS_CHUNK_ITEM_KEY;
683
684 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
685 if (ret < 0)
686 goto error;
687
688 BUG_ON(ret == 0);
689
690 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
691 if (ret) {
e17cade2 692 *offset = 0;
0b86a832
CM
693 } else {
694 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
695 path->slots[0]);
e17cade2
CM
696 if (found_key.objectid != objectid)
697 *offset = 0;
698 else {
699 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
700 struct btrfs_chunk);
701 *offset = found_key.offset +
702 btrfs_chunk_length(path->nodes[0], chunk);
703 }
0b86a832
CM
704 }
705 ret = 0;
706error:
707 btrfs_free_path(path);
708 return ret;
709}
710
0b86a832
CM
711static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
712 u64 *objectid)
713{
714 int ret;
715 struct btrfs_key key;
716 struct btrfs_key found_key;
717
718 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
719 key.type = BTRFS_DEV_ITEM_KEY;
720 key.offset = (u64)-1;
721
722 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
723 if (ret < 0)
724 goto error;
725
726 BUG_ON(ret == 0);
727
728 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
729 BTRFS_DEV_ITEM_KEY);
730 if (ret) {
731 *objectid = 1;
732 } else {
733 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
734 path->slots[0]);
735 *objectid = found_key.offset + 1;
736 }
737 ret = 0;
738error:
739 btrfs_release_path(root, path);
740 return ret;
741}
742
743/*
744 * the device information is stored in the chunk root
745 * the btrfs_device struct should be fully filled in
746 */
747int btrfs_add_device(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root,
749 struct btrfs_device *device)
750{
751 int ret;
752 struct btrfs_path *path;
753 struct btrfs_dev_item *dev_item;
754 struct extent_buffer *leaf;
755 struct btrfs_key key;
756 unsigned long ptr;
006a58a2 757 u64 free_devid = 0;
0b86a832
CM
758
759 root = root->fs_info->chunk_root;
760
761 path = btrfs_alloc_path();
762 if (!path)
763 return -ENOMEM;
764
765 ret = find_next_devid(root, path, &free_devid);
766 if (ret)
767 goto out;
768
769 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
770 key.type = BTRFS_DEV_ITEM_KEY;
771 key.offset = free_devid;
772
773 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 774 sizeof(*dev_item));
0b86a832
CM
775 if (ret)
776 goto out;
777
778 leaf = path->nodes[0];
779 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
780
8a4b83cc 781 device->devid = free_devid;
0b86a832
CM
782 btrfs_set_device_id(leaf, dev_item, device->devid);
783 btrfs_set_device_type(leaf, dev_item, device->type);
784 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
785 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
786 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
787 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
788 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
789 btrfs_set_device_group(leaf, dev_item, 0);
790 btrfs_set_device_seek_speed(leaf, dev_item, 0);
791 btrfs_set_device_bandwidth(leaf, dev_item, 0);
0b86a832 792
0b86a832 793 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 794 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
795 btrfs_mark_buffer_dirty(leaf);
796 ret = 0;
797
798out:
799 btrfs_free_path(path);
800 return ret;
801}
8f18cf13 802
a061fc8d
CM
803static int btrfs_rm_dev_item(struct btrfs_root *root,
804 struct btrfs_device *device)
805{
806 int ret;
807 struct btrfs_path *path;
808 struct block_device *bdev = device->bdev;
809 struct btrfs_device *next_dev;
810 struct btrfs_key key;
811 u64 total_bytes;
812 struct btrfs_fs_devices *fs_devices;
813 struct btrfs_trans_handle *trans;
814
815 root = root->fs_info->chunk_root;
816
817 path = btrfs_alloc_path();
818 if (!path)
819 return -ENOMEM;
820
821 trans = btrfs_start_transaction(root, 1);
822 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
823 key.type = BTRFS_DEV_ITEM_KEY;
824 key.offset = device->devid;
825
826 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
827 if (ret < 0)
828 goto out;
829
830 if (ret > 0) {
831 ret = -ENOENT;
832 goto out;
833 }
834
835 ret = btrfs_del_item(trans, root, path);
836 if (ret)
837 goto out;
838
839 /*
840 * at this point, the device is zero sized. We want to
841 * remove it from the devices list and zero out the old super
842 */
843 list_del_init(&device->dev_list);
844 list_del_init(&device->dev_alloc_list);
845 fs_devices = root->fs_info->fs_devices;
846
847 next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
848 dev_list);
a061fc8d
CM
849 if (bdev == root->fs_info->sb->s_bdev)
850 root->fs_info->sb->s_bdev = next_dev->bdev;
851 if (bdev == fs_devices->latest_bdev)
852 fs_devices->latest_bdev = next_dev->bdev;
853
a061fc8d
CM
854 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
855 btrfs_set_super_num_devices(&root->fs_info->super_copy,
856 total_bytes - 1);
857out:
858 btrfs_free_path(path);
859 btrfs_commit_transaction(trans, root);
860 return ret;
861}
862
863int btrfs_rm_device(struct btrfs_root *root, char *device_path)
864{
865 struct btrfs_device *device;
866 struct block_device *bdev;
dfe25020 867 struct buffer_head *bh = NULL;
a061fc8d
CM
868 struct btrfs_super_block *disk_super;
869 u64 all_avail;
870 u64 devid;
871 int ret = 0;
872
a2135011
CM
873 mutex_lock(&root->fs_info->alloc_mutex);
874 mutex_lock(&root->fs_info->chunk_mutex);
a061fc8d
CM
875 mutex_lock(&uuid_mutex);
876
877 all_avail = root->fs_info->avail_data_alloc_bits |
878 root->fs_info->avail_system_alloc_bits |
879 root->fs_info->avail_metadata_alloc_bits;
880
881 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
dfe25020 882 btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
a061fc8d
CM
883 printk("btrfs: unable to go below four devices on raid10\n");
884 ret = -EINVAL;
885 goto out;
886 }
887
888 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
dfe25020 889 btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
a061fc8d
CM
890 printk("btrfs: unable to go below two devices on raid1\n");
891 ret = -EINVAL;
892 goto out;
893 }
894
dfe25020
CM
895 if (strcmp(device_path, "missing") == 0) {
896 struct list_head *cur;
897 struct list_head *devices;
898 struct btrfs_device *tmp;
a061fc8d 899
dfe25020
CM
900 device = NULL;
901 devices = &root->fs_info->fs_devices->devices;
902 list_for_each(cur, devices) {
903 tmp = list_entry(cur, struct btrfs_device, dev_list);
904 if (tmp->in_fs_metadata && !tmp->bdev) {
905 device = tmp;
906 break;
907 }
908 }
909 bdev = NULL;
910 bh = NULL;
911 disk_super = NULL;
912 if (!device) {
913 printk("btrfs: no missing devices found to remove\n");
914 goto out;
915 }
916
917 } else {
918 bdev = open_bdev_excl(device_path, 0,
919 root->fs_info->bdev_holder);
920 if (IS_ERR(bdev)) {
921 ret = PTR_ERR(bdev);
922 goto out;
923 }
a061fc8d 924
dfe25020
CM
925 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
926 if (!bh) {
927 ret = -EIO;
928 goto error_close;
929 }
930 disk_super = (struct btrfs_super_block *)bh->b_data;
931 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
932 sizeof(disk_super->magic))) {
933 ret = -ENOENT;
934 goto error_brelse;
935 }
936 if (memcmp(disk_super->fsid, root->fs_info->fsid,
937 BTRFS_FSID_SIZE)) {
938 ret = -ENOENT;
939 goto error_brelse;
940 }
941 devid = le64_to_cpu(disk_super->dev_item.devid);
942 device = btrfs_find_device(root, devid, NULL);
943 if (!device) {
944 ret = -ENOENT;
945 goto error_brelse;
946 }
947
948 }
a061fc8d 949 root->fs_info->fs_devices->num_devices--;
0ef3e66b 950 root->fs_info->fs_devices->open_devices--;
a061fc8d
CM
951
952 ret = btrfs_shrink_device(device, 0);
953 if (ret)
954 goto error_brelse;
955
956
957 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
958 if (ret)
959 goto error_brelse;
960
dfe25020
CM
961 if (bh) {
962 /* make sure this device isn't detected as part of
963 * the FS anymore
964 */
965 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
966 set_buffer_dirty(bh);
967 sync_dirty_buffer(bh);
a061fc8d 968
dfe25020
CM
969 brelse(bh);
970 }
a061fc8d 971
dfe25020
CM
972 if (device->bdev) {
973 /* one close for the device struct or super_block */
974 close_bdev_excl(device->bdev);
975 }
976 if (bdev) {
977 /* one close for us */
978 close_bdev_excl(bdev);
979 }
a061fc8d
CM
980 kfree(device->name);
981 kfree(device);
982 ret = 0;
983 goto out;
984
985error_brelse:
986 brelse(bh);
987error_close:
dfe25020
CM
988 if (bdev)
989 close_bdev_excl(bdev);
a061fc8d
CM
990out:
991 mutex_unlock(&uuid_mutex);
a2135011
CM
992 mutex_unlock(&root->fs_info->chunk_mutex);
993 mutex_unlock(&root->fs_info->alloc_mutex);
a061fc8d
CM
994 return ret;
995}
996
788f20eb
CM
997int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
998{
999 struct btrfs_trans_handle *trans;
1000 struct btrfs_device *device;
1001 struct block_device *bdev;
1002 struct list_head *cur;
1003 struct list_head *devices;
1004 u64 total_bytes;
1005 int ret = 0;
1006
1007
1008 bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
1009 if (!bdev) {
1010 return -EIO;
1011 }
a2135011
CM
1012
1013 mutex_lock(&root->fs_info->alloc_mutex);
1014 mutex_lock(&root->fs_info->chunk_mutex);
1015
788f20eb
CM
1016 trans = btrfs_start_transaction(root, 1);
1017 devices = &root->fs_info->fs_devices->devices;
1018 list_for_each(cur, devices) {
1019 device = list_entry(cur, struct btrfs_device, dev_list);
1020 if (device->bdev == bdev) {
1021 ret = -EEXIST;
1022 goto out;
1023 }
1024 }
1025
1026 device = kzalloc(sizeof(*device), GFP_NOFS);
1027 if (!device) {
1028 /* we can safely leave the fs_devices entry around */
1029 ret = -ENOMEM;
1030 goto out_close_bdev;
1031 }
1032
1033 device->barriers = 1;
8b712842 1034 device->work.func = pending_bios_fn;
788f20eb
CM
1035 generate_random_uuid(device->uuid);
1036 spin_lock_init(&device->io_lock);
1037 device->name = kstrdup(device_path, GFP_NOFS);
1038 if (!device->name) {
1039 kfree(device);
1040 goto out_close_bdev;
1041 }
1042 device->io_width = root->sectorsize;
1043 device->io_align = root->sectorsize;
1044 device->sector_size = root->sectorsize;
1045 device->total_bytes = i_size_read(bdev->bd_inode);
1046 device->dev_root = root->fs_info->dev_root;
1047 device->bdev = bdev;
dfe25020 1048 device->in_fs_metadata = 1;
788f20eb
CM
1049
1050 ret = btrfs_add_device(trans, root, device);
1051 if (ret)
1052 goto out_close_bdev;
1053
1054 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1055 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1056 total_bytes + device->total_bytes);
1057
1058 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1059 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1060 total_bytes + 1);
1061
1062 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1063 list_add(&device->dev_alloc_list,
1064 &root->fs_info->fs_devices->alloc_list);
1065 root->fs_info->fs_devices->num_devices++;
a0af469b 1066 root->fs_info->fs_devices->open_devices++;
788f20eb
CM
1067out:
1068 btrfs_end_transaction(trans, root);
a2135011
CM
1069 mutex_unlock(&root->fs_info->chunk_mutex);
1070 mutex_unlock(&root->fs_info->alloc_mutex);
1071
788f20eb
CM
1072 return ret;
1073
1074out_close_bdev:
1075 close_bdev_excl(bdev);
1076 goto out;
1077}
1078
0b86a832
CM
1079int btrfs_update_device(struct btrfs_trans_handle *trans,
1080 struct btrfs_device *device)
1081{
1082 int ret;
1083 struct btrfs_path *path;
1084 struct btrfs_root *root;
1085 struct btrfs_dev_item *dev_item;
1086 struct extent_buffer *leaf;
1087 struct btrfs_key key;
1088
1089 root = device->dev_root->fs_info->chunk_root;
1090
1091 path = btrfs_alloc_path();
1092 if (!path)
1093 return -ENOMEM;
1094
1095 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1096 key.type = BTRFS_DEV_ITEM_KEY;
1097 key.offset = device->devid;
1098
1099 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1100 if (ret < 0)
1101 goto out;
1102
1103 if (ret > 0) {
1104 ret = -ENOENT;
1105 goto out;
1106 }
1107
1108 leaf = path->nodes[0];
1109 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1110
1111 btrfs_set_device_id(leaf, dev_item, device->devid);
1112 btrfs_set_device_type(leaf, dev_item, device->type);
1113 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1114 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1115 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1116 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1117 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1118 btrfs_mark_buffer_dirty(leaf);
1119
1120out:
1121 btrfs_free_path(path);
1122 return ret;
1123}
1124
8f18cf13
CM
1125int btrfs_grow_device(struct btrfs_trans_handle *trans,
1126 struct btrfs_device *device, u64 new_size)
1127{
1128 struct btrfs_super_block *super_copy =
1129 &device->dev_root->fs_info->super_copy;
1130 u64 old_total = btrfs_super_total_bytes(super_copy);
1131 u64 diff = new_size - device->total_bytes;
1132
1133 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1134 return btrfs_update_device(trans, device);
1135}
1136
1137static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1138 struct btrfs_root *root,
1139 u64 chunk_tree, u64 chunk_objectid,
1140 u64 chunk_offset)
1141{
1142 int ret;
1143 struct btrfs_path *path;
1144 struct btrfs_key key;
1145
1146 root = root->fs_info->chunk_root;
1147 path = btrfs_alloc_path();
1148 if (!path)
1149 return -ENOMEM;
1150
1151 key.objectid = chunk_objectid;
1152 key.offset = chunk_offset;
1153 key.type = BTRFS_CHUNK_ITEM_KEY;
1154
1155 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1156 BUG_ON(ret);
1157
1158 ret = btrfs_del_item(trans, root, path);
1159 BUG_ON(ret);
1160
1161 btrfs_free_path(path);
1162 return 0;
1163}
1164
1165int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1166 chunk_offset)
1167{
1168 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1169 struct btrfs_disk_key *disk_key;
1170 struct btrfs_chunk *chunk;
1171 u8 *ptr;
1172 int ret = 0;
1173 u32 num_stripes;
1174 u32 array_size;
1175 u32 len = 0;
1176 u32 cur;
1177 struct btrfs_key key;
1178
1179 array_size = btrfs_super_sys_array_size(super_copy);
1180
1181 ptr = super_copy->sys_chunk_array;
1182 cur = 0;
1183
1184 while (cur < array_size) {
1185 disk_key = (struct btrfs_disk_key *)ptr;
1186 btrfs_disk_key_to_cpu(&key, disk_key);
1187
1188 len = sizeof(*disk_key);
1189
1190 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1191 chunk = (struct btrfs_chunk *)(ptr + len);
1192 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1193 len += btrfs_chunk_item_size(num_stripes);
1194 } else {
1195 ret = -EIO;
1196 break;
1197 }
1198 if (key.objectid == chunk_objectid &&
1199 key.offset == chunk_offset) {
1200 memmove(ptr, ptr + len, array_size - (cur + len));
1201 array_size -= len;
1202 btrfs_set_super_sys_array_size(super_copy, array_size);
1203 } else {
1204 ptr += len;
1205 cur += len;
1206 }
1207 }
1208 return ret;
1209}
1210
1211
1212int btrfs_relocate_chunk(struct btrfs_root *root,
1213 u64 chunk_tree, u64 chunk_objectid,
1214 u64 chunk_offset)
1215{
1216 struct extent_map_tree *em_tree;
1217 struct btrfs_root *extent_root;
1218 struct btrfs_trans_handle *trans;
1219 struct extent_map *em;
1220 struct map_lookup *map;
1221 int ret;
1222 int i;
1223
323da79c
CM
1224 printk("btrfs relocating chunk %llu\n",
1225 (unsigned long long)chunk_offset);
8f18cf13
CM
1226 root = root->fs_info->chunk_root;
1227 extent_root = root->fs_info->extent_root;
1228 em_tree = &root->fs_info->mapping_tree.map_tree;
1229
1230 /* step one, relocate all the extents inside this chunk */
1231 ret = btrfs_shrink_extent_tree(extent_root, chunk_offset);
1232 BUG_ON(ret);
1233
1234 trans = btrfs_start_transaction(root, 1);
1235 BUG_ON(!trans);
1236
1237 /*
1238 * step two, delete the device extents and the
1239 * chunk tree entries
1240 */
1241 spin_lock(&em_tree->lock);
1242 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1243 spin_unlock(&em_tree->lock);
1244
a061fc8d
CM
1245 BUG_ON(em->start > chunk_offset ||
1246 em->start + em->len < chunk_offset);
8f18cf13
CM
1247 map = (struct map_lookup *)em->bdev;
1248
1249 for (i = 0; i < map->num_stripes; i++) {
1250 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1251 map->stripes[i].physical);
1252 BUG_ON(ret);
a061fc8d 1253
dfe25020
CM
1254 if (map->stripes[i].dev) {
1255 ret = btrfs_update_device(trans, map->stripes[i].dev);
1256 BUG_ON(ret);
1257 }
8f18cf13
CM
1258 }
1259 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1260 chunk_offset);
1261
1262 BUG_ON(ret);
1263
1264 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1265 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1266 BUG_ON(ret);
8f18cf13
CM
1267 }
1268
8f18cf13
CM
1269 spin_lock(&em_tree->lock);
1270 remove_extent_mapping(em_tree, em);
1271 kfree(map);
1272 em->bdev = NULL;
1273
1274 /* once for the tree */
1275 free_extent_map(em);
1276 spin_unlock(&em_tree->lock);
1277
8f18cf13
CM
1278 /* once for us */
1279 free_extent_map(em);
1280
1281 btrfs_end_transaction(trans, root);
1282 return 0;
1283}
1284
ec44a35c
CM
1285static u64 div_factor(u64 num, int factor)
1286{
1287 if (factor == 10)
1288 return num;
1289 num *= factor;
1290 do_div(num, 10);
1291 return num;
1292}
1293
1294
1295int btrfs_balance(struct btrfs_root *dev_root)
1296{
1297 int ret;
1298 struct list_head *cur;
1299 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1300 struct btrfs_device *device;
1301 u64 old_size;
1302 u64 size_to_free;
1303 struct btrfs_path *path;
1304 struct btrfs_key key;
1305 struct btrfs_chunk *chunk;
1306 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1307 struct btrfs_trans_handle *trans;
1308 struct btrfs_key found_key;
1309
1310
a2135011
CM
1311 BUG(); /* FIXME, needs locking */
1312
ec44a35c
CM
1313 dev_root = dev_root->fs_info->dev_root;
1314
ec44a35c
CM
1315 /* step one make some room on all the devices */
1316 list_for_each(cur, devices) {
1317 device = list_entry(cur, struct btrfs_device, dev_list);
1318 old_size = device->total_bytes;
1319 size_to_free = div_factor(old_size, 1);
1320 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1321 if (device->total_bytes - device->bytes_used > size_to_free)
1322 continue;
1323
1324 ret = btrfs_shrink_device(device, old_size - size_to_free);
1325 BUG_ON(ret);
1326
1327 trans = btrfs_start_transaction(dev_root, 1);
1328 BUG_ON(!trans);
1329
1330 ret = btrfs_grow_device(trans, device, old_size);
1331 BUG_ON(ret);
1332
1333 btrfs_end_transaction(trans, dev_root);
1334 }
1335
1336 /* step two, relocate all the chunks */
1337 path = btrfs_alloc_path();
1338 BUG_ON(!path);
1339
1340 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1341 key.offset = (u64)-1;
1342 key.type = BTRFS_CHUNK_ITEM_KEY;
1343
1344 while(1) {
1345 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1346 if (ret < 0)
1347 goto error;
1348
1349 /*
1350 * this shouldn't happen, it means the last relocate
1351 * failed
1352 */
1353 if (ret == 0)
1354 break;
1355
1356 ret = btrfs_previous_item(chunk_root, path, 0,
1357 BTRFS_CHUNK_ITEM_KEY);
1358 if (ret) {
1359 break;
1360 }
1361 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1362 path->slots[0]);
1363 if (found_key.objectid != key.objectid)
1364 break;
1365 chunk = btrfs_item_ptr(path->nodes[0],
1366 path->slots[0],
1367 struct btrfs_chunk);
1368 key.offset = found_key.offset;
1369 /* chunk zero is special */
1370 if (key.offset == 0)
1371 break;
1372
1373 ret = btrfs_relocate_chunk(chunk_root,
1374 chunk_root->root_key.objectid,
1375 found_key.objectid,
1376 found_key.offset);
1377 BUG_ON(ret);
1378 btrfs_release_path(chunk_root, path);
1379 }
1380 ret = 0;
1381error:
1382 btrfs_free_path(path);
ec44a35c
CM
1383 return ret;
1384}
1385
8f18cf13
CM
1386/*
1387 * shrinking a device means finding all of the device extents past
1388 * the new size, and then following the back refs to the chunks.
1389 * The chunk relocation code actually frees the device extent
1390 */
1391int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1392{
1393 struct btrfs_trans_handle *trans;
1394 struct btrfs_root *root = device->dev_root;
1395 struct btrfs_dev_extent *dev_extent = NULL;
1396 struct btrfs_path *path;
1397 u64 length;
1398 u64 chunk_tree;
1399 u64 chunk_objectid;
1400 u64 chunk_offset;
1401 int ret;
1402 int slot;
1403 struct extent_buffer *l;
1404 struct btrfs_key key;
1405 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1406 u64 old_total = btrfs_super_total_bytes(super_copy);
1407 u64 diff = device->total_bytes - new_size;
1408
1409
1410 path = btrfs_alloc_path();
1411 if (!path)
1412 return -ENOMEM;
1413
1414 trans = btrfs_start_transaction(root, 1);
1415 if (!trans) {
1416 ret = -ENOMEM;
1417 goto done;
1418 }
1419
1420 path->reada = 2;
1421
1422 device->total_bytes = new_size;
1423 ret = btrfs_update_device(trans, device);
1424 if (ret) {
1425 btrfs_end_transaction(trans, root);
1426 goto done;
1427 }
1428 WARN_ON(diff > old_total);
1429 btrfs_set_super_total_bytes(super_copy, old_total - diff);
1430 btrfs_end_transaction(trans, root);
1431
1432 key.objectid = device->devid;
1433 key.offset = (u64)-1;
1434 key.type = BTRFS_DEV_EXTENT_KEY;
1435
1436 while (1) {
1437 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1438 if (ret < 0)
1439 goto done;
1440
1441 ret = btrfs_previous_item(root, path, 0, key.type);
1442 if (ret < 0)
1443 goto done;
1444 if (ret) {
1445 ret = 0;
1446 goto done;
1447 }
1448
1449 l = path->nodes[0];
1450 slot = path->slots[0];
1451 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
1452
1453 if (key.objectid != device->devid)
1454 goto done;
1455
1456 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1457 length = btrfs_dev_extent_length(l, dev_extent);
1458
1459 if (key.offset + length <= new_size)
1460 goto done;
1461
1462 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1463 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1464 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1465 btrfs_release_path(root, path);
1466
1467 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
1468 chunk_offset);
1469 if (ret)
1470 goto done;
1471 }
1472
1473done:
1474 btrfs_free_path(path);
1475 return ret;
1476}
1477
0b86a832
CM
1478int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
1479 struct btrfs_root *root,
1480 struct btrfs_key *key,
1481 struct btrfs_chunk *chunk, int item_size)
1482{
1483 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1484 struct btrfs_disk_key disk_key;
1485 u32 array_size;
1486 u8 *ptr;
1487
1488 array_size = btrfs_super_sys_array_size(super_copy);
1489 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
1490 return -EFBIG;
1491
1492 ptr = super_copy->sys_chunk_array + array_size;
1493 btrfs_cpu_key_to_disk(&disk_key, key);
1494 memcpy(ptr, &disk_key, sizeof(disk_key));
1495 ptr += sizeof(disk_key);
1496 memcpy(ptr, chunk, item_size);
1497 item_size += sizeof(disk_key);
1498 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
1499 return 0;
1500}
1501
9b3f68b9
CM
1502static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
1503 int sub_stripes)
1504{
1505 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
1506 return calc_size;
1507 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1508 return calc_size * (num_stripes / sub_stripes);
1509 else
1510 return calc_size * num_stripes;
1511}
1512
1513
0b86a832
CM
1514int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
1515 struct btrfs_root *extent_root, u64 *start,
6324fbf3 1516 u64 *num_bytes, u64 type)
0b86a832
CM
1517{
1518 u64 dev_offset;
593060d7 1519 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832 1520 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
8f18cf13 1521 struct btrfs_path *path;
0b86a832
CM
1522 struct btrfs_stripe *stripes;
1523 struct btrfs_device *device = NULL;
1524 struct btrfs_chunk *chunk;
6324fbf3 1525 struct list_head private_devs;
b3075717 1526 struct list_head *dev_list;
6324fbf3 1527 struct list_head *cur;
0b86a832
CM
1528 struct extent_map_tree *em_tree;
1529 struct map_lookup *map;
1530 struct extent_map *em;
a40a90a0 1531 int min_stripe_size = 1 * 1024 * 1024;
0b86a832
CM
1532 u64 physical;
1533 u64 calc_size = 1024 * 1024 * 1024;
9b3f68b9
CM
1534 u64 max_chunk_size = calc_size;
1535 u64 min_free;
6324fbf3
CM
1536 u64 avail;
1537 u64 max_avail = 0;
9b3f68b9 1538 u64 percent_max;
6324fbf3 1539 int num_stripes = 1;
a40a90a0 1540 int min_stripes = 1;
321aecc6 1541 int sub_stripes = 0;
6324fbf3 1542 int looped = 0;
0b86a832 1543 int ret;
6324fbf3 1544 int index;
593060d7 1545 int stripe_len = 64 * 1024;
0b86a832
CM
1546 struct btrfs_key key;
1547
ec44a35c
CM
1548 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
1549 (type & BTRFS_BLOCK_GROUP_DUP)) {
1550 WARN_ON(1);
1551 type &= ~BTRFS_BLOCK_GROUP_DUP;
1552 }
b3075717 1553 dev_list = &extent_root->fs_info->fs_devices->alloc_list;
6324fbf3
CM
1554 if (list_empty(dev_list))
1555 return -ENOSPC;
593060d7 1556
a40a90a0 1557 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
0ef3e66b 1558 num_stripes = extent_root->fs_info->fs_devices->open_devices;
a40a90a0
CM
1559 min_stripes = 2;
1560 }
1561 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
611f0e00 1562 num_stripes = 2;
a40a90a0
CM
1563 min_stripes = 2;
1564 }
8790d502
CM
1565 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
1566 num_stripes = min_t(u64, 2,
0ef3e66b 1567 extent_root->fs_info->fs_devices->open_devices);
9b3f68b9
CM
1568 if (num_stripes < 2)
1569 return -ENOSPC;
a40a90a0 1570 min_stripes = 2;
8790d502 1571 }
321aecc6 1572 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
0ef3e66b 1573 num_stripes = extent_root->fs_info->fs_devices->open_devices;
321aecc6
CM
1574 if (num_stripes < 4)
1575 return -ENOSPC;
1576 num_stripes &= ~(u32)1;
1577 sub_stripes = 2;
a40a90a0 1578 min_stripes = 4;
321aecc6 1579 }
9b3f68b9
CM
1580
1581 if (type & BTRFS_BLOCK_GROUP_DATA) {
1582 max_chunk_size = 10 * calc_size;
a40a90a0 1583 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9
CM
1584 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1585 max_chunk_size = 4 * calc_size;
a40a90a0
CM
1586 min_stripe_size = 32 * 1024 * 1024;
1587 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1588 calc_size = 8 * 1024 * 1024;
1589 max_chunk_size = calc_size * 2;
1590 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
1591 }
1592
8f18cf13
CM
1593 path = btrfs_alloc_path();
1594 if (!path)
1595 return -ENOMEM;
1596
9b3f68b9
CM
1597 /* we don't want a chunk larger than 10% of the FS */
1598 percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
1599 max_chunk_size = min(percent_max, max_chunk_size);
1600
a40a90a0 1601again:
9b3f68b9
CM
1602 if (calc_size * num_stripes > max_chunk_size) {
1603 calc_size = max_chunk_size;
1604 do_div(calc_size, num_stripes);
1605 do_div(calc_size, stripe_len);
1606 calc_size *= stripe_len;
1607 }
1608 /* we don't want tiny stripes */
a40a90a0 1609 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 1610
9b3f68b9
CM
1611 do_div(calc_size, stripe_len);
1612 calc_size *= stripe_len;
1613
6324fbf3
CM
1614 INIT_LIST_HEAD(&private_devs);
1615 cur = dev_list->next;
1616 index = 0;
611f0e00
CM
1617
1618 if (type & BTRFS_BLOCK_GROUP_DUP)
1619 min_free = calc_size * 2;
9b3f68b9
CM
1620 else
1621 min_free = calc_size;
611f0e00 1622
ad5bd91e
CM
1623 /* we add 1MB because we never use the first 1MB of the device */
1624 min_free += 1024 * 1024;
1625
6324fbf3
CM
1626 /* build a private list of devices we will allocate from */
1627 while(index < num_stripes) {
b3075717 1628 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
611f0e00 1629
dfe25020
CM
1630 if (device->total_bytes > device->bytes_used)
1631 avail = device->total_bytes - device->bytes_used;
1632 else
1633 avail = 0;
6324fbf3 1634 cur = cur->next;
8f18cf13 1635
dfe25020 1636 if (device->in_fs_metadata && avail >= min_free) {
8f18cf13
CM
1637 u64 ignored_start = 0;
1638 ret = find_free_dev_extent(trans, device, path,
1639 min_free,
1640 &ignored_start);
1641 if (ret == 0) {
1642 list_move_tail(&device->dev_alloc_list,
1643 &private_devs);
611f0e00 1644 index++;
8f18cf13
CM
1645 if (type & BTRFS_BLOCK_GROUP_DUP)
1646 index++;
1647 }
dfe25020 1648 } else if (device->in_fs_metadata && avail > max_avail)
a40a90a0 1649 max_avail = avail;
6324fbf3
CM
1650 if (cur == dev_list)
1651 break;
1652 }
1653 if (index < num_stripes) {
1654 list_splice(&private_devs, dev_list);
a40a90a0
CM
1655 if (index >= min_stripes) {
1656 num_stripes = index;
1657 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
1658 num_stripes /= sub_stripes;
1659 num_stripes *= sub_stripes;
1660 }
1661 looped = 1;
1662 goto again;
1663 }
6324fbf3
CM
1664 if (!looped && max_avail > 0) {
1665 looped = 1;
1666 calc_size = max_avail;
1667 goto again;
1668 }
8f18cf13 1669 btrfs_free_path(path);
6324fbf3
CM
1670 return -ENOSPC;
1671 }
e17cade2
CM
1672 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1673 key.type = BTRFS_CHUNK_ITEM_KEY;
1674 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1675 &key.offset);
8f18cf13
CM
1676 if (ret) {
1677 btrfs_free_path(path);
0b86a832 1678 return ret;
8f18cf13 1679 }
0b86a832 1680
0b86a832 1681 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
8f18cf13
CM
1682 if (!chunk) {
1683 btrfs_free_path(path);
0b86a832 1684 return -ENOMEM;
8f18cf13 1685 }
0b86a832 1686
593060d7
CM
1687 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
1688 if (!map) {
1689 kfree(chunk);
8f18cf13 1690 btrfs_free_path(path);
593060d7
CM
1691 return -ENOMEM;
1692 }
8f18cf13
CM
1693 btrfs_free_path(path);
1694 path = NULL;
593060d7 1695
0b86a832 1696 stripes = &chunk->stripe;
9b3f68b9
CM
1697 *num_bytes = chunk_bytes_by_type(type, calc_size,
1698 num_stripes, sub_stripes);
0b86a832 1699
6324fbf3 1700 index = 0;
0b86a832 1701 while(index < num_stripes) {
e17cade2 1702 struct btrfs_stripe *stripe;
6324fbf3
CM
1703 BUG_ON(list_empty(&private_devs));
1704 cur = private_devs.next;
b3075717 1705 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
611f0e00
CM
1706
1707 /* loop over this device again if we're doing a dup group */
1708 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
1709 (index == num_stripes - 1))
b3075717 1710 list_move_tail(&device->dev_alloc_list, dev_list);
0b86a832
CM
1711
1712 ret = btrfs_alloc_dev_extent(trans, device,
e17cade2
CM
1713 info->chunk_root->root_key.objectid,
1714 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
1715 calc_size, &dev_offset);
0b86a832 1716 BUG_ON(ret);
0b86a832
CM
1717 device->bytes_used += calc_size;
1718 ret = btrfs_update_device(trans, device);
1719 BUG_ON(ret);
1720
593060d7
CM
1721 map->stripes[index].dev = device;
1722 map->stripes[index].physical = dev_offset;
e17cade2
CM
1723 stripe = stripes + index;
1724 btrfs_set_stack_stripe_devid(stripe, device->devid);
1725 btrfs_set_stack_stripe_offset(stripe, dev_offset);
1726 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
0b86a832
CM
1727 physical = dev_offset;
1728 index++;
1729 }
6324fbf3 1730 BUG_ON(!list_empty(&private_devs));
0b86a832 1731
e17cade2
CM
1732 /* key was set above */
1733 btrfs_set_stack_chunk_length(chunk, *num_bytes);
0b86a832 1734 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 1735 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
1736 btrfs_set_stack_chunk_type(chunk, type);
1737 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
1738 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
1739 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 1740 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
321aecc6 1741 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
593060d7
CM
1742 map->sector_size = extent_root->sectorsize;
1743 map->stripe_len = stripe_len;
1744 map->io_align = stripe_len;
1745 map->io_width = stripe_len;
1746 map->type = type;
1747 map->num_stripes = num_stripes;
321aecc6 1748 map->sub_stripes = sub_stripes;
0b86a832
CM
1749
1750 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
1751 btrfs_chunk_item_size(num_stripes));
1752 BUG_ON(ret);
e17cade2 1753 *start = key.offset;;
0b86a832
CM
1754
1755 em = alloc_extent_map(GFP_NOFS);
1756 if (!em)
1757 return -ENOMEM;
0b86a832 1758 em->bdev = (struct block_device *)map;
e17cade2
CM
1759 em->start = key.offset;
1760 em->len = *num_bytes;
0b86a832
CM
1761 em->block_start = 0;
1762
8f18cf13
CM
1763 if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
1764 ret = btrfs_add_system_chunk(trans, chunk_root, &key,
1765 chunk, btrfs_chunk_item_size(num_stripes));
1766 BUG_ON(ret);
1767 }
0b86a832
CM
1768 kfree(chunk);
1769
1770 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
1771 spin_lock(&em_tree->lock);
1772 ret = add_extent_mapping(em_tree, em);
0b86a832 1773 spin_unlock(&em_tree->lock);
b248a415 1774 BUG_ON(ret);
0b86a832
CM
1775 free_extent_map(em);
1776 return ret;
1777}
1778
1779void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
1780{
1781 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
1782}
1783
1784void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
1785{
1786 struct extent_map *em;
1787
1788 while(1) {
1789 spin_lock(&tree->map_tree.lock);
1790 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
1791 if (em)
1792 remove_extent_mapping(&tree->map_tree, em);
1793 spin_unlock(&tree->map_tree.lock);
1794 if (!em)
1795 break;
1796 kfree(em->bdev);
1797 /* once for us */
1798 free_extent_map(em);
1799 /* once for the tree */
1800 free_extent_map(em);
1801 }
1802}
1803
f188591e
CM
1804int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
1805{
1806 struct extent_map *em;
1807 struct map_lookup *map;
1808 struct extent_map_tree *em_tree = &map_tree->map_tree;
1809 int ret;
1810
1811 spin_lock(&em_tree->lock);
1812 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 1813 spin_unlock(&em_tree->lock);
f188591e
CM
1814 BUG_ON(!em);
1815
1816 BUG_ON(em->start > logical || em->start + em->len < logical);
1817 map = (struct map_lookup *)em->bdev;
1818 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
1819 ret = map->num_stripes;
321aecc6
CM
1820 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1821 ret = map->sub_stripes;
f188591e
CM
1822 else
1823 ret = 1;
1824 free_extent_map(em);
f188591e
CM
1825 return ret;
1826}
1827
dfe25020
CM
1828static int find_live_mirror(struct map_lookup *map, int first, int num,
1829 int optimal)
1830{
1831 int i;
1832 if (map->stripes[optimal].dev->bdev)
1833 return optimal;
1834 for (i = first; i < first + num; i++) {
1835 if (map->stripes[i].dev->bdev)
1836 return i;
1837 }
1838 /* we couldn't find one that doesn't fail. Just return something
1839 * and the io error handling code will clean up eventually
1840 */
1841 return optimal;
1842}
1843
f2d8d74d
CM
1844static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
1845 u64 logical, u64 *length,
1846 struct btrfs_multi_bio **multi_ret,
1847 int mirror_num, struct page *unplug_page)
0b86a832
CM
1848{
1849 struct extent_map *em;
1850 struct map_lookup *map;
1851 struct extent_map_tree *em_tree = &map_tree->map_tree;
1852 u64 offset;
593060d7
CM
1853 u64 stripe_offset;
1854 u64 stripe_nr;
cea9e445 1855 int stripes_allocated = 8;
321aecc6 1856 int stripes_required = 1;
593060d7 1857 int stripe_index;
cea9e445 1858 int i;
f2d8d74d 1859 int num_stripes;
a236aed1 1860 int max_errors = 0;
cea9e445 1861 struct btrfs_multi_bio *multi = NULL;
0b86a832 1862
cea9e445
CM
1863 if (multi_ret && !(rw & (1 << BIO_RW))) {
1864 stripes_allocated = 1;
1865 }
1866again:
1867 if (multi_ret) {
1868 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
1869 GFP_NOFS);
1870 if (!multi)
1871 return -ENOMEM;
a236aed1
CM
1872
1873 atomic_set(&multi->error, 0);
cea9e445 1874 }
0b86a832
CM
1875
1876 spin_lock(&em_tree->lock);
1877 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 1878 spin_unlock(&em_tree->lock);
f2d8d74d
CM
1879
1880 if (!em && unplug_page)
1881 return 0;
1882
3b951516 1883 if (!em) {
a061fc8d 1884 printk("unable to find logical %Lu len %Lu\n", logical, *length);
f2d8d74d 1885 BUG();
3b951516 1886 }
0b86a832
CM
1887
1888 BUG_ON(em->start > logical || em->start + em->len < logical);
1889 map = (struct map_lookup *)em->bdev;
1890 offset = logical - em->start;
593060d7 1891
f188591e
CM
1892 if (mirror_num > map->num_stripes)
1893 mirror_num = 0;
1894
cea9e445 1895 /* if our multi bio struct is too small, back off and try again */
321aecc6
CM
1896 if (rw & (1 << BIO_RW)) {
1897 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
1898 BTRFS_BLOCK_GROUP_DUP)) {
1899 stripes_required = map->num_stripes;
a236aed1 1900 max_errors = 1;
321aecc6
CM
1901 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1902 stripes_required = map->sub_stripes;
a236aed1 1903 max_errors = 1;
321aecc6
CM
1904 }
1905 }
1906 if (multi_ret && rw == WRITE &&
1907 stripes_allocated < stripes_required) {
cea9e445 1908 stripes_allocated = map->num_stripes;
cea9e445
CM
1909 free_extent_map(em);
1910 kfree(multi);
1911 goto again;
1912 }
593060d7
CM
1913 stripe_nr = offset;
1914 /*
1915 * stripe_nr counts the total number of stripes we have to stride
1916 * to get to this block
1917 */
1918 do_div(stripe_nr, map->stripe_len);
1919
1920 stripe_offset = stripe_nr * map->stripe_len;
1921 BUG_ON(offset < stripe_offset);
1922
1923 /* stripe_offset is the offset of this block in its stripe*/
1924 stripe_offset = offset - stripe_offset;
1925
cea9e445 1926 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 1927 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
1928 BTRFS_BLOCK_GROUP_DUP)) {
1929 /* we limit the length of each bio to what fits in a stripe */
1930 *length = min_t(u64, em->len - offset,
1931 map->stripe_len - stripe_offset);
1932 } else {
1933 *length = em->len - offset;
1934 }
f2d8d74d
CM
1935
1936 if (!multi_ret && !unplug_page)
cea9e445
CM
1937 goto out;
1938
f2d8d74d 1939 num_stripes = 1;
cea9e445 1940 stripe_index = 0;
8790d502 1941 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
f2d8d74d
CM
1942 if (unplug_page || (rw & (1 << BIO_RW)))
1943 num_stripes = map->num_stripes;
2fff734f 1944 else if (mirror_num)
f188591e 1945 stripe_index = mirror_num - 1;
dfe25020
CM
1946 else {
1947 stripe_index = find_live_mirror(map, 0,
1948 map->num_stripes,
1949 current->pid % map->num_stripes);
1950 }
2fff734f 1951
611f0e00 1952 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445 1953 if (rw & (1 << BIO_RW))
f2d8d74d 1954 num_stripes = map->num_stripes;
f188591e
CM
1955 else if (mirror_num)
1956 stripe_index = mirror_num - 1;
2fff734f 1957
321aecc6
CM
1958 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1959 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
1960
1961 stripe_index = do_div(stripe_nr, factor);
1962 stripe_index *= map->sub_stripes;
1963
f2d8d74d
CM
1964 if (unplug_page || (rw & (1 << BIO_RW)))
1965 num_stripes = map->sub_stripes;
321aecc6
CM
1966 else if (mirror_num)
1967 stripe_index += mirror_num - 1;
dfe25020
CM
1968 else {
1969 stripe_index = find_live_mirror(map, stripe_index,
1970 map->sub_stripes, stripe_index +
1971 current->pid % map->sub_stripes);
1972 }
8790d502
CM
1973 } else {
1974 /*
1975 * after this do_div call, stripe_nr is the number of stripes
1976 * on this device we have to walk to find the data, and
1977 * stripe_index is the number of our device in the stripe array
1978 */
1979 stripe_index = do_div(stripe_nr, map->num_stripes);
1980 }
593060d7 1981 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 1982
f2d8d74d
CM
1983 for (i = 0; i < num_stripes; i++) {
1984 if (unplug_page) {
1985 struct btrfs_device *device;
1986 struct backing_dev_info *bdi;
1987
1988 device = map->stripes[stripe_index].dev;
dfe25020
CM
1989 if (device->bdev) {
1990 bdi = blk_get_backing_dev_info(device->bdev);
1991 if (bdi->unplug_io_fn) {
1992 bdi->unplug_io_fn(bdi, unplug_page);
1993 }
f2d8d74d
CM
1994 }
1995 } else {
1996 multi->stripes[i].physical =
1997 map->stripes[stripe_index].physical +
1998 stripe_offset + stripe_nr * map->stripe_len;
1999 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2000 }
cea9e445 2001 stripe_index++;
593060d7 2002 }
f2d8d74d
CM
2003 if (multi_ret) {
2004 *multi_ret = multi;
2005 multi->num_stripes = num_stripes;
a236aed1 2006 multi->max_errors = max_errors;
f2d8d74d 2007 }
cea9e445 2008out:
0b86a832 2009 free_extent_map(em);
0b86a832
CM
2010 return 0;
2011}
2012
f2d8d74d
CM
2013int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2014 u64 logical, u64 *length,
2015 struct btrfs_multi_bio **multi_ret, int mirror_num)
2016{
2017 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2018 mirror_num, NULL);
2019}
2020
2021int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2022 u64 logical, struct page *page)
2023{
2024 u64 length = PAGE_CACHE_SIZE;
2025 return __btrfs_map_block(map_tree, READ, logical, &length,
2026 NULL, 0, page);
2027}
2028
2029
8790d502
CM
2030#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
2031static void end_bio_multi_stripe(struct bio *bio, int err)
2032#else
2033static int end_bio_multi_stripe(struct bio *bio,
2034 unsigned int bytes_done, int err)
2035#endif
2036{
cea9e445 2037 struct btrfs_multi_bio *multi = bio->bi_private;
8790d502
CM
2038
2039#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2040 if (bio->bi_size)
2041 return 1;
2042#endif
2043 if (err)
a236aed1 2044 atomic_inc(&multi->error);
8790d502 2045
cea9e445 2046 if (atomic_dec_and_test(&multi->stripes_pending)) {
8790d502
CM
2047 bio->bi_private = multi->private;
2048 bio->bi_end_io = multi->end_io;
a236aed1
CM
2049 /* only send an error to the higher layers if it is
2050 * beyond the tolerance of the multi-bio
2051 */
1259ab75 2052 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 2053 err = -EIO;
1259ab75
CM
2054 } else if (err) {
2055 /*
2056 * this bio is actually up to date, we didn't
2057 * go over the max number of errors
2058 */
2059 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 2060 err = 0;
1259ab75 2061 }
8790d502
CM
2062 kfree(multi);
2063
73f61b2a
M
2064#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2065 bio_endio(bio, bio->bi_size, err);
2066#else
8790d502 2067 bio_endio(bio, err);
73f61b2a 2068#endif
8790d502
CM
2069 } else {
2070 bio_put(bio);
2071 }
2072#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2073 return 0;
2074#endif
2075}
2076
8b712842
CM
2077struct async_sched {
2078 struct bio *bio;
2079 int rw;
2080 struct btrfs_fs_info *info;
2081 struct btrfs_work work;
2082};
2083
2084/*
2085 * see run_scheduled_bios for a description of why bios are collected for
2086 * async submit.
2087 *
2088 * This will add one bio to the pending list for a device and make sure
2089 * the work struct is scheduled.
2090 */
2091int schedule_bio(struct btrfs_root *root, struct btrfs_device *device,
2092 int rw, struct bio *bio)
2093{
2094 int should_queue = 1;
2095
2096 /* don't bother with additional async steps for reads, right now */
2097 if (!(rw & (1 << BIO_RW))) {
2098 submit_bio(rw, bio);
2099 return 0;
2100 }
2101
2102 /*
2103 * nr_async_sumbits allows us to reliably return congestion to the
2104 * higher layers. Otherwise, the async bio makes it appear we have
2105 * made progress against dirty pages when we've really just put it
2106 * on a queue for later
2107 */
2108 atomic_inc(&root->fs_info->nr_async_submits);
2109 bio->bi_next = NULL;
2110 bio->bi_rw |= rw;
2111
2112 spin_lock(&device->io_lock);
2113
2114 if (device->pending_bio_tail)
2115 device->pending_bio_tail->bi_next = bio;
2116
2117 device->pending_bio_tail = bio;
2118 if (!device->pending_bios)
2119 device->pending_bios = bio;
2120 if (device->running_pending)
2121 should_queue = 0;
2122
2123 spin_unlock(&device->io_lock);
2124
2125 if (should_queue)
1cc127b5
CM
2126 btrfs_queue_worker(&root->fs_info->submit_workers,
2127 &device->work);
8b712842
CM
2128 return 0;
2129}
2130
f188591e 2131int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 2132 int mirror_num, int async_submit)
0b86a832
CM
2133{
2134 struct btrfs_mapping_tree *map_tree;
2135 struct btrfs_device *dev;
8790d502 2136 struct bio *first_bio = bio;
0b86a832 2137 u64 logical = bio->bi_sector << 9;
0b86a832
CM
2138 u64 length = 0;
2139 u64 map_length;
cea9e445 2140 struct btrfs_multi_bio *multi = NULL;
0b86a832 2141 int ret;
8790d502
CM
2142 int dev_nr = 0;
2143 int total_devs = 1;
0b86a832 2144
f2d8d74d 2145 length = bio->bi_size;
0b86a832
CM
2146 map_tree = &root->fs_info->mapping_tree;
2147 map_length = length;
cea9e445 2148
f188591e
CM
2149 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2150 mirror_num);
cea9e445
CM
2151 BUG_ON(ret);
2152
2153 total_devs = multi->num_stripes;
2154 if (map_length < length) {
2155 printk("mapping failed logical %Lu bio len %Lu "
2156 "len %Lu\n", logical, length, map_length);
2157 BUG();
2158 }
2159 multi->end_io = first_bio->bi_end_io;
2160 multi->private = first_bio->bi_private;
2161 atomic_set(&multi->stripes_pending, multi->num_stripes);
2162
8790d502 2163 while(dev_nr < total_devs) {
8790d502 2164 if (total_devs > 1) {
8790d502
CM
2165 if (dev_nr < total_devs - 1) {
2166 bio = bio_clone(first_bio, GFP_NOFS);
2167 BUG_ON(!bio);
2168 } else {
2169 bio = first_bio;
2170 }
2171 bio->bi_private = multi;
2172 bio->bi_end_io = end_bio_multi_stripe;
2173 }
cea9e445
CM
2174 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2175 dev = multi->stripes[dev_nr].dev;
dfe25020
CM
2176 if (dev && dev->bdev) {
2177 bio->bi_bdev = dev->bdev;
8b712842
CM
2178 if (async_submit)
2179 schedule_bio(root, dev, rw, bio);
2180 else
2181 submit_bio(rw, bio);
dfe25020
CM
2182 } else {
2183 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2184 bio->bi_sector = logical >> 9;
2185#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
2186 bio_endio(bio, bio->bi_size, -EIO);
2187#else
2188 bio_endio(bio, -EIO);
2189#endif
2190 }
8790d502
CM
2191 dev_nr++;
2192 }
cea9e445
CM
2193 if (total_devs == 1)
2194 kfree(multi);
0b86a832
CM
2195 return 0;
2196}
2197
a443755f
CM
2198struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2199 u8 *uuid)
0b86a832 2200{
8a4b83cc 2201 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 2202
a443755f 2203 return __find_device(head, devid, uuid);
0b86a832
CM
2204}
2205
dfe25020
CM
2206static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
2207 u64 devid, u8 *dev_uuid)
2208{
2209 struct btrfs_device *device;
2210 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2211
2212 device = kzalloc(sizeof(*device), GFP_NOFS);
2213 list_add(&device->dev_list,
2214 &fs_devices->devices);
2215 list_add(&device->dev_alloc_list,
2216 &fs_devices->alloc_list);
2217 device->barriers = 1;
2218 device->dev_root = root->fs_info->dev_root;
2219 device->devid = devid;
8b712842 2220 device->work.func = pending_bios_fn;
dfe25020
CM
2221 fs_devices->num_devices++;
2222 spin_lock_init(&device->io_lock);
2223 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
2224 return device;
2225}
2226
2227
0b86a832
CM
2228static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
2229 struct extent_buffer *leaf,
2230 struct btrfs_chunk *chunk)
2231{
2232 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2233 struct map_lookup *map;
2234 struct extent_map *em;
2235 u64 logical;
2236 u64 length;
2237 u64 devid;
a443755f 2238 u8 uuid[BTRFS_UUID_SIZE];
593060d7 2239 int num_stripes;
0b86a832 2240 int ret;
593060d7 2241 int i;
0b86a832 2242
e17cade2
CM
2243 logical = key->offset;
2244 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 2245
0b86a832
CM
2246 spin_lock(&map_tree->map_tree.lock);
2247 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 2248 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
2249
2250 /* already mapped? */
2251 if (em && em->start <= logical && em->start + em->len > logical) {
2252 free_extent_map(em);
0b86a832
CM
2253 return 0;
2254 } else if (em) {
2255 free_extent_map(em);
2256 }
0b86a832
CM
2257
2258 map = kzalloc(sizeof(*map), GFP_NOFS);
2259 if (!map)
2260 return -ENOMEM;
2261
2262 em = alloc_extent_map(GFP_NOFS);
2263 if (!em)
2264 return -ENOMEM;
593060d7
CM
2265 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2266 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
2267 if (!map) {
2268 free_extent_map(em);
2269 return -ENOMEM;
2270 }
2271
2272 em->bdev = (struct block_device *)map;
2273 em->start = logical;
2274 em->len = length;
2275 em->block_start = 0;
2276
593060d7
CM
2277 map->num_stripes = num_stripes;
2278 map->io_width = btrfs_chunk_io_width(leaf, chunk);
2279 map->io_align = btrfs_chunk_io_align(leaf, chunk);
2280 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
2281 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
2282 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 2283 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
2284 for (i = 0; i < num_stripes; i++) {
2285 map->stripes[i].physical =
2286 btrfs_stripe_offset_nr(leaf, chunk, i);
2287 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
2288 read_extent_buffer(leaf, uuid, (unsigned long)
2289 btrfs_stripe_dev_uuid_nr(chunk, i),
2290 BTRFS_UUID_SIZE);
2291 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
dfe25020
CM
2292
2293 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
2294 kfree(map);
2295 free_extent_map(em);
2296 return -EIO;
2297 }
dfe25020
CM
2298 if (!map->stripes[i].dev) {
2299 map->stripes[i].dev =
2300 add_missing_dev(root, devid, uuid);
2301 if (!map->stripes[i].dev) {
2302 kfree(map);
2303 free_extent_map(em);
2304 return -EIO;
2305 }
2306 }
2307 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
2308 }
2309
2310 spin_lock(&map_tree->map_tree.lock);
2311 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 2312 spin_unlock(&map_tree->map_tree.lock);
b248a415 2313 BUG_ON(ret);
0b86a832
CM
2314 free_extent_map(em);
2315
2316 return 0;
2317}
2318
2319static int fill_device_from_item(struct extent_buffer *leaf,
2320 struct btrfs_dev_item *dev_item,
2321 struct btrfs_device *device)
2322{
2323 unsigned long ptr;
0b86a832
CM
2324
2325 device->devid = btrfs_device_id(leaf, dev_item);
2326 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2327 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2328 device->type = btrfs_device_type(leaf, dev_item);
2329 device->io_align = btrfs_device_io_align(leaf, dev_item);
2330 device->io_width = btrfs_device_io_width(leaf, dev_item);
2331 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
2332
2333 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 2334 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 2335
0b86a832
CM
2336 return 0;
2337}
2338
0d81ba5d 2339static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
2340 struct extent_buffer *leaf,
2341 struct btrfs_dev_item *dev_item)
2342{
2343 struct btrfs_device *device;
2344 u64 devid;
2345 int ret;
a443755f
CM
2346 u8 dev_uuid[BTRFS_UUID_SIZE];
2347
0b86a832 2348 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
2349 read_extent_buffer(leaf, dev_uuid,
2350 (unsigned long)btrfs_device_uuid(dev_item),
2351 BTRFS_UUID_SIZE);
2352 device = btrfs_find_device(root, devid, dev_uuid);
6324fbf3 2353 if (!device) {
dfe25020
CM
2354 printk("warning devid %Lu missing\n", devid);
2355 device = add_missing_dev(root, devid, dev_uuid);
6324fbf3
CM
2356 if (!device)
2357 return -ENOMEM;
6324fbf3 2358 }
0b86a832
CM
2359
2360 fill_device_from_item(leaf, dev_item, device);
2361 device->dev_root = root->fs_info->dev_root;
dfe25020 2362 device->in_fs_metadata = 1;
0b86a832
CM
2363 ret = 0;
2364#if 0
2365 ret = btrfs_open_device(device);
2366 if (ret) {
2367 kfree(device);
2368 }
2369#endif
2370 return ret;
2371}
2372
0d81ba5d
CM
2373int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
2374{
2375 struct btrfs_dev_item *dev_item;
2376
2377 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
2378 dev_item);
2379 return read_one_dev(root, buf, dev_item);
2380}
2381
0b86a832
CM
2382int btrfs_read_sys_array(struct btrfs_root *root)
2383{
2384 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 2385 struct extent_buffer *sb;
0b86a832 2386 struct btrfs_disk_key *disk_key;
0b86a832 2387 struct btrfs_chunk *chunk;
84eed90f
CM
2388 u8 *ptr;
2389 unsigned long sb_ptr;
2390 int ret = 0;
0b86a832
CM
2391 u32 num_stripes;
2392 u32 array_size;
2393 u32 len = 0;
0b86a832 2394 u32 cur;
84eed90f 2395 struct btrfs_key key;
0b86a832 2396
a061fc8d
CM
2397 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
2398 BTRFS_SUPER_INFO_SIZE);
2399 if (!sb)
2400 return -ENOMEM;
2401 btrfs_set_buffer_uptodate(sb);
2402 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
2403 array_size = btrfs_super_sys_array_size(super_copy);
2404
0b86a832
CM
2405 ptr = super_copy->sys_chunk_array;
2406 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
2407 cur = 0;
2408
2409 while (cur < array_size) {
2410 disk_key = (struct btrfs_disk_key *)ptr;
2411 btrfs_disk_key_to_cpu(&key, disk_key);
2412
a061fc8d 2413 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
2414 sb_ptr += len;
2415 cur += len;
2416
0d81ba5d 2417 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 2418 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 2419 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
2420 if (ret)
2421 break;
0b86a832
CM
2422 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
2423 len = btrfs_chunk_item_size(num_stripes);
2424 } else {
84eed90f
CM
2425 ret = -EIO;
2426 break;
0b86a832
CM
2427 }
2428 ptr += len;
2429 sb_ptr += len;
2430 cur += len;
2431 }
a061fc8d 2432 free_extent_buffer(sb);
84eed90f 2433 return ret;
0b86a832
CM
2434}
2435
2436int btrfs_read_chunk_tree(struct btrfs_root *root)
2437{
2438 struct btrfs_path *path;
2439 struct extent_buffer *leaf;
2440 struct btrfs_key key;
2441 struct btrfs_key found_key;
2442 int ret;
2443 int slot;
2444
2445 root = root->fs_info->chunk_root;
2446
2447 path = btrfs_alloc_path();
2448 if (!path)
2449 return -ENOMEM;
2450
2451 /* first we search for all of the device items, and then we
2452 * read in all of the chunk items. This way we can create chunk
2453 * mappings that reference all of the devices that are afound
2454 */
2455 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2456 key.offset = 0;
2457 key.type = 0;
2458again:
2459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2460 while(1) {
2461 leaf = path->nodes[0];
2462 slot = path->slots[0];
2463 if (slot >= btrfs_header_nritems(leaf)) {
2464 ret = btrfs_next_leaf(root, path);
2465 if (ret == 0)
2466 continue;
2467 if (ret < 0)
2468 goto error;
2469 break;
2470 }
2471 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2472 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2473 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
2474 break;
2475 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
2476 struct btrfs_dev_item *dev_item;
2477 dev_item = btrfs_item_ptr(leaf, slot,
2478 struct btrfs_dev_item);
0d81ba5d 2479 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
2480 BUG_ON(ret);
2481 }
2482 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
2483 struct btrfs_chunk *chunk;
2484 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2485 ret = read_one_chunk(root, &found_key, leaf, chunk);
2486 }
2487 path->slots[0]++;
2488 }
2489 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
2490 key.objectid = 0;
2491 btrfs_release_path(root, path);
2492 goto again;
2493 }
2494
2495 btrfs_free_path(path);
2496 ret = 0;
2497error:
2498 return ret;
2499}
2500