]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/tree-log.c
Btrfs: Make sure i_nlink doesn't hit zero too soon during log replay
[net-next-2.6.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
21#include "transaction.h"
22#include "disk-io.h"
23#include "locking.h"
24#include "print-tree.h"
25#include "compat.h"
b2950863 26#include "tree-log.h"
e02119d5
CM
27
28/* magic values for the inode_only field in btrfs_log_inode:
29 *
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
33 */
34#define LOG_INODE_ALL 0
35#define LOG_INODE_EXISTS 1
36
37/*
38 * stages for the tree walking. The first
39 * stage (0) is to only pin down the blocks we find
40 * the second stage (1) is to make sure that all the inodes
41 * we find in the log are created in the subvolume.
42 *
43 * The last stage is to deal with directories and links and extents
44 * and all the other fun semantics
45 */
46#define LOG_WALK_PIN_ONLY 0
47#define LOG_WALK_REPLAY_INODES 1
48#define LOG_WALK_REPLAY_ALL 2
49
50static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root, struct inode *inode,
52 int inode_only);
ec051c0f
YZ
53static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
54 struct btrfs_root *root,
55 struct btrfs_path *path, u64 objectid);
e02119d5
CM
56
57/*
58 * tree logging is a special write ahead log used to make sure that
59 * fsyncs and O_SYNCs can happen without doing full tree commits.
60 *
61 * Full tree commits are expensive because they require commonly
62 * modified blocks to be recowed, creating many dirty pages in the
63 * extent tree an 4x-6x higher write load than ext3.
64 *
65 * Instead of doing a tree commit on every fsync, we use the
66 * key ranges and transaction ids to find items for a given file or directory
67 * that have changed in this transaction. Those items are copied into
68 * a special tree (one per subvolume root), that tree is written to disk
69 * and then the fsync is considered complete.
70 *
71 * After a crash, items are copied out of the log-tree back into the
72 * subvolume tree. Any file data extents found are recorded in the extent
73 * allocation tree, and the log-tree freed.
74 *
75 * The log tree is read three times, once to pin down all the extents it is
76 * using in ram and once, once to create all the inodes logged in the tree
77 * and once to do all the other items.
78 */
79
e02119d5
CM
80/*
81 * start a sub transaction and setup the log tree
82 * this increments the log tree writer count to make the people
83 * syncing the tree wait for us to finish
84 */
85static int start_log_trans(struct btrfs_trans_handle *trans,
86 struct btrfs_root *root)
87{
88 int ret;
7237f183
YZ
89
90 mutex_lock(&root->log_mutex);
91 if (root->log_root) {
92 root->log_batch++;
93 atomic_inc(&root->log_writers);
94 mutex_unlock(&root->log_mutex);
95 return 0;
96 }
e02119d5
CM
97 mutex_lock(&root->fs_info->tree_log_mutex);
98 if (!root->fs_info->log_root_tree) {
99 ret = btrfs_init_log_root_tree(trans, root->fs_info);
100 BUG_ON(ret);
101 }
102 if (!root->log_root) {
103 ret = btrfs_add_log_tree(trans, root);
104 BUG_ON(ret);
105 }
e02119d5 106 mutex_unlock(&root->fs_info->tree_log_mutex);
7237f183
YZ
107 root->log_batch++;
108 atomic_inc(&root->log_writers);
109 mutex_unlock(&root->log_mutex);
e02119d5
CM
110 return 0;
111}
112
113/*
114 * returns 0 if there was a log transaction running and we were able
115 * to join, or returns -ENOENT if there were not transactions
116 * in progress
117 */
118static int join_running_log_trans(struct btrfs_root *root)
119{
120 int ret = -ENOENT;
121
122 smp_mb();
123 if (!root->log_root)
124 return -ENOENT;
125
7237f183 126 mutex_lock(&root->log_mutex);
e02119d5
CM
127 if (root->log_root) {
128 ret = 0;
7237f183 129 atomic_inc(&root->log_writers);
e02119d5 130 }
7237f183 131 mutex_unlock(&root->log_mutex);
e02119d5
CM
132 return ret;
133}
134
135/*
136 * indicate we're done making changes to the log tree
137 * and wake up anyone waiting to do a sync
138 */
139static int end_log_trans(struct btrfs_root *root)
140{
7237f183
YZ
141 if (atomic_dec_and_test(&root->log_writers)) {
142 smp_mb();
143 if (waitqueue_active(&root->log_writer_wait))
144 wake_up(&root->log_writer_wait);
145 }
e02119d5
CM
146 return 0;
147}
148
149
150/*
151 * the walk control struct is used to pass state down the chain when
152 * processing the log tree. The stage field tells us which part
153 * of the log tree processing we are currently doing. The others
154 * are state fields used for that specific part
155 */
156struct walk_control {
157 /* should we free the extent on disk when done? This is used
158 * at transaction commit time while freeing a log tree
159 */
160 int free;
161
162 /* should we write out the extent buffer? This is used
163 * while flushing the log tree to disk during a sync
164 */
165 int write;
166
167 /* should we wait for the extent buffer io to finish? Also used
168 * while flushing the log tree to disk for a sync
169 */
170 int wait;
171
172 /* pin only walk, we record which extents on disk belong to the
173 * log trees
174 */
175 int pin;
176
177 /* what stage of the replay code we're currently in */
178 int stage;
179
180 /* the root we are currently replaying */
181 struct btrfs_root *replay_dest;
182
183 /* the trans handle for the current replay */
184 struct btrfs_trans_handle *trans;
185
186 /* the function that gets used to process blocks we find in the
187 * tree. Note the extent_buffer might not be up to date when it is
188 * passed in, and it must be checked or read if you need the data
189 * inside it
190 */
191 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
192 struct walk_control *wc, u64 gen);
193};
194
195/*
196 * process_func used to pin down extents, write them or wait on them
197 */
198static int process_one_buffer(struct btrfs_root *log,
199 struct extent_buffer *eb,
200 struct walk_control *wc, u64 gen)
201{
202 if (wc->pin) {
25179201 203 mutex_lock(&log->fs_info->pinned_mutex);
e02119d5
CM
204 btrfs_update_pinned_extents(log->fs_info->extent_root,
205 eb->start, eb->len, 1);
e02119d5
CM
206 }
207
208 if (btrfs_buffer_uptodate(eb, gen)) {
209 if (wc->write)
210 btrfs_write_tree_block(eb);
211 if (wc->wait)
212 btrfs_wait_tree_block_writeback(eb);
213 }
214 return 0;
215}
216
217/*
218 * Item overwrite used by replay and tree logging. eb, slot and key all refer
219 * to the src data we are copying out.
220 *
221 * root is the tree we are copying into, and path is a scratch
222 * path for use in this function (it should be released on entry and
223 * will be released on exit).
224 *
225 * If the key is already in the destination tree the existing item is
226 * overwritten. If the existing item isn't big enough, it is extended.
227 * If it is too large, it is truncated.
228 *
229 * If the key isn't in the destination yet, a new item is inserted.
230 */
231static noinline int overwrite_item(struct btrfs_trans_handle *trans,
232 struct btrfs_root *root,
233 struct btrfs_path *path,
234 struct extent_buffer *eb, int slot,
235 struct btrfs_key *key)
236{
237 int ret;
238 u32 item_size;
239 u64 saved_i_size = 0;
240 int save_old_i_size = 0;
241 unsigned long src_ptr;
242 unsigned long dst_ptr;
243 int overwrite_root = 0;
244
245 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
246 overwrite_root = 1;
247
248 item_size = btrfs_item_size_nr(eb, slot);
249 src_ptr = btrfs_item_ptr_offset(eb, slot);
250
251 /* look for the key in the destination tree */
252 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
253 if (ret == 0) {
254 char *src_copy;
255 char *dst_copy;
256 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
257 path->slots[0]);
258 if (dst_size != item_size)
259 goto insert;
260
261 if (item_size == 0) {
262 btrfs_release_path(root, path);
263 return 0;
264 }
265 dst_copy = kmalloc(item_size, GFP_NOFS);
266 src_copy = kmalloc(item_size, GFP_NOFS);
267
268 read_extent_buffer(eb, src_copy, src_ptr, item_size);
269
270 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
271 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
272 item_size);
273 ret = memcmp(dst_copy, src_copy, item_size);
274
275 kfree(dst_copy);
276 kfree(src_copy);
277 /*
278 * they have the same contents, just return, this saves
279 * us from cowing blocks in the destination tree and doing
280 * extra writes that may not have been done by a previous
281 * sync
282 */
283 if (ret == 0) {
284 btrfs_release_path(root, path);
285 return 0;
286 }
287
288 }
289insert:
290 btrfs_release_path(root, path);
291 /* try to insert the key into the destination tree */
292 ret = btrfs_insert_empty_item(trans, root, path,
293 key, item_size);
294
295 /* make sure any existing item is the correct size */
296 if (ret == -EEXIST) {
297 u32 found_size;
298 found_size = btrfs_item_size_nr(path->nodes[0],
299 path->slots[0]);
300 if (found_size > item_size) {
301 btrfs_truncate_item(trans, root, path, item_size, 1);
302 } else if (found_size < item_size) {
87b29b20
YZ
303 ret = btrfs_extend_item(trans, root, path,
304 item_size - found_size);
e02119d5
CM
305 BUG_ON(ret);
306 }
307 } else if (ret) {
308 BUG();
309 }
310 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
311 path->slots[0]);
312
313 /* don't overwrite an existing inode if the generation number
314 * was logged as zero. This is done when the tree logging code
315 * is just logging an inode to make sure it exists after recovery.
316 *
317 * Also, don't overwrite i_size on directories during replay.
318 * log replay inserts and removes directory items based on the
319 * state of the tree found in the subvolume, and i_size is modified
320 * as it goes
321 */
322 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
323 struct btrfs_inode_item *src_item;
324 struct btrfs_inode_item *dst_item;
325
326 src_item = (struct btrfs_inode_item *)src_ptr;
327 dst_item = (struct btrfs_inode_item *)dst_ptr;
328
329 if (btrfs_inode_generation(eb, src_item) == 0)
330 goto no_copy;
331
332 if (overwrite_root &&
333 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
334 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
335 save_old_i_size = 1;
336 saved_i_size = btrfs_inode_size(path->nodes[0],
337 dst_item);
338 }
339 }
340
341 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
342 src_ptr, item_size);
343
344 if (save_old_i_size) {
345 struct btrfs_inode_item *dst_item;
346 dst_item = (struct btrfs_inode_item *)dst_ptr;
347 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
348 }
349
350 /* make sure the generation is filled in */
351 if (key->type == BTRFS_INODE_ITEM_KEY) {
352 struct btrfs_inode_item *dst_item;
353 dst_item = (struct btrfs_inode_item *)dst_ptr;
354 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
355 btrfs_set_inode_generation(path->nodes[0], dst_item,
356 trans->transid);
357 }
358 }
359no_copy:
360 btrfs_mark_buffer_dirty(path->nodes[0]);
361 btrfs_release_path(root, path);
362 return 0;
363}
364
365/*
366 * simple helper to read an inode off the disk from a given root
367 * This can only be called for subvolume roots and not for the log
368 */
369static noinline struct inode *read_one_inode(struct btrfs_root *root,
370 u64 objectid)
371{
372 struct inode *inode;
373 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
374 if (inode->i_state & I_NEW) {
375 BTRFS_I(inode)->root = root;
376 BTRFS_I(inode)->location.objectid = objectid;
377 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
378 BTRFS_I(inode)->location.offset = 0;
379 btrfs_read_locked_inode(inode);
380 unlock_new_inode(inode);
381
382 }
383 if (is_bad_inode(inode)) {
384 iput(inode);
385 inode = NULL;
386 }
387 return inode;
388}
389
390/* replays a single extent in 'eb' at 'slot' with 'key' into the
391 * subvolume 'root'. path is released on entry and should be released
392 * on exit.
393 *
394 * extents in the log tree have not been allocated out of the extent
395 * tree yet. So, this completes the allocation, taking a reference
396 * as required if the extent already exists or creating a new extent
397 * if it isn't in the extent allocation tree yet.
398 *
399 * The extent is inserted into the file, dropping any existing extents
400 * from the file that overlap the new one.
401 */
402static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
403 struct btrfs_root *root,
404 struct btrfs_path *path,
405 struct extent_buffer *eb, int slot,
406 struct btrfs_key *key)
407{
408 int found_type;
409 u64 mask = root->sectorsize - 1;
410 u64 extent_end;
411 u64 alloc_hint;
412 u64 start = key->offset;
07d400a6 413 u64 saved_nbytes;
e02119d5
CM
414 struct btrfs_file_extent_item *item;
415 struct inode *inode = NULL;
416 unsigned long size;
417 int ret = 0;
418
419 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
420 found_type = btrfs_file_extent_type(eb, item);
421
d899e052
YZ
422 if (found_type == BTRFS_FILE_EXTENT_REG ||
423 found_type == BTRFS_FILE_EXTENT_PREALLOC)
e02119d5
CM
424 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
425 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 426 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
427 extent_end = (start + size + mask) & ~mask;
428 } else {
429 ret = 0;
430 goto out;
431 }
432
433 inode = read_one_inode(root, key->objectid);
434 if (!inode) {
435 ret = -EIO;
436 goto out;
437 }
438
439 /*
440 * first check to see if we already have this extent in the
441 * file. This must be done before the btrfs_drop_extents run
442 * so we don't try to drop this extent.
443 */
444 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
445 start, 0);
446
d899e052
YZ
447 if (ret == 0 &&
448 (found_type == BTRFS_FILE_EXTENT_REG ||
449 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
450 struct btrfs_file_extent_item cmp1;
451 struct btrfs_file_extent_item cmp2;
452 struct btrfs_file_extent_item *existing;
453 struct extent_buffer *leaf;
454
455 leaf = path->nodes[0];
456 existing = btrfs_item_ptr(leaf, path->slots[0],
457 struct btrfs_file_extent_item);
458
459 read_extent_buffer(eb, &cmp1, (unsigned long)item,
460 sizeof(cmp1));
461 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
462 sizeof(cmp2));
463
464 /*
465 * we already have a pointer to this exact extent,
466 * we don't have to do anything
467 */
468 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
469 btrfs_release_path(root, path);
470 goto out;
471 }
472 }
473 btrfs_release_path(root, path);
474
07d400a6 475 saved_nbytes = inode_get_bytes(inode);
e02119d5
CM
476 /* drop any overlapping extents */
477 ret = btrfs_drop_extents(trans, root, inode,
478 start, extent_end, start, &alloc_hint);
479 BUG_ON(ret);
480
07d400a6
YZ
481 if (found_type == BTRFS_FILE_EXTENT_REG ||
482 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
483 unsigned long dest_offset;
484 struct btrfs_key ins;
485
486 ret = btrfs_insert_empty_item(trans, root, path, key,
487 sizeof(*item));
488 BUG_ON(ret);
489 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
490 path->slots[0]);
491 copy_extent_buffer(path->nodes[0], eb, dest_offset,
492 (unsigned long)item, sizeof(*item));
493
494 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
495 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
496 ins.type = BTRFS_EXTENT_ITEM_KEY;
497
498 if (ins.objectid > 0) {
499 u64 csum_start;
500 u64 csum_end;
501 LIST_HEAD(ordered_sums);
502 /*
503 * is this extent already allocated in the extent
504 * allocation tree? If so, just add a reference
505 */
506 ret = btrfs_lookup_extent(root, ins.objectid,
507 ins.offset);
508 if (ret == 0) {
509 ret = btrfs_inc_extent_ref(trans, root,
510 ins.objectid, ins.offset,
511 path->nodes[0]->start,
512 root->root_key.objectid,
513 trans->transid, key->objectid);
514 } else {
515 /*
516 * insert the extent pointer in the extent
517 * allocation tree
518 */
519 ret = btrfs_alloc_logged_extent(trans, root,
520 path->nodes[0]->start,
521 root->root_key.objectid,
522 trans->transid, key->objectid,
523 &ins);
524 BUG_ON(ret);
525 }
526 btrfs_release_path(root, path);
527
528 if (btrfs_file_extent_compression(eb, item)) {
529 csum_start = ins.objectid;
530 csum_end = csum_start + ins.offset;
531 } else {
532 csum_start = ins.objectid +
533 btrfs_file_extent_offset(eb, item);
534 csum_end = csum_start +
535 btrfs_file_extent_num_bytes(eb, item);
536 }
537
538 ret = btrfs_lookup_csums_range(root->log_root,
539 csum_start, csum_end - 1,
540 &ordered_sums);
541 BUG_ON(ret);
542 while (!list_empty(&ordered_sums)) {
543 struct btrfs_ordered_sum *sums;
544 sums = list_entry(ordered_sums.next,
545 struct btrfs_ordered_sum,
546 list);
547 ret = btrfs_csum_file_blocks(trans,
548 root->fs_info->csum_root,
549 sums);
550 BUG_ON(ret);
551 list_del(&sums->list);
552 kfree(sums);
553 }
554 } else {
555 btrfs_release_path(root, path);
556 }
557 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
558 /* inline extents are easy, we just overwrite them */
559 ret = overwrite_item(trans, root, path, eb, slot, key);
560 BUG_ON(ret);
561 }
e02119d5 562
07d400a6 563 inode_set_bytes(inode, saved_nbytes);
e02119d5
CM
564 btrfs_update_inode(trans, root, inode);
565out:
566 if (inode)
567 iput(inode);
568 return ret;
569}
570
571/*
572 * when cleaning up conflicts between the directory names in the
573 * subvolume, directory names in the log and directory names in the
574 * inode back references, we may have to unlink inodes from directories.
575 *
576 * This is a helper function to do the unlink of a specific directory
577 * item
578 */
579static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
580 struct btrfs_root *root,
581 struct btrfs_path *path,
582 struct inode *dir,
583 struct btrfs_dir_item *di)
584{
585 struct inode *inode;
586 char *name;
587 int name_len;
588 struct extent_buffer *leaf;
589 struct btrfs_key location;
590 int ret;
591
592 leaf = path->nodes[0];
593
594 btrfs_dir_item_key_to_cpu(leaf, di, &location);
595 name_len = btrfs_dir_name_len(leaf, di);
596 name = kmalloc(name_len, GFP_NOFS);
597 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
598 btrfs_release_path(root, path);
599
600 inode = read_one_inode(root, location.objectid);
601 BUG_ON(!inode);
602
ec051c0f
YZ
603 ret = link_to_fixup_dir(trans, root, path, location.objectid);
604 BUG_ON(ret);
e02119d5 605 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
ec051c0f 606 BUG_ON(ret);
e02119d5
CM
607 kfree(name);
608
609 iput(inode);
610 return ret;
611}
612
613/*
614 * helper function to see if a given name and sequence number found
615 * in an inode back reference are already in a directory and correctly
616 * point to this inode
617 */
618static noinline int inode_in_dir(struct btrfs_root *root,
619 struct btrfs_path *path,
620 u64 dirid, u64 objectid, u64 index,
621 const char *name, int name_len)
622{
623 struct btrfs_dir_item *di;
624 struct btrfs_key location;
625 int match = 0;
626
627 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
628 index, name, name_len, 0);
629 if (di && !IS_ERR(di)) {
630 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
631 if (location.objectid != objectid)
632 goto out;
633 } else
634 goto out;
635 btrfs_release_path(root, path);
636
637 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
638 if (di && !IS_ERR(di)) {
639 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
640 if (location.objectid != objectid)
641 goto out;
642 } else
643 goto out;
644 match = 1;
645out:
646 btrfs_release_path(root, path);
647 return match;
648}
649
650/*
651 * helper function to check a log tree for a named back reference in
652 * an inode. This is used to decide if a back reference that is
653 * found in the subvolume conflicts with what we find in the log.
654 *
655 * inode backreferences may have multiple refs in a single item,
656 * during replay we process one reference at a time, and we don't
657 * want to delete valid links to a file from the subvolume if that
658 * link is also in the log.
659 */
660static noinline int backref_in_log(struct btrfs_root *log,
661 struct btrfs_key *key,
662 char *name, int namelen)
663{
664 struct btrfs_path *path;
665 struct btrfs_inode_ref *ref;
666 unsigned long ptr;
667 unsigned long ptr_end;
668 unsigned long name_ptr;
669 int found_name_len;
670 int item_size;
671 int ret;
672 int match = 0;
673
674 path = btrfs_alloc_path();
675 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
676 if (ret != 0)
677 goto out;
678
679 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
680 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
681 ptr_end = ptr + item_size;
682 while (ptr < ptr_end) {
683 ref = (struct btrfs_inode_ref *)ptr;
684 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
685 if (found_name_len == namelen) {
686 name_ptr = (unsigned long)(ref + 1);
687 ret = memcmp_extent_buffer(path->nodes[0], name,
688 name_ptr, namelen);
689 if (ret == 0) {
690 match = 1;
691 goto out;
692 }
693 }
694 ptr = (unsigned long)(ref + 1) + found_name_len;
695 }
696out:
697 btrfs_free_path(path);
698 return match;
699}
700
701
702/*
703 * replay one inode back reference item found in the log tree.
704 * eb, slot and key refer to the buffer and key found in the log tree.
705 * root is the destination we are replaying into, and path is for temp
706 * use by this function. (it should be released on return).
707 */
708static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
709 struct btrfs_root *root,
710 struct btrfs_root *log,
711 struct btrfs_path *path,
712 struct extent_buffer *eb, int slot,
713 struct btrfs_key *key)
714{
715 struct inode *dir;
716 int ret;
717 struct btrfs_key location;
718 struct btrfs_inode_ref *ref;
719 struct btrfs_dir_item *di;
720 struct inode *inode;
721 char *name;
722 int namelen;
723 unsigned long ref_ptr;
724 unsigned long ref_end;
725
726 location.objectid = key->objectid;
727 location.type = BTRFS_INODE_ITEM_KEY;
728 location.offset = 0;
729
730 /*
731 * it is possible that we didn't log all the parent directories
732 * for a given inode. If we don't find the dir, just don't
733 * copy the back ref in. The link count fixup code will take
734 * care of the rest
735 */
736 dir = read_one_inode(root, key->offset);
737 if (!dir)
738 return -ENOENT;
739
740 inode = read_one_inode(root, key->objectid);
741 BUG_ON(!dir);
742
743 ref_ptr = btrfs_item_ptr_offset(eb, slot);
744 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
745
746again:
747 ref = (struct btrfs_inode_ref *)ref_ptr;
748
749 namelen = btrfs_inode_ref_name_len(eb, ref);
750 name = kmalloc(namelen, GFP_NOFS);
751 BUG_ON(!name);
752
753 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
754
755 /* if we already have a perfect match, we're done */
756 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
757 btrfs_inode_ref_index(eb, ref),
758 name, namelen)) {
759 goto out;
760 }
761
762 /*
763 * look for a conflicting back reference in the metadata.
764 * if we find one we have to unlink that name of the file
765 * before we add our new link. Later on, we overwrite any
766 * existing back reference, and we don't want to create
767 * dangling pointers in the directory.
768 */
769conflict_again:
770 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
771 if (ret == 0) {
772 char *victim_name;
773 int victim_name_len;
774 struct btrfs_inode_ref *victim_ref;
775 unsigned long ptr;
776 unsigned long ptr_end;
777 struct extent_buffer *leaf = path->nodes[0];
778
779 /* are we trying to overwrite a back ref for the root directory
780 * if so, just jump out, we're done
781 */
782 if (key->objectid == key->offset)
783 goto out_nowrite;
784
785 /* check all the names in this back reference to see
786 * if they are in the log. if so, we allow them to stay
787 * otherwise they must be unlinked as a conflict
788 */
789 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
790 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 791 while (ptr < ptr_end) {
e02119d5
CM
792 victim_ref = (struct btrfs_inode_ref *)ptr;
793 victim_name_len = btrfs_inode_ref_name_len(leaf,
794 victim_ref);
795 victim_name = kmalloc(victim_name_len, GFP_NOFS);
796 BUG_ON(!victim_name);
797
798 read_extent_buffer(leaf, victim_name,
799 (unsigned long)(victim_ref + 1),
800 victim_name_len);
801
802 if (!backref_in_log(log, key, victim_name,
803 victim_name_len)) {
804 btrfs_inc_nlink(inode);
805 btrfs_release_path(root, path);
806 ret = btrfs_unlink_inode(trans, root, dir,
807 inode, victim_name,
808 victim_name_len);
809 kfree(victim_name);
810 btrfs_release_path(root, path);
811 goto conflict_again;
812 }
813 kfree(victim_name);
814 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
815 }
816 BUG_ON(ret);
817 }
818 btrfs_release_path(root, path);
819
820 /* look for a conflicting sequence number */
821 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
822 btrfs_inode_ref_index(eb, ref),
823 name, namelen, 0);
824 if (di && !IS_ERR(di)) {
825 ret = drop_one_dir_item(trans, root, path, dir, di);
826 BUG_ON(ret);
827 }
828 btrfs_release_path(root, path);
829
830
831 /* look for a conflicting name */
832 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
833 name, namelen, 0);
834 if (di && !IS_ERR(di)) {
835 ret = drop_one_dir_item(trans, root, path, dir, di);
836 BUG_ON(ret);
837 }
838 btrfs_release_path(root, path);
839
840 /* insert our name */
841 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
842 btrfs_inode_ref_index(eb, ref));
843 BUG_ON(ret);
844
845 btrfs_update_inode(trans, root, inode);
846
847out:
848 ref_ptr = (unsigned long)(ref + 1) + namelen;
849 kfree(name);
850 if (ref_ptr < ref_end)
851 goto again;
852
853 /* finally write the back reference in the inode */
854 ret = overwrite_item(trans, root, path, eb, slot, key);
855 BUG_ON(ret);
856
857out_nowrite:
858 btrfs_release_path(root, path);
859 iput(dir);
860 iput(inode);
861 return 0;
862}
863
e02119d5
CM
864/*
865 * There are a few corners where the link count of the file can't
866 * be properly maintained during replay. So, instead of adding
867 * lots of complexity to the log code, we just scan the backrefs
868 * for any file that has been through replay.
869 *
870 * The scan will update the link count on the inode to reflect the
871 * number of back refs found. If it goes down to zero, the iput
872 * will free the inode.
873 */
874static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
875 struct btrfs_root *root,
876 struct inode *inode)
877{
878 struct btrfs_path *path;
879 int ret;
880 struct btrfs_key key;
881 u64 nlink = 0;
882 unsigned long ptr;
883 unsigned long ptr_end;
884 int name_len;
885
886 key.objectid = inode->i_ino;
887 key.type = BTRFS_INODE_REF_KEY;
888 key.offset = (u64)-1;
889
890 path = btrfs_alloc_path();
891
d397712b 892 while (1) {
e02119d5
CM
893 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
894 if (ret < 0)
895 break;
896 if (ret > 0) {
897 if (path->slots[0] == 0)
898 break;
899 path->slots[0]--;
900 }
901 btrfs_item_key_to_cpu(path->nodes[0], &key,
902 path->slots[0]);
903 if (key.objectid != inode->i_ino ||
904 key.type != BTRFS_INODE_REF_KEY)
905 break;
906 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
907 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
908 path->slots[0]);
d397712b 909 while (ptr < ptr_end) {
e02119d5
CM
910 struct btrfs_inode_ref *ref;
911
912 ref = (struct btrfs_inode_ref *)ptr;
913 name_len = btrfs_inode_ref_name_len(path->nodes[0],
914 ref);
915 ptr = (unsigned long)(ref + 1) + name_len;
916 nlink++;
917 }
918
919 if (key.offset == 0)
920 break;
921 key.offset--;
922 btrfs_release_path(root, path);
923 }
924 btrfs_free_path(path);
925 if (nlink != inode->i_nlink) {
926 inode->i_nlink = nlink;
927 btrfs_update_inode(trans, root, inode);
928 }
8d5bf1cb 929 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5
CM
930
931 return 0;
932}
933
934static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
935 struct btrfs_root *root,
936 struct btrfs_path *path)
937{
938 int ret;
939 struct btrfs_key key;
940 struct inode *inode;
941
942 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
943 key.type = BTRFS_ORPHAN_ITEM_KEY;
944 key.offset = (u64)-1;
d397712b 945 while (1) {
e02119d5
CM
946 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
947 if (ret < 0)
948 break;
949
950 if (ret == 1) {
951 if (path->slots[0] == 0)
952 break;
953 path->slots[0]--;
954 }
955
956 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
957 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
958 key.type != BTRFS_ORPHAN_ITEM_KEY)
959 break;
960
961 ret = btrfs_del_item(trans, root, path);
962 BUG_ON(ret);
963
964 btrfs_release_path(root, path);
965 inode = read_one_inode(root, key.offset);
966 BUG_ON(!inode);
967
968 ret = fixup_inode_link_count(trans, root, inode);
969 BUG_ON(ret);
970
971 iput(inode);
972
973 if (key.offset == 0)
974 break;
975 key.offset--;
976 }
977 btrfs_release_path(root, path);
978 return 0;
979}
980
981
982/*
983 * record a given inode in the fixup dir so we can check its link
984 * count when replay is done. The link count is incremented here
985 * so the inode won't go away until we check it
986 */
987static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
988 struct btrfs_root *root,
989 struct btrfs_path *path,
990 u64 objectid)
991{
992 struct btrfs_key key;
993 int ret = 0;
994 struct inode *inode;
995
996 inode = read_one_inode(root, objectid);
997 BUG_ON(!inode);
998
999 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1000 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1001 key.offset = objectid;
1002
1003 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1004
1005 btrfs_release_path(root, path);
1006 if (ret == 0) {
1007 btrfs_inc_nlink(inode);
1008 btrfs_update_inode(trans, root, inode);
1009 } else if (ret == -EEXIST) {
1010 ret = 0;
1011 } else {
1012 BUG();
1013 }
1014 iput(inode);
1015
1016 return ret;
1017}
1018
1019/*
1020 * when replaying the log for a directory, we only insert names
1021 * for inodes that actually exist. This means an fsync on a directory
1022 * does not implicitly fsync all the new files in it
1023 */
1024static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1025 struct btrfs_root *root,
1026 struct btrfs_path *path,
1027 u64 dirid, u64 index,
1028 char *name, int name_len, u8 type,
1029 struct btrfs_key *location)
1030{
1031 struct inode *inode;
1032 struct inode *dir;
1033 int ret;
1034
1035 inode = read_one_inode(root, location->objectid);
1036 if (!inode)
1037 return -ENOENT;
1038
1039 dir = read_one_inode(root, dirid);
1040 if (!dir) {
1041 iput(inode);
1042 return -EIO;
1043 }
1044 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1045
1046 /* FIXME, put inode into FIXUP list */
1047
1048 iput(inode);
1049 iput(dir);
1050 return ret;
1051}
1052
1053/*
1054 * take a single entry in a log directory item and replay it into
1055 * the subvolume.
1056 *
1057 * if a conflicting item exists in the subdirectory already,
1058 * the inode it points to is unlinked and put into the link count
1059 * fix up tree.
1060 *
1061 * If a name from the log points to a file or directory that does
1062 * not exist in the FS, it is skipped. fsyncs on directories
1063 * do not force down inodes inside that directory, just changes to the
1064 * names or unlinks in a directory.
1065 */
1066static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1067 struct btrfs_root *root,
1068 struct btrfs_path *path,
1069 struct extent_buffer *eb,
1070 struct btrfs_dir_item *di,
1071 struct btrfs_key *key)
1072{
1073 char *name;
1074 int name_len;
1075 struct btrfs_dir_item *dst_di;
1076 struct btrfs_key found_key;
1077 struct btrfs_key log_key;
1078 struct inode *dir;
e02119d5 1079 u8 log_type;
4bef0848 1080 int exists;
e02119d5
CM
1081 int ret;
1082
1083 dir = read_one_inode(root, key->objectid);
1084 BUG_ON(!dir);
1085
1086 name_len = btrfs_dir_name_len(eb, di);
1087 name = kmalloc(name_len, GFP_NOFS);
1088 log_type = btrfs_dir_type(eb, di);
1089 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1090 name_len);
1091
1092 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1093 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1094 if (exists == 0)
1095 exists = 1;
1096 else
1097 exists = 0;
1098 btrfs_release_path(root, path);
1099
e02119d5
CM
1100 if (key->type == BTRFS_DIR_ITEM_KEY) {
1101 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1102 name, name_len, 1);
d397712b 1103 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1104 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1105 key->objectid,
1106 key->offset, name,
1107 name_len, 1);
1108 } else {
1109 BUG();
1110 }
1111 if (!dst_di || IS_ERR(dst_di)) {
1112 /* we need a sequence number to insert, so we only
1113 * do inserts for the BTRFS_DIR_INDEX_KEY types
1114 */
1115 if (key->type != BTRFS_DIR_INDEX_KEY)
1116 goto out;
1117 goto insert;
1118 }
1119
1120 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1121 /* the existing item matches the logged item */
1122 if (found_key.objectid == log_key.objectid &&
1123 found_key.type == log_key.type &&
1124 found_key.offset == log_key.offset &&
1125 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1126 goto out;
1127 }
1128
1129 /*
1130 * don't drop the conflicting directory entry if the inode
1131 * for the new entry doesn't exist
1132 */
4bef0848 1133 if (!exists)
e02119d5
CM
1134 goto out;
1135
e02119d5
CM
1136 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1137 BUG_ON(ret);
1138
1139 if (key->type == BTRFS_DIR_INDEX_KEY)
1140 goto insert;
1141out:
1142 btrfs_release_path(root, path);
1143 kfree(name);
1144 iput(dir);
1145 return 0;
1146
1147insert:
1148 btrfs_release_path(root, path);
1149 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1150 name, name_len, log_type, &log_key);
1151
1152 if (ret && ret != -ENOENT)
1153 BUG();
1154 goto out;
1155}
1156
1157/*
1158 * find all the names in a directory item and reconcile them into
1159 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1160 * one name in a directory item, but the same code gets used for
1161 * both directory index types
1162 */
1163static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1164 struct btrfs_root *root,
1165 struct btrfs_path *path,
1166 struct extent_buffer *eb, int slot,
1167 struct btrfs_key *key)
1168{
1169 int ret;
1170 u32 item_size = btrfs_item_size_nr(eb, slot);
1171 struct btrfs_dir_item *di;
1172 int name_len;
1173 unsigned long ptr;
1174 unsigned long ptr_end;
1175
1176 ptr = btrfs_item_ptr_offset(eb, slot);
1177 ptr_end = ptr + item_size;
d397712b 1178 while (ptr < ptr_end) {
e02119d5
CM
1179 di = (struct btrfs_dir_item *)ptr;
1180 name_len = btrfs_dir_name_len(eb, di);
1181 ret = replay_one_name(trans, root, path, eb, di, key);
1182 BUG_ON(ret);
1183 ptr = (unsigned long)(di + 1);
1184 ptr += name_len;
1185 }
1186 return 0;
1187}
1188
1189/*
1190 * directory replay has two parts. There are the standard directory
1191 * items in the log copied from the subvolume, and range items
1192 * created in the log while the subvolume was logged.
1193 *
1194 * The range items tell us which parts of the key space the log
1195 * is authoritative for. During replay, if a key in the subvolume
1196 * directory is in a logged range item, but not actually in the log
1197 * that means it was deleted from the directory before the fsync
1198 * and should be removed.
1199 */
1200static noinline int find_dir_range(struct btrfs_root *root,
1201 struct btrfs_path *path,
1202 u64 dirid, int key_type,
1203 u64 *start_ret, u64 *end_ret)
1204{
1205 struct btrfs_key key;
1206 u64 found_end;
1207 struct btrfs_dir_log_item *item;
1208 int ret;
1209 int nritems;
1210
1211 if (*start_ret == (u64)-1)
1212 return 1;
1213
1214 key.objectid = dirid;
1215 key.type = key_type;
1216 key.offset = *start_ret;
1217
1218 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1219 if (ret < 0)
1220 goto out;
1221 if (ret > 0) {
1222 if (path->slots[0] == 0)
1223 goto out;
1224 path->slots[0]--;
1225 }
1226 if (ret != 0)
1227 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1228
1229 if (key.type != key_type || key.objectid != dirid) {
1230 ret = 1;
1231 goto next;
1232 }
1233 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1234 struct btrfs_dir_log_item);
1235 found_end = btrfs_dir_log_end(path->nodes[0], item);
1236
1237 if (*start_ret >= key.offset && *start_ret <= found_end) {
1238 ret = 0;
1239 *start_ret = key.offset;
1240 *end_ret = found_end;
1241 goto out;
1242 }
1243 ret = 1;
1244next:
1245 /* check the next slot in the tree to see if it is a valid item */
1246 nritems = btrfs_header_nritems(path->nodes[0]);
1247 if (path->slots[0] >= nritems) {
1248 ret = btrfs_next_leaf(root, path);
1249 if (ret)
1250 goto out;
1251 } else {
1252 path->slots[0]++;
1253 }
1254
1255 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1256
1257 if (key.type != key_type || key.objectid != dirid) {
1258 ret = 1;
1259 goto out;
1260 }
1261 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1262 struct btrfs_dir_log_item);
1263 found_end = btrfs_dir_log_end(path->nodes[0], item);
1264 *start_ret = key.offset;
1265 *end_ret = found_end;
1266 ret = 0;
1267out:
1268 btrfs_release_path(root, path);
1269 return ret;
1270}
1271
1272/*
1273 * this looks for a given directory item in the log. If the directory
1274 * item is not in the log, the item is removed and the inode it points
1275 * to is unlinked
1276 */
1277static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1278 struct btrfs_root *root,
1279 struct btrfs_root *log,
1280 struct btrfs_path *path,
1281 struct btrfs_path *log_path,
1282 struct inode *dir,
1283 struct btrfs_key *dir_key)
1284{
1285 int ret;
1286 struct extent_buffer *eb;
1287 int slot;
1288 u32 item_size;
1289 struct btrfs_dir_item *di;
1290 struct btrfs_dir_item *log_di;
1291 int name_len;
1292 unsigned long ptr;
1293 unsigned long ptr_end;
1294 char *name;
1295 struct inode *inode;
1296 struct btrfs_key location;
1297
1298again:
1299 eb = path->nodes[0];
1300 slot = path->slots[0];
1301 item_size = btrfs_item_size_nr(eb, slot);
1302 ptr = btrfs_item_ptr_offset(eb, slot);
1303 ptr_end = ptr + item_size;
d397712b 1304 while (ptr < ptr_end) {
e02119d5
CM
1305 di = (struct btrfs_dir_item *)ptr;
1306 name_len = btrfs_dir_name_len(eb, di);
1307 name = kmalloc(name_len, GFP_NOFS);
1308 if (!name) {
1309 ret = -ENOMEM;
1310 goto out;
1311 }
1312 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1313 name_len);
1314 log_di = NULL;
1315 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1316 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1317 dir_key->objectid,
1318 name, name_len, 0);
1319 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1320 log_di = btrfs_lookup_dir_index_item(trans, log,
1321 log_path,
1322 dir_key->objectid,
1323 dir_key->offset,
1324 name, name_len, 0);
1325 }
1326 if (!log_di || IS_ERR(log_di)) {
1327 btrfs_dir_item_key_to_cpu(eb, di, &location);
1328 btrfs_release_path(root, path);
1329 btrfs_release_path(log, log_path);
1330 inode = read_one_inode(root, location.objectid);
1331 BUG_ON(!inode);
1332
1333 ret = link_to_fixup_dir(trans, root,
1334 path, location.objectid);
1335 BUG_ON(ret);
1336 btrfs_inc_nlink(inode);
1337 ret = btrfs_unlink_inode(trans, root, dir, inode,
1338 name, name_len);
1339 BUG_ON(ret);
1340 kfree(name);
1341 iput(inode);
1342
1343 /* there might still be more names under this key
1344 * check and repeat if required
1345 */
1346 ret = btrfs_search_slot(NULL, root, dir_key, path,
1347 0, 0);
1348 if (ret == 0)
1349 goto again;
1350 ret = 0;
1351 goto out;
1352 }
1353 btrfs_release_path(log, log_path);
1354 kfree(name);
1355
1356 ptr = (unsigned long)(di + 1);
1357 ptr += name_len;
1358 }
1359 ret = 0;
1360out:
1361 btrfs_release_path(root, path);
1362 btrfs_release_path(log, log_path);
1363 return ret;
1364}
1365
1366/*
1367 * deletion replay happens before we copy any new directory items
1368 * out of the log or out of backreferences from inodes. It
1369 * scans the log to find ranges of keys that log is authoritative for,
1370 * and then scans the directory to find items in those ranges that are
1371 * not present in the log.
1372 *
1373 * Anything we don't find in the log is unlinked and removed from the
1374 * directory.
1375 */
1376static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1377 struct btrfs_root *root,
1378 struct btrfs_root *log,
1379 struct btrfs_path *path,
1380 u64 dirid)
1381{
1382 u64 range_start;
1383 u64 range_end;
1384 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1385 int ret = 0;
1386 struct btrfs_key dir_key;
1387 struct btrfs_key found_key;
1388 struct btrfs_path *log_path;
1389 struct inode *dir;
1390
1391 dir_key.objectid = dirid;
1392 dir_key.type = BTRFS_DIR_ITEM_KEY;
1393 log_path = btrfs_alloc_path();
1394 if (!log_path)
1395 return -ENOMEM;
1396
1397 dir = read_one_inode(root, dirid);
1398 /* it isn't an error if the inode isn't there, that can happen
1399 * because we replay the deletes before we copy in the inode item
1400 * from the log
1401 */
1402 if (!dir) {
1403 btrfs_free_path(log_path);
1404 return 0;
1405 }
1406again:
1407 range_start = 0;
1408 range_end = 0;
d397712b 1409 while (1) {
e02119d5
CM
1410 ret = find_dir_range(log, path, dirid, key_type,
1411 &range_start, &range_end);
1412 if (ret != 0)
1413 break;
1414
1415 dir_key.offset = range_start;
d397712b 1416 while (1) {
e02119d5
CM
1417 int nritems;
1418 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1419 0, 0);
1420 if (ret < 0)
1421 goto out;
1422
1423 nritems = btrfs_header_nritems(path->nodes[0]);
1424 if (path->slots[0] >= nritems) {
1425 ret = btrfs_next_leaf(root, path);
1426 if (ret)
1427 break;
1428 }
1429 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1430 path->slots[0]);
1431 if (found_key.objectid != dirid ||
1432 found_key.type != dir_key.type)
1433 goto next_type;
1434
1435 if (found_key.offset > range_end)
1436 break;
1437
1438 ret = check_item_in_log(trans, root, log, path,
1439 log_path, dir, &found_key);
1440 BUG_ON(ret);
1441 if (found_key.offset == (u64)-1)
1442 break;
1443 dir_key.offset = found_key.offset + 1;
1444 }
1445 btrfs_release_path(root, path);
1446 if (range_end == (u64)-1)
1447 break;
1448 range_start = range_end + 1;
1449 }
1450
1451next_type:
1452 ret = 0;
1453 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1454 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1455 dir_key.type = BTRFS_DIR_INDEX_KEY;
1456 btrfs_release_path(root, path);
1457 goto again;
1458 }
1459out:
1460 btrfs_release_path(root, path);
1461 btrfs_free_path(log_path);
1462 iput(dir);
1463 return ret;
1464}
1465
1466/*
1467 * the process_func used to replay items from the log tree. This
1468 * gets called in two different stages. The first stage just looks
1469 * for inodes and makes sure they are all copied into the subvolume.
1470 *
1471 * The second stage copies all the other item types from the log into
1472 * the subvolume. The two stage approach is slower, but gets rid of
1473 * lots of complexity around inodes referencing other inodes that exist
1474 * only in the log (references come from either directory items or inode
1475 * back refs).
1476 */
1477static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1478 struct walk_control *wc, u64 gen)
1479{
1480 int nritems;
1481 struct btrfs_path *path;
1482 struct btrfs_root *root = wc->replay_dest;
1483 struct btrfs_key key;
1484 u32 item_size;
1485 int level;
1486 int i;
1487 int ret;
1488
1489 btrfs_read_buffer(eb, gen);
1490
1491 level = btrfs_header_level(eb);
1492
1493 if (level != 0)
1494 return 0;
1495
1496 path = btrfs_alloc_path();
1497 BUG_ON(!path);
1498
1499 nritems = btrfs_header_nritems(eb);
1500 for (i = 0; i < nritems; i++) {
1501 btrfs_item_key_to_cpu(eb, &key, i);
1502 item_size = btrfs_item_size_nr(eb, i);
1503
1504 /* inode keys are done during the first stage */
1505 if (key.type == BTRFS_INODE_ITEM_KEY &&
1506 wc->stage == LOG_WALK_REPLAY_INODES) {
1507 struct inode *inode;
1508 struct btrfs_inode_item *inode_item;
1509 u32 mode;
1510
1511 inode_item = btrfs_item_ptr(eb, i,
1512 struct btrfs_inode_item);
1513 mode = btrfs_inode_mode(eb, inode_item);
1514 if (S_ISDIR(mode)) {
1515 ret = replay_dir_deletes(wc->trans,
1516 root, log, path, key.objectid);
1517 BUG_ON(ret);
1518 }
1519 ret = overwrite_item(wc->trans, root, path,
1520 eb, i, &key);
1521 BUG_ON(ret);
1522
1523 /* for regular files, truncate away
1524 * extents past the new EOF
1525 */
1526 if (S_ISREG(mode)) {
1527 inode = read_one_inode(root,
1528 key.objectid);
1529 BUG_ON(!inode);
1530
1531 ret = btrfs_truncate_inode_items(wc->trans,
1532 root, inode, inode->i_size,
1533 BTRFS_EXTENT_DATA_KEY);
1534 BUG_ON(ret);
a74ac322
CM
1535
1536 /* if the nlink count is zero here, the iput
1537 * will free the inode. We bump it to make
1538 * sure it doesn't get freed until the link
1539 * count fixup is done
1540 */
1541 if (inode->i_nlink == 0) {
1542 btrfs_inc_nlink(inode);
1543 btrfs_update_inode(wc->trans,
1544 root, inode);
1545 }
e02119d5
CM
1546 iput(inode);
1547 }
1548 ret = link_to_fixup_dir(wc->trans, root,
1549 path, key.objectid);
1550 BUG_ON(ret);
1551 }
1552 if (wc->stage < LOG_WALK_REPLAY_ALL)
1553 continue;
1554
1555 /* these keys are simply copied */
1556 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1557 ret = overwrite_item(wc->trans, root, path,
1558 eb, i, &key);
1559 BUG_ON(ret);
1560 } else if (key.type == BTRFS_INODE_REF_KEY) {
1561 ret = add_inode_ref(wc->trans, root, log, path,
1562 eb, i, &key);
1563 BUG_ON(ret && ret != -ENOENT);
1564 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1565 ret = replay_one_extent(wc->trans, root, path,
1566 eb, i, &key);
1567 BUG_ON(ret);
e02119d5
CM
1568 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1569 key.type == BTRFS_DIR_INDEX_KEY) {
1570 ret = replay_one_dir_item(wc->trans, root, path,
1571 eb, i, &key);
1572 BUG_ON(ret);
1573 }
1574 }
1575 btrfs_free_path(path);
1576 return 0;
1577}
1578
d397712b 1579static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1580 struct btrfs_root *root,
1581 struct btrfs_path *path, int *level,
1582 struct walk_control *wc)
1583{
1584 u64 root_owner;
1585 u64 root_gen;
1586 u64 bytenr;
1587 u64 ptr_gen;
1588 struct extent_buffer *next;
1589 struct extent_buffer *cur;
1590 struct extent_buffer *parent;
1591 u32 blocksize;
1592 int ret = 0;
1593
1594 WARN_ON(*level < 0);
1595 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1596
d397712b 1597 while (*level > 0) {
e02119d5
CM
1598 WARN_ON(*level < 0);
1599 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1600 cur = path->nodes[*level];
1601
1602 if (btrfs_header_level(cur) != *level)
1603 WARN_ON(1);
1604
1605 if (path->slots[*level] >=
1606 btrfs_header_nritems(cur))
1607 break;
1608
1609 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1610 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1611 blocksize = btrfs_level_size(root, *level - 1);
1612
1613 parent = path->nodes[*level];
1614 root_owner = btrfs_header_owner(parent);
1615 root_gen = btrfs_header_generation(parent);
1616
1617 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1618
1619 wc->process_func(root, next, wc, ptr_gen);
1620
1621 if (*level == 1) {
1622 path->slots[*level]++;
1623 if (wc->free) {
1624 btrfs_read_buffer(next, ptr_gen);
1625
1626 btrfs_tree_lock(next);
1627 clean_tree_block(trans, root, next);
b4ce94de 1628 btrfs_set_lock_blocking(next);
e02119d5
CM
1629 btrfs_wait_tree_block_writeback(next);
1630 btrfs_tree_unlock(next);
1631
1632 ret = btrfs_drop_leaf_ref(trans, root, next);
1633 BUG_ON(ret);
1634
1635 WARN_ON(root_owner !=
1636 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1637 ret = btrfs_free_reserved_extent(root,
1638 bytenr, blocksize);
e02119d5
CM
1639 BUG_ON(ret);
1640 }
1641 free_extent_buffer(next);
1642 continue;
1643 }
1644 btrfs_read_buffer(next, ptr_gen);
1645
1646 WARN_ON(*level <= 0);
1647 if (path->nodes[*level-1])
1648 free_extent_buffer(path->nodes[*level-1]);
1649 path->nodes[*level-1] = next;
1650 *level = btrfs_header_level(next);
1651 path->slots[*level] = 0;
1652 cond_resched();
1653 }
1654 WARN_ON(*level < 0);
1655 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1656
d397712b 1657 if (path->nodes[*level] == root->node)
e02119d5 1658 parent = path->nodes[*level];
d397712b 1659 else
e02119d5 1660 parent = path->nodes[*level + 1];
d397712b 1661
e02119d5
CM
1662 bytenr = path->nodes[*level]->start;
1663
1664 blocksize = btrfs_level_size(root, *level);
1665 root_owner = btrfs_header_owner(parent);
1666 root_gen = btrfs_header_generation(parent);
1667
1668 wc->process_func(root, path->nodes[*level], wc,
1669 btrfs_header_generation(path->nodes[*level]));
1670
1671 if (wc->free) {
1672 next = path->nodes[*level];
1673 btrfs_tree_lock(next);
1674 clean_tree_block(trans, root, next);
b4ce94de 1675 btrfs_set_lock_blocking(next);
e02119d5
CM
1676 btrfs_wait_tree_block_writeback(next);
1677 btrfs_tree_unlock(next);
1678
1679 if (*level == 0) {
1680 ret = btrfs_drop_leaf_ref(trans, root, next);
1681 BUG_ON(ret);
1682 }
1683 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1684 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
e02119d5
CM
1685 BUG_ON(ret);
1686 }
1687 free_extent_buffer(path->nodes[*level]);
1688 path->nodes[*level] = NULL;
1689 *level += 1;
1690
1691 cond_resched();
1692 return 0;
1693}
1694
d397712b 1695static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1696 struct btrfs_root *root,
1697 struct btrfs_path *path, int *level,
1698 struct walk_control *wc)
1699{
1700 u64 root_owner;
1701 u64 root_gen;
1702 int i;
1703 int slot;
1704 int ret;
1705
d397712b 1706 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5
CM
1707 slot = path->slots[i];
1708 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1709 struct extent_buffer *node;
1710 node = path->nodes[i];
1711 path->slots[i]++;
1712 *level = i;
1713 WARN_ON(*level == 0);
1714 return 0;
1715 } else {
31840ae1
ZY
1716 struct extent_buffer *parent;
1717 if (path->nodes[*level] == root->node)
1718 parent = path->nodes[*level];
1719 else
1720 parent = path->nodes[*level + 1];
1721
1722 root_owner = btrfs_header_owner(parent);
1723 root_gen = btrfs_header_generation(parent);
e02119d5
CM
1724 wc->process_func(root, path->nodes[*level], wc,
1725 btrfs_header_generation(path->nodes[*level]));
1726 if (wc->free) {
1727 struct extent_buffer *next;
1728
1729 next = path->nodes[*level];
1730
1731 btrfs_tree_lock(next);
1732 clean_tree_block(trans, root, next);
b4ce94de 1733 btrfs_set_lock_blocking(next);
e02119d5
CM
1734 btrfs_wait_tree_block_writeback(next);
1735 btrfs_tree_unlock(next);
1736
1737 if (*level == 0) {
1738 ret = btrfs_drop_leaf_ref(trans, root,
1739 next);
1740 BUG_ON(ret);
1741 }
1742
1743 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1744 ret = btrfs_free_reserved_extent(root,
e02119d5 1745 path->nodes[*level]->start,
d00aff00 1746 path->nodes[*level]->len);
e02119d5
CM
1747 BUG_ON(ret);
1748 }
1749 free_extent_buffer(path->nodes[*level]);
1750 path->nodes[*level] = NULL;
1751 *level = i + 1;
1752 }
1753 }
1754 return 1;
1755}
1756
1757/*
1758 * drop the reference count on the tree rooted at 'snap'. This traverses
1759 * the tree freeing any blocks that have a ref count of zero after being
1760 * decremented.
1761 */
1762static int walk_log_tree(struct btrfs_trans_handle *trans,
1763 struct btrfs_root *log, struct walk_control *wc)
1764{
1765 int ret = 0;
1766 int wret;
1767 int level;
1768 struct btrfs_path *path;
1769 int i;
1770 int orig_level;
1771
1772 path = btrfs_alloc_path();
1773 BUG_ON(!path);
1774
1775 level = btrfs_header_level(log->node);
1776 orig_level = level;
1777 path->nodes[level] = log->node;
1778 extent_buffer_get(log->node);
1779 path->slots[level] = 0;
1780
d397712b 1781 while (1) {
e02119d5
CM
1782 wret = walk_down_log_tree(trans, log, path, &level, wc);
1783 if (wret > 0)
1784 break;
1785 if (wret < 0)
1786 ret = wret;
1787
1788 wret = walk_up_log_tree(trans, log, path, &level, wc);
1789 if (wret > 0)
1790 break;
1791 if (wret < 0)
1792 ret = wret;
1793 }
1794
1795 /* was the root node processed? if not, catch it here */
1796 if (path->nodes[orig_level]) {
1797 wc->process_func(log, path->nodes[orig_level], wc,
1798 btrfs_header_generation(path->nodes[orig_level]));
1799 if (wc->free) {
1800 struct extent_buffer *next;
1801
1802 next = path->nodes[orig_level];
1803
1804 btrfs_tree_lock(next);
1805 clean_tree_block(trans, log, next);
b4ce94de 1806 btrfs_set_lock_blocking(next);
e02119d5
CM
1807 btrfs_wait_tree_block_writeback(next);
1808 btrfs_tree_unlock(next);
1809
1810 if (orig_level == 0) {
1811 ret = btrfs_drop_leaf_ref(trans, log,
1812 next);
1813 BUG_ON(ret);
1814 }
1815 WARN_ON(log->root_key.objectid !=
1816 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1817 ret = btrfs_free_reserved_extent(log, next->start,
1818 next->len);
e02119d5
CM
1819 BUG_ON(ret);
1820 }
1821 }
1822
1823 for (i = 0; i <= orig_level; i++) {
1824 if (path->nodes[i]) {
1825 free_extent_buffer(path->nodes[i]);
1826 path->nodes[i] = NULL;
1827 }
1828 }
1829 btrfs_free_path(path);
e02119d5
CM
1830 return ret;
1831}
1832
7237f183
YZ
1833/*
1834 * helper function to update the item for a given subvolumes log root
1835 * in the tree of log roots
1836 */
1837static int update_log_root(struct btrfs_trans_handle *trans,
1838 struct btrfs_root *log)
1839{
1840 int ret;
1841
1842 if (log->log_transid == 1) {
1843 /* insert root item on the first sync */
1844 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1845 &log->root_key, &log->root_item);
1846 } else {
1847 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1848 &log->root_key, &log->root_item);
1849 }
1850 return ret;
1851}
1852
1853static int wait_log_commit(struct btrfs_root *root, unsigned long transid)
e02119d5
CM
1854{
1855 DEFINE_WAIT(wait);
7237f183 1856 int index = transid % 2;
e02119d5 1857
7237f183
YZ
1858 /*
1859 * we only allow two pending log transactions at a time,
1860 * so we know that if ours is more than 2 older than the
1861 * current transaction, we're done
1862 */
e02119d5 1863 do {
7237f183
YZ
1864 prepare_to_wait(&root->log_commit_wait[index],
1865 &wait, TASK_UNINTERRUPTIBLE);
1866 mutex_unlock(&root->log_mutex);
1867 if (root->log_transid < transid + 2 &&
1868 atomic_read(&root->log_commit[index]))
1869 schedule();
1870 finish_wait(&root->log_commit_wait[index], &wait);
1871 mutex_lock(&root->log_mutex);
1872 } while (root->log_transid < transid + 2 &&
1873 atomic_read(&root->log_commit[index]));
1874 return 0;
1875}
1876
1877static int wait_for_writer(struct btrfs_root *root)
1878{
1879 DEFINE_WAIT(wait);
1880 while (atomic_read(&root->log_writers)) {
1881 prepare_to_wait(&root->log_writer_wait,
1882 &wait, TASK_UNINTERRUPTIBLE);
1883 mutex_unlock(&root->log_mutex);
1884 if (atomic_read(&root->log_writers))
e02119d5 1885 schedule();
7237f183
YZ
1886 mutex_lock(&root->log_mutex);
1887 finish_wait(&root->log_writer_wait, &wait);
1888 }
e02119d5
CM
1889 return 0;
1890}
1891
1892/*
1893 * btrfs_sync_log does sends a given tree log down to the disk and
1894 * updates the super blocks to record it. When this call is done,
1895 * you know that any inodes previously logged are safely on disk
1896 */
1897int btrfs_sync_log(struct btrfs_trans_handle *trans,
1898 struct btrfs_root *root)
1899{
7237f183
YZ
1900 int index1;
1901 int index2;
e02119d5 1902 int ret;
e02119d5 1903 struct btrfs_root *log = root->log_root;
7237f183 1904 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
e02119d5 1905
7237f183
YZ
1906 mutex_lock(&root->log_mutex);
1907 index1 = root->log_transid % 2;
1908 if (atomic_read(&root->log_commit[index1])) {
1909 wait_log_commit(root, root->log_transid);
1910 mutex_unlock(&root->log_mutex);
1911 return 0;
e02119d5 1912 }
7237f183
YZ
1913 atomic_set(&root->log_commit[index1], 1);
1914
1915 /* wait for previous tree log sync to complete */
1916 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1917 wait_log_commit(root, root->log_transid - 1);
e02119d5 1918
d397712b 1919 while (1) {
7237f183
YZ
1920 unsigned long batch = root->log_batch;
1921 mutex_unlock(&root->log_mutex);
e02119d5 1922 schedule_timeout_uninterruptible(1);
7237f183
YZ
1923 mutex_lock(&root->log_mutex);
1924 wait_for_writer(root);
1925 if (batch == root->log_batch)
e02119d5
CM
1926 break;
1927 }
e02119d5 1928
d0c803c4 1929 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
e02119d5 1930 BUG_ON(ret);
7237f183
YZ
1931
1932 btrfs_set_root_bytenr(&log->root_item, log->node->start);
1933 btrfs_set_root_generation(&log->root_item, trans->transid);
1934 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
1935
1936 root->log_batch = 0;
1937 root->log_transid++;
1938 log->log_transid = root->log_transid;
1939 smp_mb();
1940 /*
1941 * log tree has been flushed to disk, new modifications of
1942 * the log will be written to new positions. so it's safe to
1943 * allow log writers to go in.
1944 */
1945 mutex_unlock(&root->log_mutex);
1946
1947 mutex_lock(&log_root_tree->log_mutex);
1948 log_root_tree->log_batch++;
1949 atomic_inc(&log_root_tree->log_writers);
1950 mutex_unlock(&log_root_tree->log_mutex);
1951
1952 ret = update_log_root(trans, log);
1953 BUG_ON(ret);
1954
1955 mutex_lock(&log_root_tree->log_mutex);
1956 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
1957 smp_mb();
1958 if (waitqueue_active(&log_root_tree->log_writer_wait))
1959 wake_up(&log_root_tree->log_writer_wait);
1960 }
1961
1962 index2 = log_root_tree->log_transid % 2;
1963 if (atomic_read(&log_root_tree->log_commit[index2])) {
1964 wait_log_commit(log_root_tree, log_root_tree->log_transid);
1965 mutex_unlock(&log_root_tree->log_mutex);
1966 goto out;
1967 }
1968 atomic_set(&log_root_tree->log_commit[index2], 1);
1969
1970 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2]))
1971 wait_log_commit(log_root_tree, log_root_tree->log_transid - 1);
1972
1973 wait_for_writer(log_root_tree);
1974
1975 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
1976 &log_root_tree->dirty_log_pages);
e02119d5
CM
1977 BUG_ON(ret);
1978
1979 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
7237f183 1980 log_root_tree->node->start);
e02119d5 1981 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
7237f183 1982 btrfs_header_level(log_root_tree->node));
e02119d5 1983
7237f183
YZ
1984 log_root_tree->log_batch = 0;
1985 log_root_tree->log_transid++;
e02119d5 1986 smp_mb();
7237f183
YZ
1987
1988 mutex_unlock(&log_root_tree->log_mutex);
1989
1990 /*
1991 * nobody else is going to jump in and write the the ctree
1992 * super here because the log_commit atomic below is protecting
1993 * us. We must be called with a transaction handle pinning
1994 * the running transaction open, so a full commit can't hop
1995 * in and cause problems either.
1996 */
1997 write_ctree_super(trans, root->fs_info->tree_root, 2);
1998
1999 atomic_set(&log_root_tree->log_commit[index2], 0);
2000 smp_mb();
2001 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2002 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2003out:
7237f183
YZ
2004 atomic_set(&root->log_commit[index1], 0);
2005 smp_mb();
2006 if (waitqueue_active(&root->log_commit_wait[index1]))
2007 wake_up(&root->log_commit_wait[index1]);
e02119d5 2008 return 0;
e02119d5
CM
2009}
2010
3a5f1d45 2011/* * free all the extents used by the tree log. This should be called
e02119d5
CM
2012 * at commit time of the full transaction
2013 */
2014int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2015{
2016 int ret;
2017 struct btrfs_root *log;
2018 struct key;
d0c803c4
CM
2019 u64 start;
2020 u64 end;
e02119d5
CM
2021 struct walk_control wc = {
2022 .free = 1,
2023 .process_func = process_one_buffer
2024 };
2025
07d400a6 2026 if (!root->log_root || root->fs_info->log_root_recovering)
e02119d5
CM
2027 return 0;
2028
2029 log = root->log_root;
2030 ret = walk_log_tree(trans, log, &wc);
2031 BUG_ON(ret);
2032
d397712b 2033 while (1) {
d0c803c4
CM
2034 ret = find_first_extent_bit(&log->dirty_log_pages,
2035 0, &start, &end, EXTENT_DIRTY);
2036 if (ret)
2037 break;
2038
2039 clear_extent_dirty(&log->dirty_log_pages,
2040 start, end, GFP_NOFS);
2041 }
2042
7237f183
YZ
2043 if (log->log_transid > 0) {
2044 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2045 &log->root_key);
2046 BUG_ON(ret);
2047 }
e02119d5 2048 root->log_root = NULL;
7237f183
YZ
2049 free_extent_buffer(log->node);
2050 kfree(log);
e02119d5
CM
2051 return 0;
2052}
2053
e02119d5
CM
2054/*
2055 * If both a file and directory are logged, and unlinks or renames are
2056 * mixed in, we have a few interesting corners:
2057 *
2058 * create file X in dir Y
2059 * link file X to X.link in dir Y
2060 * fsync file X
2061 * unlink file X but leave X.link
2062 * fsync dir Y
2063 *
2064 * After a crash we would expect only X.link to exist. But file X
2065 * didn't get fsync'd again so the log has back refs for X and X.link.
2066 *
2067 * We solve this by removing directory entries and inode backrefs from the
2068 * log when a file that was logged in the current transaction is
2069 * unlinked. Any later fsync will include the updated log entries, and
2070 * we'll be able to reconstruct the proper directory items from backrefs.
2071 *
2072 * This optimizations allows us to avoid relogging the entire inode
2073 * or the entire directory.
2074 */
2075int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2076 struct btrfs_root *root,
2077 const char *name, int name_len,
2078 struct inode *dir, u64 index)
2079{
2080 struct btrfs_root *log;
2081 struct btrfs_dir_item *di;
2082 struct btrfs_path *path;
2083 int ret;
2084 int bytes_del = 0;
2085
3a5f1d45
CM
2086 if (BTRFS_I(dir)->logged_trans < trans->transid)
2087 return 0;
2088
e02119d5
CM
2089 ret = join_running_log_trans(root);
2090 if (ret)
2091 return 0;
2092
2093 mutex_lock(&BTRFS_I(dir)->log_mutex);
2094
2095 log = root->log_root;
2096 path = btrfs_alloc_path();
2097 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2098 name, name_len, -1);
2099 if (di && !IS_ERR(di)) {
2100 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2101 bytes_del += name_len;
2102 BUG_ON(ret);
2103 }
2104 btrfs_release_path(log, path);
2105 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2106 index, name, name_len, -1);
2107 if (di && !IS_ERR(di)) {
2108 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2109 bytes_del += name_len;
2110 BUG_ON(ret);
2111 }
2112
2113 /* update the directory size in the log to reflect the names
2114 * we have removed
2115 */
2116 if (bytes_del) {
2117 struct btrfs_key key;
2118
2119 key.objectid = dir->i_ino;
2120 key.offset = 0;
2121 key.type = BTRFS_INODE_ITEM_KEY;
2122 btrfs_release_path(log, path);
2123
2124 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2125 if (ret == 0) {
2126 struct btrfs_inode_item *item;
2127 u64 i_size;
2128
2129 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2130 struct btrfs_inode_item);
2131 i_size = btrfs_inode_size(path->nodes[0], item);
2132 if (i_size > bytes_del)
2133 i_size -= bytes_del;
2134 else
2135 i_size = 0;
2136 btrfs_set_inode_size(path->nodes[0], item, i_size);
2137 btrfs_mark_buffer_dirty(path->nodes[0]);
2138 } else
2139 ret = 0;
2140 btrfs_release_path(log, path);
2141 }
2142
2143 btrfs_free_path(path);
2144 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2145 end_log_trans(root);
2146
2147 return 0;
2148}
2149
2150/* see comments for btrfs_del_dir_entries_in_log */
2151int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2152 struct btrfs_root *root,
2153 const char *name, int name_len,
2154 struct inode *inode, u64 dirid)
2155{
2156 struct btrfs_root *log;
2157 u64 index;
2158 int ret;
2159
3a5f1d45
CM
2160 if (BTRFS_I(inode)->logged_trans < trans->transid)
2161 return 0;
2162
e02119d5
CM
2163 ret = join_running_log_trans(root);
2164 if (ret)
2165 return 0;
2166 log = root->log_root;
2167 mutex_lock(&BTRFS_I(inode)->log_mutex);
2168
2169 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2170 dirid, &index);
2171 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2172 end_log_trans(root);
2173
e02119d5
CM
2174 return ret;
2175}
2176
2177/*
2178 * creates a range item in the log for 'dirid'. first_offset and
2179 * last_offset tell us which parts of the key space the log should
2180 * be considered authoritative for.
2181 */
2182static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2183 struct btrfs_root *log,
2184 struct btrfs_path *path,
2185 int key_type, u64 dirid,
2186 u64 first_offset, u64 last_offset)
2187{
2188 int ret;
2189 struct btrfs_key key;
2190 struct btrfs_dir_log_item *item;
2191
2192 key.objectid = dirid;
2193 key.offset = first_offset;
2194 if (key_type == BTRFS_DIR_ITEM_KEY)
2195 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2196 else
2197 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2198 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2199 BUG_ON(ret);
2200
2201 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2202 struct btrfs_dir_log_item);
2203 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2204 btrfs_mark_buffer_dirty(path->nodes[0]);
2205 btrfs_release_path(log, path);
2206 return 0;
2207}
2208
2209/*
2210 * log all the items included in the current transaction for a given
2211 * directory. This also creates the range items in the log tree required
2212 * to replay anything deleted before the fsync
2213 */
2214static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root, struct inode *inode,
2216 struct btrfs_path *path,
2217 struct btrfs_path *dst_path, int key_type,
2218 u64 min_offset, u64 *last_offset_ret)
2219{
2220 struct btrfs_key min_key;
2221 struct btrfs_key max_key;
2222 struct btrfs_root *log = root->log_root;
2223 struct extent_buffer *src;
2224 int ret;
2225 int i;
2226 int nritems;
2227 u64 first_offset = min_offset;
2228 u64 last_offset = (u64)-1;
2229
2230 log = root->log_root;
2231 max_key.objectid = inode->i_ino;
2232 max_key.offset = (u64)-1;
2233 max_key.type = key_type;
2234
2235 min_key.objectid = inode->i_ino;
2236 min_key.type = key_type;
2237 min_key.offset = min_offset;
2238
2239 path->keep_locks = 1;
2240
2241 ret = btrfs_search_forward(root, &min_key, &max_key,
2242 path, 0, trans->transid);
2243
2244 /*
2245 * we didn't find anything from this transaction, see if there
2246 * is anything at all
2247 */
2248 if (ret != 0 || min_key.objectid != inode->i_ino ||
2249 min_key.type != key_type) {
2250 min_key.objectid = inode->i_ino;
2251 min_key.type = key_type;
2252 min_key.offset = (u64)-1;
2253 btrfs_release_path(root, path);
2254 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2255 if (ret < 0) {
2256 btrfs_release_path(root, path);
2257 return ret;
2258 }
2259 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2260
2261 /* if ret == 0 there are items for this type,
2262 * create a range to tell us the last key of this type.
2263 * otherwise, there are no items in this directory after
2264 * *min_offset, and we create a range to indicate that.
2265 */
2266 if (ret == 0) {
2267 struct btrfs_key tmp;
2268 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2269 path->slots[0]);
d397712b 2270 if (key_type == tmp.type)
e02119d5 2271 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2272 }
2273 goto done;
2274 }
2275
2276 /* go backward to find any previous key */
2277 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2278 if (ret == 0) {
2279 struct btrfs_key tmp;
2280 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2281 if (key_type == tmp.type) {
2282 first_offset = tmp.offset;
2283 ret = overwrite_item(trans, log, dst_path,
2284 path->nodes[0], path->slots[0],
2285 &tmp);
2286 }
2287 }
2288 btrfs_release_path(root, path);
2289
2290 /* find the first key from this transaction again */
2291 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2292 if (ret != 0) {
2293 WARN_ON(1);
2294 goto done;
2295 }
2296
2297 /*
2298 * we have a block from this transaction, log every item in it
2299 * from our directory
2300 */
d397712b 2301 while (1) {
e02119d5
CM
2302 struct btrfs_key tmp;
2303 src = path->nodes[0];
2304 nritems = btrfs_header_nritems(src);
2305 for (i = path->slots[0]; i < nritems; i++) {
2306 btrfs_item_key_to_cpu(src, &min_key, i);
2307
2308 if (min_key.objectid != inode->i_ino ||
2309 min_key.type != key_type)
2310 goto done;
2311 ret = overwrite_item(trans, log, dst_path, src, i,
2312 &min_key);
2313 BUG_ON(ret);
2314 }
2315 path->slots[0] = nritems;
2316
2317 /*
2318 * look ahead to the next item and see if it is also
2319 * from this directory and from this transaction
2320 */
2321 ret = btrfs_next_leaf(root, path);
2322 if (ret == 1) {
2323 last_offset = (u64)-1;
2324 goto done;
2325 }
2326 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2327 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2328 last_offset = (u64)-1;
2329 goto done;
2330 }
2331 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2332 ret = overwrite_item(trans, log, dst_path,
2333 path->nodes[0], path->slots[0],
2334 &tmp);
2335
2336 BUG_ON(ret);
2337 last_offset = tmp.offset;
2338 goto done;
2339 }
2340 }
2341done:
2342 *last_offset_ret = last_offset;
2343 btrfs_release_path(root, path);
2344 btrfs_release_path(log, dst_path);
2345
2346 /* insert the log range keys to indicate where the log is valid */
2347 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2348 first_offset, last_offset);
2349 BUG_ON(ret);
2350 return 0;
2351}
2352
2353/*
2354 * logging directories is very similar to logging inodes, We find all the items
2355 * from the current transaction and write them to the log.
2356 *
2357 * The recovery code scans the directory in the subvolume, and if it finds a
2358 * key in the range logged that is not present in the log tree, then it means
2359 * that dir entry was unlinked during the transaction.
2360 *
2361 * In order for that scan to work, we must include one key smaller than
2362 * the smallest logged by this transaction and one key larger than the largest
2363 * key logged by this transaction.
2364 */
2365static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2366 struct btrfs_root *root, struct inode *inode,
2367 struct btrfs_path *path,
2368 struct btrfs_path *dst_path)
2369{
2370 u64 min_key;
2371 u64 max_key;
2372 int ret;
2373 int key_type = BTRFS_DIR_ITEM_KEY;
2374
2375again:
2376 min_key = 0;
2377 max_key = 0;
d397712b 2378 while (1) {
e02119d5
CM
2379 ret = log_dir_items(trans, root, inode, path,
2380 dst_path, key_type, min_key,
2381 &max_key);
2382 BUG_ON(ret);
2383 if (max_key == (u64)-1)
2384 break;
2385 min_key = max_key + 1;
2386 }
2387
2388 if (key_type == BTRFS_DIR_ITEM_KEY) {
2389 key_type = BTRFS_DIR_INDEX_KEY;
2390 goto again;
2391 }
2392 return 0;
2393}
2394
2395/*
2396 * a helper function to drop items from the log before we relog an
2397 * inode. max_key_type indicates the highest item type to remove.
2398 * This cannot be run for file data extents because it does not
2399 * free the extents they point to.
2400 */
2401static int drop_objectid_items(struct btrfs_trans_handle *trans,
2402 struct btrfs_root *log,
2403 struct btrfs_path *path,
2404 u64 objectid, int max_key_type)
2405{
2406 int ret;
2407 struct btrfs_key key;
2408 struct btrfs_key found_key;
2409
2410 key.objectid = objectid;
2411 key.type = max_key_type;
2412 key.offset = (u64)-1;
2413
d397712b 2414 while (1) {
e02119d5
CM
2415 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2416
2417 if (ret != 1)
2418 break;
2419
2420 if (path->slots[0] == 0)
2421 break;
2422
2423 path->slots[0]--;
2424 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2425 path->slots[0]);
2426
2427 if (found_key.objectid != objectid)
2428 break;
2429
2430 ret = btrfs_del_item(trans, log, path);
2431 BUG_ON(ret);
2432 btrfs_release_path(log, path);
2433 }
2434 btrfs_release_path(log, path);
2435 return 0;
2436}
2437
31ff1cd2
CM
2438static noinline int copy_items(struct btrfs_trans_handle *trans,
2439 struct btrfs_root *log,
2440 struct btrfs_path *dst_path,
2441 struct extent_buffer *src,
2442 int start_slot, int nr, int inode_only)
2443{
2444 unsigned long src_offset;
2445 unsigned long dst_offset;
2446 struct btrfs_file_extent_item *extent;
2447 struct btrfs_inode_item *inode_item;
2448 int ret;
2449 struct btrfs_key *ins_keys;
2450 u32 *ins_sizes;
2451 char *ins_data;
2452 int i;
d20f7043
CM
2453 struct list_head ordered_sums;
2454
2455 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
2456
2457 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2458 nr * sizeof(u32), GFP_NOFS);
2459 ins_sizes = (u32 *)ins_data;
2460 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2461
2462 for (i = 0; i < nr; i++) {
2463 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2464 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2465 }
2466 ret = btrfs_insert_empty_items(trans, log, dst_path,
2467 ins_keys, ins_sizes, nr);
2468 BUG_ON(ret);
2469
2470 for (i = 0; i < nr; i++) {
2471 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2472 dst_path->slots[0]);
2473
2474 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2475
2476 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2477 src_offset, ins_sizes[i]);
2478
2479 if (inode_only == LOG_INODE_EXISTS &&
2480 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2481 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2482 dst_path->slots[0],
2483 struct btrfs_inode_item);
2484 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2485
2486 /* set the generation to zero so the recover code
2487 * can tell the difference between an logging
2488 * just to say 'this inode exists' and a logging
2489 * to say 'update this inode with these values'
2490 */
2491 btrfs_set_inode_generation(dst_path->nodes[0],
2492 inode_item, 0);
2493 }
2494 /* take a reference on file data extents so that truncates
2495 * or deletes of this inode don't have to relog the inode
2496 * again
2497 */
2498 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2499 int found_type;
2500 extent = btrfs_item_ptr(src, start_slot + i,
2501 struct btrfs_file_extent_item);
2502
2503 found_type = btrfs_file_extent_type(src, extent);
d899e052
YZ
2504 if (found_type == BTRFS_FILE_EXTENT_REG ||
2505 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
31ff1cd2
CM
2506 u64 ds = btrfs_file_extent_disk_bytenr(src,
2507 extent);
2508 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2509 extent);
d20f7043
CM
2510 u64 cs = btrfs_file_extent_offset(src, extent);
2511 u64 cl = btrfs_file_extent_num_bytes(src,
2512 extent);;
580afd76
CM
2513 if (btrfs_file_extent_compression(src,
2514 extent)) {
2515 cs = 0;
2516 cl = dl;
2517 }
31ff1cd2
CM
2518 /* ds == 0 is a hole */
2519 if (ds != 0) {
2520 ret = btrfs_inc_extent_ref(trans, log,
2521 ds, dl,
31840ae1 2522 dst_path->nodes[0]->start,
31ff1cd2 2523 BTRFS_TREE_LOG_OBJECTID,
31840ae1 2524 trans->transid,
3bb1a1bc 2525 ins_keys[i].objectid);
31ff1cd2 2526 BUG_ON(ret);
07d400a6
YZ
2527 ret = btrfs_lookup_csums_range(
2528 log->fs_info->csum_root,
2529 ds + cs, ds + cs + cl - 1,
2530 &ordered_sums);
d20f7043 2531 BUG_ON(ret);
31ff1cd2
CM
2532 }
2533 }
2534 }
2535 dst_path->slots[0]++;
2536 }
2537
2538 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2539 btrfs_release_path(log, dst_path);
2540 kfree(ins_data);
d20f7043
CM
2541
2542 /*
2543 * we have to do this after the loop above to avoid changing the
2544 * log tree while trying to change the log tree.
2545 */
d397712b 2546 while (!list_empty(&ordered_sums)) {
d20f7043
CM
2547 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2548 struct btrfs_ordered_sum,
2549 list);
2550 ret = btrfs_csum_file_blocks(trans, log, sums);
2551 BUG_ON(ret);
2552 list_del(&sums->list);
2553 kfree(sums);
2554 }
31ff1cd2
CM
2555 return 0;
2556}
2557
e02119d5
CM
2558/* log a single inode in the tree log.
2559 * At least one parent directory for this inode must exist in the tree
2560 * or be logged already.
2561 *
2562 * Any items from this inode changed by the current transaction are copied
2563 * to the log tree. An extra reference is taken on any extents in this
2564 * file, allowing us to avoid a whole pile of corner cases around logging
2565 * blocks that have been removed from the tree.
2566 *
2567 * See LOG_INODE_ALL and related defines for a description of what inode_only
2568 * does.
2569 *
2570 * This handles both files and directories.
2571 */
2572static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2573 struct btrfs_root *root, struct inode *inode,
2574 int inode_only)
2575{
2576 struct btrfs_path *path;
2577 struct btrfs_path *dst_path;
2578 struct btrfs_key min_key;
2579 struct btrfs_key max_key;
2580 struct btrfs_root *log = root->log_root;
31ff1cd2 2581 struct extent_buffer *src = NULL;
e02119d5
CM
2582 u32 size;
2583 int ret;
3a5f1d45 2584 int nritems;
31ff1cd2
CM
2585 int ins_start_slot = 0;
2586 int ins_nr;
e02119d5
CM
2587
2588 log = root->log_root;
2589
2590 path = btrfs_alloc_path();
2591 dst_path = btrfs_alloc_path();
2592
2593 min_key.objectid = inode->i_ino;
2594 min_key.type = BTRFS_INODE_ITEM_KEY;
2595 min_key.offset = 0;
2596
2597 max_key.objectid = inode->i_ino;
2598 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2599 max_key.type = BTRFS_XATTR_ITEM_KEY;
2600 else
2601 max_key.type = (u8)-1;
2602 max_key.offset = (u64)-1;
2603
2604 /*
2605 * if this inode has already been logged and we're in inode_only
2606 * mode, we don't want to delete the things that have already
2607 * been written to the log.
2608 *
2609 * But, if the inode has been through an inode_only log,
2610 * the logged_trans field is not set. This allows us to catch
2611 * any new names for this inode in the backrefs by logging it
2612 * again
2613 */
2614 if (inode_only == LOG_INODE_EXISTS &&
2615 BTRFS_I(inode)->logged_trans == trans->transid) {
2616 btrfs_free_path(path);
2617 btrfs_free_path(dst_path);
2618 goto out;
2619 }
2620 mutex_lock(&BTRFS_I(inode)->log_mutex);
2621
2622 /*
2623 * a brute force approach to making sure we get the most uptodate
2624 * copies of everything.
2625 */
2626 if (S_ISDIR(inode->i_mode)) {
2627 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2628
2629 if (inode_only == LOG_INODE_EXISTS)
2630 max_key_type = BTRFS_XATTR_ITEM_KEY;
2631 ret = drop_objectid_items(trans, log, path,
2632 inode->i_ino, max_key_type);
2633 } else {
2634 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2635 }
2636 BUG_ON(ret);
2637 path->keep_locks = 1;
2638
d397712b 2639 while (1) {
31ff1cd2 2640 ins_nr = 0;
e02119d5
CM
2641 ret = btrfs_search_forward(root, &min_key, &max_key,
2642 path, 0, trans->transid);
2643 if (ret != 0)
2644 break;
3a5f1d45 2645again:
31ff1cd2 2646 /* note, ins_nr might be > 0 here, cleanup outside the loop */
e02119d5
CM
2647 if (min_key.objectid != inode->i_ino)
2648 break;
2649 if (min_key.type > max_key.type)
2650 break;
31ff1cd2 2651
e02119d5
CM
2652 src = path->nodes[0];
2653 size = btrfs_item_size_nr(src, path->slots[0]);
31ff1cd2
CM
2654 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2655 ins_nr++;
2656 goto next_slot;
2657 } else if (!ins_nr) {
2658 ins_start_slot = path->slots[0];
2659 ins_nr = 1;
2660 goto next_slot;
e02119d5
CM
2661 }
2662
31ff1cd2
CM
2663 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2664 ins_nr, inode_only);
2665 BUG_ON(ret);
2666 ins_nr = 1;
2667 ins_start_slot = path->slots[0];
2668next_slot:
e02119d5 2669
3a5f1d45
CM
2670 nritems = btrfs_header_nritems(path->nodes[0]);
2671 path->slots[0]++;
2672 if (path->slots[0] < nritems) {
2673 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2674 path->slots[0]);
2675 goto again;
2676 }
31ff1cd2
CM
2677 if (ins_nr) {
2678 ret = copy_items(trans, log, dst_path, src,
2679 ins_start_slot,
2680 ins_nr, inode_only);
2681 BUG_ON(ret);
2682 ins_nr = 0;
2683 }
3a5f1d45
CM
2684 btrfs_release_path(root, path);
2685
e02119d5
CM
2686 if (min_key.offset < (u64)-1)
2687 min_key.offset++;
2688 else if (min_key.type < (u8)-1)
2689 min_key.type++;
2690 else if (min_key.objectid < (u64)-1)
2691 min_key.objectid++;
2692 else
2693 break;
2694 }
31ff1cd2
CM
2695 if (ins_nr) {
2696 ret = copy_items(trans, log, dst_path, src,
2697 ins_start_slot,
2698 ins_nr, inode_only);
2699 BUG_ON(ret);
2700 ins_nr = 0;
2701 }
2702 WARN_ON(ins_nr);
9623f9a3 2703 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5
CM
2704 btrfs_release_path(root, path);
2705 btrfs_release_path(log, dst_path);
49eb7e46 2706 BTRFS_I(inode)->log_dirty_trans = 0;
e02119d5
CM
2707 ret = log_directory_changes(trans, root, inode, path, dst_path);
2708 BUG_ON(ret);
2709 }
3a5f1d45 2710 BTRFS_I(inode)->logged_trans = trans->transid;
e02119d5
CM
2711 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2712
2713 btrfs_free_path(path);
2714 btrfs_free_path(dst_path);
e02119d5
CM
2715out:
2716 return 0;
2717}
2718
2719int btrfs_log_inode(struct btrfs_trans_handle *trans,
2720 struct btrfs_root *root, struct inode *inode,
2721 int inode_only)
2722{
2723 int ret;
2724
2725 start_log_trans(trans, root);
2726 ret = __btrfs_log_inode(trans, root, inode, inode_only);
2727 end_log_trans(root);
2728 return ret;
2729}
2730
2731/*
2732 * helper function around btrfs_log_inode to make sure newly created
2733 * parent directories also end up in the log. A minimal inode and backref
2734 * only logging is done of any parent directories that are older than
2735 * the last committed transaction
2736 */
2737int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2738 struct btrfs_root *root, struct dentry *dentry)
2739{
2740 int inode_only = LOG_INODE_ALL;
2741 struct super_block *sb;
2742 int ret;
2743
2744 start_log_trans(trans, root);
2745 sb = dentry->d_inode->i_sb;
d397712b 2746 while (1) {
e02119d5
CM
2747 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2748 inode_only);
2749 BUG_ON(ret);
2750 inode_only = LOG_INODE_EXISTS;
2751
2752 dentry = dentry->d_parent;
2753 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2754 break;
2755
2756 if (BTRFS_I(dentry->d_inode)->generation <=
2757 root->fs_info->last_trans_committed)
2758 break;
2759 }
2760 end_log_trans(root);
2761 return 0;
2762}
2763
2764/*
2765 * it is not safe to log dentry if the chunk root has added new
2766 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2767 * If this returns 1, you must commit the transaction to safely get your
2768 * data on disk.
2769 */
2770int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2771 struct btrfs_root *root, struct dentry *dentry)
2772{
2773 u64 gen;
2774 gen = root->fs_info->last_trans_new_blockgroup;
2775 if (gen > root->fs_info->last_trans_committed)
2776 return 1;
2777 else
2778 return btrfs_log_dentry(trans, root, dentry);
2779}
2780
2781/*
2782 * should be called during mount to recover any replay any log trees
2783 * from the FS
2784 */
2785int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2786{
2787 int ret;
2788 struct btrfs_path *path;
2789 struct btrfs_trans_handle *trans;
2790 struct btrfs_key key;
2791 struct btrfs_key found_key;
2792 struct btrfs_key tmp_key;
2793 struct btrfs_root *log;
2794 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
8d5bf1cb 2795 u64 highest_inode;
e02119d5
CM
2796 struct walk_control wc = {
2797 .process_func = process_one_buffer,
2798 .stage = 0,
2799 };
2800
2801 fs_info->log_root_recovering = 1;
2802 path = btrfs_alloc_path();
2803 BUG_ON(!path);
2804
2805 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2806
2807 wc.trans = trans;
2808 wc.pin = 1;
2809
2810 walk_log_tree(trans, log_root_tree, &wc);
2811
2812again:
2813 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2814 key.offset = (u64)-1;
2815 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2816
d397712b 2817 while (1) {
e02119d5
CM
2818 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2819 if (ret < 0)
2820 break;
2821 if (ret > 0) {
2822 if (path->slots[0] == 0)
2823 break;
2824 path->slots[0]--;
2825 }
2826 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2827 path->slots[0]);
2828 btrfs_release_path(log_root_tree, path);
2829 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2830 break;
2831
2832 log = btrfs_read_fs_root_no_radix(log_root_tree,
2833 &found_key);
2834 BUG_ON(!log);
2835
2836
2837 tmp_key.objectid = found_key.offset;
2838 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2839 tmp_key.offset = (u64)-1;
2840
2841 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
e02119d5
CM
2842 BUG_ON(!wc.replay_dest);
2843
07d400a6 2844 wc.replay_dest->log_root = log;
24562425 2845 mutex_lock(&fs_info->trans_mutex);
e02119d5 2846 btrfs_record_root_in_trans(wc.replay_dest);
24562425 2847 mutex_unlock(&fs_info->trans_mutex);
e02119d5
CM
2848 ret = walk_log_tree(trans, log, &wc);
2849 BUG_ON(ret);
2850
2851 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2852 ret = fixup_inode_link_counts(trans, wc.replay_dest,
2853 path);
2854 BUG_ON(ret);
2855 }
8d5bf1cb
CM
2856 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2857 if (ret == 0) {
2858 wc.replay_dest->highest_inode = highest_inode;
2859 wc.replay_dest->last_inode_alloc = highest_inode;
2860 }
e02119d5
CM
2861
2862 key.offset = found_key.offset - 1;
07d400a6 2863 wc.replay_dest->log_root = NULL;
e02119d5
CM
2864 free_extent_buffer(log->node);
2865 kfree(log);
2866
2867 if (found_key.offset == 0)
2868 break;
2869 }
2870 btrfs_release_path(log_root_tree, path);
2871
2872 /* step one is to pin it all, step two is to replay just inodes */
2873 if (wc.pin) {
2874 wc.pin = 0;
2875 wc.process_func = replay_one_buffer;
2876 wc.stage = LOG_WALK_REPLAY_INODES;
2877 goto again;
2878 }
2879 /* step three is to replay everything */
2880 if (wc.stage < LOG_WALK_REPLAY_ALL) {
2881 wc.stage++;
2882 goto again;
2883 }
2884
2885 btrfs_free_path(path);
2886
2887 free_extent_buffer(log_root_tree->node);
2888 log_root_tree->log_root = NULL;
2889 fs_info->log_root_recovering = 0;
2890
2891 /* step 4: commit the transaction, which also unpins the blocks */
2892 btrfs_commit_transaction(trans, fs_info->tree_root);
2893
2894 kfree(log_root_tree);
2895 return 0;
2896}