]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/tree-log.c
Merge branches 'perf-fixes-for-linus' and 'x86-fixes-for-linus' of git://git.kernel...
[net-next-2.6.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
e02119d5
CM
21#include "ctree.h"
22#include "transaction.h"
23#include "disk-io.h"
24#include "locking.h"
25#include "print-tree.h"
26#include "compat.h"
b2950863 27#include "tree-log.h"
e02119d5
CM
28
29/* magic values for the inode_only field in btrfs_log_inode:
30 *
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
34 */
35#define LOG_INODE_ALL 0
36#define LOG_INODE_EXISTS 1
37
12fcfd22
CM
38/*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
e02119d5
CM
81/*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
90#define LOG_WALK_PIN_ONLY 0
91#define LOG_WALK_REPLAY_INODES 1
92#define LOG_WALK_REPLAY_ALL 2
93
12fcfd22 94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
ec051c0f
YZ
97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
e02119d5
CM
105
106/*
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 *
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
113 *
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
119 *
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
123 *
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
127 */
128
e02119d5
CM
129/*
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
133 */
134static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
136{
137 int ret;
4a500fd1 138 int err = 0;
7237f183
YZ
139
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
ff782e0a
JB
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
147 }
148
7237f183
YZ
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
153 }
ff782e0a
JB
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
e02119d5
CM
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
4a500fd1
YZ
159 if (ret)
160 err = ret;
e02119d5 161 }
4a500fd1 162 if (err == 0 && !root->log_root) {
e02119d5 163 ret = btrfs_add_log_tree(trans, root);
4a500fd1
YZ
164 if (ret)
165 err = ret;
e02119d5 166 }
e02119d5 167 mutex_unlock(&root->fs_info->tree_log_mutex);
7237f183
YZ
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
4a500fd1 171 return err;
e02119d5
CM
172}
173
174/*
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
178 */
179static int join_running_log_trans(struct btrfs_root *root)
180{
181 int ret = -ENOENT;
182
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
186
7237f183 187 mutex_lock(&root->log_mutex);
e02119d5
CM
188 if (root->log_root) {
189 ret = 0;
7237f183 190 atomic_inc(&root->log_writers);
e02119d5 191 }
7237f183 192 mutex_unlock(&root->log_mutex);
e02119d5
CM
193 return ret;
194}
195
12fcfd22
CM
196/*
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
200 */
201int btrfs_pin_log_trans(struct btrfs_root *root)
202{
203 int ret = -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
209}
210
e02119d5
CM
211/*
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
214 */
12fcfd22 215int btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 216{
7237f183
YZ
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
221 }
e02119d5
CM
222 return 0;
223}
224
225
226/*
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
231 */
232struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
235 */
236 int free;
237
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
240 */
241 int write;
242
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
245 */
246 int wait;
247
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
250 */
251 int pin;
252
253 /* what stage of the replay code we're currently in */
254 int stage;
255
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
258
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
261
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
266 */
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
269};
270
271/*
272 * process_func used to pin down extents, write them or wait on them
273 */
274static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
277{
04018de5 278 if (wc->pin)
11833d66
YZ
279 btrfs_pin_extent(log->fs_info->extent_root,
280 eb->start, eb->len, 0);
e02119d5
CM
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289}
290
291/*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310{
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(root, path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341
342 read_extent_buffer(eb, src_copy, src_ptr, item_size);
343
344 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
345 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
346 item_size);
347 ret = memcmp(dst_copy, src_copy, item_size);
348
349 kfree(dst_copy);
350 kfree(src_copy);
351 /*
352 * they have the same contents, just return, this saves
353 * us from cowing blocks in the destination tree and doing
354 * extra writes that may not have been done by a previous
355 * sync
356 */
357 if (ret == 0) {
358 btrfs_release_path(root, path);
359 return 0;
360 }
361
362 }
363insert:
364 btrfs_release_path(root, path);
365 /* try to insert the key into the destination tree */
366 ret = btrfs_insert_empty_item(trans, root, path,
367 key, item_size);
368
369 /* make sure any existing item is the correct size */
370 if (ret == -EEXIST) {
371 u32 found_size;
372 found_size = btrfs_item_size_nr(path->nodes[0],
373 path->slots[0]);
374 if (found_size > item_size) {
375 btrfs_truncate_item(trans, root, path, item_size, 1);
376 } else if (found_size < item_size) {
87b29b20
YZ
377 ret = btrfs_extend_item(trans, root, path,
378 item_size - found_size);
e02119d5
CM
379 BUG_ON(ret);
380 }
381 } else if (ret) {
4a500fd1 382 return ret;
e02119d5
CM
383 }
384 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
385 path->slots[0]);
386
387 /* don't overwrite an existing inode if the generation number
388 * was logged as zero. This is done when the tree logging code
389 * is just logging an inode to make sure it exists after recovery.
390 *
391 * Also, don't overwrite i_size on directories during replay.
392 * log replay inserts and removes directory items based on the
393 * state of the tree found in the subvolume, and i_size is modified
394 * as it goes
395 */
396 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
397 struct btrfs_inode_item *src_item;
398 struct btrfs_inode_item *dst_item;
399
400 src_item = (struct btrfs_inode_item *)src_ptr;
401 dst_item = (struct btrfs_inode_item *)dst_ptr;
402
403 if (btrfs_inode_generation(eb, src_item) == 0)
404 goto no_copy;
405
406 if (overwrite_root &&
407 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
408 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
409 save_old_i_size = 1;
410 saved_i_size = btrfs_inode_size(path->nodes[0],
411 dst_item);
412 }
413 }
414
415 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
416 src_ptr, item_size);
417
418 if (save_old_i_size) {
419 struct btrfs_inode_item *dst_item;
420 dst_item = (struct btrfs_inode_item *)dst_ptr;
421 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
422 }
423
424 /* make sure the generation is filled in */
425 if (key->type == BTRFS_INODE_ITEM_KEY) {
426 struct btrfs_inode_item *dst_item;
427 dst_item = (struct btrfs_inode_item *)dst_ptr;
428 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
429 btrfs_set_inode_generation(path->nodes[0], dst_item,
430 trans->transid);
431 }
432 }
433no_copy:
434 btrfs_mark_buffer_dirty(path->nodes[0]);
435 btrfs_release_path(root, path);
436 return 0;
437}
438
439/*
440 * simple helper to read an inode off the disk from a given root
441 * This can only be called for subvolume roots and not for the log
442 */
443static noinline struct inode *read_one_inode(struct btrfs_root *root,
444 u64 objectid)
445{
5d4f98a2 446 struct btrfs_key key;
e02119d5 447 struct inode *inode;
e02119d5 448
5d4f98a2
YZ
449 key.objectid = objectid;
450 key.type = BTRFS_INODE_ITEM_KEY;
451 key.offset = 0;
73f73415 452 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
453 if (IS_ERR(inode)) {
454 inode = NULL;
455 } else if (is_bad_inode(inode)) {
e02119d5
CM
456 iput(inode);
457 inode = NULL;
458 }
459 return inode;
460}
461
462/* replays a single extent in 'eb' at 'slot' with 'key' into the
463 * subvolume 'root'. path is released on entry and should be released
464 * on exit.
465 *
466 * extents in the log tree have not been allocated out of the extent
467 * tree yet. So, this completes the allocation, taking a reference
468 * as required if the extent already exists or creating a new extent
469 * if it isn't in the extent allocation tree yet.
470 *
471 * The extent is inserted into the file, dropping any existing extents
472 * from the file that overlap the new one.
473 */
474static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
475 struct btrfs_root *root,
476 struct btrfs_path *path,
477 struct extent_buffer *eb, int slot,
478 struct btrfs_key *key)
479{
480 int found_type;
481 u64 mask = root->sectorsize - 1;
482 u64 extent_end;
483 u64 alloc_hint;
484 u64 start = key->offset;
07d400a6 485 u64 saved_nbytes;
e02119d5
CM
486 struct btrfs_file_extent_item *item;
487 struct inode *inode = NULL;
488 unsigned long size;
489 int ret = 0;
490
491 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
492 found_type = btrfs_file_extent_type(eb, item);
493
d899e052
YZ
494 if (found_type == BTRFS_FILE_EXTENT_REG ||
495 found_type == BTRFS_FILE_EXTENT_PREALLOC)
e02119d5
CM
496 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
497 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 498 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
499 extent_end = (start + size + mask) & ~mask;
500 } else {
501 ret = 0;
502 goto out;
503 }
504
505 inode = read_one_inode(root, key->objectid);
506 if (!inode) {
507 ret = -EIO;
508 goto out;
509 }
510
511 /*
512 * first check to see if we already have this extent in the
513 * file. This must be done before the btrfs_drop_extents run
514 * so we don't try to drop this extent.
515 */
516 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
517 start, 0);
518
d899e052
YZ
519 if (ret == 0 &&
520 (found_type == BTRFS_FILE_EXTENT_REG ||
521 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
522 struct btrfs_file_extent_item cmp1;
523 struct btrfs_file_extent_item cmp2;
524 struct btrfs_file_extent_item *existing;
525 struct extent_buffer *leaf;
526
527 leaf = path->nodes[0];
528 existing = btrfs_item_ptr(leaf, path->slots[0],
529 struct btrfs_file_extent_item);
530
531 read_extent_buffer(eb, &cmp1, (unsigned long)item,
532 sizeof(cmp1));
533 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
534 sizeof(cmp2));
535
536 /*
537 * we already have a pointer to this exact extent,
538 * we don't have to do anything
539 */
540 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
541 btrfs_release_path(root, path);
542 goto out;
543 }
544 }
545 btrfs_release_path(root, path);
546
07d400a6 547 saved_nbytes = inode_get_bytes(inode);
e02119d5 548 /* drop any overlapping extents */
920bbbfb
YZ
549 ret = btrfs_drop_extents(trans, inode, start, extent_end,
550 &alloc_hint, 1);
e02119d5
CM
551 BUG_ON(ret);
552
07d400a6
YZ
553 if (found_type == BTRFS_FILE_EXTENT_REG ||
554 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 555 u64 offset;
07d400a6
YZ
556 unsigned long dest_offset;
557 struct btrfs_key ins;
558
559 ret = btrfs_insert_empty_item(trans, root, path, key,
560 sizeof(*item));
561 BUG_ON(ret);
562 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
563 path->slots[0]);
564 copy_extent_buffer(path->nodes[0], eb, dest_offset,
565 (unsigned long)item, sizeof(*item));
566
567 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
568 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
569 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 570 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
571
572 if (ins.objectid > 0) {
573 u64 csum_start;
574 u64 csum_end;
575 LIST_HEAD(ordered_sums);
576 /*
577 * is this extent already allocated in the extent
578 * allocation tree? If so, just add a reference
579 */
580 ret = btrfs_lookup_extent(root, ins.objectid,
581 ins.offset);
582 if (ret == 0) {
583 ret = btrfs_inc_extent_ref(trans, root,
584 ins.objectid, ins.offset,
5d4f98a2
YZ
585 0, root->root_key.objectid,
586 key->objectid, offset);
07d400a6
YZ
587 } else {
588 /*
589 * insert the extent pointer in the extent
590 * allocation tree
591 */
5d4f98a2
YZ
592 ret = btrfs_alloc_logged_file_extent(trans,
593 root, root->root_key.objectid,
594 key->objectid, offset, &ins);
07d400a6
YZ
595 BUG_ON(ret);
596 }
597 btrfs_release_path(root, path);
598
599 if (btrfs_file_extent_compression(eb, item)) {
600 csum_start = ins.objectid;
601 csum_end = csum_start + ins.offset;
602 } else {
603 csum_start = ins.objectid +
604 btrfs_file_extent_offset(eb, item);
605 csum_end = csum_start +
606 btrfs_file_extent_num_bytes(eb, item);
607 }
608
609 ret = btrfs_lookup_csums_range(root->log_root,
610 csum_start, csum_end - 1,
611 &ordered_sums);
612 BUG_ON(ret);
613 while (!list_empty(&ordered_sums)) {
614 struct btrfs_ordered_sum *sums;
615 sums = list_entry(ordered_sums.next,
616 struct btrfs_ordered_sum,
617 list);
618 ret = btrfs_csum_file_blocks(trans,
619 root->fs_info->csum_root,
620 sums);
621 BUG_ON(ret);
622 list_del(&sums->list);
623 kfree(sums);
624 }
625 } else {
626 btrfs_release_path(root, path);
627 }
628 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
629 /* inline extents are easy, we just overwrite them */
630 ret = overwrite_item(trans, root, path, eb, slot, key);
631 BUG_ON(ret);
632 }
e02119d5 633
07d400a6 634 inode_set_bytes(inode, saved_nbytes);
e02119d5
CM
635 btrfs_update_inode(trans, root, inode);
636out:
637 if (inode)
638 iput(inode);
639 return ret;
640}
641
642/*
643 * when cleaning up conflicts between the directory names in the
644 * subvolume, directory names in the log and directory names in the
645 * inode back references, we may have to unlink inodes from directories.
646 *
647 * This is a helper function to do the unlink of a specific directory
648 * item
649 */
650static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
651 struct btrfs_root *root,
652 struct btrfs_path *path,
653 struct inode *dir,
654 struct btrfs_dir_item *di)
655{
656 struct inode *inode;
657 char *name;
658 int name_len;
659 struct extent_buffer *leaf;
660 struct btrfs_key location;
661 int ret;
662
663 leaf = path->nodes[0];
664
665 btrfs_dir_item_key_to_cpu(leaf, di, &location);
666 name_len = btrfs_dir_name_len(leaf, di);
667 name = kmalloc(name_len, GFP_NOFS);
668 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
669 btrfs_release_path(root, path);
670
671 inode = read_one_inode(root, location.objectid);
672 BUG_ON(!inode);
673
ec051c0f
YZ
674 ret = link_to_fixup_dir(trans, root, path, location.objectid);
675 BUG_ON(ret);
12fcfd22 676
e02119d5 677 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
ec051c0f 678 BUG_ON(ret);
e02119d5
CM
679 kfree(name);
680
681 iput(inode);
682 return ret;
683}
684
685/*
686 * helper function to see if a given name and sequence number found
687 * in an inode back reference are already in a directory and correctly
688 * point to this inode
689 */
690static noinline int inode_in_dir(struct btrfs_root *root,
691 struct btrfs_path *path,
692 u64 dirid, u64 objectid, u64 index,
693 const char *name, int name_len)
694{
695 struct btrfs_dir_item *di;
696 struct btrfs_key location;
697 int match = 0;
698
699 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
700 index, name, name_len, 0);
701 if (di && !IS_ERR(di)) {
702 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
703 if (location.objectid != objectid)
704 goto out;
705 } else
706 goto out;
707 btrfs_release_path(root, path);
708
709 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
710 if (di && !IS_ERR(di)) {
711 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 if (location.objectid != objectid)
713 goto out;
714 } else
715 goto out;
716 match = 1;
717out:
718 btrfs_release_path(root, path);
719 return match;
720}
721
722/*
723 * helper function to check a log tree for a named back reference in
724 * an inode. This is used to decide if a back reference that is
725 * found in the subvolume conflicts with what we find in the log.
726 *
727 * inode backreferences may have multiple refs in a single item,
728 * during replay we process one reference at a time, and we don't
729 * want to delete valid links to a file from the subvolume if that
730 * link is also in the log.
731 */
732static noinline int backref_in_log(struct btrfs_root *log,
733 struct btrfs_key *key,
734 char *name, int namelen)
735{
736 struct btrfs_path *path;
737 struct btrfs_inode_ref *ref;
738 unsigned long ptr;
739 unsigned long ptr_end;
740 unsigned long name_ptr;
741 int found_name_len;
742 int item_size;
743 int ret;
744 int match = 0;
745
746 path = btrfs_alloc_path();
747 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
748 if (ret != 0)
749 goto out;
750
751 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
752 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
753 ptr_end = ptr + item_size;
754 while (ptr < ptr_end) {
755 ref = (struct btrfs_inode_ref *)ptr;
756 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
757 if (found_name_len == namelen) {
758 name_ptr = (unsigned long)(ref + 1);
759 ret = memcmp_extent_buffer(path->nodes[0], name,
760 name_ptr, namelen);
761 if (ret == 0) {
762 match = 1;
763 goto out;
764 }
765 }
766 ptr = (unsigned long)(ref + 1) + found_name_len;
767 }
768out:
769 btrfs_free_path(path);
770 return match;
771}
772
773
774/*
775 * replay one inode back reference item found in the log tree.
776 * eb, slot and key refer to the buffer and key found in the log tree.
777 * root is the destination we are replaying into, and path is for temp
778 * use by this function. (it should be released on return).
779 */
780static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
781 struct btrfs_root *root,
782 struct btrfs_root *log,
783 struct btrfs_path *path,
784 struct extent_buffer *eb, int slot,
785 struct btrfs_key *key)
786{
787 struct inode *dir;
788 int ret;
e02119d5
CM
789 struct btrfs_inode_ref *ref;
790 struct btrfs_dir_item *di;
791 struct inode *inode;
792 char *name;
793 int namelen;
794 unsigned long ref_ptr;
795 unsigned long ref_end;
796
e02119d5
CM
797 /*
798 * it is possible that we didn't log all the parent directories
799 * for a given inode. If we don't find the dir, just don't
800 * copy the back ref in. The link count fixup code will take
801 * care of the rest
802 */
803 dir = read_one_inode(root, key->offset);
804 if (!dir)
805 return -ENOENT;
806
807 inode = read_one_inode(root, key->objectid);
631c07c8 808 BUG_ON(!inode);
e02119d5
CM
809
810 ref_ptr = btrfs_item_ptr_offset(eb, slot);
811 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
812
813again:
814 ref = (struct btrfs_inode_ref *)ref_ptr;
815
816 namelen = btrfs_inode_ref_name_len(eb, ref);
817 name = kmalloc(namelen, GFP_NOFS);
818 BUG_ON(!name);
819
820 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
821
822 /* if we already have a perfect match, we're done */
823 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
824 btrfs_inode_ref_index(eb, ref),
825 name, namelen)) {
826 goto out;
827 }
828
829 /*
830 * look for a conflicting back reference in the metadata.
831 * if we find one we have to unlink that name of the file
832 * before we add our new link. Later on, we overwrite any
833 * existing back reference, and we don't want to create
834 * dangling pointers in the directory.
835 */
836conflict_again:
837 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
838 if (ret == 0) {
839 char *victim_name;
840 int victim_name_len;
841 struct btrfs_inode_ref *victim_ref;
842 unsigned long ptr;
843 unsigned long ptr_end;
844 struct extent_buffer *leaf = path->nodes[0];
845
846 /* are we trying to overwrite a back ref for the root directory
847 * if so, just jump out, we're done
848 */
849 if (key->objectid == key->offset)
850 goto out_nowrite;
851
852 /* check all the names in this back reference to see
853 * if they are in the log. if so, we allow them to stay
854 * otherwise they must be unlinked as a conflict
855 */
856 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
857 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 858 while (ptr < ptr_end) {
e02119d5
CM
859 victim_ref = (struct btrfs_inode_ref *)ptr;
860 victim_name_len = btrfs_inode_ref_name_len(leaf,
861 victim_ref);
862 victim_name = kmalloc(victim_name_len, GFP_NOFS);
863 BUG_ON(!victim_name);
864
865 read_extent_buffer(leaf, victim_name,
866 (unsigned long)(victim_ref + 1),
867 victim_name_len);
868
869 if (!backref_in_log(log, key, victim_name,
870 victim_name_len)) {
871 btrfs_inc_nlink(inode);
872 btrfs_release_path(root, path);
12fcfd22 873
e02119d5
CM
874 ret = btrfs_unlink_inode(trans, root, dir,
875 inode, victim_name,
876 victim_name_len);
877 kfree(victim_name);
878 btrfs_release_path(root, path);
879 goto conflict_again;
880 }
881 kfree(victim_name);
882 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
883 }
884 BUG_ON(ret);
885 }
886 btrfs_release_path(root, path);
887
888 /* look for a conflicting sequence number */
889 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
890 btrfs_inode_ref_index(eb, ref),
891 name, namelen, 0);
892 if (di && !IS_ERR(di)) {
893 ret = drop_one_dir_item(trans, root, path, dir, di);
894 BUG_ON(ret);
895 }
896 btrfs_release_path(root, path);
897
898
899 /* look for a conflicting name */
900 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
901 name, namelen, 0);
902 if (di && !IS_ERR(di)) {
903 ret = drop_one_dir_item(trans, root, path, dir, di);
904 BUG_ON(ret);
905 }
906 btrfs_release_path(root, path);
907
908 /* insert our name */
909 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
910 btrfs_inode_ref_index(eb, ref));
911 BUG_ON(ret);
912
913 btrfs_update_inode(trans, root, inode);
914
915out:
916 ref_ptr = (unsigned long)(ref + 1) + namelen;
917 kfree(name);
918 if (ref_ptr < ref_end)
919 goto again;
920
921 /* finally write the back reference in the inode */
922 ret = overwrite_item(trans, root, path, eb, slot, key);
923 BUG_ON(ret);
924
925out_nowrite:
926 btrfs_release_path(root, path);
927 iput(dir);
928 iput(inode);
929 return 0;
930}
931
c71bf099
YZ
932static int insert_orphan_item(struct btrfs_trans_handle *trans,
933 struct btrfs_root *root, u64 offset)
934{
935 int ret;
936 ret = btrfs_find_orphan_item(root, offset);
937 if (ret > 0)
938 ret = btrfs_insert_orphan_item(trans, root, offset);
939 return ret;
940}
941
942
e02119d5
CM
943/*
944 * There are a few corners where the link count of the file can't
945 * be properly maintained during replay. So, instead of adding
946 * lots of complexity to the log code, we just scan the backrefs
947 * for any file that has been through replay.
948 *
949 * The scan will update the link count on the inode to reflect the
950 * number of back refs found. If it goes down to zero, the iput
951 * will free the inode.
952 */
953static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
954 struct btrfs_root *root,
955 struct inode *inode)
956{
957 struct btrfs_path *path;
958 int ret;
959 struct btrfs_key key;
960 u64 nlink = 0;
961 unsigned long ptr;
962 unsigned long ptr_end;
963 int name_len;
964
965 key.objectid = inode->i_ino;
966 key.type = BTRFS_INODE_REF_KEY;
967 key.offset = (u64)-1;
968
969 path = btrfs_alloc_path();
970
d397712b 971 while (1) {
e02119d5
CM
972 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
973 if (ret < 0)
974 break;
975 if (ret > 0) {
976 if (path->slots[0] == 0)
977 break;
978 path->slots[0]--;
979 }
980 btrfs_item_key_to_cpu(path->nodes[0], &key,
981 path->slots[0]);
982 if (key.objectid != inode->i_ino ||
983 key.type != BTRFS_INODE_REF_KEY)
984 break;
985 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
986 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
987 path->slots[0]);
d397712b 988 while (ptr < ptr_end) {
e02119d5
CM
989 struct btrfs_inode_ref *ref;
990
991 ref = (struct btrfs_inode_ref *)ptr;
992 name_len = btrfs_inode_ref_name_len(path->nodes[0],
993 ref);
994 ptr = (unsigned long)(ref + 1) + name_len;
995 nlink++;
996 }
997
998 if (key.offset == 0)
999 break;
1000 key.offset--;
1001 btrfs_release_path(root, path);
1002 }
12fcfd22 1003 btrfs_release_path(root, path);
e02119d5
CM
1004 if (nlink != inode->i_nlink) {
1005 inode->i_nlink = nlink;
1006 btrfs_update_inode(trans, root, inode);
1007 }
8d5bf1cb 1008 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1009
c71bf099
YZ
1010 if (inode->i_nlink == 0) {
1011 if (S_ISDIR(inode->i_mode)) {
1012 ret = replay_dir_deletes(trans, root, NULL, path,
1013 inode->i_ino, 1);
1014 BUG_ON(ret);
1015 }
1016 ret = insert_orphan_item(trans, root, inode->i_ino);
12fcfd22
CM
1017 BUG_ON(ret);
1018 }
1019 btrfs_free_path(path);
1020
e02119d5
CM
1021 return 0;
1022}
1023
1024static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1025 struct btrfs_root *root,
1026 struct btrfs_path *path)
1027{
1028 int ret;
1029 struct btrfs_key key;
1030 struct inode *inode;
1031
1032 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1033 key.type = BTRFS_ORPHAN_ITEM_KEY;
1034 key.offset = (u64)-1;
d397712b 1035 while (1) {
e02119d5
CM
1036 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1037 if (ret < 0)
1038 break;
1039
1040 if (ret == 1) {
1041 if (path->slots[0] == 0)
1042 break;
1043 path->slots[0]--;
1044 }
1045
1046 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1047 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1048 key.type != BTRFS_ORPHAN_ITEM_KEY)
1049 break;
1050
1051 ret = btrfs_del_item(trans, root, path);
1052 BUG_ON(ret);
1053
1054 btrfs_release_path(root, path);
1055 inode = read_one_inode(root, key.offset);
1056 BUG_ON(!inode);
1057
1058 ret = fixup_inode_link_count(trans, root, inode);
1059 BUG_ON(ret);
1060
1061 iput(inode);
1062
12fcfd22
CM
1063 /*
1064 * fixup on a directory may create new entries,
1065 * make sure we always look for the highset possible
1066 * offset
1067 */
1068 key.offset = (u64)-1;
e02119d5
CM
1069 }
1070 btrfs_release_path(root, path);
1071 return 0;
1072}
1073
1074
1075/*
1076 * record a given inode in the fixup dir so we can check its link
1077 * count when replay is done. The link count is incremented here
1078 * so the inode won't go away until we check it
1079 */
1080static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1081 struct btrfs_root *root,
1082 struct btrfs_path *path,
1083 u64 objectid)
1084{
1085 struct btrfs_key key;
1086 int ret = 0;
1087 struct inode *inode;
1088
1089 inode = read_one_inode(root, objectid);
1090 BUG_ON(!inode);
1091
1092 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1093 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1094 key.offset = objectid;
1095
1096 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1097
1098 btrfs_release_path(root, path);
1099 if (ret == 0) {
1100 btrfs_inc_nlink(inode);
1101 btrfs_update_inode(trans, root, inode);
1102 } else if (ret == -EEXIST) {
1103 ret = 0;
1104 } else {
1105 BUG();
1106 }
1107 iput(inode);
1108
1109 return ret;
1110}
1111
1112/*
1113 * when replaying the log for a directory, we only insert names
1114 * for inodes that actually exist. This means an fsync on a directory
1115 * does not implicitly fsync all the new files in it
1116 */
1117static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1118 struct btrfs_root *root,
1119 struct btrfs_path *path,
1120 u64 dirid, u64 index,
1121 char *name, int name_len, u8 type,
1122 struct btrfs_key *location)
1123{
1124 struct inode *inode;
1125 struct inode *dir;
1126 int ret;
1127
1128 inode = read_one_inode(root, location->objectid);
1129 if (!inode)
1130 return -ENOENT;
1131
1132 dir = read_one_inode(root, dirid);
1133 if (!dir) {
1134 iput(inode);
1135 return -EIO;
1136 }
1137 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1138
1139 /* FIXME, put inode into FIXUP list */
1140
1141 iput(inode);
1142 iput(dir);
1143 return ret;
1144}
1145
1146/*
1147 * take a single entry in a log directory item and replay it into
1148 * the subvolume.
1149 *
1150 * if a conflicting item exists in the subdirectory already,
1151 * the inode it points to is unlinked and put into the link count
1152 * fix up tree.
1153 *
1154 * If a name from the log points to a file or directory that does
1155 * not exist in the FS, it is skipped. fsyncs on directories
1156 * do not force down inodes inside that directory, just changes to the
1157 * names or unlinks in a directory.
1158 */
1159static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1160 struct btrfs_root *root,
1161 struct btrfs_path *path,
1162 struct extent_buffer *eb,
1163 struct btrfs_dir_item *di,
1164 struct btrfs_key *key)
1165{
1166 char *name;
1167 int name_len;
1168 struct btrfs_dir_item *dst_di;
1169 struct btrfs_key found_key;
1170 struct btrfs_key log_key;
1171 struct inode *dir;
e02119d5 1172 u8 log_type;
4bef0848 1173 int exists;
e02119d5
CM
1174 int ret;
1175
1176 dir = read_one_inode(root, key->objectid);
1177 BUG_ON(!dir);
1178
1179 name_len = btrfs_dir_name_len(eb, di);
1180 name = kmalloc(name_len, GFP_NOFS);
1181 log_type = btrfs_dir_type(eb, di);
1182 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1183 name_len);
1184
1185 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1186 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1187 if (exists == 0)
1188 exists = 1;
1189 else
1190 exists = 0;
1191 btrfs_release_path(root, path);
1192
e02119d5
CM
1193 if (key->type == BTRFS_DIR_ITEM_KEY) {
1194 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1195 name, name_len, 1);
d397712b 1196 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1197 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1198 key->objectid,
1199 key->offset, name,
1200 name_len, 1);
1201 } else {
1202 BUG();
1203 }
1204 if (!dst_di || IS_ERR(dst_di)) {
1205 /* we need a sequence number to insert, so we only
1206 * do inserts for the BTRFS_DIR_INDEX_KEY types
1207 */
1208 if (key->type != BTRFS_DIR_INDEX_KEY)
1209 goto out;
1210 goto insert;
1211 }
1212
1213 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1214 /* the existing item matches the logged item */
1215 if (found_key.objectid == log_key.objectid &&
1216 found_key.type == log_key.type &&
1217 found_key.offset == log_key.offset &&
1218 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1219 goto out;
1220 }
1221
1222 /*
1223 * don't drop the conflicting directory entry if the inode
1224 * for the new entry doesn't exist
1225 */
4bef0848 1226 if (!exists)
e02119d5
CM
1227 goto out;
1228
e02119d5
CM
1229 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1230 BUG_ON(ret);
1231
1232 if (key->type == BTRFS_DIR_INDEX_KEY)
1233 goto insert;
1234out:
1235 btrfs_release_path(root, path);
1236 kfree(name);
1237 iput(dir);
1238 return 0;
1239
1240insert:
1241 btrfs_release_path(root, path);
1242 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1243 name, name_len, log_type, &log_key);
1244
c293498b 1245 BUG_ON(ret && ret != -ENOENT);
e02119d5
CM
1246 goto out;
1247}
1248
1249/*
1250 * find all the names in a directory item and reconcile them into
1251 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1252 * one name in a directory item, but the same code gets used for
1253 * both directory index types
1254 */
1255static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1256 struct btrfs_root *root,
1257 struct btrfs_path *path,
1258 struct extent_buffer *eb, int slot,
1259 struct btrfs_key *key)
1260{
1261 int ret;
1262 u32 item_size = btrfs_item_size_nr(eb, slot);
1263 struct btrfs_dir_item *di;
1264 int name_len;
1265 unsigned long ptr;
1266 unsigned long ptr_end;
1267
1268 ptr = btrfs_item_ptr_offset(eb, slot);
1269 ptr_end = ptr + item_size;
d397712b 1270 while (ptr < ptr_end) {
e02119d5
CM
1271 di = (struct btrfs_dir_item *)ptr;
1272 name_len = btrfs_dir_name_len(eb, di);
1273 ret = replay_one_name(trans, root, path, eb, di, key);
1274 BUG_ON(ret);
1275 ptr = (unsigned long)(di + 1);
1276 ptr += name_len;
1277 }
1278 return 0;
1279}
1280
1281/*
1282 * directory replay has two parts. There are the standard directory
1283 * items in the log copied from the subvolume, and range items
1284 * created in the log while the subvolume was logged.
1285 *
1286 * The range items tell us which parts of the key space the log
1287 * is authoritative for. During replay, if a key in the subvolume
1288 * directory is in a logged range item, but not actually in the log
1289 * that means it was deleted from the directory before the fsync
1290 * and should be removed.
1291 */
1292static noinline int find_dir_range(struct btrfs_root *root,
1293 struct btrfs_path *path,
1294 u64 dirid, int key_type,
1295 u64 *start_ret, u64 *end_ret)
1296{
1297 struct btrfs_key key;
1298 u64 found_end;
1299 struct btrfs_dir_log_item *item;
1300 int ret;
1301 int nritems;
1302
1303 if (*start_ret == (u64)-1)
1304 return 1;
1305
1306 key.objectid = dirid;
1307 key.type = key_type;
1308 key.offset = *start_ret;
1309
1310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1311 if (ret < 0)
1312 goto out;
1313 if (ret > 0) {
1314 if (path->slots[0] == 0)
1315 goto out;
1316 path->slots[0]--;
1317 }
1318 if (ret != 0)
1319 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1320
1321 if (key.type != key_type || key.objectid != dirid) {
1322 ret = 1;
1323 goto next;
1324 }
1325 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1326 struct btrfs_dir_log_item);
1327 found_end = btrfs_dir_log_end(path->nodes[0], item);
1328
1329 if (*start_ret >= key.offset && *start_ret <= found_end) {
1330 ret = 0;
1331 *start_ret = key.offset;
1332 *end_ret = found_end;
1333 goto out;
1334 }
1335 ret = 1;
1336next:
1337 /* check the next slot in the tree to see if it is a valid item */
1338 nritems = btrfs_header_nritems(path->nodes[0]);
1339 if (path->slots[0] >= nritems) {
1340 ret = btrfs_next_leaf(root, path);
1341 if (ret)
1342 goto out;
1343 } else {
1344 path->slots[0]++;
1345 }
1346
1347 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1348
1349 if (key.type != key_type || key.objectid != dirid) {
1350 ret = 1;
1351 goto out;
1352 }
1353 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1354 struct btrfs_dir_log_item);
1355 found_end = btrfs_dir_log_end(path->nodes[0], item);
1356 *start_ret = key.offset;
1357 *end_ret = found_end;
1358 ret = 0;
1359out:
1360 btrfs_release_path(root, path);
1361 return ret;
1362}
1363
1364/*
1365 * this looks for a given directory item in the log. If the directory
1366 * item is not in the log, the item is removed and the inode it points
1367 * to is unlinked
1368 */
1369static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *root,
1371 struct btrfs_root *log,
1372 struct btrfs_path *path,
1373 struct btrfs_path *log_path,
1374 struct inode *dir,
1375 struct btrfs_key *dir_key)
1376{
1377 int ret;
1378 struct extent_buffer *eb;
1379 int slot;
1380 u32 item_size;
1381 struct btrfs_dir_item *di;
1382 struct btrfs_dir_item *log_di;
1383 int name_len;
1384 unsigned long ptr;
1385 unsigned long ptr_end;
1386 char *name;
1387 struct inode *inode;
1388 struct btrfs_key location;
1389
1390again:
1391 eb = path->nodes[0];
1392 slot = path->slots[0];
1393 item_size = btrfs_item_size_nr(eb, slot);
1394 ptr = btrfs_item_ptr_offset(eb, slot);
1395 ptr_end = ptr + item_size;
d397712b 1396 while (ptr < ptr_end) {
e02119d5
CM
1397 di = (struct btrfs_dir_item *)ptr;
1398 name_len = btrfs_dir_name_len(eb, di);
1399 name = kmalloc(name_len, GFP_NOFS);
1400 if (!name) {
1401 ret = -ENOMEM;
1402 goto out;
1403 }
1404 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1405 name_len);
1406 log_di = NULL;
12fcfd22 1407 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1408 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1409 dir_key->objectid,
1410 name, name_len, 0);
12fcfd22 1411 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1412 log_di = btrfs_lookup_dir_index_item(trans, log,
1413 log_path,
1414 dir_key->objectid,
1415 dir_key->offset,
1416 name, name_len, 0);
1417 }
1418 if (!log_di || IS_ERR(log_di)) {
1419 btrfs_dir_item_key_to_cpu(eb, di, &location);
1420 btrfs_release_path(root, path);
1421 btrfs_release_path(log, log_path);
1422 inode = read_one_inode(root, location.objectid);
1423 BUG_ON(!inode);
1424
1425 ret = link_to_fixup_dir(trans, root,
1426 path, location.objectid);
1427 BUG_ON(ret);
1428 btrfs_inc_nlink(inode);
1429 ret = btrfs_unlink_inode(trans, root, dir, inode,
1430 name, name_len);
1431 BUG_ON(ret);
1432 kfree(name);
1433 iput(inode);
1434
1435 /* there might still be more names under this key
1436 * check and repeat if required
1437 */
1438 ret = btrfs_search_slot(NULL, root, dir_key, path,
1439 0, 0);
1440 if (ret == 0)
1441 goto again;
1442 ret = 0;
1443 goto out;
1444 }
1445 btrfs_release_path(log, log_path);
1446 kfree(name);
1447
1448 ptr = (unsigned long)(di + 1);
1449 ptr += name_len;
1450 }
1451 ret = 0;
1452out:
1453 btrfs_release_path(root, path);
1454 btrfs_release_path(log, log_path);
1455 return ret;
1456}
1457
1458/*
1459 * deletion replay happens before we copy any new directory items
1460 * out of the log or out of backreferences from inodes. It
1461 * scans the log to find ranges of keys that log is authoritative for,
1462 * and then scans the directory to find items in those ranges that are
1463 * not present in the log.
1464 *
1465 * Anything we don't find in the log is unlinked and removed from the
1466 * directory.
1467 */
1468static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_root *log,
1471 struct btrfs_path *path,
12fcfd22 1472 u64 dirid, int del_all)
e02119d5
CM
1473{
1474 u64 range_start;
1475 u64 range_end;
1476 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1477 int ret = 0;
1478 struct btrfs_key dir_key;
1479 struct btrfs_key found_key;
1480 struct btrfs_path *log_path;
1481 struct inode *dir;
1482
1483 dir_key.objectid = dirid;
1484 dir_key.type = BTRFS_DIR_ITEM_KEY;
1485 log_path = btrfs_alloc_path();
1486 if (!log_path)
1487 return -ENOMEM;
1488
1489 dir = read_one_inode(root, dirid);
1490 /* it isn't an error if the inode isn't there, that can happen
1491 * because we replay the deletes before we copy in the inode item
1492 * from the log
1493 */
1494 if (!dir) {
1495 btrfs_free_path(log_path);
1496 return 0;
1497 }
1498again:
1499 range_start = 0;
1500 range_end = 0;
d397712b 1501 while (1) {
12fcfd22
CM
1502 if (del_all)
1503 range_end = (u64)-1;
1504 else {
1505 ret = find_dir_range(log, path, dirid, key_type,
1506 &range_start, &range_end);
1507 if (ret != 0)
1508 break;
1509 }
e02119d5
CM
1510
1511 dir_key.offset = range_start;
d397712b 1512 while (1) {
e02119d5
CM
1513 int nritems;
1514 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1515 0, 0);
1516 if (ret < 0)
1517 goto out;
1518
1519 nritems = btrfs_header_nritems(path->nodes[0]);
1520 if (path->slots[0] >= nritems) {
1521 ret = btrfs_next_leaf(root, path);
1522 if (ret)
1523 break;
1524 }
1525 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1526 path->slots[0]);
1527 if (found_key.objectid != dirid ||
1528 found_key.type != dir_key.type)
1529 goto next_type;
1530
1531 if (found_key.offset > range_end)
1532 break;
1533
1534 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1535 log_path, dir,
1536 &found_key);
e02119d5
CM
1537 BUG_ON(ret);
1538 if (found_key.offset == (u64)-1)
1539 break;
1540 dir_key.offset = found_key.offset + 1;
1541 }
1542 btrfs_release_path(root, path);
1543 if (range_end == (u64)-1)
1544 break;
1545 range_start = range_end + 1;
1546 }
1547
1548next_type:
1549 ret = 0;
1550 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1551 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1552 dir_key.type = BTRFS_DIR_INDEX_KEY;
1553 btrfs_release_path(root, path);
1554 goto again;
1555 }
1556out:
1557 btrfs_release_path(root, path);
1558 btrfs_free_path(log_path);
1559 iput(dir);
1560 return ret;
1561}
1562
1563/*
1564 * the process_func used to replay items from the log tree. This
1565 * gets called in two different stages. The first stage just looks
1566 * for inodes and makes sure they are all copied into the subvolume.
1567 *
1568 * The second stage copies all the other item types from the log into
1569 * the subvolume. The two stage approach is slower, but gets rid of
1570 * lots of complexity around inodes referencing other inodes that exist
1571 * only in the log (references come from either directory items or inode
1572 * back refs).
1573 */
1574static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1575 struct walk_control *wc, u64 gen)
1576{
1577 int nritems;
1578 struct btrfs_path *path;
1579 struct btrfs_root *root = wc->replay_dest;
1580 struct btrfs_key key;
e02119d5
CM
1581 int level;
1582 int i;
1583 int ret;
1584
1585 btrfs_read_buffer(eb, gen);
1586
1587 level = btrfs_header_level(eb);
1588
1589 if (level != 0)
1590 return 0;
1591
1592 path = btrfs_alloc_path();
1593 BUG_ON(!path);
1594
1595 nritems = btrfs_header_nritems(eb);
1596 for (i = 0; i < nritems; i++) {
1597 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
1598
1599 /* inode keys are done during the first stage */
1600 if (key.type == BTRFS_INODE_ITEM_KEY &&
1601 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
1602 struct btrfs_inode_item *inode_item;
1603 u32 mode;
1604
1605 inode_item = btrfs_item_ptr(eb, i,
1606 struct btrfs_inode_item);
1607 mode = btrfs_inode_mode(eb, inode_item);
1608 if (S_ISDIR(mode)) {
1609 ret = replay_dir_deletes(wc->trans,
12fcfd22 1610 root, log, path, key.objectid, 0);
e02119d5
CM
1611 BUG_ON(ret);
1612 }
1613 ret = overwrite_item(wc->trans, root, path,
1614 eb, i, &key);
1615 BUG_ON(ret);
1616
c71bf099
YZ
1617 /* for regular files, make sure corresponding
1618 * orhpan item exist. extents past the new EOF
1619 * will be truncated later by orphan cleanup.
e02119d5
CM
1620 */
1621 if (S_ISREG(mode)) {
c71bf099
YZ
1622 ret = insert_orphan_item(wc->trans, root,
1623 key.objectid);
e02119d5 1624 BUG_ON(ret);
e02119d5 1625 }
c71bf099 1626
e02119d5
CM
1627 ret = link_to_fixup_dir(wc->trans, root,
1628 path, key.objectid);
1629 BUG_ON(ret);
1630 }
1631 if (wc->stage < LOG_WALK_REPLAY_ALL)
1632 continue;
1633
1634 /* these keys are simply copied */
1635 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1636 ret = overwrite_item(wc->trans, root, path,
1637 eb, i, &key);
1638 BUG_ON(ret);
1639 } else if (key.type == BTRFS_INODE_REF_KEY) {
1640 ret = add_inode_ref(wc->trans, root, log, path,
1641 eb, i, &key);
1642 BUG_ON(ret && ret != -ENOENT);
1643 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1644 ret = replay_one_extent(wc->trans, root, path,
1645 eb, i, &key);
1646 BUG_ON(ret);
e02119d5
CM
1647 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1648 key.type == BTRFS_DIR_INDEX_KEY) {
1649 ret = replay_one_dir_item(wc->trans, root, path,
1650 eb, i, &key);
1651 BUG_ON(ret);
1652 }
1653 }
1654 btrfs_free_path(path);
1655 return 0;
1656}
1657
d397712b 1658static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1659 struct btrfs_root *root,
1660 struct btrfs_path *path, int *level,
1661 struct walk_control *wc)
1662{
1663 u64 root_owner;
e02119d5
CM
1664 u64 bytenr;
1665 u64 ptr_gen;
1666 struct extent_buffer *next;
1667 struct extent_buffer *cur;
1668 struct extent_buffer *parent;
1669 u32 blocksize;
1670 int ret = 0;
1671
1672 WARN_ON(*level < 0);
1673 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1674
d397712b 1675 while (*level > 0) {
e02119d5
CM
1676 WARN_ON(*level < 0);
1677 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1678 cur = path->nodes[*level];
1679
1680 if (btrfs_header_level(cur) != *level)
1681 WARN_ON(1);
1682
1683 if (path->slots[*level] >=
1684 btrfs_header_nritems(cur))
1685 break;
1686
1687 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1688 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1689 blocksize = btrfs_level_size(root, *level - 1);
1690
1691 parent = path->nodes[*level];
1692 root_owner = btrfs_header_owner(parent);
e02119d5
CM
1693
1694 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1695
e02119d5 1696 if (*level == 1) {
4a500fd1
YZ
1697 wc->process_func(root, next, wc, ptr_gen);
1698
e02119d5
CM
1699 path->slots[*level]++;
1700 if (wc->free) {
1701 btrfs_read_buffer(next, ptr_gen);
1702
1703 btrfs_tree_lock(next);
1704 clean_tree_block(trans, root, next);
b4ce94de 1705 btrfs_set_lock_blocking(next);
e02119d5
CM
1706 btrfs_wait_tree_block_writeback(next);
1707 btrfs_tree_unlock(next);
1708
e02119d5
CM
1709 WARN_ON(root_owner !=
1710 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1711 ret = btrfs_free_reserved_extent(root,
1712 bytenr, blocksize);
e02119d5
CM
1713 BUG_ON(ret);
1714 }
1715 free_extent_buffer(next);
1716 continue;
1717 }
1718 btrfs_read_buffer(next, ptr_gen);
1719
1720 WARN_ON(*level <= 0);
1721 if (path->nodes[*level-1])
1722 free_extent_buffer(path->nodes[*level-1]);
1723 path->nodes[*level-1] = next;
1724 *level = btrfs_header_level(next);
1725 path->slots[*level] = 0;
1726 cond_resched();
1727 }
1728 WARN_ON(*level < 0);
1729 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1730
4a500fd1 1731 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
1732
1733 cond_resched();
1734 return 0;
1735}
1736
d397712b 1737static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1738 struct btrfs_root *root,
1739 struct btrfs_path *path, int *level,
1740 struct walk_control *wc)
1741{
1742 u64 root_owner;
e02119d5
CM
1743 int i;
1744 int slot;
1745 int ret;
1746
d397712b 1747 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 1748 slot = path->slots[i];
4a500fd1 1749 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
1750 path->slots[i]++;
1751 *level = i;
1752 WARN_ON(*level == 0);
1753 return 0;
1754 } else {
31840ae1
ZY
1755 struct extent_buffer *parent;
1756 if (path->nodes[*level] == root->node)
1757 parent = path->nodes[*level];
1758 else
1759 parent = path->nodes[*level + 1];
1760
1761 root_owner = btrfs_header_owner(parent);
e02119d5
CM
1762 wc->process_func(root, path->nodes[*level], wc,
1763 btrfs_header_generation(path->nodes[*level]));
1764 if (wc->free) {
1765 struct extent_buffer *next;
1766
1767 next = path->nodes[*level];
1768
1769 btrfs_tree_lock(next);
1770 clean_tree_block(trans, root, next);
b4ce94de 1771 btrfs_set_lock_blocking(next);
e02119d5
CM
1772 btrfs_wait_tree_block_writeback(next);
1773 btrfs_tree_unlock(next);
1774
e02119d5 1775 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1776 ret = btrfs_free_reserved_extent(root,
e02119d5 1777 path->nodes[*level]->start,
d00aff00 1778 path->nodes[*level]->len);
e02119d5
CM
1779 BUG_ON(ret);
1780 }
1781 free_extent_buffer(path->nodes[*level]);
1782 path->nodes[*level] = NULL;
1783 *level = i + 1;
1784 }
1785 }
1786 return 1;
1787}
1788
1789/*
1790 * drop the reference count on the tree rooted at 'snap'. This traverses
1791 * the tree freeing any blocks that have a ref count of zero after being
1792 * decremented.
1793 */
1794static int walk_log_tree(struct btrfs_trans_handle *trans,
1795 struct btrfs_root *log, struct walk_control *wc)
1796{
1797 int ret = 0;
1798 int wret;
1799 int level;
1800 struct btrfs_path *path;
1801 int i;
1802 int orig_level;
1803
1804 path = btrfs_alloc_path();
1805 BUG_ON(!path);
1806
1807 level = btrfs_header_level(log->node);
1808 orig_level = level;
1809 path->nodes[level] = log->node;
1810 extent_buffer_get(log->node);
1811 path->slots[level] = 0;
1812
d397712b 1813 while (1) {
e02119d5
CM
1814 wret = walk_down_log_tree(trans, log, path, &level, wc);
1815 if (wret > 0)
1816 break;
1817 if (wret < 0)
1818 ret = wret;
1819
1820 wret = walk_up_log_tree(trans, log, path, &level, wc);
1821 if (wret > 0)
1822 break;
1823 if (wret < 0)
1824 ret = wret;
1825 }
1826
1827 /* was the root node processed? if not, catch it here */
1828 if (path->nodes[orig_level]) {
1829 wc->process_func(log, path->nodes[orig_level], wc,
1830 btrfs_header_generation(path->nodes[orig_level]));
1831 if (wc->free) {
1832 struct extent_buffer *next;
1833
1834 next = path->nodes[orig_level];
1835
1836 btrfs_tree_lock(next);
1837 clean_tree_block(trans, log, next);
b4ce94de 1838 btrfs_set_lock_blocking(next);
e02119d5
CM
1839 btrfs_wait_tree_block_writeback(next);
1840 btrfs_tree_unlock(next);
1841
e02119d5
CM
1842 WARN_ON(log->root_key.objectid !=
1843 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1844 ret = btrfs_free_reserved_extent(log, next->start,
1845 next->len);
e02119d5
CM
1846 BUG_ON(ret);
1847 }
1848 }
1849
1850 for (i = 0; i <= orig_level; i++) {
1851 if (path->nodes[i]) {
1852 free_extent_buffer(path->nodes[i]);
1853 path->nodes[i] = NULL;
1854 }
1855 }
1856 btrfs_free_path(path);
e02119d5
CM
1857 return ret;
1858}
1859
7237f183
YZ
1860/*
1861 * helper function to update the item for a given subvolumes log root
1862 * in the tree of log roots
1863 */
1864static int update_log_root(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *log)
1866{
1867 int ret;
1868
1869 if (log->log_transid == 1) {
1870 /* insert root item on the first sync */
1871 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1872 &log->root_key, &log->root_item);
1873 } else {
1874 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1875 &log->root_key, &log->root_item);
1876 }
1877 return ret;
1878}
1879
12fcfd22
CM
1880static int wait_log_commit(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
1882{
1883 DEFINE_WAIT(wait);
7237f183 1884 int index = transid % 2;
e02119d5 1885
7237f183
YZ
1886 /*
1887 * we only allow two pending log transactions at a time,
1888 * so we know that if ours is more than 2 older than the
1889 * current transaction, we're done
1890 */
e02119d5 1891 do {
7237f183
YZ
1892 prepare_to_wait(&root->log_commit_wait[index],
1893 &wait, TASK_UNINTERRUPTIBLE);
1894 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1895
1896 if (root->fs_info->last_trans_log_full_commit !=
1897 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
1898 atomic_read(&root->log_commit[index]))
1899 schedule();
12fcfd22 1900
7237f183
YZ
1901 finish_wait(&root->log_commit_wait[index], &wait);
1902 mutex_lock(&root->log_mutex);
1903 } while (root->log_transid < transid + 2 &&
1904 atomic_read(&root->log_commit[index]));
1905 return 0;
1906}
1907
12fcfd22
CM
1908static int wait_for_writer(struct btrfs_trans_handle *trans,
1909 struct btrfs_root *root)
7237f183
YZ
1910{
1911 DEFINE_WAIT(wait);
1912 while (atomic_read(&root->log_writers)) {
1913 prepare_to_wait(&root->log_writer_wait,
1914 &wait, TASK_UNINTERRUPTIBLE);
1915 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1916 if (root->fs_info->last_trans_log_full_commit !=
1917 trans->transid && atomic_read(&root->log_writers))
e02119d5 1918 schedule();
7237f183
YZ
1919 mutex_lock(&root->log_mutex);
1920 finish_wait(&root->log_writer_wait, &wait);
1921 }
e02119d5
CM
1922 return 0;
1923}
1924
1925/*
1926 * btrfs_sync_log does sends a given tree log down to the disk and
1927 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
1928 * you know that any inodes previously logged are safely on disk only
1929 * if it returns 0.
1930 *
1931 * Any other return value means you need to call btrfs_commit_transaction.
1932 * Some of the edge cases for fsyncing directories that have had unlinks
1933 * or renames done in the past mean that sometimes the only safe
1934 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1935 * that has happened.
e02119d5
CM
1936 */
1937int btrfs_sync_log(struct btrfs_trans_handle *trans,
1938 struct btrfs_root *root)
1939{
7237f183
YZ
1940 int index1;
1941 int index2;
8cef4e16 1942 int mark;
e02119d5 1943 int ret;
e02119d5 1944 struct btrfs_root *log = root->log_root;
7237f183 1945 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
8cef4e16 1946 unsigned long log_transid = 0;
e02119d5 1947
7237f183
YZ
1948 mutex_lock(&root->log_mutex);
1949 index1 = root->log_transid % 2;
1950 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 1951 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
1952 mutex_unlock(&root->log_mutex);
1953 return 0;
e02119d5 1954 }
7237f183
YZ
1955 atomic_set(&root->log_commit[index1], 1);
1956
1957 /* wait for previous tree log sync to complete */
1958 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 1959 wait_log_commit(trans, root, root->log_transid - 1);
e02119d5 1960
86df7eb9 1961 while (1) {
7237f183 1962 unsigned long batch = root->log_batch;
86df7eb9
YZ
1963 if (root->log_multiple_pids) {
1964 mutex_unlock(&root->log_mutex);
1965 schedule_timeout_uninterruptible(1);
1966 mutex_lock(&root->log_mutex);
1967 }
12fcfd22 1968 wait_for_writer(trans, root);
7237f183 1969 if (batch == root->log_batch)
e02119d5
CM
1970 break;
1971 }
e02119d5 1972
12fcfd22
CM
1973 /* bail out if we need to do a full commit */
1974 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
1975 ret = -EAGAIN;
1976 mutex_unlock(&root->log_mutex);
1977 goto out;
1978 }
1979
8cef4e16
YZ
1980 log_transid = root->log_transid;
1981 if (log_transid % 2 == 0)
1982 mark = EXTENT_DIRTY;
1983 else
1984 mark = EXTENT_NEW;
1985
690587d1
CM
1986 /* we start IO on all the marked extents here, but we don't actually
1987 * wait for them until later.
1988 */
8cef4e16 1989 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
e02119d5 1990 BUG_ON(ret);
7237f183 1991
5d4f98a2 1992 btrfs_set_root_node(&log->root_item, log->node);
7237f183
YZ
1993
1994 root->log_batch = 0;
1995 root->log_transid++;
1996 log->log_transid = root->log_transid;
ff782e0a 1997 root->log_start_pid = 0;
7237f183
YZ
1998 smp_mb();
1999 /*
8cef4e16
YZ
2000 * IO has been started, blocks of the log tree have WRITTEN flag set
2001 * in their headers. new modifications of the log will be written to
2002 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2003 */
2004 mutex_unlock(&root->log_mutex);
2005
2006 mutex_lock(&log_root_tree->log_mutex);
2007 log_root_tree->log_batch++;
2008 atomic_inc(&log_root_tree->log_writers);
2009 mutex_unlock(&log_root_tree->log_mutex);
2010
2011 ret = update_log_root(trans, log);
7237f183
YZ
2012
2013 mutex_lock(&log_root_tree->log_mutex);
2014 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2015 smp_mb();
2016 if (waitqueue_active(&log_root_tree->log_writer_wait))
2017 wake_up(&log_root_tree->log_writer_wait);
2018 }
2019
4a500fd1
YZ
2020 if (ret) {
2021 BUG_ON(ret != -ENOSPC);
2022 root->fs_info->last_trans_log_full_commit = trans->transid;
2023 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2024 mutex_unlock(&log_root_tree->log_mutex);
2025 ret = -EAGAIN;
2026 goto out;
2027 }
2028
7237f183
YZ
2029 index2 = log_root_tree->log_transid % 2;
2030 if (atomic_read(&log_root_tree->log_commit[index2])) {
8cef4e16 2031 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2032 wait_log_commit(trans, log_root_tree,
2033 log_root_tree->log_transid);
7237f183
YZ
2034 mutex_unlock(&log_root_tree->log_mutex);
2035 goto out;
2036 }
2037 atomic_set(&log_root_tree->log_commit[index2], 1);
2038
12fcfd22
CM
2039 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2040 wait_log_commit(trans, log_root_tree,
2041 log_root_tree->log_transid - 1);
2042 }
2043
2044 wait_for_writer(trans, log_root_tree);
7237f183 2045
12fcfd22
CM
2046 /*
2047 * now that we've moved on to the tree of log tree roots,
2048 * check the full commit flag again
2049 */
2050 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
8cef4e16 2051 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2052 mutex_unlock(&log_root_tree->log_mutex);
2053 ret = -EAGAIN;
2054 goto out_wake_log_root;
2055 }
7237f183
YZ
2056
2057 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
8cef4e16
YZ
2058 &log_root_tree->dirty_log_pages,
2059 EXTENT_DIRTY | EXTENT_NEW);
e02119d5 2060 BUG_ON(ret);
8cef4e16 2061 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
e02119d5
CM
2062
2063 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
7237f183 2064 log_root_tree->node->start);
e02119d5 2065 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
7237f183 2066 btrfs_header_level(log_root_tree->node));
e02119d5 2067
7237f183
YZ
2068 log_root_tree->log_batch = 0;
2069 log_root_tree->log_transid++;
e02119d5 2070 smp_mb();
7237f183
YZ
2071
2072 mutex_unlock(&log_root_tree->log_mutex);
2073
2074 /*
2075 * nobody else is going to jump in and write the the ctree
2076 * super here because the log_commit atomic below is protecting
2077 * us. We must be called with a transaction handle pinning
2078 * the running transaction open, so a full commit can't hop
2079 * in and cause problems either.
2080 */
4722607d 2081 write_ctree_super(trans, root->fs_info->tree_root, 1);
12fcfd22 2082 ret = 0;
7237f183 2083
257c62e1
CM
2084 mutex_lock(&root->log_mutex);
2085 if (root->last_log_commit < log_transid)
2086 root->last_log_commit = log_transid;
2087 mutex_unlock(&root->log_mutex);
2088
12fcfd22 2089out_wake_log_root:
7237f183
YZ
2090 atomic_set(&log_root_tree->log_commit[index2], 0);
2091 smp_mb();
2092 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2093 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2094out:
7237f183
YZ
2095 atomic_set(&root->log_commit[index1], 0);
2096 smp_mb();
2097 if (waitqueue_active(&root->log_commit_wait[index1]))
2098 wake_up(&root->log_commit_wait[index1]);
e02119d5 2099 return 0;
e02119d5
CM
2100}
2101
4a500fd1
YZ
2102static void free_log_tree(struct btrfs_trans_handle *trans,
2103 struct btrfs_root *log)
e02119d5
CM
2104{
2105 int ret;
d0c803c4
CM
2106 u64 start;
2107 u64 end;
e02119d5
CM
2108 struct walk_control wc = {
2109 .free = 1,
2110 .process_func = process_one_buffer
2111 };
2112
e02119d5
CM
2113 ret = walk_log_tree(trans, log, &wc);
2114 BUG_ON(ret);
2115
d397712b 2116 while (1) {
d0c803c4 2117 ret = find_first_extent_bit(&log->dirty_log_pages,
8cef4e16 2118 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
d0c803c4
CM
2119 if (ret)
2120 break;
2121
8cef4e16
YZ
2122 clear_extent_bits(&log->dirty_log_pages, start, end,
2123 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2124 }
2125
7237f183
YZ
2126 free_extent_buffer(log->node);
2127 kfree(log);
4a500fd1
YZ
2128}
2129
2130/*
2131 * free all the extents used by the tree log. This should be called
2132 * at commit time of the full transaction
2133 */
2134int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2135{
2136 if (root->log_root) {
2137 free_log_tree(trans, root->log_root);
2138 root->log_root = NULL;
2139 }
2140 return 0;
2141}
2142
2143int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2144 struct btrfs_fs_info *fs_info)
2145{
2146 if (fs_info->log_root_tree) {
2147 free_log_tree(trans, fs_info->log_root_tree);
2148 fs_info->log_root_tree = NULL;
2149 }
e02119d5
CM
2150 return 0;
2151}
2152
e02119d5
CM
2153/*
2154 * If both a file and directory are logged, and unlinks or renames are
2155 * mixed in, we have a few interesting corners:
2156 *
2157 * create file X in dir Y
2158 * link file X to X.link in dir Y
2159 * fsync file X
2160 * unlink file X but leave X.link
2161 * fsync dir Y
2162 *
2163 * After a crash we would expect only X.link to exist. But file X
2164 * didn't get fsync'd again so the log has back refs for X and X.link.
2165 *
2166 * We solve this by removing directory entries and inode backrefs from the
2167 * log when a file that was logged in the current transaction is
2168 * unlinked. Any later fsync will include the updated log entries, and
2169 * we'll be able to reconstruct the proper directory items from backrefs.
2170 *
2171 * This optimizations allows us to avoid relogging the entire inode
2172 * or the entire directory.
2173 */
2174int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2175 struct btrfs_root *root,
2176 const char *name, int name_len,
2177 struct inode *dir, u64 index)
2178{
2179 struct btrfs_root *log;
2180 struct btrfs_dir_item *di;
2181 struct btrfs_path *path;
2182 int ret;
4a500fd1 2183 int err = 0;
e02119d5
CM
2184 int bytes_del = 0;
2185
3a5f1d45
CM
2186 if (BTRFS_I(dir)->logged_trans < trans->transid)
2187 return 0;
2188
e02119d5
CM
2189 ret = join_running_log_trans(root);
2190 if (ret)
2191 return 0;
2192
2193 mutex_lock(&BTRFS_I(dir)->log_mutex);
2194
2195 log = root->log_root;
2196 path = btrfs_alloc_path();
2197 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2198 name, name_len, -1);
4a500fd1
YZ
2199 if (IS_ERR(di)) {
2200 err = PTR_ERR(di);
2201 goto fail;
2202 }
2203 if (di) {
e02119d5
CM
2204 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2205 bytes_del += name_len;
2206 BUG_ON(ret);
2207 }
2208 btrfs_release_path(log, path);
2209 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2210 index, name, name_len, -1);
4a500fd1
YZ
2211 if (IS_ERR(di)) {
2212 err = PTR_ERR(di);
2213 goto fail;
2214 }
2215 if (di) {
e02119d5
CM
2216 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2217 bytes_del += name_len;
2218 BUG_ON(ret);
2219 }
2220
2221 /* update the directory size in the log to reflect the names
2222 * we have removed
2223 */
2224 if (bytes_del) {
2225 struct btrfs_key key;
2226
2227 key.objectid = dir->i_ino;
2228 key.offset = 0;
2229 key.type = BTRFS_INODE_ITEM_KEY;
2230 btrfs_release_path(log, path);
2231
2232 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2233 if (ret < 0) {
2234 err = ret;
2235 goto fail;
2236 }
e02119d5
CM
2237 if (ret == 0) {
2238 struct btrfs_inode_item *item;
2239 u64 i_size;
2240
2241 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2242 struct btrfs_inode_item);
2243 i_size = btrfs_inode_size(path->nodes[0], item);
2244 if (i_size > bytes_del)
2245 i_size -= bytes_del;
2246 else
2247 i_size = 0;
2248 btrfs_set_inode_size(path->nodes[0], item, i_size);
2249 btrfs_mark_buffer_dirty(path->nodes[0]);
2250 } else
2251 ret = 0;
2252 btrfs_release_path(log, path);
2253 }
4a500fd1 2254fail:
e02119d5
CM
2255 btrfs_free_path(path);
2256 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1
YZ
2257 if (ret == -ENOSPC) {
2258 root->fs_info->last_trans_log_full_commit = trans->transid;
2259 ret = 0;
2260 }
12fcfd22 2261 btrfs_end_log_trans(root);
e02119d5 2262
411fc6bc 2263 return err;
e02119d5
CM
2264}
2265
2266/* see comments for btrfs_del_dir_entries_in_log */
2267int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2268 struct btrfs_root *root,
2269 const char *name, int name_len,
2270 struct inode *inode, u64 dirid)
2271{
2272 struct btrfs_root *log;
2273 u64 index;
2274 int ret;
2275
3a5f1d45
CM
2276 if (BTRFS_I(inode)->logged_trans < trans->transid)
2277 return 0;
2278
e02119d5
CM
2279 ret = join_running_log_trans(root);
2280 if (ret)
2281 return 0;
2282 log = root->log_root;
2283 mutex_lock(&BTRFS_I(inode)->log_mutex);
2284
2285 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2286 dirid, &index);
2287 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1
YZ
2288 if (ret == -ENOSPC) {
2289 root->fs_info->last_trans_log_full_commit = trans->transid;
2290 ret = 0;
2291 }
12fcfd22 2292 btrfs_end_log_trans(root);
e02119d5 2293
e02119d5
CM
2294 return ret;
2295}
2296
2297/*
2298 * creates a range item in the log for 'dirid'. first_offset and
2299 * last_offset tell us which parts of the key space the log should
2300 * be considered authoritative for.
2301 */
2302static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2303 struct btrfs_root *log,
2304 struct btrfs_path *path,
2305 int key_type, u64 dirid,
2306 u64 first_offset, u64 last_offset)
2307{
2308 int ret;
2309 struct btrfs_key key;
2310 struct btrfs_dir_log_item *item;
2311
2312 key.objectid = dirid;
2313 key.offset = first_offset;
2314 if (key_type == BTRFS_DIR_ITEM_KEY)
2315 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2316 else
2317 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2318 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2319 if (ret)
2320 return ret;
e02119d5
CM
2321
2322 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2323 struct btrfs_dir_log_item);
2324 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2325 btrfs_mark_buffer_dirty(path->nodes[0]);
2326 btrfs_release_path(log, path);
2327 return 0;
2328}
2329
2330/*
2331 * log all the items included in the current transaction for a given
2332 * directory. This also creates the range items in the log tree required
2333 * to replay anything deleted before the fsync
2334 */
2335static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2336 struct btrfs_root *root, struct inode *inode,
2337 struct btrfs_path *path,
2338 struct btrfs_path *dst_path, int key_type,
2339 u64 min_offset, u64 *last_offset_ret)
2340{
2341 struct btrfs_key min_key;
2342 struct btrfs_key max_key;
2343 struct btrfs_root *log = root->log_root;
2344 struct extent_buffer *src;
4a500fd1 2345 int err = 0;
e02119d5
CM
2346 int ret;
2347 int i;
2348 int nritems;
2349 u64 first_offset = min_offset;
2350 u64 last_offset = (u64)-1;
2351
2352 log = root->log_root;
2353 max_key.objectid = inode->i_ino;
2354 max_key.offset = (u64)-1;
2355 max_key.type = key_type;
2356
2357 min_key.objectid = inode->i_ino;
2358 min_key.type = key_type;
2359 min_key.offset = min_offset;
2360
2361 path->keep_locks = 1;
2362
2363 ret = btrfs_search_forward(root, &min_key, &max_key,
2364 path, 0, trans->transid);
2365
2366 /*
2367 * we didn't find anything from this transaction, see if there
2368 * is anything at all
2369 */
2370 if (ret != 0 || min_key.objectid != inode->i_ino ||
2371 min_key.type != key_type) {
2372 min_key.objectid = inode->i_ino;
2373 min_key.type = key_type;
2374 min_key.offset = (u64)-1;
2375 btrfs_release_path(root, path);
2376 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2377 if (ret < 0) {
2378 btrfs_release_path(root, path);
2379 return ret;
2380 }
2381 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2382
2383 /* if ret == 0 there are items for this type,
2384 * create a range to tell us the last key of this type.
2385 * otherwise, there are no items in this directory after
2386 * *min_offset, and we create a range to indicate that.
2387 */
2388 if (ret == 0) {
2389 struct btrfs_key tmp;
2390 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2391 path->slots[0]);
d397712b 2392 if (key_type == tmp.type)
e02119d5 2393 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2394 }
2395 goto done;
2396 }
2397
2398 /* go backward to find any previous key */
2399 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2400 if (ret == 0) {
2401 struct btrfs_key tmp;
2402 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2403 if (key_type == tmp.type) {
2404 first_offset = tmp.offset;
2405 ret = overwrite_item(trans, log, dst_path,
2406 path->nodes[0], path->slots[0],
2407 &tmp);
4a500fd1
YZ
2408 if (ret) {
2409 err = ret;
2410 goto done;
2411 }
e02119d5
CM
2412 }
2413 }
2414 btrfs_release_path(root, path);
2415
2416 /* find the first key from this transaction again */
2417 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2418 if (ret != 0) {
2419 WARN_ON(1);
2420 goto done;
2421 }
2422
2423 /*
2424 * we have a block from this transaction, log every item in it
2425 * from our directory
2426 */
d397712b 2427 while (1) {
e02119d5
CM
2428 struct btrfs_key tmp;
2429 src = path->nodes[0];
2430 nritems = btrfs_header_nritems(src);
2431 for (i = path->slots[0]; i < nritems; i++) {
2432 btrfs_item_key_to_cpu(src, &min_key, i);
2433
2434 if (min_key.objectid != inode->i_ino ||
2435 min_key.type != key_type)
2436 goto done;
2437 ret = overwrite_item(trans, log, dst_path, src, i,
2438 &min_key);
4a500fd1
YZ
2439 if (ret) {
2440 err = ret;
2441 goto done;
2442 }
e02119d5
CM
2443 }
2444 path->slots[0] = nritems;
2445
2446 /*
2447 * look ahead to the next item and see if it is also
2448 * from this directory and from this transaction
2449 */
2450 ret = btrfs_next_leaf(root, path);
2451 if (ret == 1) {
2452 last_offset = (u64)-1;
2453 goto done;
2454 }
2455 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2456 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2457 last_offset = (u64)-1;
2458 goto done;
2459 }
2460 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2461 ret = overwrite_item(trans, log, dst_path,
2462 path->nodes[0], path->slots[0],
2463 &tmp);
4a500fd1
YZ
2464 if (ret)
2465 err = ret;
2466 else
2467 last_offset = tmp.offset;
e02119d5
CM
2468 goto done;
2469 }
2470 }
2471done:
e02119d5
CM
2472 btrfs_release_path(root, path);
2473 btrfs_release_path(log, dst_path);
2474
4a500fd1
YZ
2475 if (err == 0) {
2476 *last_offset_ret = last_offset;
2477 /*
2478 * insert the log range keys to indicate where the log
2479 * is valid
2480 */
2481 ret = insert_dir_log_key(trans, log, path, key_type,
2482 inode->i_ino, first_offset,
2483 last_offset);
2484 if (ret)
2485 err = ret;
2486 }
2487 return err;
e02119d5
CM
2488}
2489
2490/*
2491 * logging directories is very similar to logging inodes, We find all the items
2492 * from the current transaction and write them to the log.
2493 *
2494 * The recovery code scans the directory in the subvolume, and if it finds a
2495 * key in the range logged that is not present in the log tree, then it means
2496 * that dir entry was unlinked during the transaction.
2497 *
2498 * In order for that scan to work, we must include one key smaller than
2499 * the smallest logged by this transaction and one key larger than the largest
2500 * key logged by this transaction.
2501 */
2502static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2503 struct btrfs_root *root, struct inode *inode,
2504 struct btrfs_path *path,
2505 struct btrfs_path *dst_path)
2506{
2507 u64 min_key;
2508 u64 max_key;
2509 int ret;
2510 int key_type = BTRFS_DIR_ITEM_KEY;
2511
2512again:
2513 min_key = 0;
2514 max_key = 0;
d397712b 2515 while (1) {
e02119d5
CM
2516 ret = log_dir_items(trans, root, inode, path,
2517 dst_path, key_type, min_key,
2518 &max_key);
4a500fd1
YZ
2519 if (ret)
2520 return ret;
e02119d5
CM
2521 if (max_key == (u64)-1)
2522 break;
2523 min_key = max_key + 1;
2524 }
2525
2526 if (key_type == BTRFS_DIR_ITEM_KEY) {
2527 key_type = BTRFS_DIR_INDEX_KEY;
2528 goto again;
2529 }
2530 return 0;
2531}
2532
2533/*
2534 * a helper function to drop items from the log before we relog an
2535 * inode. max_key_type indicates the highest item type to remove.
2536 * This cannot be run for file data extents because it does not
2537 * free the extents they point to.
2538 */
2539static int drop_objectid_items(struct btrfs_trans_handle *trans,
2540 struct btrfs_root *log,
2541 struct btrfs_path *path,
2542 u64 objectid, int max_key_type)
2543{
2544 int ret;
2545 struct btrfs_key key;
2546 struct btrfs_key found_key;
2547
2548 key.objectid = objectid;
2549 key.type = max_key_type;
2550 key.offset = (u64)-1;
2551
d397712b 2552 while (1) {
e02119d5 2553 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4a500fd1
YZ
2554 BUG_ON(ret == 0);
2555 if (ret < 0)
e02119d5
CM
2556 break;
2557
2558 if (path->slots[0] == 0)
2559 break;
2560
2561 path->slots[0]--;
2562 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2563 path->slots[0]);
2564
2565 if (found_key.objectid != objectid)
2566 break;
2567
2568 ret = btrfs_del_item(trans, log, path);
2569 BUG_ON(ret);
2570 btrfs_release_path(log, path);
2571 }
2572 btrfs_release_path(log, path);
4a500fd1 2573 return ret;
e02119d5
CM
2574}
2575
31ff1cd2
CM
2576static noinline int copy_items(struct btrfs_trans_handle *trans,
2577 struct btrfs_root *log,
2578 struct btrfs_path *dst_path,
2579 struct extent_buffer *src,
2580 int start_slot, int nr, int inode_only)
2581{
2582 unsigned long src_offset;
2583 unsigned long dst_offset;
2584 struct btrfs_file_extent_item *extent;
2585 struct btrfs_inode_item *inode_item;
2586 int ret;
2587 struct btrfs_key *ins_keys;
2588 u32 *ins_sizes;
2589 char *ins_data;
2590 int i;
d20f7043
CM
2591 struct list_head ordered_sums;
2592
2593 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
2594
2595 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2596 nr * sizeof(u32), GFP_NOFS);
2597 ins_sizes = (u32 *)ins_data;
2598 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2599
2600 for (i = 0; i < nr; i++) {
2601 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2602 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2603 }
2604 ret = btrfs_insert_empty_items(trans, log, dst_path,
2605 ins_keys, ins_sizes, nr);
4a500fd1
YZ
2606 if (ret) {
2607 kfree(ins_data);
2608 return ret;
2609 }
31ff1cd2 2610
5d4f98a2 2611 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
2612 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2613 dst_path->slots[0]);
2614
2615 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2616
2617 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2618 src_offset, ins_sizes[i]);
2619
2620 if (inode_only == LOG_INODE_EXISTS &&
2621 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2622 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2623 dst_path->slots[0],
2624 struct btrfs_inode_item);
2625 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2626
2627 /* set the generation to zero so the recover code
2628 * can tell the difference between an logging
2629 * just to say 'this inode exists' and a logging
2630 * to say 'update this inode with these values'
2631 */
2632 btrfs_set_inode_generation(dst_path->nodes[0],
2633 inode_item, 0);
2634 }
2635 /* take a reference on file data extents so that truncates
2636 * or deletes of this inode don't have to relog the inode
2637 * again
2638 */
2639 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2640 int found_type;
2641 extent = btrfs_item_ptr(src, start_slot + i,
2642 struct btrfs_file_extent_item);
2643
2644 found_type = btrfs_file_extent_type(src, extent);
d899e052
YZ
2645 if (found_type == BTRFS_FILE_EXTENT_REG ||
2646 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2
YZ
2647 u64 ds, dl, cs, cl;
2648 ds = btrfs_file_extent_disk_bytenr(src,
2649 extent);
2650 /* ds == 0 is a hole */
2651 if (ds == 0)
2652 continue;
2653
2654 dl = btrfs_file_extent_disk_num_bytes(src,
2655 extent);
2656 cs = btrfs_file_extent_offset(src, extent);
2657 cl = btrfs_file_extent_num_bytes(src,
a419aef8 2658 extent);
580afd76
CM
2659 if (btrfs_file_extent_compression(src,
2660 extent)) {
2661 cs = 0;
2662 cl = dl;
2663 }
5d4f98a2
YZ
2664
2665 ret = btrfs_lookup_csums_range(
2666 log->fs_info->csum_root,
2667 ds + cs, ds + cs + cl - 1,
2668 &ordered_sums);
2669 BUG_ON(ret);
31ff1cd2
CM
2670 }
2671 }
31ff1cd2
CM
2672 }
2673
2674 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2675 btrfs_release_path(log, dst_path);
2676 kfree(ins_data);
d20f7043
CM
2677
2678 /*
2679 * we have to do this after the loop above to avoid changing the
2680 * log tree while trying to change the log tree.
2681 */
4a500fd1 2682 ret = 0;
d397712b 2683 while (!list_empty(&ordered_sums)) {
d20f7043
CM
2684 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2685 struct btrfs_ordered_sum,
2686 list);
4a500fd1
YZ
2687 if (!ret)
2688 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
2689 list_del(&sums->list);
2690 kfree(sums);
2691 }
4a500fd1 2692 return ret;
31ff1cd2
CM
2693}
2694
e02119d5
CM
2695/* log a single inode in the tree log.
2696 * At least one parent directory for this inode must exist in the tree
2697 * or be logged already.
2698 *
2699 * Any items from this inode changed by the current transaction are copied
2700 * to the log tree. An extra reference is taken on any extents in this
2701 * file, allowing us to avoid a whole pile of corner cases around logging
2702 * blocks that have been removed from the tree.
2703 *
2704 * See LOG_INODE_ALL and related defines for a description of what inode_only
2705 * does.
2706 *
2707 * This handles both files and directories.
2708 */
12fcfd22 2709static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
2710 struct btrfs_root *root, struct inode *inode,
2711 int inode_only)
2712{
2713 struct btrfs_path *path;
2714 struct btrfs_path *dst_path;
2715 struct btrfs_key min_key;
2716 struct btrfs_key max_key;
2717 struct btrfs_root *log = root->log_root;
31ff1cd2 2718 struct extent_buffer *src = NULL;
4a500fd1 2719 int err = 0;
e02119d5 2720 int ret;
3a5f1d45 2721 int nritems;
31ff1cd2
CM
2722 int ins_start_slot = 0;
2723 int ins_nr;
e02119d5
CM
2724
2725 log = root->log_root;
2726
2727 path = btrfs_alloc_path();
2728 dst_path = btrfs_alloc_path();
2729
2730 min_key.objectid = inode->i_ino;
2731 min_key.type = BTRFS_INODE_ITEM_KEY;
2732 min_key.offset = 0;
2733
2734 max_key.objectid = inode->i_ino;
12fcfd22
CM
2735
2736 /* today the code can only do partial logging of directories */
2737 if (!S_ISDIR(inode->i_mode))
2738 inode_only = LOG_INODE_ALL;
2739
e02119d5
CM
2740 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2741 max_key.type = BTRFS_XATTR_ITEM_KEY;
2742 else
2743 max_key.type = (u8)-1;
2744 max_key.offset = (u64)-1;
2745
e02119d5
CM
2746 mutex_lock(&BTRFS_I(inode)->log_mutex);
2747
2748 /*
2749 * a brute force approach to making sure we get the most uptodate
2750 * copies of everything.
2751 */
2752 if (S_ISDIR(inode->i_mode)) {
2753 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2754
2755 if (inode_only == LOG_INODE_EXISTS)
2756 max_key_type = BTRFS_XATTR_ITEM_KEY;
2757 ret = drop_objectid_items(trans, log, path,
2758 inode->i_ino, max_key_type);
2759 } else {
2760 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2761 }
4a500fd1
YZ
2762 if (ret) {
2763 err = ret;
2764 goto out_unlock;
2765 }
e02119d5
CM
2766 path->keep_locks = 1;
2767
d397712b 2768 while (1) {
31ff1cd2 2769 ins_nr = 0;
e02119d5
CM
2770 ret = btrfs_search_forward(root, &min_key, &max_key,
2771 path, 0, trans->transid);
2772 if (ret != 0)
2773 break;
3a5f1d45 2774again:
31ff1cd2 2775 /* note, ins_nr might be > 0 here, cleanup outside the loop */
e02119d5
CM
2776 if (min_key.objectid != inode->i_ino)
2777 break;
2778 if (min_key.type > max_key.type)
2779 break;
31ff1cd2 2780
e02119d5 2781 src = path->nodes[0];
31ff1cd2
CM
2782 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2783 ins_nr++;
2784 goto next_slot;
2785 } else if (!ins_nr) {
2786 ins_start_slot = path->slots[0];
2787 ins_nr = 1;
2788 goto next_slot;
e02119d5
CM
2789 }
2790
31ff1cd2
CM
2791 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2792 ins_nr, inode_only);
4a500fd1
YZ
2793 if (ret) {
2794 err = ret;
2795 goto out_unlock;
2796 }
31ff1cd2
CM
2797 ins_nr = 1;
2798 ins_start_slot = path->slots[0];
2799next_slot:
e02119d5 2800
3a5f1d45
CM
2801 nritems = btrfs_header_nritems(path->nodes[0]);
2802 path->slots[0]++;
2803 if (path->slots[0] < nritems) {
2804 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2805 path->slots[0]);
2806 goto again;
2807 }
31ff1cd2
CM
2808 if (ins_nr) {
2809 ret = copy_items(trans, log, dst_path, src,
2810 ins_start_slot,
2811 ins_nr, inode_only);
4a500fd1
YZ
2812 if (ret) {
2813 err = ret;
2814 goto out_unlock;
2815 }
31ff1cd2
CM
2816 ins_nr = 0;
2817 }
3a5f1d45
CM
2818 btrfs_release_path(root, path);
2819
e02119d5
CM
2820 if (min_key.offset < (u64)-1)
2821 min_key.offset++;
2822 else if (min_key.type < (u8)-1)
2823 min_key.type++;
2824 else if (min_key.objectid < (u64)-1)
2825 min_key.objectid++;
2826 else
2827 break;
2828 }
31ff1cd2
CM
2829 if (ins_nr) {
2830 ret = copy_items(trans, log, dst_path, src,
2831 ins_start_slot,
2832 ins_nr, inode_only);
4a500fd1
YZ
2833 if (ret) {
2834 err = ret;
2835 goto out_unlock;
2836 }
31ff1cd2
CM
2837 ins_nr = 0;
2838 }
2839 WARN_ON(ins_nr);
9623f9a3 2840 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5
CM
2841 btrfs_release_path(root, path);
2842 btrfs_release_path(log, dst_path);
2843 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
2844 if (ret) {
2845 err = ret;
2846 goto out_unlock;
2847 }
e02119d5 2848 }
3a5f1d45 2849 BTRFS_I(inode)->logged_trans = trans->transid;
4a500fd1 2850out_unlock:
e02119d5
CM
2851 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2852
2853 btrfs_free_path(path);
2854 btrfs_free_path(dst_path);
4a500fd1 2855 return err;
e02119d5
CM
2856}
2857
12fcfd22
CM
2858/*
2859 * follow the dentry parent pointers up the chain and see if any
2860 * of the directories in it require a full commit before they can
2861 * be logged. Returns zero if nothing special needs to be done or 1 if
2862 * a full commit is required.
2863 */
2864static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2865 struct inode *inode,
2866 struct dentry *parent,
2867 struct super_block *sb,
2868 u64 last_committed)
e02119d5 2869{
12fcfd22
CM
2870 int ret = 0;
2871 struct btrfs_root *root;
e02119d5 2872
af4176b4
CM
2873 /*
2874 * for regular files, if its inode is already on disk, we don't
2875 * have to worry about the parents at all. This is because
2876 * we can use the last_unlink_trans field to record renames
2877 * and other fun in this file.
2878 */
2879 if (S_ISREG(inode->i_mode) &&
2880 BTRFS_I(inode)->generation <= last_committed &&
2881 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2882 goto out;
2883
12fcfd22
CM
2884 if (!S_ISDIR(inode->i_mode)) {
2885 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2886 goto out;
2887 inode = parent->d_inode;
2888 }
2889
2890 while (1) {
2891 BTRFS_I(inode)->logged_trans = trans->transid;
2892 smp_mb();
2893
2894 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2895 root = BTRFS_I(inode)->root;
2896
2897 /*
2898 * make sure any commits to the log are forced
2899 * to be full commits
2900 */
2901 root->fs_info->last_trans_log_full_commit =
2902 trans->transid;
2903 ret = 1;
2904 break;
2905 }
2906
2907 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2908 break;
2909
76dda93c 2910 if (IS_ROOT(parent))
12fcfd22
CM
2911 break;
2912
2913 parent = parent->d_parent;
2914 inode = parent->d_inode;
2915
2916 }
2917out:
e02119d5
CM
2918 return ret;
2919}
2920
257c62e1
CM
2921static int inode_in_log(struct btrfs_trans_handle *trans,
2922 struct inode *inode)
2923{
2924 struct btrfs_root *root = BTRFS_I(inode)->root;
2925 int ret = 0;
2926
2927 mutex_lock(&root->log_mutex);
2928 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2929 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2930 ret = 1;
2931 mutex_unlock(&root->log_mutex);
2932 return ret;
2933}
2934
2935
e02119d5
CM
2936/*
2937 * helper function around btrfs_log_inode to make sure newly created
2938 * parent directories also end up in the log. A minimal inode and backref
2939 * only logging is done of any parent directories that are older than
2940 * the last committed transaction
2941 */
12fcfd22
CM
2942int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2943 struct btrfs_root *root, struct inode *inode,
2944 struct dentry *parent, int exists_only)
e02119d5 2945{
12fcfd22 2946 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 2947 struct super_block *sb;
12fcfd22
CM
2948 int ret = 0;
2949 u64 last_committed = root->fs_info->last_trans_committed;
2950
2951 sb = inode->i_sb;
2952
3a5e1404
SW
2953 if (btrfs_test_opt(root, NOTREELOG)) {
2954 ret = 1;
2955 goto end_no_trans;
2956 }
2957
12fcfd22
CM
2958 if (root->fs_info->last_trans_log_full_commit >
2959 root->fs_info->last_trans_committed) {
2960 ret = 1;
2961 goto end_no_trans;
2962 }
2963
76dda93c
YZ
2964 if (root != BTRFS_I(inode)->root ||
2965 btrfs_root_refs(&root->root_item) == 0) {
2966 ret = 1;
2967 goto end_no_trans;
2968 }
2969
12fcfd22
CM
2970 ret = check_parent_dirs_for_sync(trans, inode, parent,
2971 sb, last_committed);
2972 if (ret)
2973 goto end_no_trans;
e02119d5 2974
257c62e1
CM
2975 if (inode_in_log(trans, inode)) {
2976 ret = BTRFS_NO_LOG_SYNC;
2977 goto end_no_trans;
2978 }
2979
4a500fd1
YZ
2980 ret = start_log_trans(trans, root);
2981 if (ret)
2982 goto end_trans;
e02119d5 2983
12fcfd22 2984 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
2985 if (ret)
2986 goto end_trans;
12fcfd22 2987
af4176b4
CM
2988 /*
2989 * for regular files, if its inode is already on disk, we don't
2990 * have to worry about the parents at all. This is because
2991 * we can use the last_unlink_trans field to record renames
2992 * and other fun in this file.
2993 */
2994 if (S_ISREG(inode->i_mode) &&
2995 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
2996 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
2997 ret = 0;
2998 goto end_trans;
2999 }
af4176b4
CM
3000
3001 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
3002 while (1) {
3003 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
3004 break;
3005
12fcfd22 3006 inode = parent->d_inode;
76dda93c
YZ
3007 if (root != BTRFS_I(inode)->root)
3008 break;
3009
12fcfd22
CM
3010 if (BTRFS_I(inode)->generation >
3011 root->fs_info->last_trans_committed) {
3012 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3013 if (ret)
3014 goto end_trans;
12fcfd22 3015 }
76dda93c 3016 if (IS_ROOT(parent))
e02119d5 3017 break;
12fcfd22
CM
3018
3019 parent = parent->d_parent;
e02119d5 3020 }
12fcfd22 3021 ret = 0;
4a500fd1
YZ
3022end_trans:
3023 if (ret < 0) {
3024 BUG_ON(ret != -ENOSPC);
3025 root->fs_info->last_trans_log_full_commit = trans->transid;
3026 ret = 1;
3027 }
12fcfd22
CM
3028 btrfs_end_log_trans(root);
3029end_no_trans:
3030 return ret;
e02119d5
CM
3031}
3032
3033/*
3034 * it is not safe to log dentry if the chunk root has added new
3035 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3036 * If this returns 1, you must commit the transaction to safely get your
3037 * data on disk.
3038 */
3039int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root, struct dentry *dentry)
3041{
12fcfd22
CM
3042 return btrfs_log_inode_parent(trans, root, dentry->d_inode,
3043 dentry->d_parent, 0);
e02119d5
CM
3044}
3045
3046/*
3047 * should be called during mount to recover any replay any log trees
3048 * from the FS
3049 */
3050int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3051{
3052 int ret;
3053 struct btrfs_path *path;
3054 struct btrfs_trans_handle *trans;
3055 struct btrfs_key key;
3056 struct btrfs_key found_key;
3057 struct btrfs_key tmp_key;
3058 struct btrfs_root *log;
3059 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3060 struct walk_control wc = {
3061 .process_func = process_one_buffer,
3062 .stage = 0,
3063 };
3064
3065 fs_info->log_root_recovering = 1;
3066 path = btrfs_alloc_path();
3067 BUG_ON(!path);
3068
4a500fd1 3069 trans = btrfs_start_transaction(fs_info->tree_root, 0);
e02119d5
CM
3070
3071 wc.trans = trans;
3072 wc.pin = 1;
3073
3074 walk_log_tree(trans, log_root_tree, &wc);
3075
3076again:
3077 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3078 key.offset = (u64)-1;
3079 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3080
d397712b 3081 while (1) {
e02119d5
CM
3082 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3083 if (ret < 0)
3084 break;
3085 if (ret > 0) {
3086 if (path->slots[0] == 0)
3087 break;
3088 path->slots[0]--;
3089 }
3090 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3091 path->slots[0]);
3092 btrfs_release_path(log_root_tree, path);
3093 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3094 break;
3095
3096 log = btrfs_read_fs_root_no_radix(log_root_tree,
3097 &found_key);
3098 BUG_ON(!log);
3099
3100
3101 tmp_key.objectid = found_key.offset;
3102 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3103 tmp_key.offset = (u64)-1;
3104
3105 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
e02119d5
CM
3106 BUG_ON(!wc.replay_dest);
3107
07d400a6 3108 wc.replay_dest->log_root = log;
5d4f98a2 3109 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5
CM
3110 ret = walk_log_tree(trans, log, &wc);
3111 BUG_ON(ret);
3112
3113 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3114 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3115 path);
3116 BUG_ON(ret);
3117 }
3118
3119 key.offset = found_key.offset - 1;
07d400a6 3120 wc.replay_dest->log_root = NULL;
e02119d5 3121 free_extent_buffer(log->node);
b263c2c8 3122 free_extent_buffer(log->commit_root);
e02119d5
CM
3123 kfree(log);
3124
3125 if (found_key.offset == 0)
3126 break;
3127 }
3128 btrfs_release_path(log_root_tree, path);
3129
3130 /* step one is to pin it all, step two is to replay just inodes */
3131 if (wc.pin) {
3132 wc.pin = 0;
3133 wc.process_func = replay_one_buffer;
3134 wc.stage = LOG_WALK_REPLAY_INODES;
3135 goto again;
3136 }
3137 /* step three is to replay everything */
3138 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3139 wc.stage++;
3140 goto again;
3141 }
3142
3143 btrfs_free_path(path);
3144
3145 free_extent_buffer(log_root_tree->node);
3146 log_root_tree->log_root = NULL;
3147 fs_info->log_root_recovering = 0;
3148
3149 /* step 4: commit the transaction, which also unpins the blocks */
3150 btrfs_commit_transaction(trans, fs_info->tree_root);
3151
3152 kfree(log_root_tree);
3153 return 0;
3154}
12fcfd22
CM
3155
3156/*
3157 * there are some corner cases where we want to force a full
3158 * commit instead of allowing a directory to be logged.
3159 *
3160 * They revolve around files there were unlinked from the directory, and
3161 * this function updates the parent directory so that a full commit is
3162 * properly done if it is fsync'd later after the unlinks are done.
3163 */
3164void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3165 struct inode *dir, struct inode *inode,
3166 int for_rename)
3167{
af4176b4
CM
3168 /*
3169 * when we're logging a file, if it hasn't been renamed
3170 * or unlinked, and its inode is fully committed on disk,
3171 * we don't have to worry about walking up the directory chain
3172 * to log its parents.
3173 *
3174 * So, we use the last_unlink_trans field to put this transid
3175 * into the file. When the file is logged we check it and
3176 * don't log the parents if the file is fully on disk.
3177 */
3178 if (S_ISREG(inode->i_mode))
3179 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3180
12fcfd22
CM
3181 /*
3182 * if this directory was already logged any new
3183 * names for this file/dir will get recorded
3184 */
3185 smp_mb();
3186 if (BTRFS_I(dir)->logged_trans == trans->transid)
3187 return;
3188
3189 /*
3190 * if the inode we're about to unlink was logged,
3191 * the log will be properly updated for any new names
3192 */
3193 if (BTRFS_I(inode)->logged_trans == trans->transid)
3194 return;
3195
3196 /*
3197 * when renaming files across directories, if the directory
3198 * there we're unlinking from gets fsync'd later on, there's
3199 * no way to find the destination directory later and fsync it
3200 * properly. So, we have to be conservative and force commits
3201 * so the new name gets discovered.
3202 */
3203 if (for_rename)
3204 goto record;
3205
3206 /* we can safely do the unlink without any special recording */
3207 return;
3208
3209record:
3210 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3211}
3212
3213/*
3214 * Call this after adding a new name for a file and it will properly
3215 * update the log to reflect the new name.
3216 *
3217 * It will return zero if all goes well, and it will return 1 if a
3218 * full transaction commit is required.
3219 */
3220int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3221 struct inode *inode, struct inode *old_dir,
3222 struct dentry *parent)
3223{
3224 struct btrfs_root * root = BTRFS_I(inode)->root;
3225
af4176b4
CM
3226 /*
3227 * this will force the logging code to walk the dentry chain
3228 * up for the file
3229 */
3230 if (S_ISREG(inode->i_mode))
3231 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3232
12fcfd22
CM
3233 /*
3234 * if this inode hasn't been logged and directory we're renaming it
3235 * from hasn't been logged, we don't need to log it
3236 */
3237 if (BTRFS_I(inode)->logged_trans <=
3238 root->fs_info->last_trans_committed &&
3239 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3240 root->fs_info->last_trans_committed))
3241 return 0;
3242
3243 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3244}
3245