]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/inode.c
Btrfs: autodetect SSD devices
[net-next-2.6.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/smp_lock.h>
30#include <linux/backing-dev.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
39279cc3
CM
53
54struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57};
58
59static struct inode_operations btrfs_dir_inode_operations;
60static struct inode_operations btrfs_symlink_inode_operations;
61static struct inode_operations btrfs_dir_ro_inode_operations;
618e21d5 62static struct inode_operations btrfs_special_inode_operations;
39279cc3
CM
63static struct inode_operations btrfs_file_inode_operations;
64static struct address_space_operations btrfs_aops;
65static struct address_space_operations btrfs_symlink_aops;
66static struct file_operations btrfs_dir_file_operations;
d1310b2e 67static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
68
69static struct kmem_cache *btrfs_inode_cachep;
70struct kmem_cache *btrfs_trans_handle_cachep;
71struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
72struct kmem_cache *btrfs_path_cachep;
73
74#define S_SHIFT 12
75static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83};
84
7b128766 85static void btrfs_truncate(struct inode *inode);
c8b97818 86static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
87static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
7b128766 91
0279b4cd
JO
92static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
93{
94 int err;
95
96 err = btrfs_init_acl(inode, dir);
97 if (!err)
98 err = btrfs_xattr_security_init(inode, dir);
99 return err;
100}
101
c8b97818
CM
102/*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
d397712b 107static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111{
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
d397712b
CM
131 path = btrfs_alloc_path();
132 if (!path)
c8b97818
CM
133 return -ENOMEM;
134
b9473439 135 path->leave_spinning = 1;
c8b97818
CM
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
c8b97818
CM
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
d397712b 164 while (compressed_size > 0) {
c8b97818 165 cpage = compressed_pages[i];
5b050f04 166 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
167 PAGE_CACHE_SIZE);
168
b9473439 169 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 171 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
192 BTRFS_I(inode)->disk_i_size = inode->i_size;
193 btrfs_update_inode(trans, root, inode);
194 return 0;
195fail:
196 btrfs_free_path(path);
197 return err;
198}
199
200
201/*
202 * conditionally insert an inline extent into the file. This
203 * does the checks required to make sure the data is small enough
204 * to fit as an inline extent.
205 */
7f366cfe 206static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
207 struct btrfs_root *root,
208 struct inode *inode, u64 start, u64 end,
209 size_t compressed_size,
210 struct page **compressed_pages)
211{
212 u64 isize = i_size_read(inode);
213 u64 actual_end = min(end + 1, isize);
214 u64 inline_len = actual_end - start;
215 u64 aligned_end = (end + root->sectorsize - 1) &
216 ~((u64)root->sectorsize - 1);
217 u64 hint_byte;
218 u64 data_len = inline_len;
219 int ret;
220
221 if (compressed_size)
222 data_len = compressed_size;
223
224 if (start > 0 ||
70b99e69 225 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
226 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
227 (!compressed_size &&
228 (actual_end & (root->sectorsize - 1)) == 0) ||
229 end + 1 < isize ||
230 data_len > root->fs_info->max_inline) {
231 return 1;
232 }
233
c8b97818 234 ret = btrfs_drop_extents(trans, root, inode, start,
e980b50c 235 aligned_end, aligned_end, start, &hint_byte);
c8b97818
CM
236 BUG_ON(ret);
237
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
244 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
c8b97818
CM
245 return 0;
246}
247
771ed689
CM
248struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
255};
256
257struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
265};
266
267static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
272{
273 struct async_extent *async_extent;
274
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
283}
284
d352ac68 285/*
771ed689
CM
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
c8b97818 289 *
771ed689
CM
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
c8b97818 295 *
771ed689
CM
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
d352ac68 300 */
771ed689
CM
301static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
b888db2b
CM
306{
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
db94535d 309 u64 num_bytes;
c8b97818
CM
310 u64 orig_start;
311 u64 disk_num_bytes;
db94535d 312 u64 blocksize = root->sectorsize;
c8b97818 313 u64 actual_end;
42dc7bab 314 u64 isize = i_size_read(inode);
e6dcd2dc 315 int ret = 0;
c8b97818
CM
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
771ed689 322 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
323 int i;
324 int will_compress;
b888db2b 325
c8b97818
CM
326 orig_start = start;
327
42dc7bab 328 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
329again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 333
f03d9301
CM
334 /*
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
340 *
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
343 */
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
346
c8b97818
CM
347 total_compressed = actual_end - start;
348
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
354 *
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
c8b97818
CM
358 */
359 total_compressed = min(total_compressed, max_uncompressed);
db94535d 360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 361 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
db94535d 365
771ed689
CM
366 /*
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
c8b97818
CM
370 */
371 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
cfbc246e 374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 375
c8b97818
CM
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
382
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
388
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
391 */
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
397 }
398 will_compress = 1;
399 }
400 }
401 if (start == 0) {
771ed689
CM
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
405
c8b97818 406 /* lets try to make an inline extent */
771ed689 407 if (ret || total_in < (actual_end - start)) {
c8b97818 408 /* we didn't compress the entire range, try
771ed689 409 * to make an uncompressed inline extent.
c8b97818
CM
410 */
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
771ed689 414 /* try making a compressed inline extent */
c8b97818
CM
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
418 }
771ed689 419 btrfs_end_transaction(trans, root);
c8b97818 420 if (ret == 0) {
771ed689
CM
421 /*
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
425 */
c8b97818
CM
426 extent_clear_unlock_delalloc(inode,
427 &BTRFS_I(inode)->io_tree,
771ed689
CM
428 start, end, NULL, 1, 0,
429 0, 1, 1, 1);
c8b97818
CM
430 ret = 0;
431 goto free_pages_out;
432 }
433 }
434
435 if (will_compress) {
436 /*
437 * we aren't doing an inline extent round the compressed size
438 * up to a block size boundary so the allocator does sane
439 * things
440 */
441 total_compressed = (total_compressed + blocksize - 1) &
442 ~(blocksize - 1);
443
444 /*
445 * one last check to make sure the compression is really a
446 * win, compare the page count read with the blocks on disk
447 */
448 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
449 ~(PAGE_CACHE_SIZE - 1);
450 if (total_compressed >= total_in) {
451 will_compress = 0;
452 } else {
453 disk_num_bytes = total_compressed;
454 num_bytes = total_in;
455 }
456 }
457 if (!will_compress && pages) {
458 /*
459 * the compression code ran but failed to make things smaller,
460 * free any pages it allocated and our page pointer array
461 */
462 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 463 WARN_ON(pages[i]->mapping);
c8b97818
CM
464 page_cache_release(pages[i]);
465 }
466 kfree(pages);
467 pages = NULL;
468 total_compressed = 0;
469 nr_pages_ret = 0;
470
471 /* flag the file so we don't compress in the future */
472 btrfs_set_flag(inode, NOCOMPRESS);
473 }
771ed689
CM
474 if (will_compress) {
475 *num_added += 1;
c8b97818 476
771ed689
CM
477 /* the async work queues will take care of doing actual
478 * allocation on disk for these compressed pages,
479 * and will submit them to the elevator.
480 */
481 add_async_extent(async_cow, start, num_bytes,
482 total_compressed, pages, nr_pages_ret);
179e29e4 483
42dc7bab 484 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
485 start += num_bytes;
486 pages = NULL;
487 cond_resched();
488 goto again;
489 }
490 } else {
f03d9301 491cleanup_and_bail_uncompressed:
771ed689
CM
492 /*
493 * No compression, but we still need to write the pages in
494 * the file we've been given so far. redirty the locked
495 * page if it corresponds to our extent and set things up
496 * for the async work queue to run cow_file_range to do
497 * the normal delalloc dance
498 */
499 if (page_offset(locked_page) >= start &&
500 page_offset(locked_page) <= end) {
501 __set_page_dirty_nobuffers(locked_page);
502 /* unlocked later on in the async handlers */
503 }
504 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
505 *num_added += 1;
506 }
3b951516 507
771ed689
CM
508out:
509 return 0;
510
511free_pages_out:
512 for (i = 0; i < nr_pages_ret; i++) {
513 WARN_ON(pages[i]->mapping);
514 page_cache_release(pages[i]);
515 }
d397712b 516 kfree(pages);
771ed689
CM
517
518 goto out;
519}
520
521/*
522 * phase two of compressed writeback. This is the ordered portion
523 * of the code, which only gets called in the order the work was
524 * queued. We walk all the async extents created by compress_file_range
525 * and send them down to the disk.
526 */
527static noinline int submit_compressed_extents(struct inode *inode,
528 struct async_cow *async_cow)
529{
530 struct async_extent *async_extent;
531 u64 alloc_hint = 0;
532 struct btrfs_trans_handle *trans;
533 struct btrfs_key ins;
534 struct extent_map *em;
535 struct btrfs_root *root = BTRFS_I(inode)->root;
536 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537 struct extent_io_tree *io_tree;
538 int ret;
539
540 if (list_empty(&async_cow->extents))
541 return 0;
542
543 trans = btrfs_join_transaction(root, 1);
544
d397712b 545 while (!list_empty(&async_cow->extents)) {
771ed689
CM
546 async_extent = list_entry(async_cow->extents.next,
547 struct async_extent, list);
548 list_del(&async_extent->list);
c8b97818 549
771ed689
CM
550 io_tree = &BTRFS_I(inode)->io_tree;
551
552 /* did the compression code fall back to uncompressed IO? */
553 if (!async_extent->pages) {
554 int page_started = 0;
555 unsigned long nr_written = 0;
556
557 lock_extent(io_tree, async_extent->start,
d397712b
CM
558 async_extent->start +
559 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
560
561 /* allocate blocks */
562 cow_file_range(inode, async_cow->locked_page,
563 async_extent->start,
564 async_extent->start +
565 async_extent->ram_size - 1,
566 &page_started, &nr_written, 0);
567
568 /*
569 * if page_started, cow_file_range inserted an
570 * inline extent and took care of all the unlocking
571 * and IO for us. Otherwise, we need to submit
572 * all those pages down to the drive.
573 */
574 if (!page_started)
575 extent_write_locked_range(io_tree,
576 inode, async_extent->start,
d397712b 577 async_extent->start +
771ed689
CM
578 async_extent->ram_size - 1,
579 btrfs_get_extent,
580 WB_SYNC_ALL);
581 kfree(async_extent);
582 cond_resched();
583 continue;
584 }
585
586 lock_extent(io_tree, async_extent->start,
587 async_extent->start + async_extent->ram_size - 1,
588 GFP_NOFS);
c8b97818 589 /*
771ed689
CM
590 * here we're doing allocation and writeback of the
591 * compressed pages
c8b97818 592 */
771ed689
CM
593 btrfs_drop_extent_cache(inode, async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1, 0);
596
597 ret = btrfs_reserve_extent(trans, root,
598 async_extent->compressed_size,
599 async_extent->compressed_size,
600 0, alloc_hint,
601 (u64)-1, &ins, 1);
602 BUG_ON(ret);
603 em = alloc_extent_map(GFP_NOFS);
604 em->start = async_extent->start;
605 em->len = async_extent->ram_size;
445a6944 606 em->orig_start = em->start;
c8b97818 607
771ed689
CM
608 em->block_start = ins.objectid;
609 em->block_len = ins.offset;
610 em->bdev = root->fs_info->fs_devices->latest_bdev;
611 set_bit(EXTENT_FLAG_PINNED, &em->flags);
612 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
613
d397712b 614 while (1) {
771ed689
CM
615 spin_lock(&em_tree->lock);
616 ret = add_extent_mapping(em_tree, em);
617 spin_unlock(&em_tree->lock);
618 if (ret != -EEXIST) {
619 free_extent_map(em);
620 break;
621 }
622 btrfs_drop_extent_cache(inode, async_extent->start,
623 async_extent->start +
624 async_extent->ram_size - 1, 0);
625 }
626
627 ret = btrfs_add_ordered_extent(inode, async_extent->start,
628 ins.objectid,
629 async_extent->ram_size,
630 ins.offset,
631 BTRFS_ORDERED_COMPRESSED);
632 BUG_ON(ret);
633
634 btrfs_end_transaction(trans, root);
635
636 /*
637 * clear dirty, set writeback and unlock the pages.
638 */
639 extent_clear_unlock_delalloc(inode,
640 &BTRFS_I(inode)->io_tree,
641 async_extent->start,
642 async_extent->start +
643 async_extent->ram_size - 1,
644 NULL, 1, 1, 0, 1, 1, 0);
645
646 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
647 async_extent->start,
648 async_extent->ram_size,
649 ins.objectid,
650 ins.offset, async_extent->pages,
651 async_extent->nr_pages);
771ed689
CM
652
653 BUG_ON(ret);
654 trans = btrfs_join_transaction(root, 1);
655 alloc_hint = ins.objectid + ins.offset;
656 kfree(async_extent);
657 cond_resched();
658 }
659
660 btrfs_end_transaction(trans, root);
661 return 0;
662}
663
664/*
665 * when extent_io.c finds a delayed allocation range in the file,
666 * the call backs end up in this code. The basic idea is to
667 * allocate extents on disk for the range, and create ordered data structs
668 * in ram to track those extents.
669 *
670 * locked_page is the page that writepage had locked already. We use
671 * it to make sure we don't do extra locks or unlocks.
672 *
673 * *page_started is set to one if we unlock locked_page and do everything
674 * required to start IO on it. It may be clean and already done with
675 * IO when we return.
676 */
677static noinline int cow_file_range(struct inode *inode,
678 struct page *locked_page,
679 u64 start, u64 end, int *page_started,
680 unsigned long *nr_written,
681 int unlock)
682{
683 struct btrfs_root *root = BTRFS_I(inode)->root;
684 struct btrfs_trans_handle *trans;
685 u64 alloc_hint = 0;
686 u64 num_bytes;
687 unsigned long ram_size;
688 u64 disk_num_bytes;
689 u64 cur_alloc_size;
690 u64 blocksize = root->sectorsize;
691 u64 actual_end;
42dc7bab 692 u64 isize = i_size_read(inode);
771ed689
CM
693 struct btrfs_key ins;
694 struct extent_map *em;
695 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
696 int ret = 0;
697
698 trans = btrfs_join_transaction(root, 1);
699 BUG_ON(!trans);
700 btrfs_set_trans_block_group(trans, inode);
701
42dc7bab 702 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
703
704 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
705 num_bytes = max(blocksize, num_bytes);
706 disk_num_bytes = num_bytes;
707 ret = 0;
708
709 if (start == 0) {
710 /* lets try to make an inline extent */
711 ret = cow_file_range_inline(trans, root, inode,
712 start, end, 0, NULL);
713 if (ret == 0) {
714 extent_clear_unlock_delalloc(inode,
715 &BTRFS_I(inode)->io_tree,
716 start, end, NULL, 1, 1,
717 1, 1, 1, 1);
718 *nr_written = *nr_written +
719 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
720 *page_started = 1;
721 ret = 0;
722 goto out;
723 }
724 }
725
726 BUG_ON(disk_num_bytes >
727 btrfs_super_total_bytes(&root->fs_info->super_copy));
728
729 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
730
d397712b 731 while (disk_num_bytes > 0) {
c8b97818 732 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 733 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 734 root->sectorsize, 0, alloc_hint,
e6dcd2dc 735 (u64)-1, &ins, 1);
d397712b
CM
736 BUG_ON(ret);
737
e6dcd2dc
CM
738 em = alloc_extent_map(GFP_NOFS);
739 em->start = start;
445a6944 740 em->orig_start = em->start;
c8b97818 741
771ed689
CM
742 ram_size = ins.offset;
743 em->len = ins.offset;
c8b97818 744
e6dcd2dc 745 em->block_start = ins.objectid;
c8b97818 746 em->block_len = ins.offset;
e6dcd2dc 747 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 748 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 749
d397712b 750 while (1) {
e6dcd2dc
CM
751 spin_lock(&em_tree->lock);
752 ret = add_extent_mapping(em_tree, em);
753 spin_unlock(&em_tree->lock);
754 if (ret != -EEXIST) {
755 free_extent_map(em);
756 break;
757 }
758 btrfs_drop_extent_cache(inode, start,
c8b97818 759 start + ram_size - 1, 0);
e6dcd2dc
CM
760 }
761
98d20f67 762 cur_alloc_size = ins.offset;
e6dcd2dc 763 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 764 ram_size, cur_alloc_size, 0);
e6dcd2dc 765 BUG_ON(ret);
c8b97818 766
17d217fe
YZ
767 if (root->root_key.objectid ==
768 BTRFS_DATA_RELOC_TREE_OBJECTID) {
769 ret = btrfs_reloc_clone_csums(inode, start,
770 cur_alloc_size);
771 BUG_ON(ret);
772 }
773
d397712b 774 if (disk_num_bytes < cur_alloc_size)
3b951516 775 break;
d397712b 776
c8b97818
CM
777 /* we're not doing compressed IO, don't unlock the first
778 * page (which the caller expects to stay locked), don't
779 * clear any dirty bits and don't set any writeback bits
780 */
781 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
782 start, start + ram_size - 1,
771ed689
CM
783 locked_page, unlock, 1,
784 1, 0, 0, 0);
c8b97818 785 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
786 num_bytes -= cur_alloc_size;
787 alloc_hint = ins.objectid + ins.offset;
788 start += cur_alloc_size;
b888db2b 789 }
b888db2b 790out:
771ed689 791 ret = 0;
b888db2b 792 btrfs_end_transaction(trans, root);
c8b97818 793
be20aa9d 794 return ret;
771ed689 795}
c8b97818 796
771ed689
CM
797/*
798 * work queue call back to started compression on a file and pages
799 */
800static noinline void async_cow_start(struct btrfs_work *work)
801{
802 struct async_cow *async_cow;
803 int num_added = 0;
804 async_cow = container_of(work, struct async_cow, work);
805
806 compress_file_range(async_cow->inode, async_cow->locked_page,
807 async_cow->start, async_cow->end, async_cow,
808 &num_added);
809 if (num_added == 0)
810 async_cow->inode = NULL;
811}
812
813/*
814 * work queue call back to submit previously compressed pages
815 */
816static noinline void async_cow_submit(struct btrfs_work *work)
817{
818 struct async_cow *async_cow;
819 struct btrfs_root *root;
820 unsigned long nr_pages;
821
822 async_cow = container_of(work, struct async_cow, work);
823
824 root = async_cow->root;
825 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
826 PAGE_CACHE_SHIFT;
827
828 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
829
830 if (atomic_read(&root->fs_info->async_delalloc_pages) <
831 5 * 1042 * 1024 &&
832 waitqueue_active(&root->fs_info->async_submit_wait))
833 wake_up(&root->fs_info->async_submit_wait);
834
d397712b 835 if (async_cow->inode)
771ed689 836 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 837}
c8b97818 838
771ed689
CM
839static noinline void async_cow_free(struct btrfs_work *work)
840{
841 struct async_cow *async_cow;
842 async_cow = container_of(work, struct async_cow, work);
843 kfree(async_cow);
844}
845
846static int cow_file_range_async(struct inode *inode, struct page *locked_page,
847 u64 start, u64 end, int *page_started,
848 unsigned long *nr_written)
849{
850 struct async_cow *async_cow;
851 struct btrfs_root *root = BTRFS_I(inode)->root;
852 unsigned long nr_pages;
853 u64 cur_end;
854 int limit = 10 * 1024 * 1042;
855
771ed689
CM
856 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
857 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
d397712b 858 while (start < end) {
771ed689
CM
859 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
860 async_cow->inode = inode;
861 async_cow->root = root;
862 async_cow->locked_page = locked_page;
863 async_cow->start = start;
864
865 if (btrfs_test_flag(inode, NOCOMPRESS))
866 cur_end = end;
867 else
868 cur_end = min(end, start + 512 * 1024 - 1);
869
870 async_cow->end = cur_end;
871 INIT_LIST_HEAD(&async_cow->extents);
872
873 async_cow->work.func = async_cow_start;
874 async_cow->work.ordered_func = async_cow_submit;
875 async_cow->work.ordered_free = async_cow_free;
876 async_cow->work.flags = 0;
877
771ed689
CM
878 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
879 PAGE_CACHE_SHIFT;
880 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
881
882 btrfs_queue_worker(&root->fs_info->delalloc_workers,
883 &async_cow->work);
884
885 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
886 wait_event(root->fs_info->async_submit_wait,
887 (atomic_read(&root->fs_info->async_delalloc_pages) <
888 limit));
889 }
890
d397712b 891 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
892 atomic_read(&root->fs_info->async_delalloc_pages)) {
893 wait_event(root->fs_info->async_submit_wait,
894 (atomic_read(&root->fs_info->async_delalloc_pages) ==
895 0));
896 }
897
898 *nr_written += nr_pages;
899 start = cur_end + 1;
900 }
901 *page_started = 1;
902 return 0;
be20aa9d
CM
903}
904
d397712b 905static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
906 u64 bytenr, u64 num_bytes)
907{
908 int ret;
909 struct btrfs_ordered_sum *sums;
910 LIST_HEAD(list);
911
07d400a6
YZ
912 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
913 bytenr + num_bytes - 1, &list);
17d217fe
YZ
914 if (ret == 0 && list_empty(&list))
915 return 0;
916
917 while (!list_empty(&list)) {
918 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
919 list_del(&sums->list);
920 kfree(sums);
921 }
922 return 1;
923}
924
d352ac68
CM
925/*
926 * when nowcow writeback call back. This checks for snapshots or COW copies
927 * of the extents that exist in the file, and COWs the file as required.
928 *
929 * If no cow copies or snapshots exist, we write directly to the existing
930 * blocks on disk
931 */
7f366cfe
CM
932static noinline int run_delalloc_nocow(struct inode *inode,
933 struct page *locked_page,
771ed689
CM
934 u64 start, u64 end, int *page_started, int force,
935 unsigned long *nr_written)
be20aa9d 936{
be20aa9d 937 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 938 struct btrfs_trans_handle *trans;
be20aa9d 939 struct extent_buffer *leaf;
be20aa9d 940 struct btrfs_path *path;
80ff3856 941 struct btrfs_file_extent_item *fi;
be20aa9d 942 struct btrfs_key found_key;
80ff3856
YZ
943 u64 cow_start;
944 u64 cur_offset;
945 u64 extent_end;
5d4f98a2 946 u64 extent_offset;
80ff3856
YZ
947 u64 disk_bytenr;
948 u64 num_bytes;
949 int extent_type;
950 int ret;
d899e052 951 int type;
80ff3856
YZ
952 int nocow;
953 int check_prev = 1;
be20aa9d
CM
954
955 path = btrfs_alloc_path();
956 BUG_ON(!path);
7ea394f1
YZ
957 trans = btrfs_join_transaction(root, 1);
958 BUG_ON(!trans);
be20aa9d 959
80ff3856
YZ
960 cow_start = (u64)-1;
961 cur_offset = start;
962 while (1) {
963 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
964 cur_offset, 0);
965 BUG_ON(ret < 0);
966 if (ret > 0 && path->slots[0] > 0 && check_prev) {
967 leaf = path->nodes[0];
968 btrfs_item_key_to_cpu(leaf, &found_key,
969 path->slots[0] - 1);
970 if (found_key.objectid == inode->i_ino &&
971 found_key.type == BTRFS_EXTENT_DATA_KEY)
972 path->slots[0]--;
973 }
974 check_prev = 0;
975next_slot:
976 leaf = path->nodes[0];
977 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
978 ret = btrfs_next_leaf(root, path);
979 if (ret < 0)
980 BUG_ON(1);
981 if (ret > 0)
982 break;
983 leaf = path->nodes[0];
984 }
be20aa9d 985
80ff3856
YZ
986 nocow = 0;
987 disk_bytenr = 0;
17d217fe 988 num_bytes = 0;
80ff3856
YZ
989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
990
991 if (found_key.objectid > inode->i_ino ||
992 found_key.type > BTRFS_EXTENT_DATA_KEY ||
993 found_key.offset > end)
994 break;
995
996 if (found_key.offset > cur_offset) {
997 extent_end = found_key.offset;
998 goto out_check;
999 }
1000
1001 fi = btrfs_item_ptr(leaf, path->slots[0],
1002 struct btrfs_file_extent_item);
1003 extent_type = btrfs_file_extent_type(leaf, fi);
1004
d899e052
YZ
1005 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1006 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1007 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1008 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1009 extent_end = found_key.offset +
1010 btrfs_file_extent_num_bytes(leaf, fi);
1011 if (extent_end <= start) {
1012 path->slots[0]++;
1013 goto next_slot;
1014 }
17d217fe
YZ
1015 if (disk_bytenr == 0)
1016 goto out_check;
80ff3856
YZ
1017 if (btrfs_file_extent_compression(leaf, fi) ||
1018 btrfs_file_extent_encryption(leaf, fi) ||
1019 btrfs_file_extent_other_encoding(leaf, fi))
1020 goto out_check;
d899e052
YZ
1021 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1022 goto out_check;
d2fb3437 1023 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1024 goto out_check;
17d217fe 1025 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1026 found_key.offset -
1027 extent_offset, disk_bytenr))
17d217fe 1028 goto out_check;
5d4f98a2 1029 disk_bytenr += extent_offset;
17d217fe
YZ
1030 disk_bytenr += cur_offset - found_key.offset;
1031 num_bytes = min(end + 1, extent_end) - cur_offset;
1032 /*
1033 * force cow if csum exists in the range.
1034 * this ensure that csum for a given extent are
1035 * either valid or do not exist.
1036 */
1037 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1038 goto out_check;
80ff3856
YZ
1039 nocow = 1;
1040 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1041 extent_end = found_key.offset +
1042 btrfs_file_extent_inline_len(leaf, fi);
1043 extent_end = ALIGN(extent_end, root->sectorsize);
1044 } else {
1045 BUG_ON(1);
1046 }
1047out_check:
1048 if (extent_end <= start) {
1049 path->slots[0]++;
1050 goto next_slot;
1051 }
1052 if (!nocow) {
1053 if (cow_start == (u64)-1)
1054 cow_start = cur_offset;
1055 cur_offset = extent_end;
1056 if (cur_offset > end)
1057 break;
1058 path->slots[0]++;
1059 goto next_slot;
7ea394f1
YZ
1060 }
1061
1062 btrfs_release_path(root, path);
80ff3856
YZ
1063 if (cow_start != (u64)-1) {
1064 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1065 found_key.offset - 1, page_started,
1066 nr_written, 1);
80ff3856
YZ
1067 BUG_ON(ret);
1068 cow_start = (u64)-1;
7ea394f1 1069 }
80ff3856 1070
d899e052
YZ
1071 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1072 struct extent_map *em;
1073 struct extent_map_tree *em_tree;
1074 em_tree = &BTRFS_I(inode)->extent_tree;
1075 em = alloc_extent_map(GFP_NOFS);
1076 em->start = cur_offset;
445a6944 1077 em->orig_start = em->start;
d899e052
YZ
1078 em->len = num_bytes;
1079 em->block_len = num_bytes;
1080 em->block_start = disk_bytenr;
1081 em->bdev = root->fs_info->fs_devices->latest_bdev;
1082 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1083 while (1) {
1084 spin_lock(&em_tree->lock);
1085 ret = add_extent_mapping(em_tree, em);
1086 spin_unlock(&em_tree->lock);
1087 if (ret != -EEXIST) {
1088 free_extent_map(em);
1089 break;
1090 }
1091 btrfs_drop_extent_cache(inode, em->start,
1092 em->start + em->len - 1, 0);
1093 }
1094 type = BTRFS_ORDERED_PREALLOC;
1095 } else {
1096 type = BTRFS_ORDERED_NOCOW;
1097 }
80ff3856
YZ
1098
1099 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1100 num_bytes, num_bytes, type);
1101 BUG_ON(ret);
771ed689 1102
d899e052
YZ
1103 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1104 cur_offset, cur_offset + num_bytes - 1,
771ed689 1105 locked_page, 1, 1, 1, 0, 0, 0);
80ff3856
YZ
1106 cur_offset = extent_end;
1107 if (cur_offset > end)
1108 break;
be20aa9d 1109 }
80ff3856
YZ
1110 btrfs_release_path(root, path);
1111
1112 if (cur_offset <= end && cow_start == (u64)-1)
1113 cow_start = cur_offset;
1114 if (cow_start != (u64)-1) {
1115 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1116 page_started, nr_written, 1);
80ff3856
YZ
1117 BUG_ON(ret);
1118 }
1119
1120 ret = btrfs_end_transaction(trans, root);
1121 BUG_ON(ret);
7ea394f1 1122 btrfs_free_path(path);
80ff3856 1123 return 0;
be20aa9d
CM
1124}
1125
d352ac68
CM
1126/*
1127 * extent_io.c call back to do delayed allocation processing
1128 */
c8b97818 1129static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1130 u64 start, u64 end, int *page_started,
1131 unsigned long *nr_written)
be20aa9d 1132{
be20aa9d 1133 int ret;
7f366cfe 1134 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1135
17d217fe 1136 if (btrfs_test_flag(inode, NODATACOW))
c8b97818 1137 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1138 page_started, 1, nr_written);
d899e052
YZ
1139 else if (btrfs_test_flag(inode, PREALLOC))
1140 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1141 page_started, 0, nr_written);
7f366cfe
CM
1142 else if (!btrfs_test_opt(root, COMPRESS))
1143 ret = cow_file_range(inode, locked_page, start, end,
1144 page_started, nr_written, 1);
be20aa9d 1145 else
771ed689 1146 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1147 page_started, nr_written);
b888db2b
CM
1148 return ret;
1149}
1150
d352ac68
CM
1151/*
1152 * extent_io.c set_bit_hook, used to track delayed allocation
1153 * bytes in this file, and to maintain the list of inodes that
1154 * have pending delalloc work to be done.
1155 */
b2950863 1156static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1157 unsigned long old, unsigned long bits)
291d673e 1158{
75eff68e
CM
1159 /*
1160 * set_bit and clear bit hooks normally require _irqsave/restore
1161 * but in this case, we are only testeing for the DELALLOC
1162 * bit, which is only set or cleared with irqs on
1163 */
b0c68f8b 1164 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1165 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 1166 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1167 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1168 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1169 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1170 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1171 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1172 &root->fs_info->delalloc_inodes);
1173 }
75eff68e 1174 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1175 }
1176 return 0;
1177}
1178
d352ac68
CM
1179/*
1180 * extent_io.c clear_bit_hook, see set_bit_hook for why
1181 */
b2950863 1182static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1183 unsigned long old, unsigned long bits)
291d673e 1184{
75eff68e
CM
1185 /*
1186 * set_bit and clear bit hooks normally require _irqsave/restore
1187 * but in this case, we are only testeing for the DELALLOC
1188 * bit, which is only set or cleared with irqs on
1189 */
b0c68f8b 1190 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1191 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1192
75eff68e 1193 spin_lock(&root->fs_info->delalloc_lock);
b0c68f8b 1194 if (end - start + 1 > root->fs_info->delalloc_bytes) {
d397712b
CM
1195 printk(KERN_INFO "btrfs warning: delalloc account "
1196 "%llu %llu\n",
1197 (unsigned long long)end - start + 1,
1198 (unsigned long long)
1199 root->fs_info->delalloc_bytes);
6a63209f 1200 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1201 root->fs_info->delalloc_bytes = 0;
9069218d 1202 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1203 } else {
6a63209f
JB
1204 btrfs_delalloc_free_space(root, inode,
1205 end - start + 1);
b0c68f8b 1206 root->fs_info->delalloc_bytes -= end - start + 1;
9069218d 1207 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
b0c68f8b 1208 }
ea8c2819
CM
1209 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1210 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1211 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1212 }
75eff68e 1213 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1214 }
1215 return 0;
1216}
1217
d352ac68
CM
1218/*
1219 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1220 * we don't create bios that span stripes or chunks
1221 */
239b14b3 1222int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1223 size_t size, struct bio *bio,
1224 unsigned long bio_flags)
239b14b3
CM
1225{
1226 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1227 struct btrfs_mapping_tree *map_tree;
a62b9401 1228 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1229 u64 length = 0;
1230 u64 map_length;
239b14b3
CM
1231 int ret;
1232
771ed689
CM
1233 if (bio_flags & EXTENT_BIO_COMPRESSED)
1234 return 0;
1235
f2d8d74d 1236 length = bio->bi_size;
239b14b3
CM
1237 map_tree = &root->fs_info->mapping_tree;
1238 map_length = length;
cea9e445 1239 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1240 &map_length, NULL, 0);
cea9e445 1241
d397712b 1242 if (map_length < length + size)
239b14b3 1243 return 1;
239b14b3
CM
1244 return 0;
1245}
1246
d352ac68
CM
1247/*
1248 * in order to insert checksums into the metadata in large chunks,
1249 * we wait until bio submission time. All the pages in the bio are
1250 * checksummed and sums are attached onto the ordered extent record.
1251 *
1252 * At IO completion time the cums attached on the ordered extent record
1253 * are inserted into the btree
1254 */
d397712b
CM
1255static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1256 struct bio *bio, int mirror_num,
1257 unsigned long bio_flags)
065631f6 1258{
065631f6 1259 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1260 int ret = 0;
e015640f 1261
d20f7043 1262 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1263 BUG_ON(ret);
4a69a410
CM
1264 return 0;
1265}
e015640f 1266
4a69a410
CM
1267/*
1268 * in order to insert checksums into the metadata in large chunks,
1269 * we wait until bio submission time. All the pages in the bio are
1270 * checksummed and sums are attached onto the ordered extent record.
1271 *
1272 * At IO completion time the cums attached on the ordered extent record
1273 * are inserted into the btree
1274 */
b2950863 1275static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1276 int mirror_num, unsigned long bio_flags)
1277{
1278 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1279 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1280}
1281
d352ac68 1282/*
cad321ad
CM
1283 * extent_io.c submission hook. This does the right thing for csum calculation
1284 * on write, or reading the csums from the tree before a read
d352ac68 1285 */
b2950863 1286static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1287 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1288{
1289 struct btrfs_root *root = BTRFS_I(inode)->root;
1290 int ret = 0;
19b9bdb0 1291 int skip_sum;
44b8bd7e 1292
cad321ad
CM
1293 skip_sum = btrfs_test_flag(inode, NODATASUM);
1294
e6dcd2dc
CM
1295 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1296 BUG_ON(ret);
065631f6 1297
4d1b5fb4 1298 if (!(rw & (1 << BIO_RW))) {
d20f7043 1299 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1300 return btrfs_submit_compressed_read(inode, bio,
1301 mirror_num, bio_flags);
d20f7043
CM
1302 } else if (!skip_sum)
1303 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1304 goto mapit;
19b9bdb0 1305 } else if (!skip_sum) {
17d217fe
YZ
1306 /* csum items have already been cloned */
1307 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1308 goto mapit;
19b9bdb0
CM
1309 /* we're doing a write, do the async checksumming */
1310 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1311 inode, rw, bio, mirror_num,
4a69a410
CM
1312 bio_flags, __btrfs_submit_bio_start,
1313 __btrfs_submit_bio_done);
19b9bdb0
CM
1314 }
1315
0b86a832 1316mapit:
8b712842 1317 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1318}
6885f308 1319
d352ac68
CM
1320/*
1321 * given a list of ordered sums record them in the inode. This happens
1322 * at IO completion time based on sums calculated at bio submission time.
1323 */
ba1da2f4 1324static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1325 struct inode *inode, u64 file_offset,
1326 struct list_head *list)
1327{
e6dcd2dc
CM
1328 struct btrfs_ordered_sum *sum;
1329
1330 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1331
1332 list_for_each_entry(sum, list, list) {
d20f7043
CM
1333 btrfs_csum_file_blocks(trans,
1334 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1335 }
1336 return 0;
1337}
1338
ea8c2819
CM
1339int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1340{
d397712b 1341 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1342 WARN_ON(1);
ea8c2819
CM
1343 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1344 GFP_NOFS);
1345}
1346
d352ac68 1347/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1348struct btrfs_writepage_fixup {
1349 struct page *page;
1350 struct btrfs_work work;
1351};
1352
b2950863 1353static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1354{
1355 struct btrfs_writepage_fixup *fixup;
1356 struct btrfs_ordered_extent *ordered;
1357 struct page *page;
1358 struct inode *inode;
1359 u64 page_start;
1360 u64 page_end;
1361
1362 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1363 page = fixup->page;
4a096752 1364again:
247e743c
CM
1365 lock_page(page);
1366 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1367 ClearPageChecked(page);
1368 goto out_page;
1369 }
1370
1371 inode = page->mapping->host;
1372 page_start = page_offset(page);
1373 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1374
1375 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1376
1377 /* already ordered? We're done */
1378 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1379 EXTENT_ORDERED, 0)) {
247e743c 1380 goto out;
4a096752
CM
1381 }
1382
1383 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1384 if (ordered) {
1385 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1386 page_end, GFP_NOFS);
1387 unlock_page(page);
1388 btrfs_start_ordered_extent(inode, ordered, 1);
1389 goto again;
1390 }
247e743c 1391
ea8c2819 1392 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1393 ClearPageChecked(page);
1394out:
1395 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1396out_page:
1397 unlock_page(page);
1398 page_cache_release(page);
1399}
1400
1401/*
1402 * There are a few paths in the higher layers of the kernel that directly
1403 * set the page dirty bit without asking the filesystem if it is a
1404 * good idea. This causes problems because we want to make sure COW
1405 * properly happens and the data=ordered rules are followed.
1406 *
c8b97818 1407 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1408 * hasn't been properly setup for IO. We kick off an async process
1409 * to fix it up. The async helper will wait for ordered extents, set
1410 * the delalloc bit and make it safe to write the page.
1411 */
b2950863 1412static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1413{
1414 struct inode *inode = page->mapping->host;
1415 struct btrfs_writepage_fixup *fixup;
1416 struct btrfs_root *root = BTRFS_I(inode)->root;
1417 int ret;
1418
1419 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1420 EXTENT_ORDERED, 0);
1421 if (ret)
1422 return 0;
1423
1424 if (PageChecked(page))
1425 return -EAGAIN;
1426
1427 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1428 if (!fixup)
1429 return -EAGAIN;
f421950f 1430
247e743c
CM
1431 SetPageChecked(page);
1432 page_cache_get(page);
1433 fixup->work.func = btrfs_writepage_fixup_worker;
1434 fixup->page = page;
1435 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1436 return -EAGAIN;
1437}
1438
d899e052
YZ
1439static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1440 struct inode *inode, u64 file_pos,
1441 u64 disk_bytenr, u64 disk_num_bytes,
1442 u64 num_bytes, u64 ram_bytes,
e980b50c 1443 u64 locked_end,
d899e052
YZ
1444 u8 compression, u8 encryption,
1445 u16 other_encoding, int extent_type)
1446{
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1448 struct btrfs_file_extent_item *fi;
1449 struct btrfs_path *path;
1450 struct extent_buffer *leaf;
1451 struct btrfs_key ins;
1452 u64 hint;
1453 int ret;
1454
1455 path = btrfs_alloc_path();
1456 BUG_ON(!path);
1457
b9473439 1458 path->leave_spinning = 1;
d899e052 1459 ret = btrfs_drop_extents(trans, root, inode, file_pos,
e980b50c
CM
1460 file_pos + num_bytes, locked_end,
1461 file_pos, &hint);
d899e052
YZ
1462 BUG_ON(ret);
1463
1464 ins.objectid = inode->i_ino;
1465 ins.offset = file_pos;
1466 ins.type = BTRFS_EXTENT_DATA_KEY;
1467 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1468 BUG_ON(ret);
1469 leaf = path->nodes[0];
1470 fi = btrfs_item_ptr(leaf, path->slots[0],
1471 struct btrfs_file_extent_item);
1472 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1473 btrfs_set_file_extent_type(leaf, fi, extent_type);
1474 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1475 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1476 btrfs_set_file_extent_offset(leaf, fi, 0);
1477 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1478 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1479 btrfs_set_file_extent_compression(leaf, fi, compression);
1480 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1481 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1482
1483 btrfs_unlock_up_safe(path, 1);
1484 btrfs_set_lock_blocking(leaf);
1485
d899e052
YZ
1486 btrfs_mark_buffer_dirty(leaf);
1487
1488 inode_add_bytes(inode, num_bytes);
1489 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1490
1491 ins.objectid = disk_bytenr;
1492 ins.offset = disk_num_bytes;
1493 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1494 ret = btrfs_alloc_reserved_file_extent(trans, root,
1495 root->root_key.objectid,
1496 inode->i_ino, file_pos, &ins);
d899e052 1497 BUG_ON(ret);
d899e052 1498 btrfs_free_path(path);
b9473439 1499
d899e052
YZ
1500 return 0;
1501}
1502
5d13a98f
CM
1503/*
1504 * helper function for btrfs_finish_ordered_io, this
1505 * just reads in some of the csum leaves to prime them into ram
1506 * before we start the transaction. It limits the amount of btree
1507 * reads required while inside the transaction.
1508 */
1509static noinline void reada_csum(struct btrfs_root *root,
1510 struct btrfs_path *path,
1511 struct btrfs_ordered_extent *ordered_extent)
1512{
1513 struct btrfs_ordered_sum *sum;
1514 u64 bytenr;
1515
1516 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1517 list);
1518 bytenr = sum->sums[0].bytenr;
1519
1520 /*
1521 * we don't care about the results, the point of this search is
1522 * just to get the btree leaves into ram
1523 */
1524 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1525}
1526
d352ac68
CM
1527/* as ordered data IO finishes, this gets called so we can finish
1528 * an ordered extent if the range of bytes in the file it covers are
1529 * fully written.
1530 */
211f90e6 1531static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1532{
e6dcd2dc
CM
1533 struct btrfs_root *root = BTRFS_I(inode)->root;
1534 struct btrfs_trans_handle *trans;
5d13a98f 1535 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1536 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1537 struct btrfs_path *path;
d899e052 1538 int compressed = 0;
e6dcd2dc
CM
1539 int ret;
1540
1541 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1542 if (!ret)
e6dcd2dc 1543 return 0;
e6dcd2dc 1544
b7ec40d7
CM
1545 /*
1546 * before we join the transaction, try to do some of our IO.
1547 * This will limit the amount of IO that we have to do with
1548 * the transaction running. We're unlikely to need to do any
1549 * IO if the file extents are new, the disk_i_size checks
1550 * covers the most common case.
1551 */
1552 if (start < BTRFS_I(inode)->disk_i_size) {
1553 path = btrfs_alloc_path();
1554 if (path) {
1555 ret = btrfs_lookup_file_extent(NULL, root, path,
1556 inode->i_ino,
1557 start, 0);
5d13a98f
CM
1558 ordered_extent = btrfs_lookup_ordered_extent(inode,
1559 start);
1560 if (!list_empty(&ordered_extent->list)) {
1561 btrfs_release_path(root, path);
1562 reada_csum(root, path, ordered_extent);
1563 }
b7ec40d7
CM
1564 btrfs_free_path(path);
1565 }
1566 }
1567
f9295749 1568 trans = btrfs_join_transaction(root, 1);
e6dcd2dc 1569
5d13a98f
CM
1570 if (!ordered_extent)
1571 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1572 BUG_ON(!ordered_extent);
7ea394f1
YZ
1573 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1574 goto nocow;
e6dcd2dc
CM
1575
1576 lock_extent(io_tree, ordered_extent->file_offset,
1577 ordered_extent->file_offset + ordered_extent->len - 1,
1578 GFP_NOFS);
1579
c8b97818 1580 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1581 compressed = 1;
1582 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1583 BUG_ON(compressed);
1584 ret = btrfs_mark_extent_written(trans, root, inode,
1585 ordered_extent->file_offset,
1586 ordered_extent->file_offset +
1587 ordered_extent->len);
1588 BUG_ON(ret);
1589 } else {
1590 ret = insert_reserved_file_extent(trans, inode,
1591 ordered_extent->file_offset,
1592 ordered_extent->start,
1593 ordered_extent->disk_len,
1594 ordered_extent->len,
1595 ordered_extent->len,
e980b50c
CM
1596 ordered_extent->file_offset +
1597 ordered_extent->len,
d899e052
YZ
1598 compressed, 0, 0,
1599 BTRFS_FILE_EXTENT_REG);
1600 BUG_ON(ret);
1601 }
e6dcd2dc
CM
1602 unlock_extent(io_tree, ordered_extent->file_offset,
1603 ordered_extent->file_offset + ordered_extent->len - 1,
1604 GFP_NOFS);
7ea394f1 1605nocow:
e6dcd2dc
CM
1606 add_pending_csums(trans, inode, ordered_extent->file_offset,
1607 &ordered_extent->list);
1608
34353029 1609 mutex_lock(&BTRFS_I(inode)->extent_mutex);
dbe674a9 1610 btrfs_ordered_update_i_size(inode, ordered_extent);
e02119d5 1611 btrfs_update_inode(trans, root, inode);
e6dcd2dc 1612 btrfs_remove_ordered_extent(inode, ordered_extent);
34353029 1613 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
7f3c74fb 1614
e6dcd2dc
CM
1615 /* once for us */
1616 btrfs_put_ordered_extent(ordered_extent);
1617 /* once for the tree */
1618 btrfs_put_ordered_extent(ordered_extent);
1619
e6dcd2dc
CM
1620 btrfs_end_transaction(trans, root);
1621 return 0;
1622}
1623
b2950863 1624static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1625 struct extent_state *state, int uptodate)
1626{
1627 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1628}
1629
d352ac68
CM
1630/*
1631 * When IO fails, either with EIO or csum verification fails, we
1632 * try other mirrors that might have a good copy of the data. This
1633 * io_failure_record is used to record state as we go through all the
1634 * mirrors. If another mirror has good data, the page is set up to date
1635 * and things continue. If a good mirror can't be found, the original
1636 * bio end_io callback is called to indicate things have failed.
1637 */
7e38326f
CM
1638struct io_failure_record {
1639 struct page *page;
1640 u64 start;
1641 u64 len;
1642 u64 logical;
d20f7043 1643 unsigned long bio_flags;
7e38326f
CM
1644 int last_mirror;
1645};
1646
b2950863 1647static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1648 struct page *page, u64 start, u64 end,
1649 struct extent_state *state)
7e38326f
CM
1650{
1651 struct io_failure_record *failrec = NULL;
1652 u64 private;
1653 struct extent_map *em;
1654 struct inode *inode = page->mapping->host;
1655 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1656 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1657 struct bio *bio;
1658 int num_copies;
1659 int ret;
1259ab75 1660 int rw;
7e38326f
CM
1661 u64 logical;
1662
1663 ret = get_state_private(failure_tree, start, &private);
1664 if (ret) {
7e38326f
CM
1665 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1666 if (!failrec)
1667 return -ENOMEM;
1668 failrec->start = start;
1669 failrec->len = end - start + 1;
1670 failrec->last_mirror = 0;
d20f7043 1671 failrec->bio_flags = 0;
7e38326f 1672
3b951516
CM
1673 spin_lock(&em_tree->lock);
1674 em = lookup_extent_mapping(em_tree, start, failrec->len);
1675 if (em->start > start || em->start + em->len < start) {
1676 free_extent_map(em);
1677 em = NULL;
1678 }
1679 spin_unlock(&em_tree->lock);
7e38326f
CM
1680
1681 if (!em || IS_ERR(em)) {
1682 kfree(failrec);
1683 return -EIO;
1684 }
1685 logical = start - em->start;
1686 logical = em->block_start + logical;
d20f7043
CM
1687 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1688 logical = em->block_start;
1689 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1690 }
7e38326f
CM
1691 failrec->logical = logical;
1692 free_extent_map(em);
1693 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1694 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1695 set_state_private(failure_tree, start,
1696 (u64)(unsigned long)failrec);
7e38326f 1697 } else {
587f7704 1698 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1699 }
1700 num_copies = btrfs_num_copies(
1701 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1702 failrec->logical, failrec->len);
1703 failrec->last_mirror++;
1704 if (!state) {
cad321ad 1705 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1706 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1707 failrec->start,
1708 EXTENT_LOCKED);
1709 if (state && state->start != failrec->start)
1710 state = NULL;
cad321ad 1711 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1712 }
1713 if (!state || failrec->last_mirror > num_copies) {
1714 set_state_private(failure_tree, failrec->start, 0);
1715 clear_extent_bits(failure_tree, failrec->start,
1716 failrec->start + failrec->len - 1,
1717 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1718 kfree(failrec);
1719 return -EIO;
1720 }
1721 bio = bio_alloc(GFP_NOFS, 1);
1722 bio->bi_private = state;
1723 bio->bi_end_io = failed_bio->bi_end_io;
1724 bio->bi_sector = failrec->logical >> 9;
1725 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1726 bio->bi_size = 0;
d20f7043 1727
7e38326f 1728 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1729 if (failed_bio->bi_rw & (1 << BIO_RW))
1730 rw = WRITE;
1731 else
1732 rw = READ;
1733
1734 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1735 failrec->last_mirror,
d20f7043 1736 failrec->bio_flags);
1259ab75
CM
1737 return 0;
1738}
1739
d352ac68
CM
1740/*
1741 * each time an IO finishes, we do a fast check in the IO failure tree
1742 * to see if we need to process or clean up an io_failure_record
1743 */
b2950863 1744static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1745{
1746 u64 private;
1747 u64 private_failure;
1748 struct io_failure_record *failure;
1749 int ret;
1750
1751 private = 0;
1752 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1753 (u64)-1, 1, EXTENT_DIRTY)) {
1754 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1755 start, &private_failure);
1756 if (ret == 0) {
1757 failure = (struct io_failure_record *)(unsigned long)
1758 private_failure;
1759 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1760 failure->start, 0);
1761 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1762 failure->start,
1763 failure->start + failure->len - 1,
1764 EXTENT_DIRTY | EXTENT_LOCKED,
1765 GFP_NOFS);
1766 kfree(failure);
1767 }
1768 }
7e38326f
CM
1769 return 0;
1770}
1771
d352ac68
CM
1772/*
1773 * when reads are done, we need to check csums to verify the data is correct
1774 * if there's a match, we allow the bio to finish. If not, we go through
1775 * the io_failure_record routines to find good copies
1776 */
b2950863 1777static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1778 struct extent_state *state)
07157aac 1779{
35ebb934 1780 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1781 struct inode *inode = page->mapping->host;
d1310b2e 1782 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1783 char *kaddr;
aadfeb6e 1784 u64 private = ~(u32)0;
07157aac 1785 int ret;
ff79f819
CM
1786 struct btrfs_root *root = BTRFS_I(inode)->root;
1787 u32 csum = ~(u32)0;
d1310b2e 1788
d20f7043
CM
1789 if (PageChecked(page)) {
1790 ClearPageChecked(page);
1791 goto good;
1792 }
17d217fe
YZ
1793 if (btrfs_test_flag(inode, NODATASUM))
1794 return 0;
1795
1796 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1797 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1798 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1799 GFP_NOFS);
b6cda9bc 1800 return 0;
17d217fe 1801 }
d20f7043 1802
c2e639f0 1803 if (state && state->start == start) {
70dec807
CM
1804 private = state->private;
1805 ret = 0;
1806 } else {
1807 ret = get_state_private(io_tree, start, &private);
1808 }
9ab86c8e 1809 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1810 if (ret)
07157aac 1811 goto zeroit;
d397712b 1812
ff79f819
CM
1813 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1814 btrfs_csum_final(csum, (char *)&csum);
d397712b 1815 if (csum != private)
07157aac 1816 goto zeroit;
d397712b 1817
9ab86c8e 1818 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1819good:
7e38326f
CM
1820 /* if the io failure tree for this inode is non-empty,
1821 * check to see if we've recovered from a failed IO
1822 */
1259ab75 1823 btrfs_clean_io_failures(inode, start);
07157aac
CM
1824 return 0;
1825
1826zeroit:
193f284d
CM
1827 if (printk_ratelimit()) {
1828 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1829 "private %llu\n", page->mapping->host->i_ino,
1830 (unsigned long long)start, csum,
1831 (unsigned long long)private);
1832 }
db94535d
CM
1833 memset(kaddr + offset, 1, end - start + 1);
1834 flush_dcache_page(page);
9ab86c8e 1835 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1836 if (private == 0)
1837 return 0;
7e38326f 1838 return -EIO;
07157aac 1839}
b888db2b 1840
7b128766
JB
1841/*
1842 * This creates an orphan entry for the given inode in case something goes
1843 * wrong in the middle of an unlink/truncate.
1844 */
1845int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1846{
1847 struct btrfs_root *root = BTRFS_I(inode)->root;
1848 int ret = 0;
1849
bcc63abb 1850 spin_lock(&root->list_lock);
7b128766
JB
1851
1852 /* already on the orphan list, we're good */
1853 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1854 spin_unlock(&root->list_lock);
7b128766
JB
1855 return 0;
1856 }
1857
1858 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1859
bcc63abb 1860 spin_unlock(&root->list_lock);
7b128766
JB
1861
1862 /*
1863 * insert an orphan item to track this unlinked/truncated file
1864 */
1865 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1866
1867 return ret;
1868}
1869
1870/*
1871 * We have done the truncate/delete so we can go ahead and remove the orphan
1872 * item for this particular inode.
1873 */
1874int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1875{
1876 struct btrfs_root *root = BTRFS_I(inode)->root;
1877 int ret = 0;
1878
bcc63abb 1879 spin_lock(&root->list_lock);
7b128766
JB
1880
1881 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1882 spin_unlock(&root->list_lock);
7b128766
JB
1883 return 0;
1884 }
1885
1886 list_del_init(&BTRFS_I(inode)->i_orphan);
1887 if (!trans) {
bcc63abb 1888 spin_unlock(&root->list_lock);
7b128766
JB
1889 return 0;
1890 }
1891
bcc63abb 1892 spin_unlock(&root->list_lock);
7b128766
JB
1893
1894 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1895
1896 return ret;
1897}
1898
1899/*
1900 * this cleans up any orphans that may be left on the list from the last use
1901 * of this root.
1902 */
1903void btrfs_orphan_cleanup(struct btrfs_root *root)
1904{
1905 struct btrfs_path *path;
1906 struct extent_buffer *leaf;
1907 struct btrfs_item *item;
1908 struct btrfs_key key, found_key;
1909 struct btrfs_trans_handle *trans;
1910 struct inode *inode;
1911 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1912
7b128766
JB
1913 path = btrfs_alloc_path();
1914 if (!path)
1915 return;
1916 path->reada = -1;
1917
1918 key.objectid = BTRFS_ORPHAN_OBJECTID;
1919 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1920 key.offset = (u64)-1;
1921
7b128766
JB
1922
1923 while (1) {
1924 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1925 if (ret < 0) {
1926 printk(KERN_ERR "Error searching slot for orphan: %d"
1927 "\n", ret);
1928 break;
1929 }
1930
1931 /*
1932 * if ret == 0 means we found what we were searching for, which
1933 * is weird, but possible, so only screw with path if we didnt
1934 * find the key and see if we have stuff that matches
1935 */
1936 if (ret > 0) {
1937 if (path->slots[0] == 0)
1938 break;
1939 path->slots[0]--;
1940 }
1941
1942 /* pull out the item */
1943 leaf = path->nodes[0];
1944 item = btrfs_item_nr(leaf, path->slots[0]);
1945 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1946
1947 /* make sure the item matches what we want */
1948 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1949 break;
1950 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1951 break;
1952
1953 /* release the path since we're done with it */
1954 btrfs_release_path(root, path);
1955
1956 /*
1957 * this is where we are basically btrfs_lookup, without the
1958 * crossing root thing. we store the inode number in the
1959 * offset of the orphan item.
1960 */
5d4f98a2
YZ
1961 found_key.objectid = found_key.offset;
1962 found_key.type = BTRFS_INODE_ITEM_KEY;
1963 found_key.offset = 0;
1964 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1965 if (IS_ERR(inode))
7b128766
JB
1966 break;
1967
7b128766
JB
1968 /*
1969 * add this inode to the orphan list so btrfs_orphan_del does
1970 * the proper thing when we hit it
1971 */
bcc63abb 1972 spin_lock(&root->list_lock);
7b128766 1973 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 1974 spin_unlock(&root->list_lock);
7b128766
JB
1975
1976 /*
1977 * if this is a bad inode, means we actually succeeded in
1978 * removing the inode, but not the orphan record, which means
1979 * we need to manually delete the orphan since iput will just
1980 * do a destroy_inode
1981 */
1982 if (is_bad_inode(inode)) {
5b21f2ed 1983 trans = btrfs_start_transaction(root, 1);
7b128766 1984 btrfs_orphan_del(trans, inode);
5b21f2ed 1985 btrfs_end_transaction(trans, root);
7b128766
JB
1986 iput(inode);
1987 continue;
1988 }
1989
1990 /* if we have links, this was a truncate, lets do that */
1991 if (inode->i_nlink) {
1992 nr_truncate++;
1993 btrfs_truncate(inode);
1994 } else {
1995 nr_unlink++;
1996 }
1997
1998 /* this will do delete_inode and everything for us */
1999 iput(inode);
2000 }
2001
2002 if (nr_unlink)
2003 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2004 if (nr_truncate)
2005 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2006
2007 btrfs_free_path(path);
7b128766
JB
2008}
2009
46a53cca
CM
2010/*
2011 * very simple check to peek ahead in the leaf looking for xattrs. If we
2012 * don't find any xattrs, we know there can't be any acls.
2013 *
2014 * slot is the slot the inode is in, objectid is the objectid of the inode
2015 */
2016static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2017 int slot, u64 objectid)
2018{
2019 u32 nritems = btrfs_header_nritems(leaf);
2020 struct btrfs_key found_key;
2021 int scanned = 0;
2022
2023 slot++;
2024 while (slot < nritems) {
2025 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2026
2027 /* we found a different objectid, there must not be acls */
2028 if (found_key.objectid != objectid)
2029 return 0;
2030
2031 /* we found an xattr, assume we've got an acl */
2032 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2033 return 1;
2034
2035 /*
2036 * we found a key greater than an xattr key, there can't
2037 * be any acls later on
2038 */
2039 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2040 return 0;
2041
2042 slot++;
2043 scanned++;
2044
2045 /*
2046 * it goes inode, inode backrefs, xattrs, extents,
2047 * so if there are a ton of hard links to an inode there can
2048 * be a lot of backrefs. Don't waste time searching too hard,
2049 * this is just an optimization
2050 */
2051 if (scanned >= 8)
2052 break;
2053 }
2054 /* we hit the end of the leaf before we found an xattr or
2055 * something larger than an xattr. We have to assume the inode
2056 * has acls
2057 */
2058 return 1;
2059}
2060
d352ac68
CM
2061/*
2062 * read an inode from the btree into the in-memory inode
2063 */
5d4f98a2 2064static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2065{
2066 struct btrfs_path *path;
5f39d397 2067 struct extent_buffer *leaf;
39279cc3 2068 struct btrfs_inode_item *inode_item;
0b86a832 2069 struct btrfs_timespec *tspec;
39279cc3
CM
2070 struct btrfs_root *root = BTRFS_I(inode)->root;
2071 struct btrfs_key location;
46a53cca 2072 int maybe_acls;
39279cc3 2073 u64 alloc_group_block;
618e21d5 2074 u32 rdev;
39279cc3
CM
2075 int ret;
2076
2077 path = btrfs_alloc_path();
2078 BUG_ON(!path);
39279cc3 2079 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2080
39279cc3 2081 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2082 if (ret)
39279cc3 2083 goto make_bad;
39279cc3 2084
5f39d397
CM
2085 leaf = path->nodes[0];
2086 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2087 struct btrfs_inode_item);
2088
2089 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2090 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2091 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2092 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2093 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2094
2095 tspec = btrfs_inode_atime(inode_item);
2096 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2097 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2098
2099 tspec = btrfs_inode_mtime(inode_item);
2100 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2101 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2102
2103 tspec = btrfs_inode_ctime(inode_item);
2104 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2105 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2106
a76a3cd4 2107 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2108 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2109 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2110 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2111 inode->i_rdev = 0;
5f39d397
CM
2112 rdev = btrfs_inode_rdev(leaf, inode_item);
2113
aec7477b 2114 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2115 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2116
5f39d397 2117 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2118
46a53cca
CM
2119 /*
2120 * try to precache a NULL acl entry for files that don't have
2121 * any xattrs or acls
2122 */
2123 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2124 if (!maybe_acls) {
2125 BTRFS_I(inode)->i_acl = NULL;
2126 BTRFS_I(inode)->i_default_acl = NULL;
2127 }
2128
d2fb3437
YZ
2129 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2130 alloc_group_block, 0);
39279cc3
CM
2131 btrfs_free_path(path);
2132 inode_item = NULL;
2133
39279cc3 2134 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2135 case S_IFREG:
2136 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2137 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2138 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2139 inode->i_fop = &btrfs_file_operations;
2140 inode->i_op = &btrfs_file_inode_operations;
2141 break;
2142 case S_IFDIR:
2143 inode->i_fop = &btrfs_dir_file_operations;
2144 if (root == root->fs_info->tree_root)
2145 inode->i_op = &btrfs_dir_ro_inode_operations;
2146 else
2147 inode->i_op = &btrfs_dir_inode_operations;
2148 break;
2149 case S_IFLNK:
2150 inode->i_op = &btrfs_symlink_inode_operations;
2151 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2152 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2153 break;
618e21d5 2154 default:
0279b4cd 2155 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2156 init_special_inode(inode, inode->i_mode, rdev);
2157 break;
39279cc3
CM
2158 }
2159 return;
2160
2161make_bad:
39279cc3 2162 btrfs_free_path(path);
39279cc3
CM
2163 make_bad_inode(inode);
2164}
2165
d352ac68
CM
2166/*
2167 * given a leaf and an inode, copy the inode fields into the leaf
2168 */
e02119d5
CM
2169static void fill_inode_item(struct btrfs_trans_handle *trans,
2170 struct extent_buffer *leaf,
5f39d397 2171 struct btrfs_inode_item *item,
39279cc3
CM
2172 struct inode *inode)
2173{
5f39d397
CM
2174 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2175 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2176 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2177 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2178 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2179
2180 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2181 inode->i_atime.tv_sec);
2182 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2183 inode->i_atime.tv_nsec);
2184
2185 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2186 inode->i_mtime.tv_sec);
2187 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2188 inode->i_mtime.tv_nsec);
2189
2190 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2191 inode->i_ctime.tv_sec);
2192 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2193 inode->i_ctime.tv_nsec);
2194
a76a3cd4 2195 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2196 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2197 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2198 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2199 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2200 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2201 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2202}
2203
d352ac68
CM
2204/*
2205 * copy everything in the in-memory inode into the btree.
2206 */
d397712b
CM
2207noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2208 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2209{
2210 struct btrfs_inode_item *inode_item;
2211 struct btrfs_path *path;
5f39d397 2212 struct extent_buffer *leaf;
39279cc3
CM
2213 int ret;
2214
2215 path = btrfs_alloc_path();
2216 BUG_ON(!path);
b9473439 2217 path->leave_spinning = 1;
39279cc3
CM
2218 ret = btrfs_lookup_inode(trans, root, path,
2219 &BTRFS_I(inode)->location, 1);
2220 if (ret) {
2221 if (ret > 0)
2222 ret = -ENOENT;
2223 goto failed;
2224 }
2225
b4ce94de 2226 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2227 leaf = path->nodes[0];
2228 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2229 struct btrfs_inode_item);
2230
e02119d5 2231 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2232 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2233 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2234 ret = 0;
2235failed:
39279cc3
CM
2236 btrfs_free_path(path);
2237 return ret;
2238}
2239
2240
d352ac68
CM
2241/*
2242 * unlink helper that gets used here in inode.c and in the tree logging
2243 * recovery code. It remove a link in a directory with a given name, and
2244 * also drops the back refs in the inode to the directory
2245 */
e02119d5
CM
2246int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2247 struct btrfs_root *root,
2248 struct inode *dir, struct inode *inode,
2249 const char *name, int name_len)
39279cc3
CM
2250{
2251 struct btrfs_path *path;
39279cc3 2252 int ret = 0;
5f39d397 2253 struct extent_buffer *leaf;
39279cc3 2254 struct btrfs_dir_item *di;
5f39d397 2255 struct btrfs_key key;
aec7477b 2256 u64 index;
39279cc3
CM
2257
2258 path = btrfs_alloc_path();
54aa1f4d
CM
2259 if (!path) {
2260 ret = -ENOMEM;
2261 goto err;
2262 }
2263
b9473439 2264 path->leave_spinning = 1;
39279cc3
CM
2265 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2266 name, name_len, -1);
2267 if (IS_ERR(di)) {
2268 ret = PTR_ERR(di);
2269 goto err;
2270 }
2271 if (!di) {
2272 ret = -ENOENT;
2273 goto err;
2274 }
5f39d397
CM
2275 leaf = path->nodes[0];
2276 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2277 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2278 if (ret)
2279 goto err;
39279cc3
CM
2280 btrfs_release_path(root, path);
2281
aec7477b 2282 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2283 inode->i_ino,
2284 dir->i_ino, &index);
aec7477b 2285 if (ret) {
d397712b 2286 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2287 "inode %lu parent %lu\n", name_len, name,
e02119d5 2288 inode->i_ino, dir->i_ino);
aec7477b
JB
2289 goto err;
2290 }
2291
39279cc3 2292 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2293 index, name, name_len, -1);
39279cc3
CM
2294 if (IS_ERR(di)) {
2295 ret = PTR_ERR(di);
2296 goto err;
2297 }
2298 if (!di) {
2299 ret = -ENOENT;
2300 goto err;
2301 }
2302 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2303 btrfs_release_path(root, path);
39279cc3 2304
e02119d5
CM
2305 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2306 inode, dir->i_ino);
49eb7e46 2307 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2308
2309 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2310 dir, index);
2311 BUG_ON(ret);
39279cc3
CM
2312err:
2313 btrfs_free_path(path);
e02119d5
CM
2314 if (ret)
2315 goto out;
2316
2317 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2318 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2319 btrfs_update_inode(trans, root, dir);
2320 btrfs_drop_nlink(inode);
2321 ret = btrfs_update_inode(trans, root, inode);
2322 dir->i_sb->s_dirt = 1;
2323out:
39279cc3
CM
2324 return ret;
2325}
2326
2327static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2328{
2329 struct btrfs_root *root;
2330 struct btrfs_trans_handle *trans;
7b128766 2331 struct inode *inode = dentry->d_inode;
39279cc3 2332 int ret;
1832a6d5 2333 unsigned long nr = 0;
39279cc3
CM
2334
2335 root = BTRFS_I(dir)->root;
1832a6d5 2336
39279cc3 2337 trans = btrfs_start_transaction(root, 1);
5f39d397 2338
39279cc3 2339 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2340
2341 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2342
e02119d5
CM
2343 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2344 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2345
2346 if (inode->i_nlink == 0)
2347 ret = btrfs_orphan_add(trans, inode);
2348
d3c2fdcf 2349 nr = trans->blocks_used;
5f39d397 2350
89ce8a63 2351 btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2352 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2353 return ret;
2354}
2355
2356static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2357{
2358 struct inode *inode = dentry->d_inode;
1832a6d5 2359 int err = 0;
39279cc3
CM
2360 int ret;
2361 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2362 struct btrfs_trans_handle *trans;
1832a6d5 2363 unsigned long nr = 0;
39279cc3 2364
3394e160
CM
2365 /*
2366 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2367 * the root of a subvolume or snapshot
2368 */
2369 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2370 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
134d4512 2371 return -ENOTEMPTY;
925baedd 2372 }
134d4512 2373
39279cc3
CM
2374 trans = btrfs_start_transaction(root, 1);
2375 btrfs_set_trans_block_group(trans, dir);
39279cc3 2376
7b128766
JB
2377 err = btrfs_orphan_add(trans, inode);
2378 if (err)
2379 goto fail_trans;
2380
39279cc3 2381 /* now the directory is empty */
e02119d5
CM
2382 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2383 dentry->d_name.name, dentry->d_name.len);
d397712b 2384 if (!err)
dbe674a9 2385 btrfs_i_size_write(inode, 0);
3954401f 2386
7b128766 2387fail_trans:
d3c2fdcf 2388 nr = trans->blocks_used;
89ce8a63 2389 ret = btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2390 btrfs_btree_balance_dirty(root, nr);
3954401f 2391
39279cc3
CM
2392 if (ret && !err)
2393 err = ret;
2394 return err;
2395}
2396
d20f7043 2397#if 0
323ac95b
CM
2398/*
2399 * when truncating bytes in a file, it is possible to avoid reading
2400 * the leaves that contain only checksum items. This can be the
2401 * majority of the IO required to delete a large file, but it must
2402 * be done carefully.
2403 *
2404 * The keys in the level just above the leaves are checked to make sure
2405 * the lowest key in a given leaf is a csum key, and starts at an offset
2406 * after the new size.
2407 *
2408 * Then the key for the next leaf is checked to make sure it also has
2409 * a checksum item for the same file. If it does, we know our target leaf
2410 * contains only checksum items, and it can be safely freed without reading
2411 * it.
2412 *
2413 * This is just an optimization targeted at large files. It may do
2414 * nothing. It will return 0 unless things went badly.
2415 */
2416static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2417 struct btrfs_root *root,
2418 struct btrfs_path *path,
2419 struct inode *inode, u64 new_size)
2420{
2421 struct btrfs_key key;
2422 int ret;
2423 int nritems;
2424 struct btrfs_key found_key;
2425 struct btrfs_key other_key;
5b84e8d6
YZ
2426 struct btrfs_leaf_ref *ref;
2427 u64 leaf_gen;
2428 u64 leaf_start;
323ac95b
CM
2429
2430 path->lowest_level = 1;
2431 key.objectid = inode->i_ino;
2432 key.type = BTRFS_CSUM_ITEM_KEY;
2433 key.offset = new_size;
2434again:
2435 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2436 if (ret < 0)
2437 goto out;
2438
2439 if (path->nodes[1] == NULL) {
2440 ret = 0;
2441 goto out;
2442 }
2443 ret = 0;
2444 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2445 nritems = btrfs_header_nritems(path->nodes[1]);
2446
2447 if (!nritems)
2448 goto out;
2449
2450 if (path->slots[1] >= nritems)
2451 goto next_node;
2452
2453 /* did we find a key greater than anything we want to delete? */
2454 if (found_key.objectid > inode->i_ino ||
2455 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2456 goto out;
2457
2458 /* we check the next key in the node to make sure the leave contains
2459 * only checksum items. This comparison doesn't work if our
2460 * leaf is the last one in the node
2461 */
2462 if (path->slots[1] + 1 >= nritems) {
2463next_node:
2464 /* search forward from the last key in the node, this
2465 * will bring us into the next node in the tree
2466 */
2467 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2468
2469 /* unlikely, but we inc below, so check to be safe */
2470 if (found_key.offset == (u64)-1)
2471 goto out;
2472
2473 /* search_forward needs a path with locks held, do the
2474 * search again for the original key. It is possible
2475 * this will race with a balance and return a path that
2476 * we could modify, but this drop is just an optimization
2477 * and is allowed to miss some leaves.
2478 */
2479 btrfs_release_path(root, path);
2480 found_key.offset++;
2481
2482 /* setup a max key for search_forward */
2483 other_key.offset = (u64)-1;
2484 other_key.type = key.type;
2485 other_key.objectid = key.objectid;
2486
2487 path->keep_locks = 1;
2488 ret = btrfs_search_forward(root, &found_key, &other_key,
2489 path, 0, 0);
2490 path->keep_locks = 0;
2491 if (ret || found_key.objectid != key.objectid ||
2492 found_key.type != key.type) {
2493 ret = 0;
2494 goto out;
2495 }
2496
2497 key.offset = found_key.offset;
2498 btrfs_release_path(root, path);
2499 cond_resched();
2500 goto again;
2501 }
2502
2503 /* we know there's one more slot after us in the tree,
2504 * read that key so we can verify it is also a checksum item
2505 */
2506 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2507
2508 if (found_key.objectid < inode->i_ino)
2509 goto next_key;
2510
2511 if (found_key.type != key.type || found_key.offset < new_size)
2512 goto next_key;
2513
2514 /*
2515 * if the key for the next leaf isn't a csum key from this objectid,
2516 * we can't be sure there aren't good items inside this leaf.
2517 * Bail out
2518 */
2519 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2520 goto out;
2521
5b84e8d6
YZ
2522 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2523 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2524 /*
2525 * it is safe to delete this leaf, it contains only
2526 * csum items from this inode at an offset >= new_size
2527 */
5b84e8d6 2528 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2529 BUG_ON(ret);
2530
5b84e8d6
YZ
2531 if (root->ref_cows && leaf_gen < trans->transid) {
2532 ref = btrfs_alloc_leaf_ref(root, 0);
2533 if (ref) {
2534 ref->root_gen = root->root_key.offset;
2535 ref->bytenr = leaf_start;
2536 ref->owner = 0;
2537 ref->generation = leaf_gen;
2538 ref->nritems = 0;
2539
bd56b302
CM
2540 btrfs_sort_leaf_ref(ref);
2541
5b84e8d6
YZ
2542 ret = btrfs_add_leaf_ref(root, ref, 0);
2543 WARN_ON(ret);
2544 btrfs_free_leaf_ref(root, ref);
2545 } else {
2546 WARN_ON(1);
2547 }
2548 }
323ac95b
CM
2549next_key:
2550 btrfs_release_path(root, path);
2551
2552 if (other_key.objectid == inode->i_ino &&
2553 other_key.type == key.type && other_key.offset > key.offset) {
2554 key.offset = other_key.offset;
2555 cond_resched();
2556 goto again;
2557 }
2558 ret = 0;
2559out:
2560 /* fixup any changes we've made to the path */
2561 path->lowest_level = 0;
2562 path->keep_locks = 0;
2563 btrfs_release_path(root, path);
2564 return ret;
2565}
2566
d20f7043
CM
2567#endif
2568
39279cc3
CM
2569/*
2570 * this can truncate away extent items, csum items and directory items.
2571 * It starts at a high offset and removes keys until it can't find
d352ac68 2572 * any higher than new_size
39279cc3
CM
2573 *
2574 * csum items that cross the new i_size are truncated to the new size
2575 * as well.
7b128766
JB
2576 *
2577 * min_type is the minimum key type to truncate down to. If set to 0, this
2578 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2579 */
e02119d5
CM
2580noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2581 struct btrfs_root *root,
2582 struct inode *inode,
2583 u64 new_size, u32 min_type)
39279cc3
CM
2584{
2585 int ret;
2586 struct btrfs_path *path;
2587 struct btrfs_key key;
5f39d397 2588 struct btrfs_key found_key;
06d9a8d7 2589 u32 found_type = (u8)-1;
5f39d397 2590 struct extent_buffer *leaf;
39279cc3
CM
2591 struct btrfs_file_extent_item *fi;
2592 u64 extent_start = 0;
db94535d 2593 u64 extent_num_bytes = 0;
5d4f98a2 2594 u64 extent_offset = 0;
39279cc3
CM
2595 u64 item_end = 0;
2596 int found_extent;
2597 int del_item;
85e21bac
CM
2598 int pending_del_nr = 0;
2599 int pending_del_slot = 0;
179e29e4 2600 int extent_type = -1;
771ed689 2601 int encoding;
3b951516 2602 u64 mask = root->sectorsize - 1;
39279cc3 2603
e02119d5 2604 if (root->ref_cows)
5b21f2ed 2605 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
39279cc3 2606 path = btrfs_alloc_path();
3c69faec 2607 path->reada = -1;
39279cc3 2608 BUG_ON(!path);
5f39d397 2609
39279cc3
CM
2610 /* FIXME, add redo link to tree so we don't leak on crash */
2611 key.objectid = inode->i_ino;
2612 key.offset = (u64)-1;
5f39d397
CM
2613 key.type = (u8)-1;
2614
85e21bac 2615search_again:
b9473439 2616 path->leave_spinning = 1;
85e21bac 2617 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
d397712b 2618 if (ret < 0)
85e21bac 2619 goto error;
d397712b 2620
85e21bac 2621 if (ret > 0) {
e02119d5
CM
2622 /* there are no items in the tree for us to truncate, we're
2623 * done
2624 */
2625 if (path->slots[0] == 0) {
2626 ret = 0;
2627 goto error;
2628 }
85e21bac
CM
2629 path->slots[0]--;
2630 }
2631
d397712b 2632 while (1) {
39279cc3 2633 fi = NULL;
5f39d397
CM
2634 leaf = path->nodes[0];
2635 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2636 found_type = btrfs_key_type(&found_key);
771ed689 2637 encoding = 0;
39279cc3 2638
5f39d397 2639 if (found_key.objectid != inode->i_ino)
39279cc3 2640 break;
5f39d397 2641
85e21bac 2642 if (found_type < min_type)
39279cc3
CM
2643 break;
2644
5f39d397 2645 item_end = found_key.offset;
39279cc3 2646 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2647 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2648 struct btrfs_file_extent_item);
179e29e4 2649 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2650 encoding = btrfs_file_extent_compression(leaf, fi);
2651 encoding |= btrfs_file_extent_encryption(leaf, fi);
2652 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2653
179e29e4 2654 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2655 item_end +=
db94535d 2656 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2657 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2658 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2659 fi);
39279cc3 2660 }
008630c1 2661 item_end--;
39279cc3 2662 }
e02119d5 2663 if (item_end < new_size) {
d397712b 2664 if (found_type == BTRFS_DIR_ITEM_KEY)
b888db2b 2665 found_type = BTRFS_INODE_ITEM_KEY;
d397712b 2666 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
d20f7043 2667 found_type = BTRFS_EXTENT_DATA_KEY;
d397712b 2668 else if (found_type == BTRFS_EXTENT_DATA_KEY)
85e21bac 2669 found_type = BTRFS_XATTR_ITEM_KEY;
d397712b 2670 else if (found_type == BTRFS_XATTR_ITEM_KEY)
85e21bac 2671 found_type = BTRFS_INODE_REF_KEY;
d397712b 2672 else if (found_type)
b888db2b 2673 found_type--;
d397712b 2674 else
b888db2b 2675 break;
a61721d5 2676 btrfs_set_key_type(&key, found_type);
85e21bac 2677 goto next;
39279cc3 2678 }
e02119d5 2679 if (found_key.offset >= new_size)
39279cc3
CM
2680 del_item = 1;
2681 else
2682 del_item = 0;
2683 found_extent = 0;
2684
2685 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2686 if (found_type != BTRFS_EXTENT_DATA_KEY)
2687 goto delete;
2688
2689 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2690 u64 num_dec;
db94535d 2691 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2692 if (!del_item && !encoding) {
db94535d
CM
2693 u64 orig_num_bytes =
2694 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2695 extent_num_bytes = new_size -
5f39d397 2696 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2697 extent_num_bytes = extent_num_bytes &
2698 ~((u64)root->sectorsize - 1);
db94535d
CM
2699 btrfs_set_file_extent_num_bytes(leaf, fi,
2700 extent_num_bytes);
2701 num_dec = (orig_num_bytes -
9069218d 2702 extent_num_bytes);
e02119d5 2703 if (root->ref_cows && extent_start != 0)
a76a3cd4 2704 inode_sub_bytes(inode, num_dec);
5f39d397 2705 btrfs_mark_buffer_dirty(leaf);
39279cc3 2706 } else {
db94535d
CM
2707 extent_num_bytes =
2708 btrfs_file_extent_disk_num_bytes(leaf,
2709 fi);
5d4f98a2
YZ
2710 extent_offset = found_key.offset -
2711 btrfs_file_extent_offset(leaf, fi);
2712
39279cc3 2713 /* FIXME blocksize != 4096 */
9069218d 2714 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2715 if (extent_start != 0) {
2716 found_extent = 1;
e02119d5 2717 if (root->ref_cows)
a76a3cd4 2718 inode_sub_bytes(inode, num_dec);
e02119d5 2719 }
39279cc3 2720 }
9069218d 2721 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2722 /*
2723 * we can't truncate inline items that have had
2724 * special encodings
2725 */
2726 if (!del_item &&
2727 btrfs_file_extent_compression(leaf, fi) == 0 &&
2728 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2729 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
2730 u32 size = new_size - found_key.offset;
2731
2732 if (root->ref_cows) {
a76a3cd4
YZ
2733 inode_sub_bytes(inode, item_end + 1 -
2734 new_size);
e02119d5
CM
2735 }
2736 size =
2737 btrfs_file_extent_calc_inline_size(size);
9069218d 2738 ret = btrfs_truncate_item(trans, root, path,
e02119d5 2739 size, 1);
9069218d 2740 BUG_ON(ret);
e02119d5 2741 } else if (root->ref_cows) {
a76a3cd4
YZ
2742 inode_sub_bytes(inode, item_end + 1 -
2743 found_key.offset);
9069218d 2744 }
39279cc3 2745 }
179e29e4 2746delete:
39279cc3 2747 if (del_item) {
85e21bac
CM
2748 if (!pending_del_nr) {
2749 /* no pending yet, add ourselves */
2750 pending_del_slot = path->slots[0];
2751 pending_del_nr = 1;
2752 } else if (pending_del_nr &&
2753 path->slots[0] + 1 == pending_del_slot) {
2754 /* hop on the pending chunk */
2755 pending_del_nr++;
2756 pending_del_slot = path->slots[0];
2757 } else {
d397712b 2758 BUG();
85e21bac 2759 }
39279cc3
CM
2760 } else {
2761 break;
2762 }
5d4f98a2 2763 if (found_extent && root->ref_cows) {
b9473439 2764 btrfs_set_path_blocking(path);
39279cc3 2765 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
2766 extent_num_bytes, 0,
2767 btrfs_header_owner(leaf),
2768 inode->i_ino, extent_offset);
39279cc3
CM
2769 BUG_ON(ret);
2770 }
85e21bac
CM
2771next:
2772 if (path->slots[0] == 0) {
2773 if (pending_del_nr)
2774 goto del_pending;
2775 btrfs_release_path(root, path);
06d9a8d7
CM
2776 if (found_type == BTRFS_INODE_ITEM_KEY)
2777 break;
85e21bac
CM
2778 goto search_again;
2779 }
2780
2781 path->slots[0]--;
2782 if (pending_del_nr &&
2783 path->slots[0] + 1 != pending_del_slot) {
2784 struct btrfs_key debug;
2785del_pending:
2786 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2787 pending_del_slot);
2788 ret = btrfs_del_items(trans, root, path,
2789 pending_del_slot,
2790 pending_del_nr);
2791 BUG_ON(ret);
2792 pending_del_nr = 0;
2793 btrfs_release_path(root, path);
06d9a8d7
CM
2794 if (found_type == BTRFS_INODE_ITEM_KEY)
2795 break;
85e21bac
CM
2796 goto search_again;
2797 }
39279cc3
CM
2798 }
2799 ret = 0;
2800error:
85e21bac
CM
2801 if (pending_del_nr) {
2802 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2803 pending_del_nr);
2804 }
39279cc3
CM
2805 btrfs_free_path(path);
2806 inode->i_sb->s_dirt = 1;
2807 return ret;
2808}
2809
2810/*
2811 * taken from block_truncate_page, but does cow as it zeros out
2812 * any bytes left in the last page in the file.
2813 */
2814static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2815{
2816 struct inode *inode = mapping->host;
db94535d 2817 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
2818 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2819 struct btrfs_ordered_extent *ordered;
2820 char *kaddr;
db94535d 2821 u32 blocksize = root->sectorsize;
39279cc3
CM
2822 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2823 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2824 struct page *page;
39279cc3 2825 int ret = 0;
a52d9a80 2826 u64 page_start;
e6dcd2dc 2827 u64 page_end;
39279cc3
CM
2828
2829 if ((offset & (blocksize - 1)) == 0)
2830 goto out;
2831
2832 ret = -ENOMEM;
211c17f5 2833again:
39279cc3
CM
2834 page = grab_cache_page(mapping, index);
2835 if (!page)
2836 goto out;
e6dcd2dc
CM
2837
2838 page_start = page_offset(page);
2839 page_end = page_start + PAGE_CACHE_SIZE - 1;
2840
39279cc3 2841 if (!PageUptodate(page)) {
9ebefb18 2842 ret = btrfs_readpage(NULL, page);
39279cc3 2843 lock_page(page);
211c17f5
CM
2844 if (page->mapping != mapping) {
2845 unlock_page(page);
2846 page_cache_release(page);
2847 goto again;
2848 }
39279cc3
CM
2849 if (!PageUptodate(page)) {
2850 ret = -EIO;
89642229 2851 goto out_unlock;
39279cc3
CM
2852 }
2853 }
211c17f5 2854 wait_on_page_writeback(page);
e6dcd2dc
CM
2855
2856 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2857 set_page_extent_mapped(page);
2858
2859 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2860 if (ordered) {
2861 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2862 unlock_page(page);
2863 page_cache_release(page);
eb84ae03 2864 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
2865 btrfs_put_ordered_extent(ordered);
2866 goto again;
2867 }
2868
ea8c2819 2869 btrfs_set_extent_delalloc(inode, page_start, page_end);
e6dcd2dc
CM
2870 ret = 0;
2871 if (offset != PAGE_CACHE_SIZE) {
2872 kaddr = kmap(page);
2873 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2874 flush_dcache_page(page);
2875 kunmap(page);
2876 }
247e743c 2877 ClearPageChecked(page);
e6dcd2dc
CM
2878 set_page_dirty(page);
2879 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 2880
89642229 2881out_unlock:
39279cc3
CM
2882 unlock_page(page);
2883 page_cache_release(page);
2884out:
2885 return ret;
2886}
2887
9036c102 2888int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 2889{
9036c102
YZ
2890 struct btrfs_trans_handle *trans;
2891 struct btrfs_root *root = BTRFS_I(inode)->root;
2892 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2893 struct extent_map *em;
2894 u64 mask = root->sectorsize - 1;
2895 u64 hole_start = (inode->i_size + mask) & ~mask;
2896 u64 block_end = (size + mask) & ~mask;
2897 u64 last_byte;
2898 u64 cur_offset;
2899 u64 hole_size;
39279cc3
CM
2900 int err;
2901
9036c102
YZ
2902 if (size <= hole_start)
2903 return 0;
2904
6a63209f 2905 err = btrfs_check_metadata_free_space(root);
39279cc3
CM
2906 if (err)
2907 return err;
2908
9036c102 2909 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2bf5a725 2910
9036c102
YZ
2911 while (1) {
2912 struct btrfs_ordered_extent *ordered;
2913 btrfs_wait_ordered_range(inode, hole_start,
2914 block_end - hole_start);
2915 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2916 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2917 if (!ordered)
2918 break;
2919 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2920 btrfs_put_ordered_extent(ordered);
2921 }
39279cc3 2922
9036c102
YZ
2923 trans = btrfs_start_transaction(root, 1);
2924 btrfs_set_trans_block_group(trans, inode);
39279cc3 2925
9036c102
YZ
2926 cur_offset = hole_start;
2927 while (1) {
2928 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2929 block_end - cur_offset, 0);
2930 BUG_ON(IS_ERR(em) || !em);
2931 last_byte = min(extent_map_end(em), block_end);
2932 last_byte = (last_byte + mask) & ~mask;
2933 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
771ed689 2934 u64 hint_byte = 0;
9036c102 2935 hole_size = last_byte - cur_offset;
771ed689
CM
2936 err = btrfs_drop_extents(trans, root, inode,
2937 cur_offset,
2938 cur_offset + hole_size,
e980b50c 2939 block_end,
771ed689
CM
2940 cur_offset, &hint_byte);
2941 if (err)
2942 break;
9036c102
YZ
2943 err = btrfs_insert_file_extent(trans, root,
2944 inode->i_ino, cur_offset, 0,
2945 0, hole_size, 0, hole_size,
2946 0, 0, 0);
2947 btrfs_drop_extent_cache(inode, hole_start,
2948 last_byte - 1, 0);
2949 }
2950 free_extent_map(em);
2951 cur_offset = last_byte;
2952 if (err || cur_offset >= block_end)
2953 break;
2954 }
1832a6d5 2955
9036c102
YZ
2956 btrfs_end_transaction(trans, root);
2957 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2958 return err;
2959}
39279cc3 2960
9036c102
YZ
2961static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2962{
2963 struct inode *inode = dentry->d_inode;
2964 int err;
39279cc3 2965
9036c102
YZ
2966 err = inode_change_ok(inode, attr);
2967 if (err)
2968 return err;
2bf5a725 2969
5a3f23d5
CM
2970 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2971 if (attr->ia_size > inode->i_size) {
2972 err = btrfs_cont_expand(inode, attr->ia_size);
2973 if (err)
2974 return err;
2975 } else if (inode->i_size > 0 &&
2976 attr->ia_size == 0) {
2977
2978 /* we're truncating a file that used to have good
2979 * data down to zero. Make sure it gets into
2980 * the ordered flush list so that any new writes
2981 * get down to disk quickly.
2982 */
2983 BTRFS_I(inode)->ordered_data_close = 1;
2984 }
39279cc3 2985 }
9036c102 2986
39279cc3 2987 err = inode_setattr(inode, attr);
33268eaf
JB
2988
2989 if (!err && ((attr->ia_valid & ATTR_MODE)))
2990 err = btrfs_acl_chmod(inode);
39279cc3
CM
2991 return err;
2992}
61295eb8 2993
39279cc3
CM
2994void btrfs_delete_inode(struct inode *inode)
2995{
2996 struct btrfs_trans_handle *trans;
2997 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 2998 unsigned long nr;
39279cc3
CM
2999 int ret;
3000
3001 truncate_inode_pages(&inode->i_data, 0);
3002 if (is_bad_inode(inode)) {
7b128766 3003 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3004 goto no_delete;
3005 }
4a096752 3006 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3007
dbe674a9 3008 btrfs_i_size_write(inode, 0);
180591bc 3009 trans = btrfs_join_transaction(root, 1);
5f39d397 3010
39279cc3 3011 btrfs_set_trans_block_group(trans, inode);
e02119d5 3012 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
7b128766
JB
3013 if (ret) {
3014 btrfs_orphan_del(NULL, inode);
54aa1f4d 3015 goto no_delete_lock;
7b128766
JB
3016 }
3017
3018 btrfs_orphan_del(trans, inode);
85e21bac 3019
d3c2fdcf 3020 nr = trans->blocks_used;
85e21bac 3021 clear_inode(inode);
5f39d397 3022
39279cc3 3023 btrfs_end_transaction(trans, root);
d3c2fdcf 3024 btrfs_btree_balance_dirty(root, nr);
39279cc3 3025 return;
54aa1f4d
CM
3026
3027no_delete_lock:
d3c2fdcf 3028 nr = trans->blocks_used;
54aa1f4d 3029 btrfs_end_transaction(trans, root);
d3c2fdcf 3030 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3031no_delete:
3032 clear_inode(inode);
3033}
3034
3035/*
3036 * this returns the key found in the dir entry in the location pointer.
3037 * If no dir entries were found, location->objectid is 0.
3038 */
3039static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3040 struct btrfs_key *location)
3041{
3042 const char *name = dentry->d_name.name;
3043 int namelen = dentry->d_name.len;
3044 struct btrfs_dir_item *di;
3045 struct btrfs_path *path;
3046 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3047 int ret = 0;
39279cc3
CM
3048
3049 path = btrfs_alloc_path();
3050 BUG_ON(!path);
3954401f 3051
39279cc3
CM
3052 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3053 namelen, 0);
0d9f7f3e
Y
3054 if (IS_ERR(di))
3055 ret = PTR_ERR(di);
d397712b
CM
3056
3057 if (!di || IS_ERR(di))
3954401f 3058 goto out_err;
d397712b 3059
5f39d397 3060 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3061out:
39279cc3
CM
3062 btrfs_free_path(path);
3063 return ret;
3954401f
CM
3064out_err:
3065 location->objectid = 0;
3066 goto out;
39279cc3
CM
3067}
3068
3069/*
3070 * when we hit a tree root in a directory, the btrfs part of the inode
3071 * needs to be changed to reflect the root directory of the tree root. This
3072 * is kind of like crossing a mount point.
3073 */
3074static int fixup_tree_root_location(struct btrfs_root *root,
3075 struct btrfs_key *location,
58176a96
JB
3076 struct btrfs_root **sub_root,
3077 struct dentry *dentry)
39279cc3 3078{
39279cc3
CM
3079 struct btrfs_root_item *ri;
3080
3081 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3082 return 0;
3083 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3084 return 0;
3085
58176a96
JB
3086 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3087 dentry->d_name.name,
3088 dentry->d_name.len);
39279cc3
CM
3089 if (IS_ERR(*sub_root))
3090 return PTR_ERR(*sub_root);
3091
3092 ri = &(*sub_root)->root_item;
3093 location->objectid = btrfs_root_dirid(ri);
39279cc3
CM
3094 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3095 location->offset = 0;
3096
39279cc3
CM
3097 return 0;
3098}
3099
5d4f98a2
YZ
3100static void inode_tree_add(struct inode *inode)
3101{
3102 struct btrfs_root *root = BTRFS_I(inode)->root;
3103 struct btrfs_inode *entry;
3104 struct rb_node **p = &root->inode_tree.rb_node;
3105 struct rb_node *parent = NULL;
3106
3107 spin_lock(&root->inode_lock);
3108 while (*p) {
3109 parent = *p;
3110 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3111
3112 if (inode->i_ino < entry->vfs_inode.i_ino)
3113 p = &(*p)->rb_left;
3114 else if (inode->i_ino > entry->vfs_inode.i_ino)
3115 p = &(*p)->rb_right;
3116 else {
3117 WARN_ON(!(entry->vfs_inode.i_state &
3118 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3119 break;
3120 }
3121 }
3122 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3123 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3124 spin_unlock(&root->inode_lock);
3125}
3126
3127static void inode_tree_del(struct inode *inode)
3128{
3129 struct btrfs_root *root = BTRFS_I(inode)->root;
3130
3131 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3132 spin_lock(&root->inode_lock);
3133 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3134 spin_unlock(&root->inode_lock);
3135 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3136 }
3137}
3138
e02119d5 3139static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3140{
e02119d5
CM
3141 struct btrfs_inode *bi = BTRFS_I(inode);
3142
7b1a14bb
CM
3143 bi->i_acl = BTRFS_ACL_NOT_CACHED;
3144 bi->i_default_acl = BTRFS_ACL_NOT_CACHED;
e02119d5
CM
3145
3146 bi->generation = 0;
c3027eb5 3147 bi->sequence = 0;
e02119d5
CM
3148 bi->last_trans = 0;
3149 bi->logged_trans = 0;
3150 bi->delalloc_bytes = 0;
6a63209f 3151 bi->reserved_bytes = 0;
e02119d5
CM
3152 bi->disk_i_size = 0;
3153 bi->flags = 0;
3154 bi->index_cnt = (u64)-1;
12fcfd22 3155 bi->last_unlink_trans = 0;
2757495c 3156 bi->ordered_data_close = 0;
d1310b2e
CM
3157 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3158 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3159 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3160 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3161 inode->i_mapping, GFP_NOFS);
ea8c2819 3162 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3163 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3164 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3165 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
ee6e6504 3166 mutex_init(&BTRFS_I(inode)->extent_mutex);
e02119d5
CM
3167 mutex_init(&BTRFS_I(inode)->log_mutex);
3168}
3169
3170static int btrfs_init_locked_inode(struct inode *inode, void *p)
3171{
3172 struct btrfs_iget_args *args = p;
3173 inode->i_ino = args->ino;
3174 init_btrfs_i(inode);
3175 BTRFS_I(inode)->root = args->root;
6a63209f 3176 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3177 return 0;
3178}
3179
3180static int btrfs_find_actor(struct inode *inode, void *opaque)
3181{
3182 struct btrfs_iget_args *args = opaque;
d397712b
CM
3183 return args->ino == inode->i_ino &&
3184 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3185}
3186
5d4f98a2
YZ
3187static struct inode *btrfs_iget_locked(struct super_block *s,
3188 u64 objectid,
3189 struct btrfs_root *root)
39279cc3
CM
3190{
3191 struct inode *inode;
3192 struct btrfs_iget_args args;
3193 args.ino = objectid;
3194 args.root = root;
3195
3196 inode = iget5_locked(s, objectid, btrfs_find_actor,
3197 btrfs_init_locked_inode,
3198 (void *)&args);
3199 return inode;
3200}
3201
1a54ef8c
BR
3202/* Get an inode object given its location and corresponding root.
3203 * Returns in *is_new if the inode was read from disk
3204 */
3205struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3206 struct btrfs_root *root)
1a54ef8c
BR
3207{
3208 struct inode *inode;
3209
3210 inode = btrfs_iget_locked(s, location->objectid, root);
3211 if (!inode)
5d4f98a2 3212 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3213
3214 if (inode->i_state & I_NEW) {
3215 BTRFS_I(inode)->root = root;
3216 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3217 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3218
3219 inode_tree_add(inode);
1a54ef8c 3220 unlock_new_inode(inode);
1a54ef8c
BR
3221 }
3222
3223 return inode;
3224}
3225
3de4586c 3226struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3227{
d397712b 3228 struct inode *inode;
39279cc3
CM
3229 struct btrfs_inode *bi = BTRFS_I(dir);
3230 struct btrfs_root *root = bi->root;
3231 struct btrfs_root *sub_root = root;
3232 struct btrfs_key location;
5d4f98a2 3233 int ret;
39279cc3
CM
3234
3235 if (dentry->d_name.len > BTRFS_NAME_LEN)
3236 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3237
39279cc3 3238 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3239
39279cc3
CM
3240 if (ret < 0)
3241 return ERR_PTR(ret);
5f39d397 3242
39279cc3
CM
3243 inode = NULL;
3244 if (location.objectid) {
58176a96
JB
3245 ret = fixup_tree_root_location(root, &location, &sub_root,
3246 dentry);
39279cc3
CM
3247 if (ret < 0)
3248 return ERR_PTR(ret);
3249 if (ret > 0)
3250 return ERR_PTR(-ENOENT);
5d4f98a2 3251 inode = btrfs_iget(dir->i_sb, &location, sub_root);
1a54ef8c
BR
3252 if (IS_ERR(inode))
3253 return ERR_CAST(inode);
39279cc3 3254 }
3de4586c
CM
3255 return inode;
3256}
3257
3258static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3259 struct nameidata *nd)
3260{
3261 struct inode *inode;
3262
3263 if (dentry->d_name.len > BTRFS_NAME_LEN)
3264 return ERR_PTR(-ENAMETOOLONG);
3265
3266 inode = btrfs_lookup_dentry(dir, dentry);
3267 if (IS_ERR(inode))
3268 return ERR_CAST(inode);
7b128766 3269
39279cc3
CM
3270 return d_splice_alias(inode, dentry);
3271}
3272
39279cc3
CM
3273static unsigned char btrfs_filetype_table[] = {
3274 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3275};
3276
cbdf5a24
DW
3277static int btrfs_real_readdir(struct file *filp, void *dirent,
3278 filldir_t filldir)
39279cc3 3279{
6da6abae 3280 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3281 struct btrfs_root *root = BTRFS_I(inode)->root;
3282 struct btrfs_item *item;
3283 struct btrfs_dir_item *di;
3284 struct btrfs_key key;
5f39d397 3285 struct btrfs_key found_key;
39279cc3
CM
3286 struct btrfs_path *path;
3287 int ret;
3288 u32 nritems;
5f39d397 3289 struct extent_buffer *leaf;
39279cc3
CM
3290 int slot;
3291 int advance;
3292 unsigned char d_type;
3293 int over = 0;
3294 u32 di_cur;
3295 u32 di_total;
3296 u32 di_len;
3297 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3298 char tmp_name[32];
3299 char *name_ptr;
3300 int name_len;
39279cc3
CM
3301
3302 /* FIXME, use a real flag for deciding about the key type */
3303 if (root->fs_info->tree_root == root)
3304 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3305
3954401f
CM
3306 /* special case for "." */
3307 if (filp->f_pos == 0) {
3308 over = filldir(dirent, ".", 1,
3309 1, inode->i_ino,
3310 DT_DIR);
3311 if (over)
3312 return 0;
3313 filp->f_pos = 1;
3314 }
3954401f
CM
3315 /* special case for .., just use the back ref */
3316 if (filp->f_pos == 1) {
5ecc7e5d 3317 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3318 over = filldir(dirent, "..", 2,
5ecc7e5d 3319 2, pino, DT_DIR);
3954401f 3320 if (over)
49593bfa 3321 return 0;
3954401f
CM
3322 filp->f_pos = 2;
3323 }
49593bfa
DW
3324 path = btrfs_alloc_path();
3325 path->reada = 2;
3326
39279cc3
CM
3327 btrfs_set_key_type(&key, key_type);
3328 key.offset = filp->f_pos;
49593bfa 3329 key.objectid = inode->i_ino;
5f39d397 3330
39279cc3
CM
3331 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3332 if (ret < 0)
3333 goto err;
3334 advance = 0;
49593bfa
DW
3335
3336 while (1) {
5f39d397
CM
3337 leaf = path->nodes[0];
3338 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3339 slot = path->slots[0];
3340 if (advance || slot >= nritems) {
49593bfa 3341 if (slot >= nritems - 1) {
39279cc3
CM
3342 ret = btrfs_next_leaf(root, path);
3343 if (ret)
3344 break;
5f39d397
CM
3345 leaf = path->nodes[0];
3346 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3347 slot = path->slots[0];
3348 } else {
3349 slot++;
3350 path->slots[0]++;
3351 }
3352 }
3de4586c 3353
39279cc3 3354 advance = 1;
5f39d397
CM
3355 item = btrfs_item_nr(leaf, slot);
3356 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3357
3358 if (found_key.objectid != key.objectid)
39279cc3 3359 break;
5f39d397 3360 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3361 break;
5f39d397 3362 if (found_key.offset < filp->f_pos)
39279cc3 3363 continue;
5f39d397
CM
3364
3365 filp->f_pos = found_key.offset;
49593bfa 3366
39279cc3
CM
3367 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3368 di_cur = 0;
5f39d397 3369 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3370
3371 while (di_cur < di_total) {
5f39d397
CM
3372 struct btrfs_key location;
3373
3374 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3375 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3376 name_ptr = tmp_name;
3377 } else {
3378 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3379 if (!name_ptr) {
3380 ret = -ENOMEM;
3381 goto err;
3382 }
5f39d397
CM
3383 }
3384 read_extent_buffer(leaf, name_ptr,
3385 (unsigned long)(di + 1), name_len);
3386
3387 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3388 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3389
3390 /* is this a reference to our own snapshot? If so
3391 * skip it
3392 */
3393 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3394 location.objectid == root->root_key.objectid) {
3395 over = 0;
3396 goto skip;
3397 }
5f39d397 3398 over = filldir(dirent, name_ptr, name_len,
49593bfa 3399 found_key.offset, location.objectid,
39279cc3 3400 d_type);
5f39d397 3401
3de4586c 3402skip:
5f39d397
CM
3403 if (name_ptr != tmp_name)
3404 kfree(name_ptr);
3405
39279cc3
CM
3406 if (over)
3407 goto nopos;
5103e947 3408 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3409 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3410 di_cur += di_len;
3411 di = (struct btrfs_dir_item *)((char *)di + di_len);
3412 }
3413 }
49593bfa
DW
3414
3415 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3416 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3417 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3418 else
3419 filp->f_pos++;
39279cc3
CM
3420nopos:
3421 ret = 0;
3422err:
39279cc3 3423 btrfs_free_path(path);
39279cc3
CM
3424 return ret;
3425}
3426
3427int btrfs_write_inode(struct inode *inode, int wait)
3428{
3429 struct btrfs_root *root = BTRFS_I(inode)->root;
3430 struct btrfs_trans_handle *trans;
3431 int ret = 0;
3432
c146afad 3433 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3434 return 0;
3435
39279cc3 3436 if (wait) {
f9295749 3437 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3438 btrfs_set_trans_block_group(trans, inode);
3439 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3440 }
3441 return ret;
3442}
3443
3444/*
54aa1f4d 3445 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3446 * inode changes. But, it is most likely to find the inode in cache.
3447 * FIXME, needs more benchmarking...there are no reasons other than performance
3448 * to keep or drop this code.
3449 */
3450void btrfs_dirty_inode(struct inode *inode)
3451{
3452 struct btrfs_root *root = BTRFS_I(inode)->root;
3453 struct btrfs_trans_handle *trans;
3454
f9295749 3455 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3456 btrfs_set_trans_block_group(trans, inode);
3457 btrfs_update_inode(trans, root, inode);
3458 btrfs_end_transaction(trans, root);
39279cc3
CM
3459}
3460
d352ac68
CM
3461/*
3462 * find the highest existing sequence number in a directory
3463 * and then set the in-memory index_cnt variable to reflect
3464 * free sequence numbers
3465 */
aec7477b
JB
3466static int btrfs_set_inode_index_count(struct inode *inode)
3467{
3468 struct btrfs_root *root = BTRFS_I(inode)->root;
3469 struct btrfs_key key, found_key;
3470 struct btrfs_path *path;
3471 struct extent_buffer *leaf;
3472 int ret;
3473
3474 key.objectid = inode->i_ino;
3475 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3476 key.offset = (u64)-1;
3477
3478 path = btrfs_alloc_path();
3479 if (!path)
3480 return -ENOMEM;
3481
3482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3483 if (ret < 0)
3484 goto out;
3485 /* FIXME: we should be able to handle this */
3486 if (ret == 0)
3487 goto out;
3488 ret = 0;
3489
3490 /*
3491 * MAGIC NUMBER EXPLANATION:
3492 * since we search a directory based on f_pos we have to start at 2
3493 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3494 * else has to start at 2
3495 */
3496 if (path->slots[0] == 0) {
3497 BTRFS_I(inode)->index_cnt = 2;
3498 goto out;
3499 }
3500
3501 path->slots[0]--;
3502
3503 leaf = path->nodes[0];
3504 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3505
3506 if (found_key.objectid != inode->i_ino ||
3507 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3508 BTRFS_I(inode)->index_cnt = 2;
3509 goto out;
3510 }
3511
3512 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3513out:
3514 btrfs_free_path(path);
3515 return ret;
3516}
3517
d352ac68
CM
3518/*
3519 * helper to find a free sequence number in a given directory. This current
3520 * code is very simple, later versions will do smarter things in the btree
3521 */
3de4586c 3522int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
3523{
3524 int ret = 0;
3525
3526 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3527 ret = btrfs_set_inode_index_count(dir);
d397712b 3528 if (ret)
aec7477b
JB
3529 return ret;
3530 }
3531
00e4e6b3 3532 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
3533 BTRFS_I(dir)->index_cnt++;
3534
3535 return ret;
3536}
3537
39279cc3
CM
3538static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3539 struct btrfs_root *root,
aec7477b 3540 struct inode *dir,
9c58309d 3541 const char *name, int name_len,
d2fb3437
YZ
3542 u64 ref_objectid, u64 objectid,
3543 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
3544{
3545 struct inode *inode;
5f39d397 3546 struct btrfs_inode_item *inode_item;
39279cc3 3547 struct btrfs_key *location;
5f39d397 3548 struct btrfs_path *path;
9c58309d
CM
3549 struct btrfs_inode_ref *ref;
3550 struct btrfs_key key[2];
3551 u32 sizes[2];
3552 unsigned long ptr;
39279cc3
CM
3553 int ret;
3554 int owner;
3555
5f39d397
CM
3556 path = btrfs_alloc_path();
3557 BUG_ON(!path);
3558
39279cc3
CM
3559 inode = new_inode(root->fs_info->sb);
3560 if (!inode)
3561 return ERR_PTR(-ENOMEM);
3562
aec7477b 3563 if (dir) {
3de4586c 3564 ret = btrfs_set_inode_index(dir, index);
09771430
SF
3565 if (ret) {
3566 iput(inode);
aec7477b 3567 return ERR_PTR(ret);
09771430 3568 }
aec7477b
JB
3569 }
3570 /*
3571 * index_cnt is ignored for everything but a dir,
3572 * btrfs_get_inode_index_count has an explanation for the magic
3573 * number
3574 */
e02119d5 3575 init_btrfs_i(inode);
aec7477b 3576 BTRFS_I(inode)->index_cnt = 2;
39279cc3 3577 BTRFS_I(inode)->root = root;
e02119d5 3578 BTRFS_I(inode)->generation = trans->transid;
6a63209f 3579 btrfs_set_inode_space_info(root, inode);
b888db2b 3580
39279cc3
CM
3581 if (mode & S_IFDIR)
3582 owner = 0;
3583 else
3584 owner = 1;
d2fb3437
YZ
3585 BTRFS_I(inode)->block_group =
3586 btrfs_find_block_group(root, 0, alloc_hint, owner);
17d217fe
YZ
3587 if ((mode & S_IFREG)) {
3588 if (btrfs_test_opt(root, NODATASUM))
3589 btrfs_set_flag(inode, NODATASUM);
3590 if (btrfs_test_opt(root, NODATACOW))
3591 btrfs_set_flag(inode, NODATACOW);
3592 }
9c58309d
CM
3593
3594 key[0].objectid = objectid;
3595 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3596 key[0].offset = 0;
3597
3598 key[1].objectid = objectid;
3599 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3600 key[1].offset = ref_objectid;
3601
3602 sizes[0] = sizeof(struct btrfs_inode_item);
3603 sizes[1] = name_len + sizeof(*ref);
3604
b9473439 3605 path->leave_spinning = 1;
9c58309d
CM
3606 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3607 if (ret != 0)
5f39d397
CM
3608 goto fail;
3609
9c58309d
CM
3610 if (objectid > root->highest_inode)
3611 root->highest_inode = objectid;
3612
79683f2d 3613 inode->i_uid = current_fsuid();
8c087b51 3614
42f15d77 3615 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
3616 inode->i_gid = dir->i_gid;
3617 if (S_ISDIR(mode))
3618 mode |= S_ISGID;
3619 } else
3620 inode->i_gid = current_fsgid();
3621
39279cc3
CM
3622 inode->i_mode = mode;
3623 inode->i_ino = objectid;
a76a3cd4 3624 inode_set_bytes(inode, 0);
39279cc3 3625 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
3626 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3627 struct btrfs_inode_item);
e02119d5 3628 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
3629
3630 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3631 struct btrfs_inode_ref);
3632 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 3633 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
3634 ptr = (unsigned long)(ref + 1);
3635 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3636
5f39d397
CM
3637 btrfs_mark_buffer_dirty(path->nodes[0]);
3638 btrfs_free_path(path);
3639
39279cc3
CM
3640 location = &BTRFS_I(inode)->location;
3641 location->objectid = objectid;
39279cc3
CM
3642 location->offset = 0;
3643 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3644
39279cc3 3645 insert_inode_hash(inode);
5d4f98a2 3646 inode_tree_add(inode);
39279cc3 3647 return inode;
5f39d397 3648fail:
aec7477b
JB
3649 if (dir)
3650 BTRFS_I(dir)->index_cnt--;
5f39d397 3651 btrfs_free_path(path);
09771430 3652 iput(inode);
5f39d397 3653 return ERR_PTR(ret);
39279cc3
CM
3654}
3655
3656static inline u8 btrfs_inode_type(struct inode *inode)
3657{
3658 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3659}
3660
d352ac68
CM
3661/*
3662 * utility function to add 'inode' into 'parent_inode' with
3663 * a give name and a given sequence number.
3664 * if 'add_backref' is true, also insert a backref from the
3665 * inode to the parent directory.
3666 */
e02119d5
CM
3667int btrfs_add_link(struct btrfs_trans_handle *trans,
3668 struct inode *parent_inode, struct inode *inode,
3669 const char *name, int name_len, int add_backref, u64 index)
39279cc3
CM
3670{
3671 int ret;
3672 struct btrfs_key key;
e02119d5 3673 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 3674
39279cc3 3675 key.objectid = inode->i_ino;
39279cc3
CM
3676 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3677 key.offset = 0;
3678
e02119d5
CM
3679 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3680 parent_inode->i_ino,
aec7477b 3681 &key, btrfs_inode_type(inode),
00e4e6b3 3682 index);
39279cc3 3683 if (ret == 0) {
9c58309d
CM
3684 if (add_backref) {
3685 ret = btrfs_insert_inode_ref(trans, root,
e02119d5
CM
3686 name, name_len,
3687 inode->i_ino,
3688 parent_inode->i_ino,
3689 index);
9c58309d 3690 }
dbe674a9 3691 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 3692 name_len * 2);
79c44584 3693 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 3694 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
3695 }
3696 return ret;
3697}
3698
3699static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 3700 struct dentry *dentry, struct inode *inode,
00e4e6b3 3701 int backref, u64 index)
39279cc3 3702{
e02119d5
CM
3703 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3704 inode, dentry->d_name.name,
3705 dentry->d_name.len, backref, index);
39279cc3
CM
3706 if (!err) {
3707 d_instantiate(dentry, inode);
3708 return 0;
3709 }
3710 if (err > 0)
3711 err = -EEXIST;
3712 return err;
3713}
3714
618e21d5
JB
3715static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3716 int mode, dev_t rdev)
3717{
3718 struct btrfs_trans_handle *trans;
3719 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 3720 struct inode *inode = NULL;
618e21d5
JB
3721 int err;
3722 int drop_inode = 0;
3723 u64 objectid;
1832a6d5 3724 unsigned long nr = 0;
00e4e6b3 3725 u64 index = 0;
618e21d5
JB
3726
3727 if (!new_valid_dev(rdev))
3728 return -EINVAL;
3729
6a63209f 3730 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3731 if (err)
3732 goto fail;
3733
618e21d5
JB
3734 trans = btrfs_start_transaction(root, 1);
3735 btrfs_set_trans_block_group(trans, dir);
3736
3737 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3738 if (err) {
3739 err = -ENOSPC;
3740 goto out_unlock;
3741 }
3742
aec7477b 3743 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3744 dentry->d_name.len,
3745 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 3746 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
3747 err = PTR_ERR(inode);
3748 if (IS_ERR(inode))
3749 goto out_unlock;
3750
0279b4cd 3751 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3752 if (err) {
3753 drop_inode = 1;
3754 goto out_unlock;
3755 }
3756
618e21d5 3757 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 3758 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
3759 if (err)
3760 drop_inode = 1;
3761 else {
3762 inode->i_op = &btrfs_special_inode_operations;
3763 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 3764 btrfs_update_inode(trans, root, inode);
618e21d5
JB
3765 }
3766 dir->i_sb->s_dirt = 1;
3767 btrfs_update_inode_block_group(trans, inode);
3768 btrfs_update_inode_block_group(trans, dir);
3769out_unlock:
d3c2fdcf 3770 nr = trans->blocks_used;
89ce8a63 3771 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3772fail:
618e21d5
JB
3773 if (drop_inode) {
3774 inode_dec_link_count(inode);
3775 iput(inode);
3776 }
d3c2fdcf 3777 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
3778 return err;
3779}
3780
39279cc3
CM
3781static int btrfs_create(struct inode *dir, struct dentry *dentry,
3782 int mode, struct nameidata *nd)
3783{
3784 struct btrfs_trans_handle *trans;
3785 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 3786 struct inode *inode = NULL;
39279cc3
CM
3787 int err;
3788 int drop_inode = 0;
1832a6d5 3789 unsigned long nr = 0;
39279cc3 3790 u64 objectid;
00e4e6b3 3791 u64 index = 0;
39279cc3 3792
6a63209f 3793 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3794 if (err)
3795 goto fail;
39279cc3
CM
3796 trans = btrfs_start_transaction(root, 1);
3797 btrfs_set_trans_block_group(trans, dir);
3798
3799 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3800 if (err) {
3801 err = -ENOSPC;
3802 goto out_unlock;
3803 }
3804
aec7477b 3805 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3806 dentry->d_name.len,
3807 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
3808 objectid, BTRFS_I(dir)->block_group, mode,
3809 &index);
39279cc3
CM
3810 err = PTR_ERR(inode);
3811 if (IS_ERR(inode))
3812 goto out_unlock;
3813
0279b4cd 3814 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3815 if (err) {
3816 drop_inode = 1;
3817 goto out_unlock;
3818 }
3819
39279cc3 3820 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 3821 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
3822 if (err)
3823 drop_inode = 1;
3824 else {
3825 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3826 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
3827 inode->i_fop = &btrfs_file_operations;
3828 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 3829 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3830 }
3831 dir->i_sb->s_dirt = 1;
3832 btrfs_update_inode_block_group(trans, inode);
3833 btrfs_update_inode_block_group(trans, dir);
3834out_unlock:
d3c2fdcf 3835 nr = trans->blocks_used;
ab78c84d 3836 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3837fail:
39279cc3
CM
3838 if (drop_inode) {
3839 inode_dec_link_count(inode);
3840 iput(inode);
3841 }
d3c2fdcf 3842 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3843 return err;
3844}
3845
3846static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3847 struct dentry *dentry)
3848{
3849 struct btrfs_trans_handle *trans;
3850 struct btrfs_root *root = BTRFS_I(dir)->root;
3851 struct inode *inode = old_dentry->d_inode;
00e4e6b3 3852 u64 index;
1832a6d5 3853 unsigned long nr = 0;
39279cc3
CM
3854 int err;
3855 int drop_inode = 0;
3856
3857 if (inode->i_nlink == 0)
3858 return -ENOENT;
3859
e02119d5 3860 btrfs_inc_nlink(inode);
6a63209f 3861 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3862 if (err)
3863 goto fail;
3de4586c 3864 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
3865 if (err)
3866 goto fail;
3867
39279cc3 3868 trans = btrfs_start_transaction(root, 1);
5f39d397 3869
39279cc3
CM
3870 btrfs_set_trans_block_group(trans, dir);
3871 atomic_inc(&inode->i_count);
aec7477b 3872
00e4e6b3 3873 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 3874
39279cc3
CM
3875 if (err)
3876 drop_inode = 1;
5f39d397 3877
39279cc3
CM
3878 dir->i_sb->s_dirt = 1;
3879 btrfs_update_inode_block_group(trans, dir);
54aa1f4d 3880 err = btrfs_update_inode(trans, root, inode);
5f39d397 3881
54aa1f4d
CM
3882 if (err)
3883 drop_inode = 1;
39279cc3 3884
d3c2fdcf 3885 nr = trans->blocks_used;
12fcfd22
CM
3886
3887 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
ab78c84d 3888 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3889fail:
39279cc3
CM
3890 if (drop_inode) {
3891 inode_dec_link_count(inode);
3892 iput(inode);
3893 }
d3c2fdcf 3894 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3895 return err;
3896}
3897
39279cc3
CM
3898static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3899{
b9d86667 3900 struct inode *inode = NULL;
39279cc3
CM
3901 struct btrfs_trans_handle *trans;
3902 struct btrfs_root *root = BTRFS_I(dir)->root;
3903 int err = 0;
3904 int drop_on_err = 0;
b9d86667 3905 u64 objectid = 0;
00e4e6b3 3906 u64 index = 0;
d3c2fdcf 3907 unsigned long nr = 1;
39279cc3 3908
6a63209f 3909 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3910 if (err)
3911 goto out_unlock;
3912
39279cc3
CM
3913 trans = btrfs_start_transaction(root, 1);
3914 btrfs_set_trans_block_group(trans, dir);
5f39d397 3915
39279cc3
CM
3916 if (IS_ERR(trans)) {
3917 err = PTR_ERR(trans);
3918 goto out_unlock;
3919 }
3920
3921 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3922 if (err) {
3923 err = -ENOSPC;
3924 goto out_unlock;
3925 }
3926
aec7477b 3927 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3928 dentry->d_name.len,
3929 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
3930 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3931 &index);
39279cc3
CM
3932 if (IS_ERR(inode)) {
3933 err = PTR_ERR(inode);
3934 goto out_fail;
3935 }
5f39d397 3936
39279cc3 3937 drop_on_err = 1;
33268eaf 3938
0279b4cd 3939 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3940 if (err)
3941 goto out_fail;
3942
39279cc3
CM
3943 inode->i_op = &btrfs_dir_inode_operations;
3944 inode->i_fop = &btrfs_dir_file_operations;
3945 btrfs_set_trans_block_group(trans, inode);
3946
dbe674a9 3947 btrfs_i_size_write(inode, 0);
39279cc3
CM
3948 err = btrfs_update_inode(trans, root, inode);
3949 if (err)
3950 goto out_fail;
5f39d397 3951
e02119d5
CM
3952 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3953 inode, dentry->d_name.name,
3954 dentry->d_name.len, 0, index);
39279cc3
CM
3955 if (err)
3956 goto out_fail;
5f39d397 3957
39279cc3
CM
3958 d_instantiate(dentry, inode);
3959 drop_on_err = 0;
3960 dir->i_sb->s_dirt = 1;
3961 btrfs_update_inode_block_group(trans, inode);
3962 btrfs_update_inode_block_group(trans, dir);
3963
3964out_fail:
d3c2fdcf 3965 nr = trans->blocks_used;
ab78c84d 3966 btrfs_end_transaction_throttle(trans, root);
5f39d397 3967
39279cc3 3968out_unlock:
39279cc3
CM
3969 if (drop_on_err)
3970 iput(inode);
d3c2fdcf 3971 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3972 return err;
3973}
3974
d352ac68
CM
3975/* helper for btfs_get_extent. Given an existing extent in the tree,
3976 * and an extent that you want to insert, deal with overlap and insert
3977 * the new extent into the tree.
3978 */
3b951516
CM
3979static int merge_extent_mapping(struct extent_map_tree *em_tree,
3980 struct extent_map *existing,
e6dcd2dc
CM
3981 struct extent_map *em,
3982 u64 map_start, u64 map_len)
3b951516
CM
3983{
3984 u64 start_diff;
3b951516 3985
e6dcd2dc
CM
3986 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3987 start_diff = map_start - em->start;
3988 em->start = map_start;
3989 em->len = map_len;
c8b97818
CM
3990 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3991 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 3992 em->block_start += start_diff;
c8b97818
CM
3993 em->block_len -= start_diff;
3994 }
e6dcd2dc 3995 return add_extent_mapping(em_tree, em);
3b951516
CM
3996}
3997
c8b97818
CM
3998static noinline int uncompress_inline(struct btrfs_path *path,
3999 struct inode *inode, struct page *page,
4000 size_t pg_offset, u64 extent_offset,
4001 struct btrfs_file_extent_item *item)
4002{
4003 int ret;
4004 struct extent_buffer *leaf = path->nodes[0];
4005 char *tmp;
4006 size_t max_size;
4007 unsigned long inline_size;
4008 unsigned long ptr;
4009
4010 WARN_ON(pg_offset != 0);
4011 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4012 inline_size = btrfs_file_extent_inline_item_len(leaf,
4013 btrfs_item_nr(leaf, path->slots[0]));
4014 tmp = kmalloc(inline_size, GFP_NOFS);
4015 ptr = btrfs_file_extent_inline_start(item);
4016
4017 read_extent_buffer(leaf, tmp, ptr, inline_size);
4018
5b050f04 4019 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4020 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4021 inline_size, max_size);
4022 if (ret) {
4023 char *kaddr = kmap_atomic(page, KM_USER0);
4024 unsigned long copy_size = min_t(u64,
4025 PAGE_CACHE_SIZE - pg_offset,
4026 max_size - extent_offset);
4027 memset(kaddr + pg_offset, 0, copy_size);
4028 kunmap_atomic(kaddr, KM_USER0);
4029 }
4030 kfree(tmp);
4031 return 0;
4032}
4033
d352ac68
CM
4034/*
4035 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4036 * the ugly parts come from merging extents from the disk with the in-ram
4037 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4038 * where the in-ram extents might be locked pending data=ordered completion.
4039 *
4040 * This also copies inline extents directly into the page.
4041 */
d397712b 4042
a52d9a80 4043struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4044 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4045 int create)
4046{
4047 int ret;
4048 int err = 0;
db94535d 4049 u64 bytenr;
a52d9a80
CM
4050 u64 extent_start = 0;
4051 u64 extent_end = 0;
4052 u64 objectid = inode->i_ino;
4053 u32 found_type;
f421950f 4054 struct btrfs_path *path = NULL;
a52d9a80
CM
4055 struct btrfs_root *root = BTRFS_I(inode)->root;
4056 struct btrfs_file_extent_item *item;
5f39d397
CM
4057 struct extent_buffer *leaf;
4058 struct btrfs_key found_key;
a52d9a80
CM
4059 struct extent_map *em = NULL;
4060 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4061 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4062 struct btrfs_trans_handle *trans = NULL;
c8b97818 4063 int compressed;
a52d9a80 4064
a52d9a80 4065again:
d1310b2e
CM
4066 spin_lock(&em_tree->lock);
4067 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4068 if (em)
4069 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e
CM
4070 spin_unlock(&em_tree->lock);
4071
a52d9a80 4072 if (em) {
e1c4b745
CM
4073 if (em->start > start || em->start + em->len <= start)
4074 free_extent_map(em);
4075 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4076 free_extent_map(em);
4077 else
4078 goto out;
a52d9a80 4079 }
d1310b2e 4080 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4081 if (!em) {
d1310b2e
CM
4082 err = -ENOMEM;
4083 goto out;
a52d9a80 4084 }
e6dcd2dc 4085 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4086 em->start = EXTENT_MAP_HOLE;
445a6944 4087 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4088 em->len = (u64)-1;
c8b97818 4089 em->block_len = (u64)-1;
f421950f
CM
4090
4091 if (!path) {
4092 path = btrfs_alloc_path();
4093 BUG_ON(!path);
4094 }
4095
179e29e4
CM
4096 ret = btrfs_lookup_file_extent(trans, root, path,
4097 objectid, start, trans != NULL);
a52d9a80
CM
4098 if (ret < 0) {
4099 err = ret;
4100 goto out;
4101 }
4102
4103 if (ret != 0) {
4104 if (path->slots[0] == 0)
4105 goto not_found;
4106 path->slots[0]--;
4107 }
4108
5f39d397
CM
4109 leaf = path->nodes[0];
4110 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4111 struct btrfs_file_extent_item);
a52d9a80 4112 /* are we inside the extent that was found? */
5f39d397
CM
4113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4114 found_type = btrfs_key_type(&found_key);
4115 if (found_key.objectid != objectid ||
a52d9a80
CM
4116 found_type != BTRFS_EXTENT_DATA_KEY) {
4117 goto not_found;
4118 }
4119
5f39d397
CM
4120 found_type = btrfs_file_extent_type(leaf, item);
4121 extent_start = found_key.offset;
c8b97818 4122 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4123 if (found_type == BTRFS_FILE_EXTENT_REG ||
4124 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4125 extent_end = extent_start +
db94535d 4126 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4127 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4128 size_t size;
4129 size = btrfs_file_extent_inline_len(leaf, item);
4130 extent_end = (extent_start + size + root->sectorsize - 1) &
4131 ~((u64)root->sectorsize - 1);
4132 }
4133
4134 if (start >= extent_end) {
4135 path->slots[0]++;
4136 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4137 ret = btrfs_next_leaf(root, path);
4138 if (ret < 0) {
4139 err = ret;
4140 goto out;
a52d9a80 4141 }
9036c102
YZ
4142 if (ret > 0)
4143 goto not_found;
4144 leaf = path->nodes[0];
a52d9a80 4145 }
9036c102
YZ
4146 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4147 if (found_key.objectid != objectid ||
4148 found_key.type != BTRFS_EXTENT_DATA_KEY)
4149 goto not_found;
4150 if (start + len <= found_key.offset)
4151 goto not_found;
4152 em->start = start;
4153 em->len = found_key.offset - start;
4154 goto not_found_em;
4155 }
4156
d899e052
YZ
4157 if (found_type == BTRFS_FILE_EXTENT_REG ||
4158 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4159 em->start = extent_start;
4160 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4161 em->orig_start = extent_start -
4162 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4163 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4164 if (bytenr == 0) {
5f39d397 4165 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4166 goto insert;
4167 }
c8b97818
CM
4168 if (compressed) {
4169 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4170 em->block_start = bytenr;
4171 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4172 item);
4173 } else {
4174 bytenr += btrfs_file_extent_offset(leaf, item);
4175 em->block_start = bytenr;
4176 em->block_len = em->len;
d899e052
YZ
4177 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4178 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4179 }
a52d9a80
CM
4180 goto insert;
4181 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4182 unsigned long ptr;
a52d9a80 4183 char *map;
3326d1b0
CM
4184 size_t size;
4185 size_t extent_offset;
4186 size_t copy_size;
a52d9a80 4187
689f9346 4188 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4189 if (!page || create) {
689f9346 4190 em->start = extent_start;
9036c102 4191 em->len = extent_end - extent_start;
689f9346
Y
4192 goto out;
4193 }
5f39d397 4194
9036c102
YZ
4195 size = btrfs_file_extent_inline_len(leaf, item);
4196 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4197 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4198 size - extent_offset);
3326d1b0 4199 em->start = extent_start + extent_offset;
70dec807
CM
4200 em->len = (copy_size + root->sectorsize - 1) &
4201 ~((u64)root->sectorsize - 1);
ff5b7ee3 4202 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4203 if (compressed)
4204 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4205 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4206 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4207 if (btrfs_file_extent_compression(leaf, item) ==
4208 BTRFS_COMPRESS_ZLIB) {
4209 ret = uncompress_inline(path, inode, page,
4210 pg_offset,
4211 extent_offset, item);
4212 BUG_ON(ret);
4213 } else {
4214 map = kmap(page);
4215 read_extent_buffer(leaf, map + pg_offset, ptr,
4216 copy_size);
4217 kunmap(page);
4218 }
179e29e4
CM
4219 flush_dcache_page(page);
4220 } else if (create && PageUptodate(page)) {
4221 if (!trans) {
4222 kunmap(page);
4223 free_extent_map(em);
4224 em = NULL;
4225 btrfs_release_path(root, path);
f9295749 4226 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4227 goto again;
4228 }
c8b97818 4229 map = kmap(page);
70dec807 4230 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4231 copy_size);
c8b97818 4232 kunmap(page);
179e29e4 4233 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4234 }
d1310b2e
CM
4235 set_extent_uptodate(io_tree, em->start,
4236 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4237 goto insert;
4238 } else {
d397712b 4239 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4240 WARN_ON(1);
4241 }
4242not_found:
4243 em->start = start;
d1310b2e 4244 em->len = len;
a52d9a80 4245not_found_em:
5f39d397 4246 em->block_start = EXTENT_MAP_HOLE;
9036c102 4247 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4248insert:
4249 btrfs_release_path(root, path);
d1310b2e 4250 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4251 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4252 "[%llu %llu]\n", (unsigned long long)em->start,
4253 (unsigned long long)em->len,
4254 (unsigned long long)start,
4255 (unsigned long long)len);
a52d9a80
CM
4256 err = -EIO;
4257 goto out;
4258 }
d1310b2e
CM
4259
4260 err = 0;
4261 spin_lock(&em_tree->lock);
a52d9a80 4262 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4263 /* it is possible that someone inserted the extent into the tree
4264 * while we had the lock dropped. It is also possible that
4265 * an overlapping map exists in the tree
4266 */
a52d9a80 4267 if (ret == -EEXIST) {
3b951516 4268 struct extent_map *existing;
e6dcd2dc
CM
4269
4270 ret = 0;
4271
3b951516 4272 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4273 if (existing && (existing->start > start ||
4274 existing->start + existing->len <= start)) {
4275 free_extent_map(existing);
4276 existing = NULL;
4277 }
3b951516
CM
4278 if (!existing) {
4279 existing = lookup_extent_mapping(em_tree, em->start,
4280 em->len);
4281 if (existing) {
4282 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4283 em, start,
4284 root->sectorsize);
3b951516
CM
4285 free_extent_map(existing);
4286 if (err) {
4287 free_extent_map(em);
4288 em = NULL;
4289 }
4290 } else {
4291 err = -EIO;
3b951516
CM
4292 free_extent_map(em);
4293 em = NULL;
4294 }
4295 } else {
4296 free_extent_map(em);
4297 em = existing;
e6dcd2dc 4298 err = 0;
a52d9a80 4299 }
a52d9a80 4300 }
d1310b2e 4301 spin_unlock(&em_tree->lock);
a52d9a80 4302out:
f421950f
CM
4303 if (path)
4304 btrfs_free_path(path);
a52d9a80
CM
4305 if (trans) {
4306 ret = btrfs_end_transaction(trans, root);
d397712b 4307 if (!err)
a52d9a80
CM
4308 err = ret;
4309 }
a52d9a80
CM
4310 if (err) {
4311 free_extent_map(em);
a52d9a80
CM
4312 return ERR_PTR(err);
4313 }
4314 return em;
4315}
4316
16432985
CM
4317static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4318 const struct iovec *iov, loff_t offset,
4319 unsigned long nr_segs)
4320{
e1c4b745 4321 return -EINVAL;
16432985
CM
4322}
4323
1506fcc8
YS
4324static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4325 __u64 start, __u64 len)
4326{
4327 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4328}
4329
a52d9a80 4330int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4331{
d1310b2e
CM
4332 struct extent_io_tree *tree;
4333 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4334 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4335}
1832a6d5 4336
a52d9a80 4337static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4338{
d1310b2e 4339 struct extent_io_tree *tree;
b888db2b
CM
4340
4341
4342 if (current->flags & PF_MEMALLOC) {
4343 redirty_page_for_writepage(wbc, page);
4344 unlock_page(page);
4345 return 0;
4346 }
d1310b2e 4347 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4348 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4349}
4350
f421950f
CM
4351int btrfs_writepages(struct address_space *mapping,
4352 struct writeback_control *wbc)
b293f02e 4353{
d1310b2e 4354 struct extent_io_tree *tree;
771ed689 4355
d1310b2e 4356 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4357 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4358}
4359
3ab2fb5a
CM
4360static int
4361btrfs_readpages(struct file *file, struct address_space *mapping,
4362 struct list_head *pages, unsigned nr_pages)
4363{
d1310b2e
CM
4364 struct extent_io_tree *tree;
4365 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4366 return extent_readpages(tree, mapping, pages, nr_pages,
4367 btrfs_get_extent);
4368}
e6dcd2dc 4369static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4370{
d1310b2e
CM
4371 struct extent_io_tree *tree;
4372 struct extent_map_tree *map;
a52d9a80 4373 int ret;
8c2383c3 4374
d1310b2e
CM
4375 tree = &BTRFS_I(page->mapping->host)->io_tree;
4376 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4377 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4378 if (ret == 1) {
4379 ClearPagePrivate(page);
4380 set_page_private(page, 0);
4381 page_cache_release(page);
39279cc3 4382 }
a52d9a80 4383 return ret;
39279cc3
CM
4384}
4385
e6dcd2dc
CM
4386static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4387{
98509cfc
CM
4388 if (PageWriteback(page) || PageDirty(page))
4389 return 0;
b335b003 4390 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4391}
4392
a52d9a80 4393static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4394{
d1310b2e 4395 struct extent_io_tree *tree;
e6dcd2dc
CM
4396 struct btrfs_ordered_extent *ordered;
4397 u64 page_start = page_offset(page);
4398 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4399
e6dcd2dc 4400 wait_on_page_writeback(page);
d1310b2e 4401 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4402 if (offset) {
4403 btrfs_releasepage(page, GFP_NOFS);
4404 return;
4405 }
4406
4407 lock_extent(tree, page_start, page_end, GFP_NOFS);
4408 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4409 page_offset(page));
4410 if (ordered) {
eb84ae03
CM
4411 /*
4412 * IO on this page will never be started, so we need
4413 * to account for any ordered extents now
4414 */
e6dcd2dc
CM
4415 clear_extent_bit(tree, page_start, page_end,
4416 EXTENT_DIRTY | EXTENT_DELALLOC |
4417 EXTENT_LOCKED, 1, 0, GFP_NOFS);
211f90e6
CM
4418 btrfs_finish_ordered_io(page->mapping->host,
4419 page_start, page_end);
e6dcd2dc
CM
4420 btrfs_put_ordered_extent(ordered);
4421 lock_extent(tree, page_start, page_end, GFP_NOFS);
4422 }
4423 clear_extent_bit(tree, page_start, page_end,
4424 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4425 EXTENT_ORDERED,
4426 1, 1, GFP_NOFS);
4427 __btrfs_releasepage(page, GFP_NOFS);
4428
4a096752 4429 ClearPageChecked(page);
9ad6b7bc 4430 if (PagePrivate(page)) {
9ad6b7bc
CM
4431 ClearPagePrivate(page);
4432 set_page_private(page, 0);
4433 page_cache_release(page);
4434 }
39279cc3
CM
4435}
4436
9ebefb18
CM
4437/*
4438 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4439 * called from a page fault handler when a page is first dirtied. Hence we must
4440 * be careful to check for EOF conditions here. We set the page up correctly
4441 * for a written page which means we get ENOSPC checking when writing into
4442 * holes and correct delalloc and unwritten extent mapping on filesystems that
4443 * support these features.
4444 *
4445 * We are not allowed to take the i_mutex here so we have to play games to
4446 * protect against truncate races as the page could now be beyond EOF. Because
4447 * vmtruncate() writes the inode size before removing pages, once we have the
4448 * page lock we can determine safely if the page is beyond EOF. If it is not
4449 * beyond EOF, then the page is guaranteed safe against truncation until we
4450 * unlock the page.
4451 */
c2ec175c 4452int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 4453{
c2ec175c 4454 struct page *page = vmf->page;
6da6abae 4455 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 4456 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4457 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4458 struct btrfs_ordered_extent *ordered;
4459 char *kaddr;
4460 unsigned long zero_start;
9ebefb18 4461 loff_t size;
1832a6d5 4462 int ret;
a52d9a80 4463 u64 page_start;
e6dcd2dc 4464 u64 page_end;
9ebefb18 4465
6a63209f 4466 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
4467 if (ret) {
4468 if (ret == -ENOMEM)
4469 ret = VM_FAULT_OOM;
4470 else /* -ENOSPC, -EIO, etc */
4471 ret = VM_FAULT_SIGBUS;
1832a6d5 4472 goto out;
56a76f82 4473 }
1832a6d5 4474
56a76f82 4475 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 4476again:
9ebefb18 4477 lock_page(page);
9ebefb18 4478 size = i_size_read(inode);
e6dcd2dc
CM
4479 page_start = page_offset(page);
4480 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 4481
9ebefb18 4482 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 4483 (page_start >= size)) {
6a63209f 4484 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
4485 /* page got truncated out from underneath us */
4486 goto out_unlock;
4487 }
e6dcd2dc
CM
4488 wait_on_page_writeback(page);
4489
4490 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4491 set_page_extent_mapped(page);
4492
eb84ae03
CM
4493 /*
4494 * we can't set the delalloc bits if there are pending ordered
4495 * extents. Drop our locks and wait for them to finish
4496 */
e6dcd2dc
CM
4497 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4498 if (ordered) {
4499 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4500 unlock_page(page);
eb84ae03 4501 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4502 btrfs_put_ordered_extent(ordered);
4503 goto again;
4504 }
4505
ea8c2819 4506 btrfs_set_extent_delalloc(inode, page_start, page_end);
e6dcd2dc 4507 ret = 0;
9ebefb18
CM
4508
4509 /* page is wholly or partially inside EOF */
a52d9a80 4510 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 4511 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 4512 else
e6dcd2dc 4513 zero_start = PAGE_CACHE_SIZE;
9ebefb18 4514
e6dcd2dc
CM
4515 if (zero_start != PAGE_CACHE_SIZE) {
4516 kaddr = kmap(page);
4517 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4518 flush_dcache_page(page);
4519 kunmap(page);
4520 }
247e743c 4521 ClearPageChecked(page);
e6dcd2dc 4522 set_page_dirty(page);
5a3f23d5
CM
4523
4524 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
e6dcd2dc 4525 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
4526
4527out_unlock:
4528 unlock_page(page);
1832a6d5 4529out:
9ebefb18
CM
4530 return ret;
4531}
4532
39279cc3
CM
4533static void btrfs_truncate(struct inode *inode)
4534{
4535 struct btrfs_root *root = BTRFS_I(inode)->root;
4536 int ret;
4537 struct btrfs_trans_handle *trans;
d3c2fdcf 4538 unsigned long nr;
dbe674a9 4539 u64 mask = root->sectorsize - 1;
39279cc3
CM
4540
4541 if (!S_ISREG(inode->i_mode))
4542 return;
4543 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4544 return;
4545
4546 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4a096752 4547 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 4548
39279cc3 4549 trans = btrfs_start_transaction(root, 1);
5a3f23d5
CM
4550
4551 /*
4552 * setattr is responsible for setting the ordered_data_close flag,
4553 * but that is only tested during the last file release. That
4554 * could happen well after the next commit, leaving a great big
4555 * window where new writes may get lost if someone chooses to write
4556 * to this file after truncating to zero
4557 *
4558 * The inode doesn't have any dirty data here, and so if we commit
4559 * this is a noop. If someone immediately starts writing to the inode
4560 * it is very likely we'll catch some of their writes in this
4561 * transaction, and the commit will find this file on the ordered
4562 * data list with good things to send down.
4563 *
4564 * This is a best effort solution, there is still a window where
4565 * using truncate to replace the contents of the file will
4566 * end up with a zero length file after a crash.
4567 */
4568 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4569 btrfs_add_ordered_operation(trans, root, inode);
4570
39279cc3 4571 btrfs_set_trans_block_group(trans, inode);
dbe674a9 4572 btrfs_i_size_write(inode, inode->i_size);
39279cc3 4573
7b128766
JB
4574 ret = btrfs_orphan_add(trans, inode);
4575 if (ret)
4576 goto out;
39279cc3 4577 /* FIXME, add redo link to tree so we don't leak on crash */
e02119d5 4578 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
85e21bac 4579 BTRFS_EXTENT_DATA_KEY);
39279cc3 4580 btrfs_update_inode(trans, root, inode);
5f39d397 4581
7b128766
JB
4582 ret = btrfs_orphan_del(trans, inode);
4583 BUG_ON(ret);
4584
4585out:
4586 nr = trans->blocks_used;
89ce8a63 4587 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 4588 BUG_ON(ret);
d3c2fdcf 4589 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4590}
4591
d352ac68
CM
4592/*
4593 * create a new subvolume directory/inode (helper for the ioctl).
4594 */
d2fb3437
YZ
4595int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4596 struct btrfs_root *new_root, struct dentry *dentry,
4597 u64 new_dirid, u64 alloc_hint)
39279cc3 4598{
39279cc3 4599 struct inode *inode;
cb8e7090 4600 int error;
00e4e6b3 4601 u64 index = 0;
39279cc3 4602
aec7477b 4603 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 4604 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 4605 if (IS_ERR(inode))
f46b5a66 4606 return PTR_ERR(inode);
39279cc3
CM
4607 inode->i_op = &btrfs_dir_inode_operations;
4608 inode->i_fop = &btrfs_dir_file_operations;
4609
39279cc3 4610 inode->i_nlink = 1;
dbe674a9 4611 btrfs_i_size_write(inode, 0);
3b96362c 4612
cb8e7090
CH
4613 error = btrfs_update_inode(trans, new_root, inode);
4614 if (error)
4615 return error;
4616
4617 d_instantiate(dentry, inode);
4618 return 0;
39279cc3
CM
4619}
4620
d352ac68
CM
4621/* helper function for file defrag and space balancing. This
4622 * forces readahead on a given range of bytes in an inode
4623 */
edbd8d4e 4624unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
4625 struct file_ra_state *ra, struct file *file,
4626 pgoff_t offset, pgoff_t last_index)
4627{
8e7bf94f 4628 pgoff_t req_size = last_index - offset + 1;
86479a04 4629
86479a04
CM
4630 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4631 return offset + req_size;
86479a04
CM
4632}
4633
39279cc3
CM
4634struct inode *btrfs_alloc_inode(struct super_block *sb)
4635{
4636 struct btrfs_inode *ei;
4637
4638 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4639 if (!ei)
4640 return NULL;
15ee9bc7 4641 ei->last_trans = 0;
e02119d5 4642 ei->logged_trans = 0;
e6dcd2dc 4643 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
33268eaf
JB
4644 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4645 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
7b128766 4646 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 4647 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
4648 return &ei->vfs_inode;
4649}
4650
4651void btrfs_destroy_inode(struct inode *inode)
4652{
e6dcd2dc 4653 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
4654 struct btrfs_root *root = BTRFS_I(inode)->root;
4655
39279cc3
CM
4656 WARN_ON(!list_empty(&inode->i_dentry));
4657 WARN_ON(inode->i_data.nrpages);
4658
33268eaf
JB
4659 if (BTRFS_I(inode)->i_acl &&
4660 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4661 posix_acl_release(BTRFS_I(inode)->i_acl);
4662 if (BTRFS_I(inode)->i_default_acl &&
4663 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4664 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4665
5a3f23d5
CM
4666 /*
4667 * Make sure we're properly removed from the ordered operation
4668 * lists.
4669 */
4670 smp_mb();
4671 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4672 spin_lock(&root->fs_info->ordered_extent_lock);
4673 list_del_init(&BTRFS_I(inode)->ordered_operations);
4674 spin_unlock(&root->fs_info->ordered_extent_lock);
4675 }
4676
4677 spin_lock(&root->list_lock);
7b128766
JB
4678 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4679 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4680 " list\n", inode->i_ino);
4681 dump_stack();
4682 }
5a3f23d5 4683 spin_unlock(&root->list_lock);
7b128766 4684
d397712b 4685 while (1) {
e6dcd2dc
CM
4686 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4687 if (!ordered)
4688 break;
4689 else {
d397712b
CM
4690 printk(KERN_ERR "btrfs found ordered "
4691 "extent %llu %llu on inode cleanup\n",
4692 (unsigned long long)ordered->file_offset,
4693 (unsigned long long)ordered->len);
e6dcd2dc
CM
4694 btrfs_remove_ordered_extent(inode, ordered);
4695 btrfs_put_ordered_extent(ordered);
4696 btrfs_put_ordered_extent(ordered);
4697 }
4698 }
5d4f98a2 4699 inode_tree_del(inode);
5b21f2ed 4700 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
39279cc3
CM
4701 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4702}
4703
0ee0fda0 4704static void init_once(void *foo)
39279cc3
CM
4705{
4706 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4707
4708 inode_init_once(&ei->vfs_inode);
4709}
4710
4711void btrfs_destroy_cachep(void)
4712{
4713 if (btrfs_inode_cachep)
4714 kmem_cache_destroy(btrfs_inode_cachep);
4715 if (btrfs_trans_handle_cachep)
4716 kmem_cache_destroy(btrfs_trans_handle_cachep);
4717 if (btrfs_transaction_cachep)
4718 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
4719 if (btrfs_path_cachep)
4720 kmem_cache_destroy(btrfs_path_cachep);
4721}
4722
4723int btrfs_init_cachep(void)
4724{
9601e3f6
CH
4725 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4726 sizeof(struct btrfs_inode), 0,
4727 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
4728 if (!btrfs_inode_cachep)
4729 goto fail;
9601e3f6
CH
4730
4731 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4732 sizeof(struct btrfs_trans_handle), 0,
4733 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4734 if (!btrfs_trans_handle_cachep)
4735 goto fail;
9601e3f6
CH
4736
4737 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4738 sizeof(struct btrfs_transaction), 0,
4739 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4740 if (!btrfs_transaction_cachep)
4741 goto fail;
9601e3f6
CH
4742
4743 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4744 sizeof(struct btrfs_path), 0,
4745 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4746 if (!btrfs_path_cachep)
4747 goto fail;
9601e3f6 4748
39279cc3
CM
4749 return 0;
4750fail:
4751 btrfs_destroy_cachep();
4752 return -ENOMEM;
4753}
4754
4755static int btrfs_getattr(struct vfsmount *mnt,
4756 struct dentry *dentry, struct kstat *stat)
4757{
4758 struct inode *inode = dentry->d_inode;
4759 generic_fillattr(inode, stat);
3394e160 4760 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 4761 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
4762 stat->blocks = (inode_get_bytes(inode) +
4763 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
4764 return 0;
4765}
4766
d397712b
CM
4767static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4768 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
4769{
4770 struct btrfs_trans_handle *trans;
4771 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4772 struct inode *new_inode = new_dentry->d_inode;
4773 struct inode *old_inode = old_dentry->d_inode;
4774 struct timespec ctime = CURRENT_TIME;
00e4e6b3 4775 u64 index = 0;
39279cc3
CM
4776 int ret;
4777
3394e160
CM
4778 /* we're not allowed to rename between subvolumes */
4779 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4780 BTRFS_I(new_dir)->root->root_key.objectid)
4781 return -EXDEV;
4782
39279cc3
CM
4783 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4784 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4785 return -ENOTEMPTY;
4786 }
5f39d397 4787
0660b5af
CM
4788 /* to rename a snapshot or subvolume, we need to juggle the
4789 * backrefs. This isn't coded yet
4790 */
4791 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4792 return -EXDEV;
4793
6a63209f 4794 ret = btrfs_check_metadata_free_space(root);
1832a6d5
CM
4795 if (ret)
4796 goto out_unlock;
4797
5a3f23d5
CM
4798 /*
4799 * we're using rename to replace one file with another.
4800 * and the replacement file is large. Start IO on it now so
4801 * we don't add too much work to the end of the transaction
4802 */
4803 if (new_inode && old_inode && S_ISREG(old_inode->i_mode) &&
4804 new_inode->i_size &&
4805 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4806 filemap_flush(old_inode->i_mapping);
4807
39279cc3 4808 trans = btrfs_start_transaction(root, 1);
5f39d397 4809
5a3f23d5
CM
4810 /*
4811 * make sure the inode gets flushed if it is replacing
4812 * something.
4813 */
4814 if (new_inode && new_inode->i_size &&
4815 old_inode && S_ISREG(old_inode->i_mode)) {
4816 btrfs_add_ordered_operation(trans, root, old_inode);
4817 }
4818
12fcfd22
CM
4819 /*
4820 * this is an ugly little race, but the rename is required to make
4821 * sure that if we crash, the inode is either at the old name
4822 * or the new one. pinning the log transaction lets us make sure
4823 * we don't allow a log commit to come in after we unlink the
4824 * name but before we add the new name back in.
4825 */
4826 btrfs_pin_log_trans(root);
4827
39279cc3 4828 btrfs_set_trans_block_group(trans, new_dir);
39279cc3 4829
e02119d5 4830 btrfs_inc_nlink(old_dentry->d_inode);
39279cc3
CM
4831 old_dir->i_ctime = old_dir->i_mtime = ctime;
4832 new_dir->i_ctime = new_dir->i_mtime = ctime;
4833 old_inode->i_ctime = ctime;
5f39d397 4834
12fcfd22
CM
4835 if (old_dentry->d_parent != new_dentry->d_parent)
4836 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4837
e02119d5
CM
4838 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4839 old_dentry->d_name.name,
4840 old_dentry->d_name.len);
39279cc3
CM
4841 if (ret)
4842 goto out_fail;
4843
4844 if (new_inode) {
4845 new_inode->i_ctime = CURRENT_TIME;
e02119d5
CM
4846 ret = btrfs_unlink_inode(trans, root, new_dir,
4847 new_dentry->d_inode,
4848 new_dentry->d_name.name,
4849 new_dentry->d_name.len);
39279cc3
CM
4850 if (ret)
4851 goto out_fail;
7b128766 4852 if (new_inode->i_nlink == 0) {
e02119d5 4853 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7b128766
JB
4854 if (ret)
4855 goto out_fail;
4856 }
e02119d5 4857
39279cc3 4858 }
3de4586c 4859 ret = btrfs_set_inode_index(new_dir, &index);
aec7477b
JB
4860 if (ret)
4861 goto out_fail;
4862
e02119d5
CM
4863 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4864 old_inode, new_dentry->d_name.name,
4865 new_dentry->d_name.len, 1, index);
39279cc3
CM
4866 if (ret)
4867 goto out_fail;
4868
12fcfd22
CM
4869 btrfs_log_new_name(trans, old_inode, old_dir,
4870 new_dentry->d_parent);
39279cc3 4871out_fail:
12fcfd22
CM
4872
4873 /* this btrfs_end_log_trans just allows the current
4874 * log-sub transaction to complete
4875 */
4876 btrfs_end_log_trans(root);
ab78c84d 4877 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4878out_unlock:
39279cc3
CM
4879 return ret;
4880}
4881
d352ac68
CM
4882/*
4883 * some fairly slow code that needs optimization. This walks the list
4884 * of all the inodes with pending delalloc and forces them to disk.
4885 */
ea8c2819
CM
4886int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4887{
4888 struct list_head *head = &root->fs_info->delalloc_inodes;
4889 struct btrfs_inode *binode;
5b21f2ed 4890 struct inode *inode;
ea8c2819 4891
c146afad
YZ
4892 if (root->fs_info->sb->s_flags & MS_RDONLY)
4893 return -EROFS;
4894
75eff68e 4895 spin_lock(&root->fs_info->delalloc_lock);
d397712b 4896 while (!list_empty(head)) {
ea8c2819
CM
4897 binode = list_entry(head->next, struct btrfs_inode,
4898 delalloc_inodes);
5b21f2ed
ZY
4899 inode = igrab(&binode->vfs_inode);
4900 if (!inode)
4901 list_del_init(&binode->delalloc_inodes);
75eff68e 4902 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 4903 if (inode) {
8c8bee1d 4904 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
4905 iput(inode);
4906 }
4907 cond_resched();
75eff68e 4908 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 4909 }
75eff68e 4910 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
4911
4912 /* the filemap_flush will queue IO into the worker threads, but
4913 * we have to make sure the IO is actually started and that
4914 * ordered extents get created before we return
4915 */
4916 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 4917 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 4918 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 4919 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
4920 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4921 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
4922 }
4923 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
4924 return 0;
4925}
4926
39279cc3
CM
4927static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4928 const char *symname)
4929{
4930 struct btrfs_trans_handle *trans;
4931 struct btrfs_root *root = BTRFS_I(dir)->root;
4932 struct btrfs_path *path;
4933 struct btrfs_key key;
1832a6d5 4934 struct inode *inode = NULL;
39279cc3
CM
4935 int err;
4936 int drop_inode = 0;
4937 u64 objectid;
00e4e6b3 4938 u64 index = 0 ;
39279cc3
CM
4939 int name_len;
4940 int datasize;
5f39d397 4941 unsigned long ptr;
39279cc3 4942 struct btrfs_file_extent_item *ei;
5f39d397 4943 struct extent_buffer *leaf;
1832a6d5 4944 unsigned long nr = 0;
39279cc3
CM
4945
4946 name_len = strlen(symname) + 1;
4947 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4948 return -ENAMETOOLONG;
1832a6d5 4949
6a63209f 4950 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
4951 if (err)
4952 goto out_fail;
4953
39279cc3
CM
4954 trans = btrfs_start_transaction(root, 1);
4955 btrfs_set_trans_block_group(trans, dir);
4956
4957 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4958 if (err) {
4959 err = -ENOSPC;
4960 goto out_unlock;
4961 }
4962
aec7477b 4963 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4964 dentry->d_name.len,
4965 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4966 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4967 &index);
39279cc3
CM
4968 err = PTR_ERR(inode);
4969 if (IS_ERR(inode))
4970 goto out_unlock;
4971
0279b4cd 4972 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4973 if (err) {
4974 drop_inode = 1;
4975 goto out_unlock;
4976 }
4977
39279cc3 4978 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4979 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4980 if (err)
4981 drop_inode = 1;
4982 else {
4983 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4984 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4985 inode->i_fop = &btrfs_file_operations;
4986 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4987 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
4988 }
4989 dir->i_sb->s_dirt = 1;
4990 btrfs_update_inode_block_group(trans, inode);
4991 btrfs_update_inode_block_group(trans, dir);
4992 if (drop_inode)
4993 goto out_unlock;
4994
4995 path = btrfs_alloc_path();
4996 BUG_ON(!path);
4997 key.objectid = inode->i_ino;
4998 key.offset = 0;
39279cc3
CM
4999 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5000 datasize = btrfs_file_extent_calc_inline_size(name_len);
5001 err = btrfs_insert_empty_item(trans, root, path, &key,
5002 datasize);
54aa1f4d
CM
5003 if (err) {
5004 drop_inode = 1;
5005 goto out_unlock;
5006 }
5f39d397
CM
5007 leaf = path->nodes[0];
5008 ei = btrfs_item_ptr(leaf, path->slots[0],
5009 struct btrfs_file_extent_item);
5010 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5011 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5012 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5013 btrfs_set_file_extent_encryption(leaf, ei, 0);
5014 btrfs_set_file_extent_compression(leaf, ei, 0);
5015 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5016 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5017
39279cc3 5018 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5019 write_extent_buffer(leaf, symname, ptr, name_len);
5020 btrfs_mark_buffer_dirty(leaf);
39279cc3 5021 btrfs_free_path(path);
5f39d397 5022
39279cc3
CM
5023 inode->i_op = &btrfs_symlink_inode_operations;
5024 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5025 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5026 inode_set_bytes(inode, name_len);
dbe674a9 5027 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5028 err = btrfs_update_inode(trans, root, inode);
5029 if (err)
5030 drop_inode = 1;
39279cc3
CM
5031
5032out_unlock:
d3c2fdcf 5033 nr = trans->blocks_used;
ab78c84d 5034 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5035out_fail:
39279cc3
CM
5036 if (drop_inode) {
5037 inode_dec_link_count(inode);
5038 iput(inode);
5039 }
d3c2fdcf 5040 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5041 return err;
5042}
16432985 5043
546888da
CM
5044static int prealloc_file_range(struct btrfs_trans_handle *trans,
5045 struct inode *inode, u64 start, u64 end,
e980b50c 5046 u64 locked_end, u64 alloc_hint, int mode)
d899e052 5047{
d899e052
YZ
5048 struct btrfs_root *root = BTRFS_I(inode)->root;
5049 struct btrfs_key ins;
5050 u64 alloc_size;
5051 u64 cur_offset = start;
5052 u64 num_bytes = end - start;
5053 int ret = 0;
5054
d899e052
YZ
5055 while (num_bytes > 0) {
5056 alloc_size = min(num_bytes, root->fs_info->max_extent);
5057 ret = btrfs_reserve_extent(trans, root, alloc_size,
5058 root->sectorsize, 0, alloc_hint,
5059 (u64)-1, &ins, 1);
5060 if (ret) {
5061 WARN_ON(1);
5062 goto out;
5063 }
5064 ret = insert_reserved_file_extent(trans, inode,
5065 cur_offset, ins.objectid,
5066 ins.offset, ins.offset,
e980b50c
CM
5067 ins.offset, locked_end,
5068 0, 0, 0,
d899e052
YZ
5069 BTRFS_FILE_EXTENT_PREALLOC);
5070 BUG_ON(ret);
5071 num_bytes -= ins.offset;
5072 cur_offset += ins.offset;
5073 alloc_hint = ins.objectid + ins.offset;
5074 }
5075out:
5076 if (cur_offset > start) {
5077 inode->i_ctime = CURRENT_TIME;
5078 btrfs_set_flag(inode, PREALLOC);
5079 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5080 cur_offset > i_size_read(inode))
5081 btrfs_i_size_write(inode, cur_offset);
5082 ret = btrfs_update_inode(trans, root, inode);
5083 BUG_ON(ret);
5084 }
5085
d899e052
YZ
5086 return ret;
5087}
5088
5089static long btrfs_fallocate(struct inode *inode, int mode,
5090 loff_t offset, loff_t len)
5091{
5092 u64 cur_offset;
5093 u64 last_byte;
5094 u64 alloc_start;
5095 u64 alloc_end;
5096 u64 alloc_hint = 0;
e980b50c 5097 u64 locked_end;
d899e052
YZ
5098 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5099 struct extent_map *em;
546888da 5100 struct btrfs_trans_handle *trans;
d899e052
YZ
5101 int ret;
5102
5103 alloc_start = offset & ~mask;
5104 alloc_end = (offset + len + mask) & ~mask;
5105
546888da
CM
5106 /*
5107 * wait for ordered IO before we have any locks. We'll loop again
5108 * below with the locks held.
5109 */
5110 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5111
d899e052
YZ
5112 mutex_lock(&inode->i_mutex);
5113 if (alloc_start > inode->i_size) {
5114 ret = btrfs_cont_expand(inode, alloc_start);
5115 if (ret)
5116 goto out;
5117 }
5118
e980b50c 5119 locked_end = alloc_end - 1;
d899e052
YZ
5120 while (1) {
5121 struct btrfs_ordered_extent *ordered;
546888da
CM
5122
5123 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5124 if (!trans) {
5125 ret = -EIO;
5126 goto out;
5127 }
5128
5129 /* the extent lock is ordered inside the running
5130 * transaction
5131 */
e980b50c
CM
5132 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5133 GFP_NOFS);
d899e052
YZ
5134 ordered = btrfs_lookup_first_ordered_extent(inode,
5135 alloc_end - 1);
5136 if (ordered &&
5137 ordered->file_offset + ordered->len > alloc_start &&
5138 ordered->file_offset < alloc_end) {
5139 btrfs_put_ordered_extent(ordered);
5140 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5141 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5142 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5143
5144 /*
5145 * we can't wait on the range with the transaction
5146 * running or with the extent lock held
5147 */
d899e052
YZ
5148 btrfs_wait_ordered_range(inode, alloc_start,
5149 alloc_end - alloc_start);
5150 } else {
5151 if (ordered)
5152 btrfs_put_ordered_extent(ordered);
5153 break;
5154 }
5155 }
5156
5157 cur_offset = alloc_start;
5158 while (1) {
5159 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5160 alloc_end - cur_offset, 0);
5161 BUG_ON(IS_ERR(em) || !em);
5162 last_byte = min(extent_map_end(em), alloc_end);
5163 last_byte = (last_byte + mask) & ~mask;
5164 if (em->block_start == EXTENT_MAP_HOLE) {
546888da 5165 ret = prealloc_file_range(trans, inode, cur_offset,
e980b50c
CM
5166 last_byte, locked_end + 1,
5167 alloc_hint, mode);
d899e052
YZ
5168 if (ret < 0) {
5169 free_extent_map(em);
5170 break;
5171 }
5172 }
5173 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5174 alloc_hint = em->block_start;
5175 free_extent_map(em);
5176
5177 cur_offset = last_byte;
5178 if (cur_offset >= alloc_end) {
5179 ret = 0;
5180 break;
5181 }
5182 }
e980b50c 5183 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5184 GFP_NOFS);
546888da
CM
5185
5186 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
d899e052
YZ
5187out:
5188 mutex_unlock(&inode->i_mutex);
5189 return ret;
5190}
5191
e6dcd2dc
CM
5192static int btrfs_set_page_dirty(struct page *page)
5193{
e6dcd2dc
CM
5194 return __set_page_dirty_nobuffers(page);
5195}
5196
0ee0fda0 5197static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd
Y
5198{
5199 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
5200 return -EACCES;
33268eaf 5201 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5202}
39279cc3
CM
5203
5204static struct inode_operations btrfs_dir_inode_operations = {
3394e160 5205 .getattr = btrfs_getattr,
39279cc3
CM
5206 .lookup = btrfs_lookup,
5207 .create = btrfs_create,
5208 .unlink = btrfs_unlink,
5209 .link = btrfs_link,
5210 .mkdir = btrfs_mkdir,
5211 .rmdir = btrfs_rmdir,
5212 .rename = btrfs_rename,
5213 .symlink = btrfs_symlink,
5214 .setattr = btrfs_setattr,
618e21d5 5215 .mknod = btrfs_mknod,
95819c05
CH
5216 .setxattr = btrfs_setxattr,
5217 .getxattr = btrfs_getxattr,
5103e947 5218 .listxattr = btrfs_listxattr,
95819c05 5219 .removexattr = btrfs_removexattr,
fdebe2bd 5220 .permission = btrfs_permission,
39279cc3 5221};
39279cc3
CM
5222static struct inode_operations btrfs_dir_ro_inode_operations = {
5223 .lookup = btrfs_lookup,
fdebe2bd 5224 .permission = btrfs_permission,
39279cc3 5225};
39279cc3
CM
5226static struct file_operations btrfs_dir_file_operations = {
5227 .llseek = generic_file_llseek,
5228 .read = generic_read_dir,
cbdf5a24 5229 .readdir = btrfs_real_readdir,
34287aa3 5230 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5231#ifdef CONFIG_COMPAT
34287aa3 5232 .compat_ioctl = btrfs_ioctl,
39279cc3 5233#endif
6bf13c0c 5234 .release = btrfs_release_file,
e02119d5 5235 .fsync = btrfs_sync_file,
39279cc3
CM
5236};
5237
d1310b2e 5238static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5239 .fill_delalloc = run_delalloc_range,
065631f6 5240 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5241 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5242 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5243 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5244 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5245 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5246 .set_bit_hook = btrfs_set_bit_hook,
5247 .clear_bit_hook = btrfs_clear_bit_hook,
07157aac
CM
5248};
5249
35054394
CM
5250/*
5251 * btrfs doesn't support the bmap operation because swapfiles
5252 * use bmap to make a mapping of extents in the file. They assume
5253 * these extents won't change over the life of the file and they
5254 * use the bmap result to do IO directly to the drive.
5255 *
5256 * the btrfs bmap call would return logical addresses that aren't
5257 * suitable for IO and they also will change frequently as COW
5258 * operations happen. So, swapfile + btrfs == corruption.
5259 *
5260 * For now we're avoiding this by dropping bmap.
5261 */
39279cc3
CM
5262static struct address_space_operations btrfs_aops = {
5263 .readpage = btrfs_readpage,
5264 .writepage = btrfs_writepage,
b293f02e 5265 .writepages = btrfs_writepages,
3ab2fb5a 5266 .readpages = btrfs_readpages,
39279cc3 5267 .sync_page = block_sync_page,
16432985 5268 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5269 .invalidatepage = btrfs_invalidatepage,
5270 .releasepage = btrfs_releasepage,
e6dcd2dc 5271 .set_page_dirty = btrfs_set_page_dirty,
39279cc3
CM
5272};
5273
5274static struct address_space_operations btrfs_symlink_aops = {
5275 .readpage = btrfs_readpage,
5276 .writepage = btrfs_writepage,
2bf5a725
CM
5277 .invalidatepage = btrfs_invalidatepage,
5278 .releasepage = btrfs_releasepage,
39279cc3
CM
5279};
5280
5281static struct inode_operations btrfs_file_inode_operations = {
5282 .truncate = btrfs_truncate,
5283 .getattr = btrfs_getattr,
5284 .setattr = btrfs_setattr,
95819c05
CH
5285 .setxattr = btrfs_setxattr,
5286 .getxattr = btrfs_getxattr,
5103e947 5287 .listxattr = btrfs_listxattr,
95819c05 5288 .removexattr = btrfs_removexattr,
fdebe2bd 5289 .permission = btrfs_permission,
d899e052 5290 .fallocate = btrfs_fallocate,
1506fcc8 5291 .fiemap = btrfs_fiemap,
39279cc3 5292};
618e21d5
JB
5293static struct inode_operations btrfs_special_inode_operations = {
5294 .getattr = btrfs_getattr,
5295 .setattr = btrfs_setattr,
fdebe2bd 5296 .permission = btrfs_permission,
95819c05
CH
5297 .setxattr = btrfs_setxattr,
5298 .getxattr = btrfs_getxattr,
33268eaf 5299 .listxattr = btrfs_listxattr,
95819c05 5300 .removexattr = btrfs_removexattr,
618e21d5 5301};
39279cc3
CM
5302static struct inode_operations btrfs_symlink_inode_operations = {
5303 .readlink = generic_readlink,
5304 .follow_link = page_follow_link_light,
5305 .put_link = page_put_link,
fdebe2bd 5306 .permission = btrfs_permission,
0279b4cd
JO
5307 .setxattr = btrfs_setxattr,
5308 .getxattr = btrfs_getxattr,
5309 .listxattr = btrfs_listxattr,
5310 .removexattr = btrfs_removexattr,
39279cc3 5311};