]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/inode.c
Btrfs: remove #if 0 code
[net-next-2.6.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/smp_lock.h>
30#include <linux/backing-dev.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
5b84e8d6 51#include "ref-cache.h"
c8b97818 52#include "compression.h"
b4ce94de 53#include "locking.h"
39279cc3
CM
54
55struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58};
59
60static struct inode_operations btrfs_dir_inode_operations;
61static struct inode_operations btrfs_symlink_inode_operations;
62static struct inode_operations btrfs_dir_ro_inode_operations;
618e21d5 63static struct inode_operations btrfs_special_inode_operations;
39279cc3
CM
64static struct inode_operations btrfs_file_inode_operations;
65static struct address_space_operations btrfs_aops;
66static struct address_space_operations btrfs_symlink_aops;
67static struct file_operations btrfs_dir_file_operations;
d1310b2e 68static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
69
70static struct kmem_cache *btrfs_inode_cachep;
71struct kmem_cache *btrfs_trans_handle_cachep;
72struct kmem_cache *btrfs_transaction_cachep;
73struct kmem_cache *btrfs_bit_radix_cachep;
74struct kmem_cache *btrfs_path_cachep;
75
76#define S_SHIFT 12
77static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
7b128766 87static void btrfs_truncate(struct inode *inode);
c8b97818 88static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
89static noinline int cow_file_range(struct inode *inode,
90 struct page *locked_page,
91 u64 start, u64 end, int *page_started,
92 unsigned long *nr_written, int unlock);
7b128766 93
0279b4cd
JO
94static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
95{
96 int err;
97
98 err = btrfs_init_acl(inode, dir);
99 if (!err)
100 err = btrfs_xattr_security_init(inode, dir);
101 return err;
102}
103
c8b97818
CM
104/*
105 * this does all the hard work for inserting an inline extent into
106 * the btree. The caller should have done a btrfs_drop_extents so that
107 * no overlapping inline items exist in the btree
108 */
d397712b 109static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
110 struct btrfs_root *root, struct inode *inode,
111 u64 start, size_t size, size_t compressed_size,
112 struct page **compressed_pages)
113{
114 struct btrfs_key key;
115 struct btrfs_path *path;
116 struct extent_buffer *leaf;
117 struct page *page = NULL;
118 char *kaddr;
119 unsigned long ptr;
120 struct btrfs_file_extent_item *ei;
121 int err = 0;
122 int ret;
123 size_t cur_size = size;
124 size_t datasize;
125 unsigned long offset;
126 int use_compress = 0;
127
128 if (compressed_size && compressed_pages) {
129 use_compress = 1;
130 cur_size = compressed_size;
131 }
132
d397712b
CM
133 path = btrfs_alloc_path();
134 if (!path)
c8b97818
CM
135 return -ENOMEM;
136
b9473439 137 path->leave_spinning = 1;
c8b97818
CM
138 btrfs_set_trans_block_group(trans, inode);
139
140 key.objectid = inode->i_ino;
141 key.offset = start;
142 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
143 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145 inode_add_bytes(inode, size);
146 ret = btrfs_insert_empty_item(trans, root, path, &key,
147 datasize);
148 BUG_ON(ret);
149 if (ret) {
150 err = ret;
c8b97818
CM
151 goto fail;
152 }
153 leaf = path->nodes[0];
154 ei = btrfs_item_ptr(leaf, path->slots[0],
155 struct btrfs_file_extent_item);
156 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158 btrfs_set_file_extent_encryption(leaf, ei, 0);
159 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161 ptr = btrfs_file_extent_inline_start(ei);
162
163 if (use_compress) {
164 struct page *cpage;
165 int i = 0;
d397712b 166 while (compressed_size > 0) {
c8b97818 167 cpage = compressed_pages[i];
5b050f04 168 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
169 PAGE_CACHE_SIZE);
170
b9473439 171 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 172 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 173 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
174
175 i++;
176 ptr += cur_size;
177 compressed_size -= cur_size;
178 }
179 btrfs_set_file_extent_compression(leaf, ei,
180 BTRFS_COMPRESS_ZLIB);
181 } else {
182 page = find_get_page(inode->i_mapping,
183 start >> PAGE_CACHE_SHIFT);
184 btrfs_set_file_extent_compression(leaf, ei, 0);
185 kaddr = kmap_atomic(page, KM_USER0);
186 offset = start & (PAGE_CACHE_SIZE - 1);
187 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188 kunmap_atomic(kaddr, KM_USER0);
189 page_cache_release(page);
190 }
191 btrfs_mark_buffer_dirty(leaf);
192 btrfs_free_path(path);
193
194 BTRFS_I(inode)->disk_i_size = inode->i_size;
195 btrfs_update_inode(trans, root, inode);
196 return 0;
197fail:
198 btrfs_free_path(path);
199 return err;
200}
201
202
203/*
204 * conditionally insert an inline extent into the file. This
205 * does the checks required to make sure the data is small enough
206 * to fit as an inline extent.
207 */
7f366cfe 208static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
209 struct btrfs_root *root,
210 struct inode *inode, u64 start, u64 end,
211 size_t compressed_size,
212 struct page **compressed_pages)
213{
214 u64 isize = i_size_read(inode);
215 u64 actual_end = min(end + 1, isize);
216 u64 inline_len = actual_end - start;
217 u64 aligned_end = (end + root->sectorsize - 1) &
218 ~((u64)root->sectorsize - 1);
219 u64 hint_byte;
220 u64 data_len = inline_len;
221 int ret;
222
223 if (compressed_size)
224 data_len = compressed_size;
225
226 if (start > 0 ||
70b99e69 227 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
228 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
229 (!compressed_size &&
230 (actual_end & (root->sectorsize - 1)) == 0) ||
231 end + 1 < isize ||
232 data_len > root->fs_info->max_inline) {
233 return 1;
234 }
235
c8b97818 236 ret = btrfs_drop_extents(trans, root, inode, start,
e980b50c 237 aligned_end, aligned_end, start, &hint_byte);
c8b97818
CM
238 BUG_ON(ret);
239
240 if (isize > actual_end)
241 inline_len = min_t(u64, isize, actual_end);
242 ret = insert_inline_extent(trans, root, inode, start,
243 inline_len, compressed_size,
244 compressed_pages);
245 BUG_ON(ret);
246 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
c8b97818
CM
247 return 0;
248}
249
771ed689
CM
250struct async_extent {
251 u64 start;
252 u64 ram_size;
253 u64 compressed_size;
254 struct page **pages;
255 unsigned long nr_pages;
256 struct list_head list;
257};
258
259struct async_cow {
260 struct inode *inode;
261 struct btrfs_root *root;
262 struct page *locked_page;
263 u64 start;
264 u64 end;
265 struct list_head extents;
266 struct btrfs_work work;
267};
268
269static noinline int add_async_extent(struct async_cow *cow,
270 u64 start, u64 ram_size,
271 u64 compressed_size,
272 struct page **pages,
273 unsigned long nr_pages)
274{
275 struct async_extent *async_extent;
276
277 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
278 async_extent->start = start;
279 async_extent->ram_size = ram_size;
280 async_extent->compressed_size = compressed_size;
281 async_extent->pages = pages;
282 async_extent->nr_pages = nr_pages;
283 list_add_tail(&async_extent->list, &cow->extents);
284 return 0;
285}
286
d352ac68 287/*
771ed689
CM
288 * we create compressed extents in two phases. The first
289 * phase compresses a range of pages that have already been
290 * locked (both pages and state bits are locked).
c8b97818 291 *
771ed689
CM
292 * This is done inside an ordered work queue, and the compression
293 * is spread across many cpus. The actual IO submission is step
294 * two, and the ordered work queue takes care of making sure that
295 * happens in the same order things were put onto the queue by
296 * writepages and friends.
c8b97818 297 *
771ed689
CM
298 * If this code finds it can't get good compression, it puts an
299 * entry onto the work queue to write the uncompressed bytes. This
300 * makes sure that both compressed inodes and uncompressed inodes
301 * are written in the same order that pdflush sent them down.
d352ac68 302 */
771ed689
CM
303static noinline int compress_file_range(struct inode *inode,
304 struct page *locked_page,
305 u64 start, u64 end,
306 struct async_cow *async_cow,
307 int *num_added)
b888db2b
CM
308{
309 struct btrfs_root *root = BTRFS_I(inode)->root;
310 struct btrfs_trans_handle *trans;
db94535d 311 u64 num_bytes;
c8b97818
CM
312 u64 orig_start;
313 u64 disk_num_bytes;
db94535d 314 u64 blocksize = root->sectorsize;
c8b97818 315 u64 actual_end;
42dc7bab 316 u64 isize = i_size_read(inode);
e6dcd2dc 317 int ret = 0;
c8b97818
CM
318 struct page **pages = NULL;
319 unsigned long nr_pages;
320 unsigned long nr_pages_ret = 0;
321 unsigned long total_compressed = 0;
322 unsigned long total_in = 0;
323 unsigned long max_compressed = 128 * 1024;
771ed689 324 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
325 int i;
326 int will_compress;
b888db2b 327
c8b97818
CM
328 orig_start = start;
329
42dc7bab 330 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
331again:
332 will_compress = 0;
333 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
334 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 335
f03d9301
CM
336 /*
337 * we don't want to send crud past the end of i_size through
338 * compression, that's just a waste of CPU time. So, if the
339 * end of the file is before the start of our current
340 * requested range of bytes, we bail out to the uncompressed
341 * cleanup code that can deal with all of this.
342 *
343 * It isn't really the fastest way to fix things, but this is a
344 * very uncommon corner.
345 */
346 if (actual_end <= start)
347 goto cleanup_and_bail_uncompressed;
348
c8b97818
CM
349 total_compressed = actual_end - start;
350
351 /* we want to make sure that amount of ram required to uncompress
352 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
353 * of a compressed extent to 128k. This is a crucial number
354 * because it also controls how easily we can spread reads across
355 * cpus for decompression.
356 *
357 * We also want to make sure the amount of IO required to do
358 * a random read is reasonably small, so we limit the size of
359 * a compressed extent to 128k.
c8b97818
CM
360 */
361 total_compressed = min(total_compressed, max_uncompressed);
db94535d 362 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 363 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
364 disk_num_bytes = num_bytes;
365 total_in = 0;
366 ret = 0;
db94535d 367
771ed689
CM
368 /*
369 * we do compression for mount -o compress and when the
370 * inode has not been flagged as nocompress. This flag can
371 * change at any time if we discover bad compression ratios.
c8b97818
CM
372 */
373 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
374 btrfs_test_opt(root, COMPRESS)) {
375 WARN_ON(pages);
cfbc246e 376 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 377
c8b97818
CM
378 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
379 total_compressed, pages,
380 nr_pages, &nr_pages_ret,
381 &total_in,
382 &total_compressed,
383 max_compressed);
384
385 if (!ret) {
386 unsigned long offset = total_compressed &
387 (PAGE_CACHE_SIZE - 1);
388 struct page *page = pages[nr_pages_ret - 1];
389 char *kaddr;
390
391 /* zero the tail end of the last page, we might be
392 * sending it down to disk
393 */
394 if (offset) {
395 kaddr = kmap_atomic(page, KM_USER0);
396 memset(kaddr + offset, 0,
397 PAGE_CACHE_SIZE - offset);
398 kunmap_atomic(kaddr, KM_USER0);
399 }
400 will_compress = 1;
401 }
402 }
403 if (start == 0) {
771ed689
CM
404 trans = btrfs_join_transaction(root, 1);
405 BUG_ON(!trans);
406 btrfs_set_trans_block_group(trans, inode);
407
c8b97818 408 /* lets try to make an inline extent */
771ed689 409 if (ret || total_in < (actual_end - start)) {
c8b97818 410 /* we didn't compress the entire range, try
771ed689 411 * to make an uncompressed inline extent.
c8b97818
CM
412 */
413 ret = cow_file_range_inline(trans, root, inode,
414 start, end, 0, NULL);
415 } else {
771ed689 416 /* try making a compressed inline extent */
c8b97818
CM
417 ret = cow_file_range_inline(trans, root, inode,
418 start, end,
419 total_compressed, pages);
420 }
771ed689 421 btrfs_end_transaction(trans, root);
c8b97818 422 if (ret == 0) {
771ed689
CM
423 /*
424 * inline extent creation worked, we don't need
425 * to create any more async work items. Unlock
426 * and free up our temp pages.
427 */
c8b97818
CM
428 extent_clear_unlock_delalloc(inode,
429 &BTRFS_I(inode)->io_tree,
771ed689
CM
430 start, end, NULL, 1, 0,
431 0, 1, 1, 1);
c8b97818
CM
432 ret = 0;
433 goto free_pages_out;
434 }
435 }
436
437 if (will_compress) {
438 /*
439 * we aren't doing an inline extent round the compressed size
440 * up to a block size boundary so the allocator does sane
441 * things
442 */
443 total_compressed = (total_compressed + blocksize - 1) &
444 ~(blocksize - 1);
445
446 /*
447 * one last check to make sure the compression is really a
448 * win, compare the page count read with the blocks on disk
449 */
450 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
451 ~(PAGE_CACHE_SIZE - 1);
452 if (total_compressed >= total_in) {
453 will_compress = 0;
454 } else {
455 disk_num_bytes = total_compressed;
456 num_bytes = total_in;
457 }
458 }
459 if (!will_compress && pages) {
460 /*
461 * the compression code ran but failed to make things smaller,
462 * free any pages it allocated and our page pointer array
463 */
464 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 465 WARN_ON(pages[i]->mapping);
c8b97818
CM
466 page_cache_release(pages[i]);
467 }
468 kfree(pages);
469 pages = NULL;
470 total_compressed = 0;
471 nr_pages_ret = 0;
472
473 /* flag the file so we don't compress in the future */
474 btrfs_set_flag(inode, NOCOMPRESS);
475 }
771ed689
CM
476 if (will_compress) {
477 *num_added += 1;
c8b97818 478
771ed689
CM
479 /* the async work queues will take care of doing actual
480 * allocation on disk for these compressed pages,
481 * and will submit them to the elevator.
482 */
483 add_async_extent(async_cow, start, num_bytes,
484 total_compressed, pages, nr_pages_ret);
179e29e4 485
42dc7bab 486 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
487 start += num_bytes;
488 pages = NULL;
489 cond_resched();
490 goto again;
491 }
492 } else {
f03d9301 493cleanup_and_bail_uncompressed:
771ed689
CM
494 /*
495 * No compression, but we still need to write the pages in
496 * the file we've been given so far. redirty the locked
497 * page if it corresponds to our extent and set things up
498 * for the async work queue to run cow_file_range to do
499 * the normal delalloc dance
500 */
501 if (page_offset(locked_page) >= start &&
502 page_offset(locked_page) <= end) {
503 __set_page_dirty_nobuffers(locked_page);
504 /* unlocked later on in the async handlers */
505 }
506 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
507 *num_added += 1;
508 }
3b951516 509
771ed689
CM
510out:
511 return 0;
512
513free_pages_out:
514 for (i = 0; i < nr_pages_ret; i++) {
515 WARN_ON(pages[i]->mapping);
516 page_cache_release(pages[i]);
517 }
d397712b 518 kfree(pages);
771ed689
CM
519
520 goto out;
521}
522
523/*
524 * phase two of compressed writeback. This is the ordered portion
525 * of the code, which only gets called in the order the work was
526 * queued. We walk all the async extents created by compress_file_range
527 * and send them down to the disk.
528 */
529static noinline int submit_compressed_extents(struct inode *inode,
530 struct async_cow *async_cow)
531{
532 struct async_extent *async_extent;
533 u64 alloc_hint = 0;
534 struct btrfs_trans_handle *trans;
535 struct btrfs_key ins;
536 struct extent_map *em;
537 struct btrfs_root *root = BTRFS_I(inode)->root;
538 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
539 struct extent_io_tree *io_tree;
540 int ret;
541
542 if (list_empty(&async_cow->extents))
543 return 0;
544
545 trans = btrfs_join_transaction(root, 1);
546
d397712b 547 while (!list_empty(&async_cow->extents)) {
771ed689
CM
548 async_extent = list_entry(async_cow->extents.next,
549 struct async_extent, list);
550 list_del(&async_extent->list);
c8b97818 551
771ed689
CM
552 io_tree = &BTRFS_I(inode)->io_tree;
553
554 /* did the compression code fall back to uncompressed IO? */
555 if (!async_extent->pages) {
556 int page_started = 0;
557 unsigned long nr_written = 0;
558
559 lock_extent(io_tree, async_extent->start,
d397712b
CM
560 async_extent->start +
561 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
562
563 /* allocate blocks */
564 cow_file_range(inode, async_cow->locked_page,
565 async_extent->start,
566 async_extent->start +
567 async_extent->ram_size - 1,
568 &page_started, &nr_written, 0);
569
570 /*
571 * if page_started, cow_file_range inserted an
572 * inline extent and took care of all the unlocking
573 * and IO for us. Otherwise, we need to submit
574 * all those pages down to the drive.
575 */
576 if (!page_started)
577 extent_write_locked_range(io_tree,
578 inode, async_extent->start,
d397712b 579 async_extent->start +
771ed689
CM
580 async_extent->ram_size - 1,
581 btrfs_get_extent,
582 WB_SYNC_ALL);
583 kfree(async_extent);
584 cond_resched();
585 continue;
586 }
587
588 lock_extent(io_tree, async_extent->start,
589 async_extent->start + async_extent->ram_size - 1,
590 GFP_NOFS);
c8b97818 591 /*
771ed689
CM
592 * here we're doing allocation and writeback of the
593 * compressed pages
c8b97818 594 */
771ed689
CM
595 btrfs_drop_extent_cache(inode, async_extent->start,
596 async_extent->start +
597 async_extent->ram_size - 1, 0);
598
599 ret = btrfs_reserve_extent(trans, root,
600 async_extent->compressed_size,
601 async_extent->compressed_size,
602 0, alloc_hint,
603 (u64)-1, &ins, 1);
604 BUG_ON(ret);
605 em = alloc_extent_map(GFP_NOFS);
606 em->start = async_extent->start;
607 em->len = async_extent->ram_size;
445a6944 608 em->orig_start = em->start;
c8b97818 609
771ed689
CM
610 em->block_start = ins.objectid;
611 em->block_len = ins.offset;
612 em->bdev = root->fs_info->fs_devices->latest_bdev;
613 set_bit(EXTENT_FLAG_PINNED, &em->flags);
614 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
615
d397712b 616 while (1) {
771ed689
CM
617 spin_lock(&em_tree->lock);
618 ret = add_extent_mapping(em_tree, em);
619 spin_unlock(&em_tree->lock);
620 if (ret != -EEXIST) {
621 free_extent_map(em);
622 break;
623 }
624 btrfs_drop_extent_cache(inode, async_extent->start,
625 async_extent->start +
626 async_extent->ram_size - 1, 0);
627 }
628
629 ret = btrfs_add_ordered_extent(inode, async_extent->start,
630 ins.objectid,
631 async_extent->ram_size,
632 ins.offset,
633 BTRFS_ORDERED_COMPRESSED);
634 BUG_ON(ret);
635
636 btrfs_end_transaction(trans, root);
637
638 /*
639 * clear dirty, set writeback and unlock the pages.
640 */
641 extent_clear_unlock_delalloc(inode,
642 &BTRFS_I(inode)->io_tree,
643 async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1,
646 NULL, 1, 1, 0, 1, 1, 0);
647
648 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
649 async_extent->start,
650 async_extent->ram_size,
651 ins.objectid,
652 ins.offset, async_extent->pages,
653 async_extent->nr_pages);
771ed689
CM
654
655 BUG_ON(ret);
656 trans = btrfs_join_transaction(root, 1);
657 alloc_hint = ins.objectid + ins.offset;
658 kfree(async_extent);
659 cond_resched();
660 }
661
662 btrfs_end_transaction(trans, root);
663 return 0;
664}
665
666/*
667 * when extent_io.c finds a delayed allocation range in the file,
668 * the call backs end up in this code. The basic idea is to
669 * allocate extents on disk for the range, and create ordered data structs
670 * in ram to track those extents.
671 *
672 * locked_page is the page that writepage had locked already. We use
673 * it to make sure we don't do extra locks or unlocks.
674 *
675 * *page_started is set to one if we unlock locked_page and do everything
676 * required to start IO on it. It may be clean and already done with
677 * IO when we return.
678 */
679static noinline int cow_file_range(struct inode *inode,
680 struct page *locked_page,
681 u64 start, u64 end, int *page_started,
682 unsigned long *nr_written,
683 int unlock)
684{
685 struct btrfs_root *root = BTRFS_I(inode)->root;
686 struct btrfs_trans_handle *trans;
687 u64 alloc_hint = 0;
688 u64 num_bytes;
689 unsigned long ram_size;
690 u64 disk_num_bytes;
691 u64 cur_alloc_size;
692 u64 blocksize = root->sectorsize;
693 u64 actual_end;
42dc7bab 694 u64 isize = i_size_read(inode);
771ed689
CM
695 struct btrfs_key ins;
696 struct extent_map *em;
697 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
698 int ret = 0;
699
700 trans = btrfs_join_transaction(root, 1);
701 BUG_ON(!trans);
702 btrfs_set_trans_block_group(trans, inode);
703
42dc7bab 704 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
705
706 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
707 num_bytes = max(blocksize, num_bytes);
708 disk_num_bytes = num_bytes;
709 ret = 0;
710
711 if (start == 0) {
712 /* lets try to make an inline extent */
713 ret = cow_file_range_inline(trans, root, inode,
714 start, end, 0, NULL);
715 if (ret == 0) {
716 extent_clear_unlock_delalloc(inode,
717 &BTRFS_I(inode)->io_tree,
718 start, end, NULL, 1, 1,
719 1, 1, 1, 1);
720 *nr_written = *nr_written +
721 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
722 *page_started = 1;
723 ret = 0;
724 goto out;
725 }
726 }
727
728 BUG_ON(disk_num_bytes >
729 btrfs_super_total_bytes(&root->fs_info->super_copy));
730
731 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
732
d397712b 733 while (disk_num_bytes > 0) {
c8b97818 734 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 735 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 736 root->sectorsize, 0, alloc_hint,
e6dcd2dc 737 (u64)-1, &ins, 1);
d397712b
CM
738 BUG_ON(ret);
739
e6dcd2dc
CM
740 em = alloc_extent_map(GFP_NOFS);
741 em->start = start;
445a6944 742 em->orig_start = em->start;
c8b97818 743
771ed689
CM
744 ram_size = ins.offset;
745 em->len = ins.offset;
c8b97818 746
e6dcd2dc 747 em->block_start = ins.objectid;
c8b97818 748 em->block_len = ins.offset;
e6dcd2dc 749 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 750 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 751
d397712b 752 while (1) {
e6dcd2dc
CM
753 spin_lock(&em_tree->lock);
754 ret = add_extent_mapping(em_tree, em);
755 spin_unlock(&em_tree->lock);
756 if (ret != -EEXIST) {
757 free_extent_map(em);
758 break;
759 }
760 btrfs_drop_extent_cache(inode, start,
c8b97818 761 start + ram_size - 1, 0);
e6dcd2dc
CM
762 }
763
98d20f67 764 cur_alloc_size = ins.offset;
e6dcd2dc 765 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 766 ram_size, cur_alloc_size, 0);
e6dcd2dc 767 BUG_ON(ret);
c8b97818 768
17d217fe
YZ
769 if (root->root_key.objectid ==
770 BTRFS_DATA_RELOC_TREE_OBJECTID) {
771 ret = btrfs_reloc_clone_csums(inode, start,
772 cur_alloc_size);
773 BUG_ON(ret);
774 }
775
d397712b 776 if (disk_num_bytes < cur_alloc_size)
3b951516 777 break;
d397712b 778
c8b97818
CM
779 /* we're not doing compressed IO, don't unlock the first
780 * page (which the caller expects to stay locked), don't
781 * clear any dirty bits and don't set any writeback bits
782 */
783 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
784 start, start + ram_size - 1,
771ed689
CM
785 locked_page, unlock, 1,
786 1, 0, 0, 0);
c8b97818 787 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
788 num_bytes -= cur_alloc_size;
789 alloc_hint = ins.objectid + ins.offset;
790 start += cur_alloc_size;
b888db2b 791 }
b888db2b 792out:
771ed689 793 ret = 0;
b888db2b 794 btrfs_end_transaction(trans, root);
c8b97818 795
be20aa9d 796 return ret;
771ed689 797}
c8b97818 798
771ed689
CM
799/*
800 * work queue call back to started compression on a file and pages
801 */
802static noinline void async_cow_start(struct btrfs_work *work)
803{
804 struct async_cow *async_cow;
805 int num_added = 0;
806 async_cow = container_of(work, struct async_cow, work);
807
808 compress_file_range(async_cow->inode, async_cow->locked_page,
809 async_cow->start, async_cow->end, async_cow,
810 &num_added);
811 if (num_added == 0)
812 async_cow->inode = NULL;
813}
814
815/*
816 * work queue call back to submit previously compressed pages
817 */
818static noinline void async_cow_submit(struct btrfs_work *work)
819{
820 struct async_cow *async_cow;
821 struct btrfs_root *root;
822 unsigned long nr_pages;
823
824 async_cow = container_of(work, struct async_cow, work);
825
826 root = async_cow->root;
827 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
828 PAGE_CACHE_SHIFT;
829
830 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
831
832 if (atomic_read(&root->fs_info->async_delalloc_pages) <
833 5 * 1042 * 1024 &&
834 waitqueue_active(&root->fs_info->async_submit_wait))
835 wake_up(&root->fs_info->async_submit_wait);
836
d397712b 837 if (async_cow->inode)
771ed689 838 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 839}
c8b97818 840
771ed689
CM
841static noinline void async_cow_free(struct btrfs_work *work)
842{
843 struct async_cow *async_cow;
844 async_cow = container_of(work, struct async_cow, work);
845 kfree(async_cow);
846}
847
848static int cow_file_range_async(struct inode *inode, struct page *locked_page,
849 u64 start, u64 end, int *page_started,
850 unsigned long *nr_written)
851{
852 struct async_cow *async_cow;
853 struct btrfs_root *root = BTRFS_I(inode)->root;
854 unsigned long nr_pages;
855 u64 cur_end;
856 int limit = 10 * 1024 * 1042;
857
771ed689
CM
858 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
859 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
d397712b 860 while (start < end) {
771ed689
CM
861 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
862 async_cow->inode = inode;
863 async_cow->root = root;
864 async_cow->locked_page = locked_page;
865 async_cow->start = start;
866
867 if (btrfs_test_flag(inode, NOCOMPRESS))
868 cur_end = end;
869 else
870 cur_end = min(end, start + 512 * 1024 - 1);
871
872 async_cow->end = cur_end;
873 INIT_LIST_HEAD(&async_cow->extents);
874
875 async_cow->work.func = async_cow_start;
876 async_cow->work.ordered_func = async_cow_submit;
877 async_cow->work.ordered_free = async_cow_free;
878 async_cow->work.flags = 0;
879
771ed689
CM
880 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
881 PAGE_CACHE_SHIFT;
882 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
883
884 btrfs_queue_worker(&root->fs_info->delalloc_workers,
885 &async_cow->work);
886
887 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
888 wait_event(root->fs_info->async_submit_wait,
889 (atomic_read(&root->fs_info->async_delalloc_pages) <
890 limit));
891 }
892
d397712b 893 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
894 atomic_read(&root->fs_info->async_delalloc_pages)) {
895 wait_event(root->fs_info->async_submit_wait,
896 (atomic_read(&root->fs_info->async_delalloc_pages) ==
897 0));
898 }
899
900 *nr_written += nr_pages;
901 start = cur_end + 1;
902 }
903 *page_started = 1;
904 return 0;
be20aa9d
CM
905}
906
d397712b 907static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
908 u64 bytenr, u64 num_bytes)
909{
910 int ret;
911 struct btrfs_ordered_sum *sums;
912 LIST_HEAD(list);
913
07d400a6
YZ
914 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
915 bytenr + num_bytes - 1, &list);
17d217fe
YZ
916 if (ret == 0 && list_empty(&list))
917 return 0;
918
919 while (!list_empty(&list)) {
920 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
921 list_del(&sums->list);
922 kfree(sums);
923 }
924 return 1;
925}
926
d352ac68
CM
927/*
928 * when nowcow writeback call back. This checks for snapshots or COW copies
929 * of the extents that exist in the file, and COWs the file as required.
930 *
931 * If no cow copies or snapshots exist, we write directly to the existing
932 * blocks on disk
933 */
7f366cfe
CM
934static noinline int run_delalloc_nocow(struct inode *inode,
935 struct page *locked_page,
771ed689
CM
936 u64 start, u64 end, int *page_started, int force,
937 unsigned long *nr_written)
be20aa9d 938{
be20aa9d 939 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 940 struct btrfs_trans_handle *trans;
be20aa9d 941 struct extent_buffer *leaf;
be20aa9d 942 struct btrfs_path *path;
80ff3856 943 struct btrfs_file_extent_item *fi;
be20aa9d 944 struct btrfs_key found_key;
80ff3856
YZ
945 u64 cow_start;
946 u64 cur_offset;
947 u64 extent_end;
948 u64 disk_bytenr;
949 u64 num_bytes;
950 int extent_type;
951 int ret;
d899e052 952 int type;
80ff3856
YZ
953 int nocow;
954 int check_prev = 1;
be20aa9d
CM
955
956 path = btrfs_alloc_path();
957 BUG_ON(!path);
7ea394f1
YZ
958 trans = btrfs_join_transaction(root, 1);
959 BUG_ON(!trans);
be20aa9d 960
80ff3856
YZ
961 cow_start = (u64)-1;
962 cur_offset = start;
963 while (1) {
964 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
965 cur_offset, 0);
966 BUG_ON(ret < 0);
967 if (ret > 0 && path->slots[0] > 0 && check_prev) {
968 leaf = path->nodes[0];
969 btrfs_item_key_to_cpu(leaf, &found_key,
970 path->slots[0] - 1);
971 if (found_key.objectid == inode->i_ino &&
972 found_key.type == BTRFS_EXTENT_DATA_KEY)
973 path->slots[0]--;
974 }
975 check_prev = 0;
976next_slot:
977 leaf = path->nodes[0];
978 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
979 ret = btrfs_next_leaf(root, path);
980 if (ret < 0)
981 BUG_ON(1);
982 if (ret > 0)
983 break;
984 leaf = path->nodes[0];
985 }
be20aa9d 986
80ff3856
YZ
987 nocow = 0;
988 disk_bytenr = 0;
17d217fe 989 num_bytes = 0;
80ff3856
YZ
990 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
991
992 if (found_key.objectid > inode->i_ino ||
993 found_key.type > BTRFS_EXTENT_DATA_KEY ||
994 found_key.offset > end)
995 break;
996
997 if (found_key.offset > cur_offset) {
998 extent_end = found_key.offset;
999 goto out_check;
1000 }
1001
1002 fi = btrfs_item_ptr(leaf, path->slots[0],
1003 struct btrfs_file_extent_item);
1004 extent_type = btrfs_file_extent_type(leaf, fi);
1005
d899e052
YZ
1006 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1007 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856
YZ
1008 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1009 extent_end = found_key.offset +
1010 btrfs_file_extent_num_bytes(leaf, fi);
1011 if (extent_end <= start) {
1012 path->slots[0]++;
1013 goto next_slot;
1014 }
17d217fe
YZ
1015 if (disk_bytenr == 0)
1016 goto out_check;
80ff3856
YZ
1017 if (btrfs_file_extent_compression(leaf, fi) ||
1018 btrfs_file_extent_encryption(leaf, fi) ||
1019 btrfs_file_extent_other_encoding(leaf, fi))
1020 goto out_check;
d899e052
YZ
1021 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1022 goto out_check;
d2fb3437 1023 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1024 goto out_check;
17d217fe
YZ
1025 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1026 disk_bytenr))
1027 goto out_check;
80ff3856 1028 disk_bytenr += btrfs_file_extent_offset(leaf, fi);
17d217fe
YZ
1029 disk_bytenr += cur_offset - found_key.offset;
1030 num_bytes = min(end + 1, extent_end) - cur_offset;
1031 /*
1032 * force cow if csum exists in the range.
1033 * this ensure that csum for a given extent are
1034 * either valid or do not exist.
1035 */
1036 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1037 goto out_check;
80ff3856
YZ
1038 nocow = 1;
1039 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1040 extent_end = found_key.offset +
1041 btrfs_file_extent_inline_len(leaf, fi);
1042 extent_end = ALIGN(extent_end, root->sectorsize);
1043 } else {
1044 BUG_ON(1);
1045 }
1046out_check:
1047 if (extent_end <= start) {
1048 path->slots[0]++;
1049 goto next_slot;
1050 }
1051 if (!nocow) {
1052 if (cow_start == (u64)-1)
1053 cow_start = cur_offset;
1054 cur_offset = extent_end;
1055 if (cur_offset > end)
1056 break;
1057 path->slots[0]++;
1058 goto next_slot;
7ea394f1
YZ
1059 }
1060
1061 btrfs_release_path(root, path);
80ff3856
YZ
1062 if (cow_start != (u64)-1) {
1063 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1064 found_key.offset - 1, page_started,
1065 nr_written, 1);
80ff3856
YZ
1066 BUG_ON(ret);
1067 cow_start = (u64)-1;
7ea394f1 1068 }
80ff3856 1069
d899e052
YZ
1070 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1071 struct extent_map *em;
1072 struct extent_map_tree *em_tree;
1073 em_tree = &BTRFS_I(inode)->extent_tree;
1074 em = alloc_extent_map(GFP_NOFS);
1075 em->start = cur_offset;
445a6944 1076 em->orig_start = em->start;
d899e052
YZ
1077 em->len = num_bytes;
1078 em->block_len = num_bytes;
1079 em->block_start = disk_bytenr;
1080 em->bdev = root->fs_info->fs_devices->latest_bdev;
1081 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1082 while (1) {
1083 spin_lock(&em_tree->lock);
1084 ret = add_extent_mapping(em_tree, em);
1085 spin_unlock(&em_tree->lock);
1086 if (ret != -EEXIST) {
1087 free_extent_map(em);
1088 break;
1089 }
1090 btrfs_drop_extent_cache(inode, em->start,
1091 em->start + em->len - 1, 0);
1092 }
1093 type = BTRFS_ORDERED_PREALLOC;
1094 } else {
1095 type = BTRFS_ORDERED_NOCOW;
1096 }
80ff3856
YZ
1097
1098 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1099 num_bytes, num_bytes, type);
1100 BUG_ON(ret);
771ed689 1101
d899e052
YZ
1102 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1103 cur_offset, cur_offset + num_bytes - 1,
771ed689 1104 locked_page, 1, 1, 1, 0, 0, 0);
80ff3856
YZ
1105 cur_offset = extent_end;
1106 if (cur_offset > end)
1107 break;
be20aa9d 1108 }
80ff3856
YZ
1109 btrfs_release_path(root, path);
1110
1111 if (cur_offset <= end && cow_start == (u64)-1)
1112 cow_start = cur_offset;
1113 if (cow_start != (u64)-1) {
1114 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1115 page_started, nr_written, 1);
80ff3856
YZ
1116 BUG_ON(ret);
1117 }
1118
1119 ret = btrfs_end_transaction(trans, root);
1120 BUG_ON(ret);
7ea394f1 1121 btrfs_free_path(path);
80ff3856 1122 return 0;
be20aa9d
CM
1123}
1124
d352ac68
CM
1125/*
1126 * extent_io.c call back to do delayed allocation processing
1127 */
c8b97818 1128static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1129 u64 start, u64 end, int *page_started,
1130 unsigned long *nr_written)
be20aa9d 1131{
be20aa9d 1132 int ret;
7f366cfe 1133 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1134
17d217fe 1135 if (btrfs_test_flag(inode, NODATACOW))
c8b97818 1136 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1137 page_started, 1, nr_written);
d899e052
YZ
1138 else if (btrfs_test_flag(inode, PREALLOC))
1139 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1140 page_started, 0, nr_written);
7f366cfe
CM
1141 else if (!btrfs_test_opt(root, COMPRESS))
1142 ret = cow_file_range(inode, locked_page, start, end,
1143 page_started, nr_written, 1);
be20aa9d 1144 else
771ed689 1145 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1146 page_started, nr_written);
b888db2b
CM
1147 return ret;
1148}
1149
d352ac68
CM
1150/*
1151 * extent_io.c set_bit_hook, used to track delayed allocation
1152 * bytes in this file, and to maintain the list of inodes that
1153 * have pending delalloc work to be done.
1154 */
b2950863 1155static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1156 unsigned long old, unsigned long bits)
291d673e 1157{
75eff68e
CM
1158 /*
1159 * set_bit and clear bit hooks normally require _irqsave/restore
1160 * but in this case, we are only testeing for the DELALLOC
1161 * bit, which is only set or cleared with irqs on
1162 */
b0c68f8b 1163 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1164 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 1165 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1166 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1167 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1168 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1169 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1170 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1171 &root->fs_info->delalloc_inodes);
1172 }
75eff68e 1173 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1174 }
1175 return 0;
1176}
1177
d352ac68
CM
1178/*
1179 * extent_io.c clear_bit_hook, see set_bit_hook for why
1180 */
b2950863 1181static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1182 unsigned long old, unsigned long bits)
291d673e 1183{
75eff68e
CM
1184 /*
1185 * set_bit and clear bit hooks normally require _irqsave/restore
1186 * but in this case, we are only testeing for the DELALLOC
1187 * bit, which is only set or cleared with irqs on
1188 */
b0c68f8b 1189 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1190 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1191
75eff68e 1192 spin_lock(&root->fs_info->delalloc_lock);
b0c68f8b 1193 if (end - start + 1 > root->fs_info->delalloc_bytes) {
d397712b
CM
1194 printk(KERN_INFO "btrfs warning: delalloc account "
1195 "%llu %llu\n",
1196 (unsigned long long)end - start + 1,
1197 (unsigned long long)
1198 root->fs_info->delalloc_bytes);
6a63209f 1199 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1200 root->fs_info->delalloc_bytes = 0;
9069218d 1201 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1202 } else {
6a63209f
JB
1203 btrfs_delalloc_free_space(root, inode,
1204 end - start + 1);
b0c68f8b 1205 root->fs_info->delalloc_bytes -= end - start + 1;
9069218d 1206 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
b0c68f8b 1207 }
ea8c2819
CM
1208 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1209 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1210 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211 }
75eff68e 1212 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1213 }
1214 return 0;
1215}
1216
d352ac68
CM
1217/*
1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219 * we don't create bios that span stripes or chunks
1220 */
239b14b3 1221int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1222 size_t size, struct bio *bio,
1223 unsigned long bio_flags)
239b14b3
CM
1224{
1225 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1226 struct btrfs_mapping_tree *map_tree;
a62b9401 1227 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1228 u64 length = 0;
1229 u64 map_length;
239b14b3
CM
1230 int ret;
1231
771ed689
CM
1232 if (bio_flags & EXTENT_BIO_COMPRESSED)
1233 return 0;
1234
f2d8d74d 1235 length = bio->bi_size;
239b14b3
CM
1236 map_tree = &root->fs_info->mapping_tree;
1237 map_length = length;
cea9e445 1238 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1239 &map_length, NULL, 0);
cea9e445 1240
d397712b 1241 if (map_length < length + size)
239b14b3 1242 return 1;
239b14b3
CM
1243 return 0;
1244}
1245
d352ac68
CM
1246/*
1247 * in order to insert checksums into the metadata in large chunks,
1248 * we wait until bio submission time. All the pages in the bio are
1249 * checksummed and sums are attached onto the ordered extent record.
1250 *
1251 * At IO completion time the cums attached on the ordered extent record
1252 * are inserted into the btree
1253 */
d397712b
CM
1254static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1255 struct bio *bio, int mirror_num,
1256 unsigned long bio_flags)
065631f6 1257{
065631f6 1258 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1259 int ret = 0;
e015640f 1260
d20f7043 1261 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1262 BUG_ON(ret);
4a69a410
CM
1263 return 0;
1264}
e015640f 1265
4a69a410
CM
1266/*
1267 * in order to insert checksums into the metadata in large chunks,
1268 * we wait until bio submission time. All the pages in the bio are
1269 * checksummed and sums are attached onto the ordered extent record.
1270 *
1271 * At IO completion time the cums attached on the ordered extent record
1272 * are inserted into the btree
1273 */
b2950863 1274static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1275 int mirror_num, unsigned long bio_flags)
1276{
1277 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1278 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1279}
1280
d352ac68 1281/*
cad321ad
CM
1282 * extent_io.c submission hook. This does the right thing for csum calculation
1283 * on write, or reading the csums from the tree before a read
d352ac68 1284 */
b2950863 1285static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1286 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1287{
1288 struct btrfs_root *root = BTRFS_I(inode)->root;
1289 int ret = 0;
19b9bdb0 1290 int skip_sum;
44b8bd7e 1291
cad321ad
CM
1292 skip_sum = btrfs_test_flag(inode, NODATASUM);
1293
e6dcd2dc
CM
1294 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1295 BUG_ON(ret);
065631f6 1296
4d1b5fb4 1297 if (!(rw & (1 << BIO_RW))) {
d20f7043 1298 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1299 return btrfs_submit_compressed_read(inode, bio,
1300 mirror_num, bio_flags);
d20f7043
CM
1301 } else if (!skip_sum)
1302 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1303 goto mapit;
19b9bdb0 1304 } else if (!skip_sum) {
17d217fe
YZ
1305 /* csum items have already been cloned */
1306 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307 goto mapit;
19b9bdb0
CM
1308 /* we're doing a write, do the async checksumming */
1309 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1310 inode, rw, bio, mirror_num,
4a69a410
CM
1311 bio_flags, __btrfs_submit_bio_start,
1312 __btrfs_submit_bio_done);
19b9bdb0
CM
1313 }
1314
0b86a832 1315mapit:
8b712842 1316 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1317}
6885f308 1318
d352ac68
CM
1319/*
1320 * given a list of ordered sums record them in the inode. This happens
1321 * at IO completion time based on sums calculated at bio submission time.
1322 */
ba1da2f4 1323static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1324 struct inode *inode, u64 file_offset,
1325 struct list_head *list)
1326{
e6dcd2dc
CM
1327 struct btrfs_ordered_sum *sum;
1328
1329 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1330
1331 list_for_each_entry(sum, list, list) {
d20f7043
CM
1332 btrfs_csum_file_blocks(trans,
1333 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1334 }
1335 return 0;
1336}
1337
ea8c2819
CM
1338int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1339{
d397712b 1340 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1341 WARN_ON(1);
ea8c2819
CM
1342 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1343 GFP_NOFS);
1344}
1345
d352ac68 1346/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1347struct btrfs_writepage_fixup {
1348 struct page *page;
1349 struct btrfs_work work;
1350};
1351
b2950863 1352static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1353{
1354 struct btrfs_writepage_fixup *fixup;
1355 struct btrfs_ordered_extent *ordered;
1356 struct page *page;
1357 struct inode *inode;
1358 u64 page_start;
1359 u64 page_end;
1360
1361 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1362 page = fixup->page;
4a096752 1363again:
247e743c
CM
1364 lock_page(page);
1365 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1366 ClearPageChecked(page);
1367 goto out_page;
1368 }
1369
1370 inode = page->mapping->host;
1371 page_start = page_offset(page);
1372 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1373
1374 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1375
1376 /* already ordered? We're done */
1377 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1378 EXTENT_ORDERED, 0)) {
247e743c 1379 goto out;
4a096752
CM
1380 }
1381
1382 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383 if (ordered) {
1384 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1385 page_end, GFP_NOFS);
1386 unlock_page(page);
1387 btrfs_start_ordered_extent(inode, ordered, 1);
1388 goto again;
1389 }
247e743c 1390
ea8c2819 1391 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1392 ClearPageChecked(page);
1393out:
1394 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1395out_page:
1396 unlock_page(page);
1397 page_cache_release(page);
1398}
1399
1400/*
1401 * There are a few paths in the higher layers of the kernel that directly
1402 * set the page dirty bit without asking the filesystem if it is a
1403 * good idea. This causes problems because we want to make sure COW
1404 * properly happens and the data=ordered rules are followed.
1405 *
c8b97818 1406 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1407 * hasn't been properly setup for IO. We kick off an async process
1408 * to fix it up. The async helper will wait for ordered extents, set
1409 * the delalloc bit and make it safe to write the page.
1410 */
b2950863 1411static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1412{
1413 struct inode *inode = page->mapping->host;
1414 struct btrfs_writepage_fixup *fixup;
1415 struct btrfs_root *root = BTRFS_I(inode)->root;
1416 int ret;
1417
1418 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1419 EXTENT_ORDERED, 0);
1420 if (ret)
1421 return 0;
1422
1423 if (PageChecked(page))
1424 return -EAGAIN;
1425
1426 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427 if (!fixup)
1428 return -EAGAIN;
f421950f 1429
247e743c
CM
1430 SetPageChecked(page);
1431 page_cache_get(page);
1432 fixup->work.func = btrfs_writepage_fixup_worker;
1433 fixup->page = page;
1434 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435 return -EAGAIN;
1436}
1437
d899e052
YZ
1438static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439 struct inode *inode, u64 file_pos,
1440 u64 disk_bytenr, u64 disk_num_bytes,
1441 u64 num_bytes, u64 ram_bytes,
e980b50c 1442 u64 locked_end,
d899e052
YZ
1443 u8 compression, u8 encryption,
1444 u16 other_encoding, int extent_type)
1445{
1446 struct btrfs_root *root = BTRFS_I(inode)->root;
1447 struct btrfs_file_extent_item *fi;
1448 struct btrfs_path *path;
1449 struct extent_buffer *leaf;
1450 struct btrfs_key ins;
1451 u64 hint;
1452 int ret;
1453
1454 path = btrfs_alloc_path();
1455 BUG_ON(!path);
1456
b9473439 1457 path->leave_spinning = 1;
d899e052 1458 ret = btrfs_drop_extents(trans, root, inode, file_pos,
e980b50c
CM
1459 file_pos + num_bytes, locked_end,
1460 file_pos, &hint);
d899e052
YZ
1461 BUG_ON(ret);
1462
1463 ins.objectid = inode->i_ino;
1464 ins.offset = file_pos;
1465 ins.type = BTRFS_EXTENT_DATA_KEY;
1466 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1467 BUG_ON(ret);
1468 leaf = path->nodes[0];
1469 fi = btrfs_item_ptr(leaf, path->slots[0],
1470 struct btrfs_file_extent_item);
1471 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1472 btrfs_set_file_extent_type(leaf, fi, extent_type);
1473 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1474 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1475 btrfs_set_file_extent_offset(leaf, fi, 0);
1476 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1477 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1478 btrfs_set_file_extent_compression(leaf, fi, compression);
1479 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1480 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1481
1482 btrfs_unlock_up_safe(path, 1);
1483 btrfs_set_lock_blocking(leaf);
1484
d899e052
YZ
1485 btrfs_mark_buffer_dirty(leaf);
1486
1487 inode_add_bytes(inode, num_bytes);
1488 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1489
1490 ins.objectid = disk_bytenr;
1491 ins.offset = disk_num_bytes;
1492 ins.type = BTRFS_EXTENT_ITEM_KEY;
1493 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1494 root->root_key.objectid,
1495 trans->transid, inode->i_ino, &ins);
1496 BUG_ON(ret);
d899e052 1497 btrfs_free_path(path);
b9473439 1498
d899e052
YZ
1499 return 0;
1500}
1501
5d13a98f
CM
1502/*
1503 * helper function for btrfs_finish_ordered_io, this
1504 * just reads in some of the csum leaves to prime them into ram
1505 * before we start the transaction. It limits the amount of btree
1506 * reads required while inside the transaction.
1507 */
1508static noinline void reada_csum(struct btrfs_root *root,
1509 struct btrfs_path *path,
1510 struct btrfs_ordered_extent *ordered_extent)
1511{
1512 struct btrfs_ordered_sum *sum;
1513 u64 bytenr;
1514
1515 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1516 list);
1517 bytenr = sum->sums[0].bytenr;
1518
1519 /*
1520 * we don't care about the results, the point of this search is
1521 * just to get the btree leaves into ram
1522 */
1523 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1524}
1525
d352ac68
CM
1526/* as ordered data IO finishes, this gets called so we can finish
1527 * an ordered extent if the range of bytes in the file it covers are
1528 * fully written.
1529 */
211f90e6 1530static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1531{
e6dcd2dc
CM
1532 struct btrfs_root *root = BTRFS_I(inode)->root;
1533 struct btrfs_trans_handle *trans;
5d13a98f 1534 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1535 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1536 struct btrfs_path *path;
d899e052 1537 int compressed = 0;
e6dcd2dc
CM
1538 int ret;
1539
1540 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1541 if (!ret)
e6dcd2dc 1542 return 0;
e6dcd2dc 1543
b7ec40d7
CM
1544 /*
1545 * before we join the transaction, try to do some of our IO.
1546 * This will limit the amount of IO that we have to do with
1547 * the transaction running. We're unlikely to need to do any
1548 * IO if the file extents are new, the disk_i_size checks
1549 * covers the most common case.
1550 */
1551 if (start < BTRFS_I(inode)->disk_i_size) {
1552 path = btrfs_alloc_path();
1553 if (path) {
1554 ret = btrfs_lookup_file_extent(NULL, root, path,
1555 inode->i_ino,
1556 start, 0);
5d13a98f
CM
1557 ordered_extent = btrfs_lookup_ordered_extent(inode,
1558 start);
1559 if (!list_empty(&ordered_extent->list)) {
1560 btrfs_release_path(root, path);
1561 reada_csum(root, path, ordered_extent);
1562 }
b7ec40d7
CM
1563 btrfs_free_path(path);
1564 }
1565 }
1566
f9295749 1567 trans = btrfs_join_transaction(root, 1);
e6dcd2dc 1568
5d13a98f
CM
1569 if (!ordered_extent)
1570 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1571 BUG_ON(!ordered_extent);
7ea394f1
YZ
1572 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1573 goto nocow;
e6dcd2dc
CM
1574
1575 lock_extent(io_tree, ordered_extent->file_offset,
1576 ordered_extent->file_offset + ordered_extent->len - 1,
1577 GFP_NOFS);
1578
c8b97818 1579 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1580 compressed = 1;
1581 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1582 BUG_ON(compressed);
1583 ret = btrfs_mark_extent_written(trans, root, inode,
1584 ordered_extent->file_offset,
1585 ordered_extent->file_offset +
1586 ordered_extent->len);
1587 BUG_ON(ret);
1588 } else {
1589 ret = insert_reserved_file_extent(trans, inode,
1590 ordered_extent->file_offset,
1591 ordered_extent->start,
1592 ordered_extent->disk_len,
1593 ordered_extent->len,
1594 ordered_extent->len,
e980b50c
CM
1595 ordered_extent->file_offset +
1596 ordered_extent->len,
d899e052
YZ
1597 compressed, 0, 0,
1598 BTRFS_FILE_EXTENT_REG);
1599 BUG_ON(ret);
1600 }
e6dcd2dc
CM
1601 unlock_extent(io_tree, ordered_extent->file_offset,
1602 ordered_extent->file_offset + ordered_extent->len - 1,
1603 GFP_NOFS);
7ea394f1 1604nocow:
e6dcd2dc
CM
1605 add_pending_csums(trans, inode, ordered_extent->file_offset,
1606 &ordered_extent->list);
1607
34353029 1608 mutex_lock(&BTRFS_I(inode)->extent_mutex);
dbe674a9 1609 btrfs_ordered_update_i_size(inode, ordered_extent);
e02119d5 1610 btrfs_update_inode(trans, root, inode);
e6dcd2dc 1611 btrfs_remove_ordered_extent(inode, ordered_extent);
34353029 1612 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
7f3c74fb 1613
e6dcd2dc
CM
1614 /* once for us */
1615 btrfs_put_ordered_extent(ordered_extent);
1616 /* once for the tree */
1617 btrfs_put_ordered_extent(ordered_extent);
1618
e6dcd2dc
CM
1619 btrfs_end_transaction(trans, root);
1620 return 0;
1621}
1622
b2950863 1623static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1624 struct extent_state *state, int uptodate)
1625{
1626 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1627}
1628
d352ac68
CM
1629/*
1630 * When IO fails, either with EIO or csum verification fails, we
1631 * try other mirrors that might have a good copy of the data. This
1632 * io_failure_record is used to record state as we go through all the
1633 * mirrors. If another mirror has good data, the page is set up to date
1634 * and things continue. If a good mirror can't be found, the original
1635 * bio end_io callback is called to indicate things have failed.
1636 */
7e38326f
CM
1637struct io_failure_record {
1638 struct page *page;
1639 u64 start;
1640 u64 len;
1641 u64 logical;
d20f7043 1642 unsigned long bio_flags;
7e38326f
CM
1643 int last_mirror;
1644};
1645
b2950863 1646static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1647 struct page *page, u64 start, u64 end,
1648 struct extent_state *state)
7e38326f
CM
1649{
1650 struct io_failure_record *failrec = NULL;
1651 u64 private;
1652 struct extent_map *em;
1653 struct inode *inode = page->mapping->host;
1654 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1655 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1656 struct bio *bio;
1657 int num_copies;
1658 int ret;
1259ab75 1659 int rw;
7e38326f
CM
1660 u64 logical;
1661
1662 ret = get_state_private(failure_tree, start, &private);
1663 if (ret) {
7e38326f
CM
1664 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1665 if (!failrec)
1666 return -ENOMEM;
1667 failrec->start = start;
1668 failrec->len = end - start + 1;
1669 failrec->last_mirror = 0;
d20f7043 1670 failrec->bio_flags = 0;
7e38326f 1671
3b951516
CM
1672 spin_lock(&em_tree->lock);
1673 em = lookup_extent_mapping(em_tree, start, failrec->len);
1674 if (em->start > start || em->start + em->len < start) {
1675 free_extent_map(em);
1676 em = NULL;
1677 }
1678 spin_unlock(&em_tree->lock);
7e38326f
CM
1679
1680 if (!em || IS_ERR(em)) {
1681 kfree(failrec);
1682 return -EIO;
1683 }
1684 logical = start - em->start;
1685 logical = em->block_start + logical;
d20f7043
CM
1686 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1687 logical = em->block_start;
1688 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1689 }
7e38326f
CM
1690 failrec->logical = logical;
1691 free_extent_map(em);
1692 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1693 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1694 set_state_private(failure_tree, start,
1695 (u64)(unsigned long)failrec);
7e38326f 1696 } else {
587f7704 1697 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1698 }
1699 num_copies = btrfs_num_copies(
1700 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1701 failrec->logical, failrec->len);
1702 failrec->last_mirror++;
1703 if (!state) {
cad321ad 1704 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1705 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1706 failrec->start,
1707 EXTENT_LOCKED);
1708 if (state && state->start != failrec->start)
1709 state = NULL;
cad321ad 1710 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1711 }
1712 if (!state || failrec->last_mirror > num_copies) {
1713 set_state_private(failure_tree, failrec->start, 0);
1714 clear_extent_bits(failure_tree, failrec->start,
1715 failrec->start + failrec->len - 1,
1716 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1717 kfree(failrec);
1718 return -EIO;
1719 }
1720 bio = bio_alloc(GFP_NOFS, 1);
1721 bio->bi_private = state;
1722 bio->bi_end_io = failed_bio->bi_end_io;
1723 bio->bi_sector = failrec->logical >> 9;
1724 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1725 bio->bi_size = 0;
d20f7043 1726
7e38326f 1727 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1728 if (failed_bio->bi_rw & (1 << BIO_RW))
1729 rw = WRITE;
1730 else
1731 rw = READ;
1732
1733 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1734 failrec->last_mirror,
d20f7043 1735 failrec->bio_flags);
1259ab75
CM
1736 return 0;
1737}
1738
d352ac68
CM
1739/*
1740 * each time an IO finishes, we do a fast check in the IO failure tree
1741 * to see if we need to process or clean up an io_failure_record
1742 */
b2950863 1743static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1744{
1745 u64 private;
1746 u64 private_failure;
1747 struct io_failure_record *failure;
1748 int ret;
1749
1750 private = 0;
1751 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1752 (u64)-1, 1, EXTENT_DIRTY)) {
1753 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1754 start, &private_failure);
1755 if (ret == 0) {
1756 failure = (struct io_failure_record *)(unsigned long)
1757 private_failure;
1758 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1759 failure->start, 0);
1760 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1761 failure->start,
1762 failure->start + failure->len - 1,
1763 EXTENT_DIRTY | EXTENT_LOCKED,
1764 GFP_NOFS);
1765 kfree(failure);
1766 }
1767 }
7e38326f
CM
1768 return 0;
1769}
1770
d352ac68
CM
1771/*
1772 * when reads are done, we need to check csums to verify the data is correct
1773 * if there's a match, we allow the bio to finish. If not, we go through
1774 * the io_failure_record routines to find good copies
1775 */
b2950863 1776static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1777 struct extent_state *state)
07157aac 1778{
35ebb934 1779 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1780 struct inode *inode = page->mapping->host;
d1310b2e 1781 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1782 char *kaddr;
aadfeb6e 1783 u64 private = ~(u32)0;
07157aac 1784 int ret;
ff79f819
CM
1785 struct btrfs_root *root = BTRFS_I(inode)->root;
1786 u32 csum = ~(u32)0;
d1310b2e 1787
d20f7043
CM
1788 if (PageChecked(page)) {
1789 ClearPageChecked(page);
1790 goto good;
1791 }
17d217fe
YZ
1792 if (btrfs_test_flag(inode, NODATASUM))
1793 return 0;
1794
1795 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1796 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1797 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1798 GFP_NOFS);
b6cda9bc 1799 return 0;
17d217fe 1800 }
d20f7043 1801
c2e639f0 1802 if (state && state->start == start) {
70dec807
CM
1803 private = state->private;
1804 ret = 0;
1805 } else {
1806 ret = get_state_private(io_tree, start, &private);
1807 }
9ab86c8e 1808 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1809 if (ret)
07157aac 1810 goto zeroit;
d397712b 1811
ff79f819
CM
1812 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1813 btrfs_csum_final(csum, (char *)&csum);
d397712b 1814 if (csum != private)
07157aac 1815 goto zeroit;
d397712b 1816
9ab86c8e 1817 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1818good:
7e38326f
CM
1819 /* if the io failure tree for this inode is non-empty,
1820 * check to see if we've recovered from a failed IO
1821 */
1259ab75 1822 btrfs_clean_io_failures(inode, start);
07157aac
CM
1823 return 0;
1824
1825zeroit:
d397712b
CM
1826 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1827 "private %llu\n", page->mapping->host->i_ino,
1828 (unsigned long long)start, csum,
1829 (unsigned long long)private);
db94535d
CM
1830 memset(kaddr + offset, 1, end - start + 1);
1831 flush_dcache_page(page);
9ab86c8e 1832 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1833 if (private == 0)
1834 return 0;
7e38326f 1835 return -EIO;
07157aac 1836}
b888db2b 1837
7b128766
JB
1838/*
1839 * This creates an orphan entry for the given inode in case something goes
1840 * wrong in the middle of an unlink/truncate.
1841 */
1842int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1843{
1844 struct btrfs_root *root = BTRFS_I(inode)->root;
1845 int ret = 0;
1846
bcc63abb 1847 spin_lock(&root->list_lock);
7b128766
JB
1848
1849 /* already on the orphan list, we're good */
1850 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1851 spin_unlock(&root->list_lock);
7b128766
JB
1852 return 0;
1853 }
1854
1855 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1856
bcc63abb 1857 spin_unlock(&root->list_lock);
7b128766
JB
1858
1859 /*
1860 * insert an orphan item to track this unlinked/truncated file
1861 */
1862 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1863
1864 return ret;
1865}
1866
1867/*
1868 * We have done the truncate/delete so we can go ahead and remove the orphan
1869 * item for this particular inode.
1870 */
1871int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1872{
1873 struct btrfs_root *root = BTRFS_I(inode)->root;
1874 int ret = 0;
1875
bcc63abb 1876 spin_lock(&root->list_lock);
7b128766
JB
1877
1878 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1879 spin_unlock(&root->list_lock);
7b128766
JB
1880 return 0;
1881 }
1882
1883 list_del_init(&BTRFS_I(inode)->i_orphan);
1884 if (!trans) {
bcc63abb 1885 spin_unlock(&root->list_lock);
7b128766
JB
1886 return 0;
1887 }
1888
bcc63abb 1889 spin_unlock(&root->list_lock);
7b128766
JB
1890
1891 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1892
1893 return ret;
1894}
1895
1896/*
1897 * this cleans up any orphans that may be left on the list from the last use
1898 * of this root.
1899 */
1900void btrfs_orphan_cleanup(struct btrfs_root *root)
1901{
1902 struct btrfs_path *path;
1903 struct extent_buffer *leaf;
1904 struct btrfs_item *item;
1905 struct btrfs_key key, found_key;
1906 struct btrfs_trans_handle *trans;
1907 struct inode *inode;
1908 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1909
7b128766
JB
1910 path = btrfs_alloc_path();
1911 if (!path)
1912 return;
1913 path->reada = -1;
1914
1915 key.objectid = BTRFS_ORPHAN_OBJECTID;
1916 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1917 key.offset = (u64)-1;
1918
7b128766
JB
1919
1920 while (1) {
1921 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1922 if (ret < 0) {
1923 printk(KERN_ERR "Error searching slot for orphan: %d"
1924 "\n", ret);
1925 break;
1926 }
1927
1928 /*
1929 * if ret == 0 means we found what we were searching for, which
1930 * is weird, but possible, so only screw with path if we didnt
1931 * find the key and see if we have stuff that matches
1932 */
1933 if (ret > 0) {
1934 if (path->slots[0] == 0)
1935 break;
1936 path->slots[0]--;
1937 }
1938
1939 /* pull out the item */
1940 leaf = path->nodes[0];
1941 item = btrfs_item_nr(leaf, path->slots[0]);
1942 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1943
1944 /* make sure the item matches what we want */
1945 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1946 break;
1947 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1948 break;
1949
1950 /* release the path since we're done with it */
1951 btrfs_release_path(root, path);
1952
1953 /*
1954 * this is where we are basically btrfs_lookup, without the
1955 * crossing root thing. we store the inode number in the
1956 * offset of the orphan item.
1957 */
5b21f2ed 1958 inode = btrfs_iget_locked(root->fs_info->sb,
7b128766
JB
1959 found_key.offset, root);
1960 if (!inode)
1961 break;
1962
1963 if (inode->i_state & I_NEW) {
1964 BTRFS_I(inode)->root = root;
1965
1966 /* have to set the location manually */
1967 BTRFS_I(inode)->location.objectid = inode->i_ino;
1968 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1969 BTRFS_I(inode)->location.offset = 0;
1970
1971 btrfs_read_locked_inode(inode);
1972 unlock_new_inode(inode);
1973 }
1974
1975 /*
1976 * add this inode to the orphan list so btrfs_orphan_del does
1977 * the proper thing when we hit it
1978 */
bcc63abb 1979 spin_lock(&root->list_lock);
7b128766 1980 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 1981 spin_unlock(&root->list_lock);
7b128766
JB
1982
1983 /*
1984 * if this is a bad inode, means we actually succeeded in
1985 * removing the inode, but not the orphan record, which means
1986 * we need to manually delete the orphan since iput will just
1987 * do a destroy_inode
1988 */
1989 if (is_bad_inode(inode)) {
5b21f2ed 1990 trans = btrfs_start_transaction(root, 1);
7b128766 1991 btrfs_orphan_del(trans, inode);
5b21f2ed 1992 btrfs_end_transaction(trans, root);
7b128766
JB
1993 iput(inode);
1994 continue;
1995 }
1996
1997 /* if we have links, this was a truncate, lets do that */
1998 if (inode->i_nlink) {
1999 nr_truncate++;
2000 btrfs_truncate(inode);
2001 } else {
2002 nr_unlink++;
2003 }
2004
2005 /* this will do delete_inode and everything for us */
2006 iput(inode);
2007 }
2008
2009 if (nr_unlink)
2010 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2011 if (nr_truncate)
2012 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2013
2014 btrfs_free_path(path);
7b128766
JB
2015}
2016
d352ac68
CM
2017/*
2018 * read an inode from the btree into the in-memory inode
2019 */
39279cc3
CM
2020void btrfs_read_locked_inode(struct inode *inode)
2021{
2022 struct btrfs_path *path;
5f39d397 2023 struct extent_buffer *leaf;
39279cc3 2024 struct btrfs_inode_item *inode_item;
0b86a832 2025 struct btrfs_timespec *tspec;
39279cc3
CM
2026 struct btrfs_root *root = BTRFS_I(inode)->root;
2027 struct btrfs_key location;
2028 u64 alloc_group_block;
618e21d5 2029 u32 rdev;
39279cc3
CM
2030 int ret;
2031
2032 path = btrfs_alloc_path();
2033 BUG_ON(!path);
39279cc3 2034 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2035
39279cc3 2036 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2037 if (ret)
39279cc3 2038 goto make_bad;
39279cc3 2039
5f39d397
CM
2040 leaf = path->nodes[0];
2041 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2042 struct btrfs_inode_item);
2043
2044 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2045 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2046 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2047 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2048 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2049
2050 tspec = btrfs_inode_atime(inode_item);
2051 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2052 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2053
2054 tspec = btrfs_inode_mtime(inode_item);
2055 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2056 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2057
2058 tspec = btrfs_inode_ctime(inode_item);
2059 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2060 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2061
a76a3cd4 2062 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2063 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2064 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2065 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2066 inode->i_rdev = 0;
5f39d397
CM
2067 rdev = btrfs_inode_rdev(leaf, inode_item);
2068
aec7477b 2069 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2070 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2071
5f39d397 2072 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2073
d2fb3437
YZ
2074 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2075 alloc_group_block, 0);
39279cc3
CM
2076 btrfs_free_path(path);
2077 inode_item = NULL;
2078
39279cc3 2079 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2080 case S_IFREG:
2081 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2082 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2083 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2084 inode->i_fop = &btrfs_file_operations;
2085 inode->i_op = &btrfs_file_inode_operations;
2086 break;
2087 case S_IFDIR:
2088 inode->i_fop = &btrfs_dir_file_operations;
2089 if (root == root->fs_info->tree_root)
2090 inode->i_op = &btrfs_dir_ro_inode_operations;
2091 else
2092 inode->i_op = &btrfs_dir_inode_operations;
2093 break;
2094 case S_IFLNK:
2095 inode->i_op = &btrfs_symlink_inode_operations;
2096 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2097 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2098 break;
618e21d5 2099 default:
0279b4cd 2100 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2101 init_special_inode(inode, inode->i_mode, rdev);
2102 break;
39279cc3
CM
2103 }
2104 return;
2105
2106make_bad:
39279cc3 2107 btrfs_free_path(path);
39279cc3
CM
2108 make_bad_inode(inode);
2109}
2110
d352ac68
CM
2111/*
2112 * given a leaf and an inode, copy the inode fields into the leaf
2113 */
e02119d5
CM
2114static void fill_inode_item(struct btrfs_trans_handle *trans,
2115 struct extent_buffer *leaf,
5f39d397 2116 struct btrfs_inode_item *item,
39279cc3
CM
2117 struct inode *inode)
2118{
5f39d397
CM
2119 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2120 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2121 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2122 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2123 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2124
2125 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2126 inode->i_atime.tv_sec);
2127 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2128 inode->i_atime.tv_nsec);
2129
2130 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2131 inode->i_mtime.tv_sec);
2132 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2133 inode->i_mtime.tv_nsec);
2134
2135 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2136 inode->i_ctime.tv_sec);
2137 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2138 inode->i_ctime.tv_nsec);
2139
a76a3cd4 2140 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2141 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2142 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2143 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2144 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2145 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2146 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2147}
2148
d352ac68
CM
2149/*
2150 * copy everything in the in-memory inode into the btree.
2151 */
d397712b
CM
2152noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2153 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2154{
2155 struct btrfs_inode_item *inode_item;
2156 struct btrfs_path *path;
5f39d397 2157 struct extent_buffer *leaf;
39279cc3
CM
2158 int ret;
2159
2160 path = btrfs_alloc_path();
2161 BUG_ON(!path);
b9473439 2162 path->leave_spinning = 1;
39279cc3
CM
2163 ret = btrfs_lookup_inode(trans, root, path,
2164 &BTRFS_I(inode)->location, 1);
2165 if (ret) {
2166 if (ret > 0)
2167 ret = -ENOENT;
2168 goto failed;
2169 }
2170
b4ce94de 2171 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2172 leaf = path->nodes[0];
2173 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2174 struct btrfs_inode_item);
2175
e02119d5 2176 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2177 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2178 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2179 ret = 0;
2180failed:
39279cc3
CM
2181 btrfs_free_path(path);
2182 return ret;
2183}
2184
2185
d352ac68
CM
2186/*
2187 * unlink helper that gets used here in inode.c and in the tree logging
2188 * recovery code. It remove a link in a directory with a given name, and
2189 * also drops the back refs in the inode to the directory
2190 */
e02119d5
CM
2191int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2192 struct btrfs_root *root,
2193 struct inode *dir, struct inode *inode,
2194 const char *name, int name_len)
39279cc3
CM
2195{
2196 struct btrfs_path *path;
39279cc3 2197 int ret = 0;
5f39d397 2198 struct extent_buffer *leaf;
39279cc3 2199 struct btrfs_dir_item *di;
5f39d397 2200 struct btrfs_key key;
aec7477b 2201 u64 index;
39279cc3
CM
2202
2203 path = btrfs_alloc_path();
54aa1f4d
CM
2204 if (!path) {
2205 ret = -ENOMEM;
2206 goto err;
2207 }
2208
b9473439 2209 path->leave_spinning = 1;
39279cc3
CM
2210 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2211 name, name_len, -1);
2212 if (IS_ERR(di)) {
2213 ret = PTR_ERR(di);
2214 goto err;
2215 }
2216 if (!di) {
2217 ret = -ENOENT;
2218 goto err;
2219 }
5f39d397
CM
2220 leaf = path->nodes[0];
2221 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2222 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2223 if (ret)
2224 goto err;
39279cc3
CM
2225 btrfs_release_path(root, path);
2226
aec7477b 2227 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2228 inode->i_ino,
2229 dir->i_ino, &index);
aec7477b 2230 if (ret) {
d397712b 2231 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2232 "inode %lu parent %lu\n", name_len, name,
e02119d5 2233 inode->i_ino, dir->i_ino);
aec7477b
JB
2234 goto err;
2235 }
2236
39279cc3 2237 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2238 index, name, name_len, -1);
39279cc3
CM
2239 if (IS_ERR(di)) {
2240 ret = PTR_ERR(di);
2241 goto err;
2242 }
2243 if (!di) {
2244 ret = -ENOENT;
2245 goto err;
2246 }
2247 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2248 btrfs_release_path(root, path);
39279cc3 2249
e02119d5
CM
2250 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2251 inode, dir->i_ino);
49eb7e46 2252 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2253
2254 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2255 dir, index);
2256 BUG_ON(ret);
39279cc3
CM
2257err:
2258 btrfs_free_path(path);
e02119d5
CM
2259 if (ret)
2260 goto out;
2261
2262 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2263 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2264 btrfs_update_inode(trans, root, dir);
2265 btrfs_drop_nlink(inode);
2266 ret = btrfs_update_inode(trans, root, inode);
2267 dir->i_sb->s_dirt = 1;
2268out:
39279cc3
CM
2269 return ret;
2270}
2271
2272static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2273{
2274 struct btrfs_root *root;
2275 struct btrfs_trans_handle *trans;
7b128766 2276 struct inode *inode = dentry->d_inode;
39279cc3 2277 int ret;
1832a6d5 2278 unsigned long nr = 0;
39279cc3
CM
2279
2280 root = BTRFS_I(dir)->root;
1832a6d5 2281
39279cc3 2282 trans = btrfs_start_transaction(root, 1);
5f39d397 2283
39279cc3 2284 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2285
2286 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2287
e02119d5
CM
2288 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2289 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2290
2291 if (inode->i_nlink == 0)
2292 ret = btrfs_orphan_add(trans, inode);
2293
d3c2fdcf 2294 nr = trans->blocks_used;
5f39d397 2295
89ce8a63 2296 btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2297 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2298 return ret;
2299}
2300
2301static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2302{
2303 struct inode *inode = dentry->d_inode;
1832a6d5 2304 int err = 0;
39279cc3
CM
2305 int ret;
2306 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2307 struct btrfs_trans_handle *trans;
1832a6d5 2308 unsigned long nr = 0;
39279cc3 2309
3394e160
CM
2310 /*
2311 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2312 * the root of a subvolume or snapshot
2313 */
2314 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2315 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
134d4512 2316 return -ENOTEMPTY;
925baedd 2317 }
134d4512 2318
39279cc3
CM
2319 trans = btrfs_start_transaction(root, 1);
2320 btrfs_set_trans_block_group(trans, dir);
39279cc3 2321
7b128766
JB
2322 err = btrfs_orphan_add(trans, inode);
2323 if (err)
2324 goto fail_trans;
2325
39279cc3 2326 /* now the directory is empty */
e02119d5
CM
2327 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2328 dentry->d_name.name, dentry->d_name.len);
d397712b 2329 if (!err)
dbe674a9 2330 btrfs_i_size_write(inode, 0);
3954401f 2331
7b128766 2332fail_trans:
d3c2fdcf 2333 nr = trans->blocks_used;
89ce8a63 2334 ret = btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2335 btrfs_btree_balance_dirty(root, nr);
3954401f 2336
39279cc3
CM
2337 if (ret && !err)
2338 err = ret;
2339 return err;
2340}
2341
d20f7043 2342#if 0
323ac95b
CM
2343/*
2344 * when truncating bytes in a file, it is possible to avoid reading
2345 * the leaves that contain only checksum items. This can be the
2346 * majority of the IO required to delete a large file, but it must
2347 * be done carefully.
2348 *
2349 * The keys in the level just above the leaves are checked to make sure
2350 * the lowest key in a given leaf is a csum key, and starts at an offset
2351 * after the new size.
2352 *
2353 * Then the key for the next leaf is checked to make sure it also has
2354 * a checksum item for the same file. If it does, we know our target leaf
2355 * contains only checksum items, and it can be safely freed without reading
2356 * it.
2357 *
2358 * This is just an optimization targeted at large files. It may do
2359 * nothing. It will return 0 unless things went badly.
2360 */
2361static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2362 struct btrfs_root *root,
2363 struct btrfs_path *path,
2364 struct inode *inode, u64 new_size)
2365{
2366 struct btrfs_key key;
2367 int ret;
2368 int nritems;
2369 struct btrfs_key found_key;
2370 struct btrfs_key other_key;
5b84e8d6
YZ
2371 struct btrfs_leaf_ref *ref;
2372 u64 leaf_gen;
2373 u64 leaf_start;
323ac95b
CM
2374
2375 path->lowest_level = 1;
2376 key.objectid = inode->i_ino;
2377 key.type = BTRFS_CSUM_ITEM_KEY;
2378 key.offset = new_size;
2379again:
2380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2381 if (ret < 0)
2382 goto out;
2383
2384 if (path->nodes[1] == NULL) {
2385 ret = 0;
2386 goto out;
2387 }
2388 ret = 0;
2389 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2390 nritems = btrfs_header_nritems(path->nodes[1]);
2391
2392 if (!nritems)
2393 goto out;
2394
2395 if (path->slots[1] >= nritems)
2396 goto next_node;
2397
2398 /* did we find a key greater than anything we want to delete? */
2399 if (found_key.objectid > inode->i_ino ||
2400 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2401 goto out;
2402
2403 /* we check the next key in the node to make sure the leave contains
2404 * only checksum items. This comparison doesn't work if our
2405 * leaf is the last one in the node
2406 */
2407 if (path->slots[1] + 1 >= nritems) {
2408next_node:
2409 /* search forward from the last key in the node, this
2410 * will bring us into the next node in the tree
2411 */
2412 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2413
2414 /* unlikely, but we inc below, so check to be safe */
2415 if (found_key.offset == (u64)-1)
2416 goto out;
2417
2418 /* search_forward needs a path with locks held, do the
2419 * search again for the original key. It is possible
2420 * this will race with a balance and return a path that
2421 * we could modify, but this drop is just an optimization
2422 * and is allowed to miss some leaves.
2423 */
2424 btrfs_release_path(root, path);
2425 found_key.offset++;
2426
2427 /* setup a max key for search_forward */
2428 other_key.offset = (u64)-1;
2429 other_key.type = key.type;
2430 other_key.objectid = key.objectid;
2431
2432 path->keep_locks = 1;
2433 ret = btrfs_search_forward(root, &found_key, &other_key,
2434 path, 0, 0);
2435 path->keep_locks = 0;
2436 if (ret || found_key.objectid != key.objectid ||
2437 found_key.type != key.type) {
2438 ret = 0;
2439 goto out;
2440 }
2441
2442 key.offset = found_key.offset;
2443 btrfs_release_path(root, path);
2444 cond_resched();
2445 goto again;
2446 }
2447
2448 /* we know there's one more slot after us in the tree,
2449 * read that key so we can verify it is also a checksum item
2450 */
2451 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2452
2453 if (found_key.objectid < inode->i_ino)
2454 goto next_key;
2455
2456 if (found_key.type != key.type || found_key.offset < new_size)
2457 goto next_key;
2458
2459 /*
2460 * if the key for the next leaf isn't a csum key from this objectid,
2461 * we can't be sure there aren't good items inside this leaf.
2462 * Bail out
2463 */
2464 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2465 goto out;
2466
5b84e8d6
YZ
2467 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2468 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2469 /*
2470 * it is safe to delete this leaf, it contains only
2471 * csum items from this inode at an offset >= new_size
2472 */
5b84e8d6 2473 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2474 BUG_ON(ret);
2475
5b84e8d6
YZ
2476 if (root->ref_cows && leaf_gen < trans->transid) {
2477 ref = btrfs_alloc_leaf_ref(root, 0);
2478 if (ref) {
2479 ref->root_gen = root->root_key.offset;
2480 ref->bytenr = leaf_start;
2481 ref->owner = 0;
2482 ref->generation = leaf_gen;
2483 ref->nritems = 0;
2484
bd56b302
CM
2485 btrfs_sort_leaf_ref(ref);
2486
5b84e8d6
YZ
2487 ret = btrfs_add_leaf_ref(root, ref, 0);
2488 WARN_ON(ret);
2489 btrfs_free_leaf_ref(root, ref);
2490 } else {
2491 WARN_ON(1);
2492 }
2493 }
323ac95b
CM
2494next_key:
2495 btrfs_release_path(root, path);
2496
2497 if (other_key.objectid == inode->i_ino &&
2498 other_key.type == key.type && other_key.offset > key.offset) {
2499 key.offset = other_key.offset;
2500 cond_resched();
2501 goto again;
2502 }
2503 ret = 0;
2504out:
2505 /* fixup any changes we've made to the path */
2506 path->lowest_level = 0;
2507 path->keep_locks = 0;
2508 btrfs_release_path(root, path);
2509 return ret;
2510}
2511
d20f7043
CM
2512#endif
2513
39279cc3
CM
2514/*
2515 * this can truncate away extent items, csum items and directory items.
2516 * It starts at a high offset and removes keys until it can't find
d352ac68 2517 * any higher than new_size
39279cc3
CM
2518 *
2519 * csum items that cross the new i_size are truncated to the new size
2520 * as well.
7b128766
JB
2521 *
2522 * min_type is the minimum key type to truncate down to. If set to 0, this
2523 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2524 */
e02119d5
CM
2525noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2526 struct btrfs_root *root,
2527 struct inode *inode,
2528 u64 new_size, u32 min_type)
39279cc3
CM
2529{
2530 int ret;
2531 struct btrfs_path *path;
2532 struct btrfs_key key;
5f39d397 2533 struct btrfs_key found_key;
06d9a8d7 2534 u32 found_type = (u8)-1;
5f39d397 2535 struct extent_buffer *leaf;
39279cc3
CM
2536 struct btrfs_file_extent_item *fi;
2537 u64 extent_start = 0;
db94535d 2538 u64 extent_num_bytes = 0;
39279cc3 2539 u64 item_end = 0;
7bb86316 2540 u64 root_gen = 0;
d8d5f3e1 2541 u64 root_owner = 0;
39279cc3
CM
2542 int found_extent;
2543 int del_item;
85e21bac
CM
2544 int pending_del_nr = 0;
2545 int pending_del_slot = 0;
179e29e4 2546 int extent_type = -1;
771ed689 2547 int encoding;
3b951516 2548 u64 mask = root->sectorsize - 1;
39279cc3 2549
e02119d5 2550 if (root->ref_cows)
5b21f2ed 2551 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
39279cc3 2552 path = btrfs_alloc_path();
3c69faec 2553 path->reada = -1;
39279cc3 2554 BUG_ON(!path);
5f39d397 2555
39279cc3
CM
2556 /* FIXME, add redo link to tree so we don't leak on crash */
2557 key.objectid = inode->i_ino;
2558 key.offset = (u64)-1;
5f39d397
CM
2559 key.type = (u8)-1;
2560
85e21bac 2561search_again:
b9473439 2562 path->leave_spinning = 1;
85e21bac 2563 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
d397712b 2564 if (ret < 0)
85e21bac 2565 goto error;
d397712b 2566
85e21bac 2567 if (ret > 0) {
e02119d5
CM
2568 /* there are no items in the tree for us to truncate, we're
2569 * done
2570 */
2571 if (path->slots[0] == 0) {
2572 ret = 0;
2573 goto error;
2574 }
85e21bac
CM
2575 path->slots[0]--;
2576 }
2577
d397712b 2578 while (1) {
39279cc3 2579 fi = NULL;
5f39d397
CM
2580 leaf = path->nodes[0];
2581 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2582 found_type = btrfs_key_type(&found_key);
771ed689 2583 encoding = 0;
39279cc3 2584
5f39d397 2585 if (found_key.objectid != inode->i_ino)
39279cc3 2586 break;
5f39d397 2587
85e21bac 2588 if (found_type < min_type)
39279cc3
CM
2589 break;
2590
5f39d397 2591 item_end = found_key.offset;
39279cc3 2592 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2593 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2594 struct btrfs_file_extent_item);
179e29e4 2595 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2596 encoding = btrfs_file_extent_compression(leaf, fi);
2597 encoding |= btrfs_file_extent_encryption(leaf, fi);
2598 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2599
179e29e4 2600 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2601 item_end +=
db94535d 2602 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2603 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2604 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2605 fi);
39279cc3 2606 }
008630c1 2607 item_end--;
39279cc3 2608 }
e02119d5 2609 if (item_end < new_size) {
d397712b 2610 if (found_type == BTRFS_DIR_ITEM_KEY)
b888db2b 2611 found_type = BTRFS_INODE_ITEM_KEY;
d397712b 2612 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
d20f7043 2613 found_type = BTRFS_EXTENT_DATA_KEY;
d397712b 2614 else if (found_type == BTRFS_EXTENT_DATA_KEY)
85e21bac 2615 found_type = BTRFS_XATTR_ITEM_KEY;
d397712b 2616 else if (found_type == BTRFS_XATTR_ITEM_KEY)
85e21bac 2617 found_type = BTRFS_INODE_REF_KEY;
d397712b 2618 else if (found_type)
b888db2b 2619 found_type--;
d397712b 2620 else
b888db2b 2621 break;
a61721d5 2622 btrfs_set_key_type(&key, found_type);
85e21bac 2623 goto next;
39279cc3 2624 }
e02119d5 2625 if (found_key.offset >= new_size)
39279cc3
CM
2626 del_item = 1;
2627 else
2628 del_item = 0;
2629 found_extent = 0;
2630
2631 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2632 if (found_type != BTRFS_EXTENT_DATA_KEY)
2633 goto delete;
2634
2635 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2636 u64 num_dec;
db94535d 2637 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2638 if (!del_item && !encoding) {
db94535d
CM
2639 u64 orig_num_bytes =
2640 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2641 extent_num_bytes = new_size -
5f39d397 2642 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2643 extent_num_bytes = extent_num_bytes &
2644 ~((u64)root->sectorsize - 1);
db94535d
CM
2645 btrfs_set_file_extent_num_bytes(leaf, fi,
2646 extent_num_bytes);
2647 num_dec = (orig_num_bytes -
9069218d 2648 extent_num_bytes);
e02119d5 2649 if (root->ref_cows && extent_start != 0)
a76a3cd4 2650 inode_sub_bytes(inode, num_dec);
5f39d397 2651 btrfs_mark_buffer_dirty(leaf);
39279cc3 2652 } else {
db94535d
CM
2653 extent_num_bytes =
2654 btrfs_file_extent_disk_num_bytes(leaf,
2655 fi);
39279cc3 2656 /* FIXME blocksize != 4096 */
9069218d 2657 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2658 if (extent_start != 0) {
2659 found_extent = 1;
e02119d5 2660 if (root->ref_cows)
a76a3cd4 2661 inode_sub_bytes(inode, num_dec);
e02119d5 2662 }
31840ae1 2663 root_gen = btrfs_header_generation(leaf);
d8d5f3e1 2664 root_owner = btrfs_header_owner(leaf);
39279cc3 2665 }
9069218d 2666 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2667 /*
2668 * we can't truncate inline items that have had
2669 * special encodings
2670 */
2671 if (!del_item &&
2672 btrfs_file_extent_compression(leaf, fi) == 0 &&
2673 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2674 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
2675 u32 size = new_size - found_key.offset;
2676
2677 if (root->ref_cows) {
a76a3cd4
YZ
2678 inode_sub_bytes(inode, item_end + 1 -
2679 new_size);
e02119d5
CM
2680 }
2681 size =
2682 btrfs_file_extent_calc_inline_size(size);
9069218d 2683 ret = btrfs_truncate_item(trans, root, path,
e02119d5 2684 size, 1);
9069218d 2685 BUG_ON(ret);
e02119d5 2686 } else if (root->ref_cows) {
a76a3cd4
YZ
2687 inode_sub_bytes(inode, item_end + 1 -
2688 found_key.offset);
9069218d 2689 }
39279cc3 2690 }
179e29e4 2691delete:
39279cc3 2692 if (del_item) {
85e21bac
CM
2693 if (!pending_del_nr) {
2694 /* no pending yet, add ourselves */
2695 pending_del_slot = path->slots[0];
2696 pending_del_nr = 1;
2697 } else if (pending_del_nr &&
2698 path->slots[0] + 1 == pending_del_slot) {
2699 /* hop on the pending chunk */
2700 pending_del_nr++;
2701 pending_del_slot = path->slots[0];
2702 } else {
d397712b 2703 BUG();
85e21bac 2704 }
39279cc3
CM
2705 } else {
2706 break;
2707 }
39279cc3 2708 if (found_extent) {
b9473439 2709 btrfs_set_path_blocking(path);
39279cc3 2710 ret = btrfs_free_extent(trans, root, extent_start,
7bb86316 2711 extent_num_bytes,
31840ae1 2712 leaf->start, root_owner,
3bb1a1bc 2713 root_gen, inode->i_ino, 0);
39279cc3
CM
2714 BUG_ON(ret);
2715 }
85e21bac
CM
2716next:
2717 if (path->slots[0] == 0) {
2718 if (pending_del_nr)
2719 goto del_pending;
2720 btrfs_release_path(root, path);
06d9a8d7
CM
2721 if (found_type == BTRFS_INODE_ITEM_KEY)
2722 break;
85e21bac
CM
2723 goto search_again;
2724 }
2725
2726 path->slots[0]--;
2727 if (pending_del_nr &&
2728 path->slots[0] + 1 != pending_del_slot) {
2729 struct btrfs_key debug;
2730del_pending:
2731 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2732 pending_del_slot);
2733 ret = btrfs_del_items(trans, root, path,
2734 pending_del_slot,
2735 pending_del_nr);
2736 BUG_ON(ret);
2737 pending_del_nr = 0;
2738 btrfs_release_path(root, path);
06d9a8d7
CM
2739 if (found_type == BTRFS_INODE_ITEM_KEY)
2740 break;
85e21bac
CM
2741 goto search_again;
2742 }
39279cc3
CM
2743 }
2744 ret = 0;
2745error:
85e21bac
CM
2746 if (pending_del_nr) {
2747 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2748 pending_del_nr);
2749 }
39279cc3
CM
2750 btrfs_free_path(path);
2751 inode->i_sb->s_dirt = 1;
2752 return ret;
2753}
2754
2755/*
2756 * taken from block_truncate_page, but does cow as it zeros out
2757 * any bytes left in the last page in the file.
2758 */
2759static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2760{
2761 struct inode *inode = mapping->host;
db94535d 2762 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
2763 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2764 struct btrfs_ordered_extent *ordered;
2765 char *kaddr;
db94535d 2766 u32 blocksize = root->sectorsize;
39279cc3
CM
2767 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2768 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2769 struct page *page;
39279cc3 2770 int ret = 0;
a52d9a80 2771 u64 page_start;
e6dcd2dc 2772 u64 page_end;
39279cc3
CM
2773
2774 if ((offset & (blocksize - 1)) == 0)
2775 goto out;
2776
2777 ret = -ENOMEM;
211c17f5 2778again:
39279cc3
CM
2779 page = grab_cache_page(mapping, index);
2780 if (!page)
2781 goto out;
e6dcd2dc
CM
2782
2783 page_start = page_offset(page);
2784 page_end = page_start + PAGE_CACHE_SIZE - 1;
2785
39279cc3 2786 if (!PageUptodate(page)) {
9ebefb18 2787 ret = btrfs_readpage(NULL, page);
39279cc3 2788 lock_page(page);
211c17f5
CM
2789 if (page->mapping != mapping) {
2790 unlock_page(page);
2791 page_cache_release(page);
2792 goto again;
2793 }
39279cc3
CM
2794 if (!PageUptodate(page)) {
2795 ret = -EIO;
89642229 2796 goto out_unlock;
39279cc3
CM
2797 }
2798 }
211c17f5 2799 wait_on_page_writeback(page);
e6dcd2dc
CM
2800
2801 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2802 set_page_extent_mapped(page);
2803
2804 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2805 if (ordered) {
2806 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2807 unlock_page(page);
2808 page_cache_release(page);
eb84ae03 2809 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
2810 btrfs_put_ordered_extent(ordered);
2811 goto again;
2812 }
2813
ea8c2819 2814 btrfs_set_extent_delalloc(inode, page_start, page_end);
e6dcd2dc
CM
2815 ret = 0;
2816 if (offset != PAGE_CACHE_SIZE) {
2817 kaddr = kmap(page);
2818 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2819 flush_dcache_page(page);
2820 kunmap(page);
2821 }
247e743c 2822 ClearPageChecked(page);
e6dcd2dc
CM
2823 set_page_dirty(page);
2824 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 2825
89642229 2826out_unlock:
39279cc3
CM
2827 unlock_page(page);
2828 page_cache_release(page);
2829out:
2830 return ret;
2831}
2832
9036c102 2833int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 2834{
9036c102
YZ
2835 struct btrfs_trans_handle *trans;
2836 struct btrfs_root *root = BTRFS_I(inode)->root;
2837 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2838 struct extent_map *em;
2839 u64 mask = root->sectorsize - 1;
2840 u64 hole_start = (inode->i_size + mask) & ~mask;
2841 u64 block_end = (size + mask) & ~mask;
2842 u64 last_byte;
2843 u64 cur_offset;
2844 u64 hole_size;
39279cc3
CM
2845 int err;
2846
9036c102
YZ
2847 if (size <= hole_start)
2848 return 0;
2849
6a63209f 2850 err = btrfs_check_metadata_free_space(root);
39279cc3
CM
2851 if (err)
2852 return err;
2853
9036c102 2854 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2bf5a725 2855
9036c102
YZ
2856 while (1) {
2857 struct btrfs_ordered_extent *ordered;
2858 btrfs_wait_ordered_range(inode, hole_start,
2859 block_end - hole_start);
2860 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2861 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2862 if (!ordered)
2863 break;
2864 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2865 btrfs_put_ordered_extent(ordered);
2866 }
39279cc3 2867
9036c102
YZ
2868 trans = btrfs_start_transaction(root, 1);
2869 btrfs_set_trans_block_group(trans, inode);
39279cc3 2870
9036c102
YZ
2871 cur_offset = hole_start;
2872 while (1) {
2873 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2874 block_end - cur_offset, 0);
2875 BUG_ON(IS_ERR(em) || !em);
2876 last_byte = min(extent_map_end(em), block_end);
2877 last_byte = (last_byte + mask) & ~mask;
2878 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
771ed689 2879 u64 hint_byte = 0;
9036c102 2880 hole_size = last_byte - cur_offset;
771ed689
CM
2881 err = btrfs_drop_extents(trans, root, inode,
2882 cur_offset,
2883 cur_offset + hole_size,
e980b50c 2884 block_end,
771ed689
CM
2885 cur_offset, &hint_byte);
2886 if (err)
2887 break;
9036c102
YZ
2888 err = btrfs_insert_file_extent(trans, root,
2889 inode->i_ino, cur_offset, 0,
2890 0, hole_size, 0, hole_size,
2891 0, 0, 0);
2892 btrfs_drop_extent_cache(inode, hole_start,
2893 last_byte - 1, 0);
2894 }
2895 free_extent_map(em);
2896 cur_offset = last_byte;
2897 if (err || cur_offset >= block_end)
2898 break;
2899 }
1832a6d5 2900
9036c102
YZ
2901 btrfs_end_transaction(trans, root);
2902 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2903 return err;
2904}
39279cc3 2905
9036c102
YZ
2906static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2907{
2908 struct inode *inode = dentry->d_inode;
2909 int err;
39279cc3 2910
9036c102
YZ
2911 err = inode_change_ok(inode, attr);
2912 if (err)
2913 return err;
2bf5a725 2914
5a3f23d5
CM
2915 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2916 if (attr->ia_size > inode->i_size) {
2917 err = btrfs_cont_expand(inode, attr->ia_size);
2918 if (err)
2919 return err;
2920 } else if (inode->i_size > 0 &&
2921 attr->ia_size == 0) {
2922
2923 /* we're truncating a file that used to have good
2924 * data down to zero. Make sure it gets into
2925 * the ordered flush list so that any new writes
2926 * get down to disk quickly.
2927 */
2928 BTRFS_I(inode)->ordered_data_close = 1;
2929 }
39279cc3 2930 }
9036c102 2931
39279cc3 2932 err = inode_setattr(inode, attr);
33268eaf
JB
2933
2934 if (!err && ((attr->ia_valid & ATTR_MODE)))
2935 err = btrfs_acl_chmod(inode);
39279cc3
CM
2936 return err;
2937}
61295eb8 2938
39279cc3
CM
2939void btrfs_delete_inode(struct inode *inode)
2940{
2941 struct btrfs_trans_handle *trans;
2942 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 2943 unsigned long nr;
39279cc3
CM
2944 int ret;
2945
2946 truncate_inode_pages(&inode->i_data, 0);
2947 if (is_bad_inode(inode)) {
7b128766 2948 btrfs_orphan_del(NULL, inode);
39279cc3
CM
2949 goto no_delete;
2950 }
4a096752 2951 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 2952
dbe674a9 2953 btrfs_i_size_write(inode, 0);
180591bc 2954 trans = btrfs_join_transaction(root, 1);
5f39d397 2955
39279cc3 2956 btrfs_set_trans_block_group(trans, inode);
e02119d5 2957 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
7b128766
JB
2958 if (ret) {
2959 btrfs_orphan_del(NULL, inode);
54aa1f4d 2960 goto no_delete_lock;
7b128766
JB
2961 }
2962
2963 btrfs_orphan_del(trans, inode);
85e21bac 2964
d3c2fdcf 2965 nr = trans->blocks_used;
85e21bac 2966 clear_inode(inode);
5f39d397 2967
39279cc3 2968 btrfs_end_transaction(trans, root);
d3c2fdcf 2969 btrfs_btree_balance_dirty(root, nr);
39279cc3 2970 return;
54aa1f4d
CM
2971
2972no_delete_lock:
d3c2fdcf 2973 nr = trans->blocks_used;
54aa1f4d 2974 btrfs_end_transaction(trans, root);
d3c2fdcf 2975 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2976no_delete:
2977 clear_inode(inode);
2978}
2979
2980/*
2981 * this returns the key found in the dir entry in the location pointer.
2982 * If no dir entries were found, location->objectid is 0.
2983 */
2984static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2985 struct btrfs_key *location)
2986{
2987 const char *name = dentry->d_name.name;
2988 int namelen = dentry->d_name.len;
2989 struct btrfs_dir_item *di;
2990 struct btrfs_path *path;
2991 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 2992 int ret = 0;
39279cc3
CM
2993
2994 path = btrfs_alloc_path();
2995 BUG_ON(!path);
3954401f 2996
39279cc3
CM
2997 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2998 namelen, 0);
0d9f7f3e
Y
2999 if (IS_ERR(di))
3000 ret = PTR_ERR(di);
d397712b
CM
3001
3002 if (!di || IS_ERR(di))
3954401f 3003 goto out_err;
d397712b 3004
5f39d397 3005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3006out:
39279cc3
CM
3007 btrfs_free_path(path);
3008 return ret;
3954401f
CM
3009out_err:
3010 location->objectid = 0;
3011 goto out;
39279cc3
CM
3012}
3013
3014/*
3015 * when we hit a tree root in a directory, the btrfs part of the inode
3016 * needs to be changed to reflect the root directory of the tree root. This
3017 * is kind of like crossing a mount point.
3018 */
3019static int fixup_tree_root_location(struct btrfs_root *root,
3020 struct btrfs_key *location,
58176a96
JB
3021 struct btrfs_root **sub_root,
3022 struct dentry *dentry)
39279cc3 3023{
39279cc3
CM
3024 struct btrfs_root_item *ri;
3025
3026 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3027 return 0;
3028 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3029 return 0;
3030
58176a96
JB
3031 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3032 dentry->d_name.name,
3033 dentry->d_name.len);
39279cc3
CM
3034 if (IS_ERR(*sub_root))
3035 return PTR_ERR(*sub_root);
3036
3037 ri = &(*sub_root)->root_item;
3038 location->objectid = btrfs_root_dirid(ri);
39279cc3
CM
3039 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3040 location->offset = 0;
3041
39279cc3
CM
3042 return 0;
3043}
3044
e02119d5 3045static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3046{
e02119d5
CM
3047 struct btrfs_inode *bi = BTRFS_I(inode);
3048
3049 bi->i_acl = NULL;
3050 bi->i_default_acl = NULL;
3051
3052 bi->generation = 0;
c3027eb5 3053 bi->sequence = 0;
e02119d5
CM
3054 bi->last_trans = 0;
3055 bi->logged_trans = 0;
3056 bi->delalloc_bytes = 0;
6a63209f 3057 bi->reserved_bytes = 0;
e02119d5
CM
3058 bi->disk_i_size = 0;
3059 bi->flags = 0;
3060 bi->index_cnt = (u64)-1;
12fcfd22 3061 bi->last_unlink_trans = 0;
d1310b2e
CM
3062 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3063 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3064 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3065 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3066 inode->i_mapping, GFP_NOFS);
ea8c2819 3067 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3068 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
ba1da2f4 3069 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
ee6e6504 3070 mutex_init(&BTRFS_I(inode)->extent_mutex);
e02119d5
CM
3071 mutex_init(&BTRFS_I(inode)->log_mutex);
3072}
3073
3074static int btrfs_init_locked_inode(struct inode *inode, void *p)
3075{
3076 struct btrfs_iget_args *args = p;
3077 inode->i_ino = args->ino;
3078 init_btrfs_i(inode);
3079 BTRFS_I(inode)->root = args->root;
6a63209f 3080 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3081 return 0;
3082}
3083
3084static int btrfs_find_actor(struct inode *inode, void *opaque)
3085{
3086 struct btrfs_iget_args *args = opaque;
d397712b
CM
3087 return args->ino == inode->i_ino &&
3088 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3089}
3090
5b21f2ed
ZY
3091struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3092 struct btrfs_root *root, int wait)
3093{
3094 struct inode *inode;
3095 struct btrfs_iget_args args;
3096 args.ino = objectid;
3097 args.root = root;
3098
3099 if (wait) {
3100 inode = ilookup5(s, objectid, btrfs_find_actor,
3101 (void *)&args);
3102 } else {
3103 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3104 (void *)&args);
3105 }
3106 return inode;
3107}
3108
39279cc3
CM
3109struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3110 struct btrfs_root *root)
3111{
3112 struct inode *inode;
3113 struct btrfs_iget_args args;
3114 args.ino = objectid;
3115 args.root = root;
3116
3117 inode = iget5_locked(s, objectid, btrfs_find_actor,
3118 btrfs_init_locked_inode,
3119 (void *)&args);
3120 return inode;
3121}
3122
1a54ef8c
BR
3123/* Get an inode object given its location and corresponding root.
3124 * Returns in *is_new if the inode was read from disk
3125 */
3126struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3127 struct btrfs_root *root, int *is_new)
3128{
3129 struct inode *inode;
3130
3131 inode = btrfs_iget_locked(s, location->objectid, root);
3132 if (!inode)
3133 return ERR_PTR(-EACCES);
3134
3135 if (inode->i_state & I_NEW) {
3136 BTRFS_I(inode)->root = root;
3137 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3138 btrfs_read_locked_inode(inode);
3139 unlock_new_inode(inode);
3140 if (is_new)
3141 *is_new = 1;
3142 } else {
3143 if (is_new)
3144 *is_new = 0;
3145 }
3146
3147 return inode;
3148}
3149
3de4586c 3150struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3151{
d397712b 3152 struct inode *inode;
39279cc3
CM
3153 struct btrfs_inode *bi = BTRFS_I(dir);
3154 struct btrfs_root *root = bi->root;
3155 struct btrfs_root *sub_root = root;
3156 struct btrfs_key location;
c146afad 3157 int ret, new;
39279cc3
CM
3158
3159 if (dentry->d_name.len > BTRFS_NAME_LEN)
3160 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3161
39279cc3 3162 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3163
39279cc3
CM
3164 if (ret < 0)
3165 return ERR_PTR(ret);
5f39d397 3166
39279cc3
CM
3167 inode = NULL;
3168 if (location.objectid) {
58176a96
JB
3169 ret = fixup_tree_root_location(root, &location, &sub_root,
3170 dentry);
39279cc3
CM
3171 if (ret < 0)
3172 return ERR_PTR(ret);
3173 if (ret > 0)
3174 return ERR_PTR(-ENOENT);
1a54ef8c
BR
3175 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3176 if (IS_ERR(inode))
3177 return ERR_CAST(inode);
39279cc3 3178 }
3de4586c
CM
3179 return inode;
3180}
3181
3182static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3183 struct nameidata *nd)
3184{
3185 struct inode *inode;
3186
3187 if (dentry->d_name.len > BTRFS_NAME_LEN)
3188 return ERR_PTR(-ENAMETOOLONG);
3189
3190 inode = btrfs_lookup_dentry(dir, dentry);
3191 if (IS_ERR(inode))
3192 return ERR_CAST(inode);
7b128766 3193
39279cc3
CM
3194 return d_splice_alias(inode, dentry);
3195}
3196
39279cc3
CM
3197static unsigned char btrfs_filetype_table[] = {
3198 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3199};
3200
cbdf5a24
DW
3201static int btrfs_real_readdir(struct file *filp, void *dirent,
3202 filldir_t filldir)
39279cc3 3203{
6da6abae 3204 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3205 struct btrfs_root *root = BTRFS_I(inode)->root;
3206 struct btrfs_item *item;
3207 struct btrfs_dir_item *di;
3208 struct btrfs_key key;
5f39d397 3209 struct btrfs_key found_key;
39279cc3
CM
3210 struct btrfs_path *path;
3211 int ret;
3212 u32 nritems;
5f39d397 3213 struct extent_buffer *leaf;
39279cc3
CM
3214 int slot;
3215 int advance;
3216 unsigned char d_type;
3217 int over = 0;
3218 u32 di_cur;
3219 u32 di_total;
3220 u32 di_len;
3221 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3222 char tmp_name[32];
3223 char *name_ptr;
3224 int name_len;
39279cc3
CM
3225
3226 /* FIXME, use a real flag for deciding about the key type */
3227 if (root->fs_info->tree_root == root)
3228 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3229
3954401f
CM
3230 /* special case for "." */
3231 if (filp->f_pos == 0) {
3232 over = filldir(dirent, ".", 1,
3233 1, inode->i_ino,
3234 DT_DIR);
3235 if (over)
3236 return 0;
3237 filp->f_pos = 1;
3238 }
3954401f
CM
3239 /* special case for .., just use the back ref */
3240 if (filp->f_pos == 1) {
5ecc7e5d 3241 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3242 over = filldir(dirent, "..", 2,
5ecc7e5d 3243 2, pino, DT_DIR);
3954401f 3244 if (over)
49593bfa 3245 return 0;
3954401f
CM
3246 filp->f_pos = 2;
3247 }
49593bfa
DW
3248 path = btrfs_alloc_path();
3249 path->reada = 2;
3250
39279cc3
CM
3251 btrfs_set_key_type(&key, key_type);
3252 key.offset = filp->f_pos;
49593bfa 3253 key.objectid = inode->i_ino;
5f39d397 3254
39279cc3
CM
3255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3256 if (ret < 0)
3257 goto err;
3258 advance = 0;
49593bfa
DW
3259
3260 while (1) {
5f39d397
CM
3261 leaf = path->nodes[0];
3262 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3263 slot = path->slots[0];
3264 if (advance || slot >= nritems) {
49593bfa 3265 if (slot >= nritems - 1) {
39279cc3
CM
3266 ret = btrfs_next_leaf(root, path);
3267 if (ret)
3268 break;
5f39d397
CM
3269 leaf = path->nodes[0];
3270 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3271 slot = path->slots[0];
3272 } else {
3273 slot++;
3274 path->slots[0]++;
3275 }
3276 }
3de4586c 3277
39279cc3 3278 advance = 1;
5f39d397
CM
3279 item = btrfs_item_nr(leaf, slot);
3280 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3281
3282 if (found_key.objectid != key.objectid)
39279cc3 3283 break;
5f39d397 3284 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3285 break;
5f39d397 3286 if (found_key.offset < filp->f_pos)
39279cc3 3287 continue;
5f39d397
CM
3288
3289 filp->f_pos = found_key.offset;
49593bfa 3290
39279cc3
CM
3291 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3292 di_cur = 0;
5f39d397 3293 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3294
3295 while (di_cur < di_total) {
5f39d397
CM
3296 struct btrfs_key location;
3297
3298 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3299 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3300 name_ptr = tmp_name;
3301 } else {
3302 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3303 if (!name_ptr) {
3304 ret = -ENOMEM;
3305 goto err;
3306 }
5f39d397
CM
3307 }
3308 read_extent_buffer(leaf, name_ptr,
3309 (unsigned long)(di + 1), name_len);
3310
3311 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3312 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3313
3314 /* is this a reference to our own snapshot? If so
3315 * skip it
3316 */
3317 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3318 location.objectid == root->root_key.objectid) {
3319 over = 0;
3320 goto skip;
3321 }
5f39d397 3322 over = filldir(dirent, name_ptr, name_len,
49593bfa 3323 found_key.offset, location.objectid,
39279cc3 3324 d_type);
5f39d397 3325
3de4586c 3326skip:
5f39d397
CM
3327 if (name_ptr != tmp_name)
3328 kfree(name_ptr);
3329
39279cc3
CM
3330 if (over)
3331 goto nopos;
5103e947 3332 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3333 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3334 di_cur += di_len;
3335 di = (struct btrfs_dir_item *)((char *)di + di_len);
3336 }
3337 }
49593bfa
DW
3338
3339 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3340 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3341 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3342 else
3343 filp->f_pos++;
39279cc3
CM
3344nopos:
3345 ret = 0;
3346err:
39279cc3 3347 btrfs_free_path(path);
39279cc3
CM
3348 return ret;
3349}
3350
3351int btrfs_write_inode(struct inode *inode, int wait)
3352{
3353 struct btrfs_root *root = BTRFS_I(inode)->root;
3354 struct btrfs_trans_handle *trans;
3355 int ret = 0;
3356
c146afad 3357 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3358 return 0;
3359
39279cc3 3360 if (wait) {
f9295749 3361 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3362 btrfs_set_trans_block_group(trans, inode);
3363 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3364 }
3365 return ret;
3366}
3367
3368/*
54aa1f4d 3369 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3370 * inode changes. But, it is most likely to find the inode in cache.
3371 * FIXME, needs more benchmarking...there are no reasons other than performance
3372 * to keep or drop this code.
3373 */
3374void btrfs_dirty_inode(struct inode *inode)
3375{
3376 struct btrfs_root *root = BTRFS_I(inode)->root;
3377 struct btrfs_trans_handle *trans;
3378
f9295749 3379 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3380 btrfs_set_trans_block_group(trans, inode);
3381 btrfs_update_inode(trans, root, inode);
3382 btrfs_end_transaction(trans, root);
39279cc3
CM
3383}
3384
d352ac68
CM
3385/*
3386 * find the highest existing sequence number in a directory
3387 * and then set the in-memory index_cnt variable to reflect
3388 * free sequence numbers
3389 */
aec7477b
JB
3390static int btrfs_set_inode_index_count(struct inode *inode)
3391{
3392 struct btrfs_root *root = BTRFS_I(inode)->root;
3393 struct btrfs_key key, found_key;
3394 struct btrfs_path *path;
3395 struct extent_buffer *leaf;
3396 int ret;
3397
3398 key.objectid = inode->i_ino;
3399 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3400 key.offset = (u64)-1;
3401
3402 path = btrfs_alloc_path();
3403 if (!path)
3404 return -ENOMEM;
3405
3406 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3407 if (ret < 0)
3408 goto out;
3409 /* FIXME: we should be able to handle this */
3410 if (ret == 0)
3411 goto out;
3412 ret = 0;
3413
3414 /*
3415 * MAGIC NUMBER EXPLANATION:
3416 * since we search a directory based on f_pos we have to start at 2
3417 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3418 * else has to start at 2
3419 */
3420 if (path->slots[0] == 0) {
3421 BTRFS_I(inode)->index_cnt = 2;
3422 goto out;
3423 }
3424
3425 path->slots[0]--;
3426
3427 leaf = path->nodes[0];
3428 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3429
3430 if (found_key.objectid != inode->i_ino ||
3431 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3432 BTRFS_I(inode)->index_cnt = 2;
3433 goto out;
3434 }
3435
3436 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3437out:
3438 btrfs_free_path(path);
3439 return ret;
3440}
3441
d352ac68
CM
3442/*
3443 * helper to find a free sequence number in a given directory. This current
3444 * code is very simple, later versions will do smarter things in the btree
3445 */
3de4586c 3446int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
3447{
3448 int ret = 0;
3449
3450 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3451 ret = btrfs_set_inode_index_count(dir);
d397712b 3452 if (ret)
aec7477b
JB
3453 return ret;
3454 }
3455
00e4e6b3 3456 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
3457 BTRFS_I(dir)->index_cnt++;
3458
3459 return ret;
3460}
3461
39279cc3
CM
3462static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3463 struct btrfs_root *root,
aec7477b 3464 struct inode *dir,
9c58309d 3465 const char *name, int name_len,
d2fb3437
YZ
3466 u64 ref_objectid, u64 objectid,
3467 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
3468{
3469 struct inode *inode;
5f39d397 3470 struct btrfs_inode_item *inode_item;
39279cc3 3471 struct btrfs_key *location;
5f39d397 3472 struct btrfs_path *path;
9c58309d
CM
3473 struct btrfs_inode_ref *ref;
3474 struct btrfs_key key[2];
3475 u32 sizes[2];
3476 unsigned long ptr;
39279cc3
CM
3477 int ret;
3478 int owner;
3479
5f39d397
CM
3480 path = btrfs_alloc_path();
3481 BUG_ON(!path);
3482
39279cc3
CM
3483 inode = new_inode(root->fs_info->sb);
3484 if (!inode)
3485 return ERR_PTR(-ENOMEM);
3486
aec7477b 3487 if (dir) {
3de4586c 3488 ret = btrfs_set_inode_index(dir, index);
09771430
SF
3489 if (ret) {
3490 iput(inode);
aec7477b 3491 return ERR_PTR(ret);
09771430 3492 }
aec7477b
JB
3493 }
3494 /*
3495 * index_cnt is ignored for everything but a dir,
3496 * btrfs_get_inode_index_count has an explanation for the magic
3497 * number
3498 */
e02119d5 3499 init_btrfs_i(inode);
aec7477b 3500 BTRFS_I(inode)->index_cnt = 2;
39279cc3 3501 BTRFS_I(inode)->root = root;
e02119d5 3502 BTRFS_I(inode)->generation = trans->transid;
6a63209f 3503 btrfs_set_inode_space_info(root, inode);
b888db2b 3504
39279cc3
CM
3505 if (mode & S_IFDIR)
3506 owner = 0;
3507 else
3508 owner = 1;
d2fb3437
YZ
3509 BTRFS_I(inode)->block_group =
3510 btrfs_find_block_group(root, 0, alloc_hint, owner);
17d217fe
YZ
3511 if ((mode & S_IFREG)) {
3512 if (btrfs_test_opt(root, NODATASUM))
3513 btrfs_set_flag(inode, NODATASUM);
3514 if (btrfs_test_opt(root, NODATACOW))
3515 btrfs_set_flag(inode, NODATACOW);
3516 }
9c58309d
CM
3517
3518 key[0].objectid = objectid;
3519 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3520 key[0].offset = 0;
3521
3522 key[1].objectid = objectid;
3523 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3524 key[1].offset = ref_objectid;
3525
3526 sizes[0] = sizeof(struct btrfs_inode_item);
3527 sizes[1] = name_len + sizeof(*ref);
3528
b9473439 3529 path->leave_spinning = 1;
9c58309d
CM
3530 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3531 if (ret != 0)
5f39d397
CM
3532 goto fail;
3533
9c58309d
CM
3534 if (objectid > root->highest_inode)
3535 root->highest_inode = objectid;
3536
79683f2d 3537 inode->i_uid = current_fsuid();
8c087b51 3538
42f15d77 3539 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
3540 inode->i_gid = dir->i_gid;
3541 if (S_ISDIR(mode))
3542 mode |= S_ISGID;
3543 } else
3544 inode->i_gid = current_fsgid();
3545
39279cc3
CM
3546 inode->i_mode = mode;
3547 inode->i_ino = objectid;
a76a3cd4 3548 inode_set_bytes(inode, 0);
39279cc3 3549 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
3550 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3551 struct btrfs_inode_item);
e02119d5 3552 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
3553
3554 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3555 struct btrfs_inode_ref);
3556 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 3557 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
3558 ptr = (unsigned long)(ref + 1);
3559 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3560
5f39d397
CM
3561 btrfs_mark_buffer_dirty(path->nodes[0]);
3562 btrfs_free_path(path);
3563
39279cc3
CM
3564 location = &BTRFS_I(inode)->location;
3565 location->objectid = objectid;
39279cc3
CM
3566 location->offset = 0;
3567 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3568
39279cc3
CM
3569 insert_inode_hash(inode);
3570 return inode;
5f39d397 3571fail:
aec7477b
JB
3572 if (dir)
3573 BTRFS_I(dir)->index_cnt--;
5f39d397 3574 btrfs_free_path(path);
09771430 3575 iput(inode);
5f39d397 3576 return ERR_PTR(ret);
39279cc3
CM
3577}
3578
3579static inline u8 btrfs_inode_type(struct inode *inode)
3580{
3581 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3582}
3583
d352ac68
CM
3584/*
3585 * utility function to add 'inode' into 'parent_inode' with
3586 * a give name and a given sequence number.
3587 * if 'add_backref' is true, also insert a backref from the
3588 * inode to the parent directory.
3589 */
e02119d5
CM
3590int btrfs_add_link(struct btrfs_trans_handle *trans,
3591 struct inode *parent_inode, struct inode *inode,
3592 const char *name, int name_len, int add_backref, u64 index)
39279cc3
CM
3593{
3594 int ret;
3595 struct btrfs_key key;
e02119d5 3596 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 3597
39279cc3 3598 key.objectid = inode->i_ino;
39279cc3
CM
3599 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3600 key.offset = 0;
3601
e02119d5
CM
3602 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3603 parent_inode->i_ino,
aec7477b 3604 &key, btrfs_inode_type(inode),
00e4e6b3 3605 index);
39279cc3 3606 if (ret == 0) {
9c58309d
CM
3607 if (add_backref) {
3608 ret = btrfs_insert_inode_ref(trans, root,
e02119d5
CM
3609 name, name_len,
3610 inode->i_ino,
3611 parent_inode->i_ino,
3612 index);
9c58309d 3613 }
dbe674a9 3614 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 3615 name_len * 2);
79c44584 3616 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 3617 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
3618 }
3619 return ret;
3620}
3621
3622static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 3623 struct dentry *dentry, struct inode *inode,
00e4e6b3 3624 int backref, u64 index)
39279cc3 3625{
e02119d5
CM
3626 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3627 inode, dentry->d_name.name,
3628 dentry->d_name.len, backref, index);
39279cc3
CM
3629 if (!err) {
3630 d_instantiate(dentry, inode);
3631 return 0;
3632 }
3633 if (err > 0)
3634 err = -EEXIST;
3635 return err;
3636}
3637
618e21d5
JB
3638static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3639 int mode, dev_t rdev)
3640{
3641 struct btrfs_trans_handle *trans;
3642 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 3643 struct inode *inode = NULL;
618e21d5
JB
3644 int err;
3645 int drop_inode = 0;
3646 u64 objectid;
1832a6d5 3647 unsigned long nr = 0;
00e4e6b3 3648 u64 index = 0;
618e21d5
JB
3649
3650 if (!new_valid_dev(rdev))
3651 return -EINVAL;
3652
6a63209f 3653 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3654 if (err)
3655 goto fail;
3656
618e21d5
JB
3657 trans = btrfs_start_transaction(root, 1);
3658 btrfs_set_trans_block_group(trans, dir);
3659
3660 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3661 if (err) {
3662 err = -ENOSPC;
3663 goto out_unlock;
3664 }
3665
aec7477b 3666 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3667 dentry->d_name.len,
3668 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 3669 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
3670 err = PTR_ERR(inode);
3671 if (IS_ERR(inode))
3672 goto out_unlock;
3673
0279b4cd 3674 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3675 if (err) {
3676 drop_inode = 1;
3677 goto out_unlock;
3678 }
3679
618e21d5 3680 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 3681 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
3682 if (err)
3683 drop_inode = 1;
3684 else {
3685 inode->i_op = &btrfs_special_inode_operations;
3686 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 3687 btrfs_update_inode(trans, root, inode);
618e21d5
JB
3688 }
3689 dir->i_sb->s_dirt = 1;
3690 btrfs_update_inode_block_group(trans, inode);
3691 btrfs_update_inode_block_group(trans, dir);
3692out_unlock:
d3c2fdcf 3693 nr = trans->blocks_used;
89ce8a63 3694 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3695fail:
618e21d5
JB
3696 if (drop_inode) {
3697 inode_dec_link_count(inode);
3698 iput(inode);
3699 }
d3c2fdcf 3700 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
3701 return err;
3702}
3703
39279cc3
CM
3704static int btrfs_create(struct inode *dir, struct dentry *dentry,
3705 int mode, struct nameidata *nd)
3706{
3707 struct btrfs_trans_handle *trans;
3708 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 3709 struct inode *inode = NULL;
39279cc3
CM
3710 int err;
3711 int drop_inode = 0;
1832a6d5 3712 unsigned long nr = 0;
39279cc3 3713 u64 objectid;
00e4e6b3 3714 u64 index = 0;
39279cc3 3715
6a63209f 3716 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3717 if (err)
3718 goto fail;
39279cc3
CM
3719 trans = btrfs_start_transaction(root, 1);
3720 btrfs_set_trans_block_group(trans, dir);
3721
3722 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3723 if (err) {
3724 err = -ENOSPC;
3725 goto out_unlock;
3726 }
3727
aec7477b 3728 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3729 dentry->d_name.len,
3730 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
3731 objectid, BTRFS_I(dir)->block_group, mode,
3732 &index);
39279cc3
CM
3733 err = PTR_ERR(inode);
3734 if (IS_ERR(inode))
3735 goto out_unlock;
3736
0279b4cd 3737 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3738 if (err) {
3739 drop_inode = 1;
3740 goto out_unlock;
3741 }
3742
39279cc3 3743 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 3744 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
3745 if (err)
3746 drop_inode = 1;
3747 else {
3748 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3749 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
3750 inode->i_fop = &btrfs_file_operations;
3751 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 3752 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3753 }
3754 dir->i_sb->s_dirt = 1;
3755 btrfs_update_inode_block_group(trans, inode);
3756 btrfs_update_inode_block_group(trans, dir);
3757out_unlock:
d3c2fdcf 3758 nr = trans->blocks_used;
ab78c84d 3759 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3760fail:
39279cc3
CM
3761 if (drop_inode) {
3762 inode_dec_link_count(inode);
3763 iput(inode);
3764 }
d3c2fdcf 3765 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3766 return err;
3767}
3768
3769static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3770 struct dentry *dentry)
3771{
3772 struct btrfs_trans_handle *trans;
3773 struct btrfs_root *root = BTRFS_I(dir)->root;
3774 struct inode *inode = old_dentry->d_inode;
00e4e6b3 3775 u64 index;
1832a6d5 3776 unsigned long nr = 0;
39279cc3
CM
3777 int err;
3778 int drop_inode = 0;
3779
3780 if (inode->i_nlink == 0)
3781 return -ENOENT;
3782
e02119d5 3783 btrfs_inc_nlink(inode);
6a63209f 3784 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3785 if (err)
3786 goto fail;
3de4586c 3787 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
3788 if (err)
3789 goto fail;
3790
39279cc3 3791 trans = btrfs_start_transaction(root, 1);
5f39d397 3792
39279cc3
CM
3793 btrfs_set_trans_block_group(trans, dir);
3794 atomic_inc(&inode->i_count);
aec7477b 3795
00e4e6b3 3796 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 3797
39279cc3
CM
3798 if (err)
3799 drop_inode = 1;
5f39d397 3800
39279cc3
CM
3801 dir->i_sb->s_dirt = 1;
3802 btrfs_update_inode_block_group(trans, dir);
54aa1f4d 3803 err = btrfs_update_inode(trans, root, inode);
5f39d397 3804
54aa1f4d
CM
3805 if (err)
3806 drop_inode = 1;
39279cc3 3807
d3c2fdcf 3808 nr = trans->blocks_used;
12fcfd22
CM
3809
3810 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
ab78c84d 3811 btrfs_end_transaction_throttle(trans, root);
1832a6d5 3812fail:
39279cc3
CM
3813 if (drop_inode) {
3814 inode_dec_link_count(inode);
3815 iput(inode);
3816 }
d3c2fdcf 3817 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3818 return err;
3819}
3820
39279cc3
CM
3821static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3822{
b9d86667 3823 struct inode *inode = NULL;
39279cc3
CM
3824 struct btrfs_trans_handle *trans;
3825 struct btrfs_root *root = BTRFS_I(dir)->root;
3826 int err = 0;
3827 int drop_on_err = 0;
b9d86667 3828 u64 objectid = 0;
00e4e6b3 3829 u64 index = 0;
d3c2fdcf 3830 unsigned long nr = 1;
39279cc3 3831
6a63209f 3832 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
3833 if (err)
3834 goto out_unlock;
3835
39279cc3
CM
3836 trans = btrfs_start_transaction(root, 1);
3837 btrfs_set_trans_block_group(trans, dir);
5f39d397 3838
39279cc3
CM
3839 if (IS_ERR(trans)) {
3840 err = PTR_ERR(trans);
3841 goto out_unlock;
3842 }
3843
3844 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3845 if (err) {
3846 err = -ENOSPC;
3847 goto out_unlock;
3848 }
3849
aec7477b 3850 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
3851 dentry->d_name.len,
3852 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
3853 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3854 &index);
39279cc3
CM
3855 if (IS_ERR(inode)) {
3856 err = PTR_ERR(inode);
3857 goto out_fail;
3858 }
5f39d397 3859
39279cc3 3860 drop_on_err = 1;
33268eaf 3861
0279b4cd 3862 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
3863 if (err)
3864 goto out_fail;
3865
39279cc3
CM
3866 inode->i_op = &btrfs_dir_inode_operations;
3867 inode->i_fop = &btrfs_dir_file_operations;
3868 btrfs_set_trans_block_group(trans, inode);
3869
dbe674a9 3870 btrfs_i_size_write(inode, 0);
39279cc3
CM
3871 err = btrfs_update_inode(trans, root, inode);
3872 if (err)
3873 goto out_fail;
5f39d397 3874
e02119d5
CM
3875 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3876 inode, dentry->d_name.name,
3877 dentry->d_name.len, 0, index);
39279cc3
CM
3878 if (err)
3879 goto out_fail;
5f39d397 3880
39279cc3
CM
3881 d_instantiate(dentry, inode);
3882 drop_on_err = 0;
3883 dir->i_sb->s_dirt = 1;
3884 btrfs_update_inode_block_group(trans, inode);
3885 btrfs_update_inode_block_group(trans, dir);
3886
3887out_fail:
d3c2fdcf 3888 nr = trans->blocks_used;
ab78c84d 3889 btrfs_end_transaction_throttle(trans, root);
5f39d397 3890
39279cc3 3891out_unlock:
39279cc3
CM
3892 if (drop_on_err)
3893 iput(inode);
d3c2fdcf 3894 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3895 return err;
3896}
3897
d352ac68
CM
3898/* helper for btfs_get_extent. Given an existing extent in the tree,
3899 * and an extent that you want to insert, deal with overlap and insert
3900 * the new extent into the tree.
3901 */
3b951516
CM
3902static int merge_extent_mapping(struct extent_map_tree *em_tree,
3903 struct extent_map *existing,
e6dcd2dc
CM
3904 struct extent_map *em,
3905 u64 map_start, u64 map_len)
3b951516
CM
3906{
3907 u64 start_diff;
3b951516 3908
e6dcd2dc
CM
3909 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3910 start_diff = map_start - em->start;
3911 em->start = map_start;
3912 em->len = map_len;
c8b97818
CM
3913 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3914 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 3915 em->block_start += start_diff;
c8b97818
CM
3916 em->block_len -= start_diff;
3917 }
e6dcd2dc 3918 return add_extent_mapping(em_tree, em);
3b951516
CM
3919}
3920
c8b97818
CM
3921static noinline int uncompress_inline(struct btrfs_path *path,
3922 struct inode *inode, struct page *page,
3923 size_t pg_offset, u64 extent_offset,
3924 struct btrfs_file_extent_item *item)
3925{
3926 int ret;
3927 struct extent_buffer *leaf = path->nodes[0];
3928 char *tmp;
3929 size_t max_size;
3930 unsigned long inline_size;
3931 unsigned long ptr;
3932
3933 WARN_ON(pg_offset != 0);
3934 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3935 inline_size = btrfs_file_extent_inline_item_len(leaf,
3936 btrfs_item_nr(leaf, path->slots[0]));
3937 tmp = kmalloc(inline_size, GFP_NOFS);
3938 ptr = btrfs_file_extent_inline_start(item);
3939
3940 read_extent_buffer(leaf, tmp, ptr, inline_size);
3941
5b050f04 3942 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
3943 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3944 inline_size, max_size);
3945 if (ret) {
3946 char *kaddr = kmap_atomic(page, KM_USER0);
3947 unsigned long copy_size = min_t(u64,
3948 PAGE_CACHE_SIZE - pg_offset,
3949 max_size - extent_offset);
3950 memset(kaddr + pg_offset, 0, copy_size);
3951 kunmap_atomic(kaddr, KM_USER0);
3952 }
3953 kfree(tmp);
3954 return 0;
3955}
3956
d352ac68
CM
3957/*
3958 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
3959 * the ugly parts come from merging extents from the disk with the in-ram
3960 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
3961 * where the in-ram extents might be locked pending data=ordered completion.
3962 *
3963 * This also copies inline extents directly into the page.
3964 */
d397712b 3965
a52d9a80 3966struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 3967 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
3968 int create)
3969{
3970 int ret;
3971 int err = 0;
db94535d 3972 u64 bytenr;
a52d9a80
CM
3973 u64 extent_start = 0;
3974 u64 extent_end = 0;
3975 u64 objectid = inode->i_ino;
3976 u32 found_type;
f421950f 3977 struct btrfs_path *path = NULL;
a52d9a80
CM
3978 struct btrfs_root *root = BTRFS_I(inode)->root;
3979 struct btrfs_file_extent_item *item;
5f39d397
CM
3980 struct extent_buffer *leaf;
3981 struct btrfs_key found_key;
a52d9a80
CM
3982 struct extent_map *em = NULL;
3983 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 3984 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 3985 struct btrfs_trans_handle *trans = NULL;
c8b97818 3986 int compressed;
a52d9a80 3987
a52d9a80 3988again:
d1310b2e
CM
3989 spin_lock(&em_tree->lock);
3990 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
3991 if (em)
3992 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e
CM
3993 spin_unlock(&em_tree->lock);
3994
a52d9a80 3995 if (em) {
e1c4b745
CM
3996 if (em->start > start || em->start + em->len <= start)
3997 free_extent_map(em);
3998 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
3999 free_extent_map(em);
4000 else
4001 goto out;
a52d9a80 4002 }
d1310b2e 4003 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4004 if (!em) {
d1310b2e
CM
4005 err = -ENOMEM;
4006 goto out;
a52d9a80 4007 }
e6dcd2dc 4008 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4009 em->start = EXTENT_MAP_HOLE;
445a6944 4010 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4011 em->len = (u64)-1;
c8b97818 4012 em->block_len = (u64)-1;
f421950f
CM
4013
4014 if (!path) {
4015 path = btrfs_alloc_path();
4016 BUG_ON(!path);
4017 }
4018
179e29e4
CM
4019 ret = btrfs_lookup_file_extent(trans, root, path,
4020 objectid, start, trans != NULL);
a52d9a80
CM
4021 if (ret < 0) {
4022 err = ret;
4023 goto out;
4024 }
4025
4026 if (ret != 0) {
4027 if (path->slots[0] == 0)
4028 goto not_found;
4029 path->slots[0]--;
4030 }
4031
5f39d397
CM
4032 leaf = path->nodes[0];
4033 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4034 struct btrfs_file_extent_item);
a52d9a80 4035 /* are we inside the extent that was found? */
5f39d397
CM
4036 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4037 found_type = btrfs_key_type(&found_key);
4038 if (found_key.objectid != objectid ||
a52d9a80
CM
4039 found_type != BTRFS_EXTENT_DATA_KEY) {
4040 goto not_found;
4041 }
4042
5f39d397
CM
4043 found_type = btrfs_file_extent_type(leaf, item);
4044 extent_start = found_key.offset;
c8b97818 4045 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4046 if (found_type == BTRFS_FILE_EXTENT_REG ||
4047 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4048 extent_end = extent_start +
db94535d 4049 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4050 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4051 size_t size;
4052 size = btrfs_file_extent_inline_len(leaf, item);
4053 extent_end = (extent_start + size + root->sectorsize - 1) &
4054 ~((u64)root->sectorsize - 1);
4055 }
4056
4057 if (start >= extent_end) {
4058 path->slots[0]++;
4059 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4060 ret = btrfs_next_leaf(root, path);
4061 if (ret < 0) {
4062 err = ret;
4063 goto out;
a52d9a80 4064 }
9036c102
YZ
4065 if (ret > 0)
4066 goto not_found;
4067 leaf = path->nodes[0];
a52d9a80 4068 }
9036c102
YZ
4069 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4070 if (found_key.objectid != objectid ||
4071 found_key.type != BTRFS_EXTENT_DATA_KEY)
4072 goto not_found;
4073 if (start + len <= found_key.offset)
4074 goto not_found;
4075 em->start = start;
4076 em->len = found_key.offset - start;
4077 goto not_found_em;
4078 }
4079
d899e052
YZ
4080 if (found_type == BTRFS_FILE_EXTENT_REG ||
4081 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4082 em->start = extent_start;
4083 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4084 em->orig_start = extent_start -
4085 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4086 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4087 if (bytenr == 0) {
5f39d397 4088 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4089 goto insert;
4090 }
c8b97818
CM
4091 if (compressed) {
4092 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4093 em->block_start = bytenr;
4094 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4095 item);
4096 } else {
4097 bytenr += btrfs_file_extent_offset(leaf, item);
4098 em->block_start = bytenr;
4099 em->block_len = em->len;
d899e052
YZ
4100 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4101 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4102 }
a52d9a80
CM
4103 goto insert;
4104 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4105 unsigned long ptr;
a52d9a80 4106 char *map;
3326d1b0
CM
4107 size_t size;
4108 size_t extent_offset;
4109 size_t copy_size;
a52d9a80 4110
689f9346 4111 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4112 if (!page || create) {
689f9346 4113 em->start = extent_start;
9036c102 4114 em->len = extent_end - extent_start;
689f9346
Y
4115 goto out;
4116 }
5f39d397 4117
9036c102
YZ
4118 size = btrfs_file_extent_inline_len(leaf, item);
4119 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4120 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4121 size - extent_offset);
3326d1b0 4122 em->start = extent_start + extent_offset;
70dec807
CM
4123 em->len = (copy_size + root->sectorsize - 1) &
4124 ~((u64)root->sectorsize - 1);
ff5b7ee3 4125 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4126 if (compressed)
4127 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4128 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4129 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4130 if (btrfs_file_extent_compression(leaf, item) ==
4131 BTRFS_COMPRESS_ZLIB) {
4132 ret = uncompress_inline(path, inode, page,
4133 pg_offset,
4134 extent_offset, item);
4135 BUG_ON(ret);
4136 } else {
4137 map = kmap(page);
4138 read_extent_buffer(leaf, map + pg_offset, ptr,
4139 copy_size);
4140 kunmap(page);
4141 }
179e29e4
CM
4142 flush_dcache_page(page);
4143 } else if (create && PageUptodate(page)) {
4144 if (!trans) {
4145 kunmap(page);
4146 free_extent_map(em);
4147 em = NULL;
4148 btrfs_release_path(root, path);
f9295749 4149 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4150 goto again;
4151 }
c8b97818 4152 map = kmap(page);
70dec807 4153 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4154 copy_size);
c8b97818 4155 kunmap(page);
179e29e4 4156 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4157 }
d1310b2e
CM
4158 set_extent_uptodate(io_tree, em->start,
4159 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4160 goto insert;
4161 } else {
d397712b 4162 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4163 WARN_ON(1);
4164 }
4165not_found:
4166 em->start = start;
d1310b2e 4167 em->len = len;
a52d9a80 4168not_found_em:
5f39d397 4169 em->block_start = EXTENT_MAP_HOLE;
9036c102 4170 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4171insert:
4172 btrfs_release_path(root, path);
d1310b2e 4173 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4174 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4175 "[%llu %llu]\n", (unsigned long long)em->start,
4176 (unsigned long long)em->len,
4177 (unsigned long long)start,
4178 (unsigned long long)len);
a52d9a80
CM
4179 err = -EIO;
4180 goto out;
4181 }
d1310b2e
CM
4182
4183 err = 0;
4184 spin_lock(&em_tree->lock);
a52d9a80 4185 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4186 /* it is possible that someone inserted the extent into the tree
4187 * while we had the lock dropped. It is also possible that
4188 * an overlapping map exists in the tree
4189 */
a52d9a80 4190 if (ret == -EEXIST) {
3b951516 4191 struct extent_map *existing;
e6dcd2dc
CM
4192
4193 ret = 0;
4194
3b951516 4195 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4196 if (existing && (existing->start > start ||
4197 existing->start + existing->len <= start)) {
4198 free_extent_map(existing);
4199 existing = NULL;
4200 }
3b951516
CM
4201 if (!existing) {
4202 existing = lookup_extent_mapping(em_tree, em->start,
4203 em->len);
4204 if (existing) {
4205 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4206 em, start,
4207 root->sectorsize);
3b951516
CM
4208 free_extent_map(existing);
4209 if (err) {
4210 free_extent_map(em);
4211 em = NULL;
4212 }
4213 } else {
4214 err = -EIO;
3b951516
CM
4215 free_extent_map(em);
4216 em = NULL;
4217 }
4218 } else {
4219 free_extent_map(em);
4220 em = existing;
e6dcd2dc 4221 err = 0;
a52d9a80 4222 }
a52d9a80 4223 }
d1310b2e 4224 spin_unlock(&em_tree->lock);
a52d9a80 4225out:
f421950f
CM
4226 if (path)
4227 btrfs_free_path(path);
a52d9a80
CM
4228 if (trans) {
4229 ret = btrfs_end_transaction(trans, root);
d397712b 4230 if (!err)
a52d9a80
CM
4231 err = ret;
4232 }
a52d9a80
CM
4233 if (err) {
4234 free_extent_map(em);
4235 WARN_ON(1);
4236 return ERR_PTR(err);
4237 }
4238 return em;
4239}
4240
16432985
CM
4241static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4242 const struct iovec *iov, loff_t offset,
4243 unsigned long nr_segs)
4244{
e1c4b745 4245 return -EINVAL;
16432985
CM
4246}
4247
1506fcc8
YS
4248static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4249 __u64 start, __u64 len)
4250{
4251 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4252}
4253
a52d9a80 4254int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4255{
d1310b2e
CM
4256 struct extent_io_tree *tree;
4257 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4258 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4259}
1832a6d5 4260
a52d9a80 4261static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4262{
d1310b2e 4263 struct extent_io_tree *tree;
b888db2b
CM
4264
4265
4266 if (current->flags & PF_MEMALLOC) {
4267 redirty_page_for_writepage(wbc, page);
4268 unlock_page(page);
4269 return 0;
4270 }
d1310b2e 4271 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4272 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4273}
4274
f421950f
CM
4275int btrfs_writepages(struct address_space *mapping,
4276 struct writeback_control *wbc)
b293f02e 4277{
d1310b2e 4278 struct extent_io_tree *tree;
771ed689 4279
d1310b2e 4280 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4281 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4282}
4283
3ab2fb5a
CM
4284static int
4285btrfs_readpages(struct file *file, struct address_space *mapping,
4286 struct list_head *pages, unsigned nr_pages)
4287{
d1310b2e
CM
4288 struct extent_io_tree *tree;
4289 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4290 return extent_readpages(tree, mapping, pages, nr_pages,
4291 btrfs_get_extent);
4292}
e6dcd2dc 4293static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4294{
d1310b2e
CM
4295 struct extent_io_tree *tree;
4296 struct extent_map_tree *map;
a52d9a80 4297 int ret;
8c2383c3 4298
d1310b2e
CM
4299 tree = &BTRFS_I(page->mapping->host)->io_tree;
4300 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4301 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4302 if (ret == 1) {
4303 ClearPagePrivate(page);
4304 set_page_private(page, 0);
4305 page_cache_release(page);
39279cc3 4306 }
a52d9a80 4307 return ret;
39279cc3
CM
4308}
4309
e6dcd2dc
CM
4310static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4311{
98509cfc
CM
4312 if (PageWriteback(page) || PageDirty(page))
4313 return 0;
b335b003 4314 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4315}
4316
a52d9a80 4317static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4318{
d1310b2e 4319 struct extent_io_tree *tree;
e6dcd2dc
CM
4320 struct btrfs_ordered_extent *ordered;
4321 u64 page_start = page_offset(page);
4322 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4323
e6dcd2dc 4324 wait_on_page_writeback(page);
d1310b2e 4325 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4326 if (offset) {
4327 btrfs_releasepage(page, GFP_NOFS);
4328 return;
4329 }
4330
4331 lock_extent(tree, page_start, page_end, GFP_NOFS);
4332 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4333 page_offset(page));
4334 if (ordered) {
eb84ae03
CM
4335 /*
4336 * IO on this page will never be started, so we need
4337 * to account for any ordered extents now
4338 */
e6dcd2dc
CM
4339 clear_extent_bit(tree, page_start, page_end,
4340 EXTENT_DIRTY | EXTENT_DELALLOC |
4341 EXTENT_LOCKED, 1, 0, GFP_NOFS);
211f90e6
CM
4342 btrfs_finish_ordered_io(page->mapping->host,
4343 page_start, page_end);
e6dcd2dc
CM
4344 btrfs_put_ordered_extent(ordered);
4345 lock_extent(tree, page_start, page_end, GFP_NOFS);
4346 }
4347 clear_extent_bit(tree, page_start, page_end,
4348 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4349 EXTENT_ORDERED,
4350 1, 1, GFP_NOFS);
4351 __btrfs_releasepage(page, GFP_NOFS);
4352
4a096752 4353 ClearPageChecked(page);
9ad6b7bc 4354 if (PagePrivate(page)) {
9ad6b7bc
CM
4355 ClearPagePrivate(page);
4356 set_page_private(page, 0);
4357 page_cache_release(page);
4358 }
39279cc3
CM
4359}
4360
9ebefb18
CM
4361/*
4362 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4363 * called from a page fault handler when a page is first dirtied. Hence we must
4364 * be careful to check for EOF conditions here. We set the page up correctly
4365 * for a written page which means we get ENOSPC checking when writing into
4366 * holes and correct delalloc and unwritten extent mapping on filesystems that
4367 * support these features.
4368 *
4369 * We are not allowed to take the i_mutex here so we have to play games to
4370 * protect against truncate races as the page could now be beyond EOF. Because
4371 * vmtruncate() writes the inode size before removing pages, once we have the
4372 * page lock we can determine safely if the page is beyond EOF. If it is not
4373 * beyond EOF, then the page is guaranteed safe against truncation until we
4374 * unlock the page.
4375 */
c2ec175c 4376int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 4377{
c2ec175c 4378 struct page *page = vmf->page;
6da6abae 4379 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 4380 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4381 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4382 struct btrfs_ordered_extent *ordered;
4383 char *kaddr;
4384 unsigned long zero_start;
9ebefb18 4385 loff_t size;
1832a6d5 4386 int ret;
a52d9a80 4387 u64 page_start;
e6dcd2dc 4388 u64 page_end;
9ebefb18 4389
6a63209f 4390 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
4391 if (ret) {
4392 if (ret == -ENOMEM)
4393 ret = VM_FAULT_OOM;
4394 else /* -ENOSPC, -EIO, etc */
4395 ret = VM_FAULT_SIGBUS;
1832a6d5 4396 goto out;
56a76f82 4397 }
1832a6d5 4398
56a76f82 4399 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 4400again:
9ebefb18 4401 lock_page(page);
9ebefb18 4402 size = i_size_read(inode);
e6dcd2dc
CM
4403 page_start = page_offset(page);
4404 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 4405
9ebefb18 4406 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 4407 (page_start >= size)) {
6a63209f 4408 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
4409 /* page got truncated out from underneath us */
4410 goto out_unlock;
4411 }
e6dcd2dc
CM
4412 wait_on_page_writeback(page);
4413
4414 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4415 set_page_extent_mapped(page);
4416
eb84ae03
CM
4417 /*
4418 * we can't set the delalloc bits if there are pending ordered
4419 * extents. Drop our locks and wait for them to finish
4420 */
e6dcd2dc
CM
4421 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4422 if (ordered) {
4423 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4424 unlock_page(page);
eb84ae03 4425 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4426 btrfs_put_ordered_extent(ordered);
4427 goto again;
4428 }
4429
ea8c2819 4430 btrfs_set_extent_delalloc(inode, page_start, page_end);
e6dcd2dc 4431 ret = 0;
9ebefb18
CM
4432
4433 /* page is wholly or partially inside EOF */
a52d9a80 4434 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 4435 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 4436 else
e6dcd2dc 4437 zero_start = PAGE_CACHE_SIZE;
9ebefb18 4438
e6dcd2dc
CM
4439 if (zero_start != PAGE_CACHE_SIZE) {
4440 kaddr = kmap(page);
4441 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4442 flush_dcache_page(page);
4443 kunmap(page);
4444 }
247e743c 4445 ClearPageChecked(page);
e6dcd2dc 4446 set_page_dirty(page);
5a3f23d5
CM
4447
4448 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
e6dcd2dc 4449 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
4450
4451out_unlock:
4452 unlock_page(page);
1832a6d5 4453out:
9ebefb18
CM
4454 return ret;
4455}
4456
39279cc3
CM
4457static void btrfs_truncate(struct inode *inode)
4458{
4459 struct btrfs_root *root = BTRFS_I(inode)->root;
4460 int ret;
4461 struct btrfs_trans_handle *trans;
d3c2fdcf 4462 unsigned long nr;
dbe674a9 4463 u64 mask = root->sectorsize - 1;
39279cc3
CM
4464
4465 if (!S_ISREG(inode->i_mode))
4466 return;
4467 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4468 return;
4469
4470 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4a096752 4471 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 4472
39279cc3 4473 trans = btrfs_start_transaction(root, 1);
5a3f23d5
CM
4474
4475 /*
4476 * setattr is responsible for setting the ordered_data_close flag,
4477 * but that is only tested during the last file release. That
4478 * could happen well after the next commit, leaving a great big
4479 * window where new writes may get lost if someone chooses to write
4480 * to this file after truncating to zero
4481 *
4482 * The inode doesn't have any dirty data here, and so if we commit
4483 * this is a noop. If someone immediately starts writing to the inode
4484 * it is very likely we'll catch some of their writes in this
4485 * transaction, and the commit will find this file on the ordered
4486 * data list with good things to send down.
4487 *
4488 * This is a best effort solution, there is still a window where
4489 * using truncate to replace the contents of the file will
4490 * end up with a zero length file after a crash.
4491 */
4492 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4493 btrfs_add_ordered_operation(trans, root, inode);
4494
39279cc3 4495 btrfs_set_trans_block_group(trans, inode);
dbe674a9 4496 btrfs_i_size_write(inode, inode->i_size);
39279cc3 4497
7b128766
JB
4498 ret = btrfs_orphan_add(trans, inode);
4499 if (ret)
4500 goto out;
39279cc3 4501 /* FIXME, add redo link to tree so we don't leak on crash */
e02119d5 4502 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
85e21bac 4503 BTRFS_EXTENT_DATA_KEY);
39279cc3 4504 btrfs_update_inode(trans, root, inode);
5f39d397 4505
7b128766
JB
4506 ret = btrfs_orphan_del(trans, inode);
4507 BUG_ON(ret);
4508
4509out:
4510 nr = trans->blocks_used;
89ce8a63 4511 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 4512 BUG_ON(ret);
d3c2fdcf 4513 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4514}
4515
d352ac68
CM
4516/*
4517 * create a new subvolume directory/inode (helper for the ioctl).
4518 */
d2fb3437
YZ
4519int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4520 struct btrfs_root *new_root, struct dentry *dentry,
4521 u64 new_dirid, u64 alloc_hint)
39279cc3 4522{
39279cc3 4523 struct inode *inode;
cb8e7090 4524 int error;
00e4e6b3 4525 u64 index = 0;
39279cc3 4526
aec7477b 4527 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 4528 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 4529 if (IS_ERR(inode))
f46b5a66 4530 return PTR_ERR(inode);
39279cc3
CM
4531 inode->i_op = &btrfs_dir_inode_operations;
4532 inode->i_fop = &btrfs_dir_file_operations;
4533
39279cc3 4534 inode->i_nlink = 1;
dbe674a9 4535 btrfs_i_size_write(inode, 0);
3b96362c 4536
cb8e7090
CH
4537 error = btrfs_update_inode(trans, new_root, inode);
4538 if (error)
4539 return error;
4540
4541 d_instantiate(dentry, inode);
4542 return 0;
39279cc3
CM
4543}
4544
d352ac68
CM
4545/* helper function for file defrag and space balancing. This
4546 * forces readahead on a given range of bytes in an inode
4547 */
edbd8d4e 4548unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
4549 struct file_ra_state *ra, struct file *file,
4550 pgoff_t offset, pgoff_t last_index)
4551{
8e7bf94f 4552 pgoff_t req_size = last_index - offset + 1;
86479a04 4553
86479a04
CM
4554 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4555 return offset + req_size;
86479a04
CM
4556}
4557
39279cc3
CM
4558struct inode *btrfs_alloc_inode(struct super_block *sb)
4559{
4560 struct btrfs_inode *ei;
4561
4562 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4563 if (!ei)
4564 return NULL;
15ee9bc7 4565 ei->last_trans = 0;
e02119d5 4566 ei->logged_trans = 0;
e6dcd2dc 4567 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
33268eaf
JB
4568 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4569 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
7b128766 4570 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 4571 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
4572 return &ei->vfs_inode;
4573}
4574
4575void btrfs_destroy_inode(struct inode *inode)
4576{
e6dcd2dc 4577 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
4578 struct btrfs_root *root = BTRFS_I(inode)->root;
4579
39279cc3
CM
4580 WARN_ON(!list_empty(&inode->i_dentry));
4581 WARN_ON(inode->i_data.nrpages);
4582
33268eaf
JB
4583 if (BTRFS_I(inode)->i_acl &&
4584 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4585 posix_acl_release(BTRFS_I(inode)->i_acl);
4586 if (BTRFS_I(inode)->i_default_acl &&
4587 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4588 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4589
5a3f23d5
CM
4590 /*
4591 * Make sure we're properly removed from the ordered operation
4592 * lists.
4593 */
4594 smp_mb();
4595 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4596 spin_lock(&root->fs_info->ordered_extent_lock);
4597 list_del_init(&BTRFS_I(inode)->ordered_operations);
4598 spin_unlock(&root->fs_info->ordered_extent_lock);
4599 }
4600
4601 spin_lock(&root->list_lock);
7b128766
JB
4602 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4603 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4604 " list\n", inode->i_ino);
4605 dump_stack();
4606 }
5a3f23d5 4607 spin_unlock(&root->list_lock);
7b128766 4608
d397712b 4609 while (1) {
e6dcd2dc
CM
4610 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4611 if (!ordered)
4612 break;
4613 else {
d397712b
CM
4614 printk(KERN_ERR "btrfs found ordered "
4615 "extent %llu %llu on inode cleanup\n",
4616 (unsigned long long)ordered->file_offset,
4617 (unsigned long long)ordered->len);
e6dcd2dc
CM
4618 btrfs_remove_ordered_extent(inode, ordered);
4619 btrfs_put_ordered_extent(ordered);
4620 btrfs_put_ordered_extent(ordered);
4621 }
4622 }
5b21f2ed 4623 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
39279cc3
CM
4624 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4625}
4626
0ee0fda0 4627static void init_once(void *foo)
39279cc3
CM
4628{
4629 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4630
4631 inode_init_once(&ei->vfs_inode);
4632}
4633
4634void btrfs_destroy_cachep(void)
4635{
4636 if (btrfs_inode_cachep)
4637 kmem_cache_destroy(btrfs_inode_cachep);
4638 if (btrfs_trans_handle_cachep)
4639 kmem_cache_destroy(btrfs_trans_handle_cachep);
4640 if (btrfs_transaction_cachep)
4641 kmem_cache_destroy(btrfs_transaction_cachep);
4642 if (btrfs_bit_radix_cachep)
4643 kmem_cache_destroy(btrfs_bit_radix_cachep);
4644 if (btrfs_path_cachep)
4645 kmem_cache_destroy(btrfs_path_cachep);
4646}
4647
4648int btrfs_init_cachep(void)
4649{
9601e3f6
CH
4650 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4651 sizeof(struct btrfs_inode), 0,
4652 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
4653 if (!btrfs_inode_cachep)
4654 goto fail;
9601e3f6
CH
4655
4656 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4657 sizeof(struct btrfs_trans_handle), 0,
4658 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4659 if (!btrfs_trans_handle_cachep)
4660 goto fail;
9601e3f6
CH
4661
4662 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4663 sizeof(struct btrfs_transaction), 0,
4664 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4665 if (!btrfs_transaction_cachep)
4666 goto fail;
9601e3f6
CH
4667
4668 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4669 sizeof(struct btrfs_path), 0,
4670 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
4671 if (!btrfs_path_cachep)
4672 goto fail;
9601e3f6
CH
4673
4674 btrfs_bit_radix_cachep = kmem_cache_create("btrfs_radix", 256, 0,
4675 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD |
4676 SLAB_DESTROY_BY_RCU, NULL);
39279cc3
CM
4677 if (!btrfs_bit_radix_cachep)
4678 goto fail;
4679 return 0;
4680fail:
4681 btrfs_destroy_cachep();
4682 return -ENOMEM;
4683}
4684
4685static int btrfs_getattr(struct vfsmount *mnt,
4686 struct dentry *dentry, struct kstat *stat)
4687{
4688 struct inode *inode = dentry->d_inode;
4689 generic_fillattr(inode, stat);
3394e160 4690 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 4691 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
4692 stat->blocks = (inode_get_bytes(inode) +
4693 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
4694 return 0;
4695}
4696
d397712b
CM
4697static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4698 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
4699{
4700 struct btrfs_trans_handle *trans;
4701 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4702 struct inode *new_inode = new_dentry->d_inode;
4703 struct inode *old_inode = old_dentry->d_inode;
4704 struct timespec ctime = CURRENT_TIME;
00e4e6b3 4705 u64 index = 0;
39279cc3
CM
4706 int ret;
4707
3394e160
CM
4708 /* we're not allowed to rename between subvolumes */
4709 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4710 BTRFS_I(new_dir)->root->root_key.objectid)
4711 return -EXDEV;
4712
39279cc3
CM
4713 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4714 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4715 return -ENOTEMPTY;
4716 }
5f39d397 4717
0660b5af
CM
4718 /* to rename a snapshot or subvolume, we need to juggle the
4719 * backrefs. This isn't coded yet
4720 */
4721 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4722 return -EXDEV;
4723
6a63209f 4724 ret = btrfs_check_metadata_free_space(root);
1832a6d5
CM
4725 if (ret)
4726 goto out_unlock;
4727
5a3f23d5
CM
4728 /*
4729 * we're using rename to replace one file with another.
4730 * and the replacement file is large. Start IO on it now so
4731 * we don't add too much work to the end of the transaction
4732 */
4733 if (new_inode && old_inode && S_ISREG(old_inode->i_mode) &&
4734 new_inode->i_size &&
4735 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4736 filemap_flush(old_inode->i_mapping);
4737
39279cc3 4738 trans = btrfs_start_transaction(root, 1);
5f39d397 4739
5a3f23d5
CM
4740 /*
4741 * make sure the inode gets flushed if it is replacing
4742 * something.
4743 */
4744 if (new_inode && new_inode->i_size &&
4745 old_inode && S_ISREG(old_inode->i_mode)) {
4746 btrfs_add_ordered_operation(trans, root, old_inode);
4747 }
4748
12fcfd22
CM
4749 /*
4750 * this is an ugly little race, but the rename is required to make
4751 * sure that if we crash, the inode is either at the old name
4752 * or the new one. pinning the log transaction lets us make sure
4753 * we don't allow a log commit to come in after we unlink the
4754 * name but before we add the new name back in.
4755 */
4756 btrfs_pin_log_trans(root);
4757
39279cc3 4758 btrfs_set_trans_block_group(trans, new_dir);
39279cc3 4759
e02119d5 4760 btrfs_inc_nlink(old_dentry->d_inode);
39279cc3
CM
4761 old_dir->i_ctime = old_dir->i_mtime = ctime;
4762 new_dir->i_ctime = new_dir->i_mtime = ctime;
4763 old_inode->i_ctime = ctime;
5f39d397 4764
12fcfd22
CM
4765 if (old_dentry->d_parent != new_dentry->d_parent)
4766 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4767
e02119d5
CM
4768 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4769 old_dentry->d_name.name,
4770 old_dentry->d_name.len);
39279cc3
CM
4771 if (ret)
4772 goto out_fail;
4773
4774 if (new_inode) {
4775 new_inode->i_ctime = CURRENT_TIME;
e02119d5
CM
4776 ret = btrfs_unlink_inode(trans, root, new_dir,
4777 new_dentry->d_inode,
4778 new_dentry->d_name.name,
4779 new_dentry->d_name.len);
39279cc3
CM
4780 if (ret)
4781 goto out_fail;
7b128766 4782 if (new_inode->i_nlink == 0) {
e02119d5 4783 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7b128766
JB
4784 if (ret)
4785 goto out_fail;
4786 }
e02119d5 4787
39279cc3 4788 }
3de4586c 4789 ret = btrfs_set_inode_index(new_dir, &index);
aec7477b
JB
4790 if (ret)
4791 goto out_fail;
4792
e02119d5
CM
4793 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4794 old_inode, new_dentry->d_name.name,
4795 new_dentry->d_name.len, 1, index);
39279cc3
CM
4796 if (ret)
4797 goto out_fail;
4798
12fcfd22
CM
4799 btrfs_log_new_name(trans, old_inode, old_dir,
4800 new_dentry->d_parent);
39279cc3 4801out_fail:
12fcfd22
CM
4802
4803 /* this btrfs_end_log_trans just allows the current
4804 * log-sub transaction to complete
4805 */
4806 btrfs_end_log_trans(root);
ab78c84d 4807 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4808out_unlock:
39279cc3
CM
4809 return ret;
4810}
4811
d352ac68
CM
4812/*
4813 * some fairly slow code that needs optimization. This walks the list
4814 * of all the inodes with pending delalloc and forces them to disk.
4815 */
ea8c2819
CM
4816int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4817{
4818 struct list_head *head = &root->fs_info->delalloc_inodes;
4819 struct btrfs_inode *binode;
5b21f2ed 4820 struct inode *inode;
ea8c2819 4821
c146afad
YZ
4822 if (root->fs_info->sb->s_flags & MS_RDONLY)
4823 return -EROFS;
4824
75eff68e 4825 spin_lock(&root->fs_info->delalloc_lock);
d397712b 4826 while (!list_empty(head)) {
ea8c2819
CM
4827 binode = list_entry(head->next, struct btrfs_inode,
4828 delalloc_inodes);
5b21f2ed
ZY
4829 inode = igrab(&binode->vfs_inode);
4830 if (!inode)
4831 list_del_init(&binode->delalloc_inodes);
75eff68e 4832 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 4833 if (inode) {
8c8bee1d 4834 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
4835 iput(inode);
4836 }
4837 cond_resched();
75eff68e 4838 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 4839 }
75eff68e 4840 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
4841
4842 /* the filemap_flush will queue IO into the worker threads, but
4843 * we have to make sure the IO is actually started and that
4844 * ordered extents get created before we return
4845 */
4846 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 4847 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 4848 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 4849 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
4850 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4851 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
4852 }
4853 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
4854 return 0;
4855}
4856
39279cc3
CM
4857static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4858 const char *symname)
4859{
4860 struct btrfs_trans_handle *trans;
4861 struct btrfs_root *root = BTRFS_I(dir)->root;
4862 struct btrfs_path *path;
4863 struct btrfs_key key;
1832a6d5 4864 struct inode *inode = NULL;
39279cc3
CM
4865 int err;
4866 int drop_inode = 0;
4867 u64 objectid;
00e4e6b3 4868 u64 index = 0 ;
39279cc3
CM
4869 int name_len;
4870 int datasize;
5f39d397 4871 unsigned long ptr;
39279cc3 4872 struct btrfs_file_extent_item *ei;
5f39d397 4873 struct extent_buffer *leaf;
1832a6d5 4874 unsigned long nr = 0;
39279cc3
CM
4875
4876 name_len = strlen(symname) + 1;
4877 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4878 return -ENAMETOOLONG;
1832a6d5 4879
6a63209f 4880 err = btrfs_check_metadata_free_space(root);
1832a6d5
CM
4881 if (err)
4882 goto out_fail;
4883
39279cc3
CM
4884 trans = btrfs_start_transaction(root, 1);
4885 btrfs_set_trans_block_group(trans, dir);
4886
4887 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4888 if (err) {
4889 err = -ENOSPC;
4890 goto out_unlock;
4891 }
4892
aec7477b 4893 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4894 dentry->d_name.len,
4895 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4896 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4897 &index);
39279cc3
CM
4898 err = PTR_ERR(inode);
4899 if (IS_ERR(inode))
4900 goto out_unlock;
4901
0279b4cd 4902 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4903 if (err) {
4904 drop_inode = 1;
4905 goto out_unlock;
4906 }
4907
39279cc3 4908 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4909 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4910 if (err)
4911 drop_inode = 1;
4912 else {
4913 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4914 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4915 inode->i_fop = &btrfs_file_operations;
4916 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4917 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
4918 }
4919 dir->i_sb->s_dirt = 1;
4920 btrfs_update_inode_block_group(trans, inode);
4921 btrfs_update_inode_block_group(trans, dir);
4922 if (drop_inode)
4923 goto out_unlock;
4924
4925 path = btrfs_alloc_path();
4926 BUG_ON(!path);
4927 key.objectid = inode->i_ino;
4928 key.offset = 0;
39279cc3
CM
4929 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4930 datasize = btrfs_file_extent_calc_inline_size(name_len);
4931 err = btrfs_insert_empty_item(trans, root, path, &key,
4932 datasize);
54aa1f4d
CM
4933 if (err) {
4934 drop_inode = 1;
4935 goto out_unlock;
4936 }
5f39d397
CM
4937 leaf = path->nodes[0];
4938 ei = btrfs_item_ptr(leaf, path->slots[0],
4939 struct btrfs_file_extent_item);
4940 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4941 btrfs_set_file_extent_type(leaf, ei,
39279cc3 4942 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
4943 btrfs_set_file_extent_encryption(leaf, ei, 0);
4944 btrfs_set_file_extent_compression(leaf, ei, 0);
4945 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4946 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4947
39279cc3 4948 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
4949 write_extent_buffer(leaf, symname, ptr, name_len);
4950 btrfs_mark_buffer_dirty(leaf);
39279cc3 4951 btrfs_free_path(path);
5f39d397 4952
39279cc3
CM
4953 inode->i_op = &btrfs_symlink_inode_operations;
4954 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 4955 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 4956 inode_set_bytes(inode, name_len);
dbe674a9 4957 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
4958 err = btrfs_update_inode(trans, root, inode);
4959 if (err)
4960 drop_inode = 1;
39279cc3
CM
4961
4962out_unlock:
d3c2fdcf 4963 nr = trans->blocks_used;
ab78c84d 4964 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4965out_fail:
39279cc3
CM
4966 if (drop_inode) {
4967 inode_dec_link_count(inode);
4968 iput(inode);
4969 }
d3c2fdcf 4970 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4971 return err;
4972}
16432985 4973
546888da
CM
4974static int prealloc_file_range(struct btrfs_trans_handle *trans,
4975 struct inode *inode, u64 start, u64 end,
e980b50c 4976 u64 locked_end, u64 alloc_hint, int mode)
d899e052 4977{
d899e052
YZ
4978 struct btrfs_root *root = BTRFS_I(inode)->root;
4979 struct btrfs_key ins;
4980 u64 alloc_size;
4981 u64 cur_offset = start;
4982 u64 num_bytes = end - start;
4983 int ret = 0;
4984
d899e052
YZ
4985 while (num_bytes > 0) {
4986 alloc_size = min(num_bytes, root->fs_info->max_extent);
4987 ret = btrfs_reserve_extent(trans, root, alloc_size,
4988 root->sectorsize, 0, alloc_hint,
4989 (u64)-1, &ins, 1);
4990 if (ret) {
4991 WARN_ON(1);
4992 goto out;
4993 }
4994 ret = insert_reserved_file_extent(trans, inode,
4995 cur_offset, ins.objectid,
4996 ins.offset, ins.offset,
e980b50c
CM
4997 ins.offset, locked_end,
4998 0, 0, 0,
d899e052
YZ
4999 BTRFS_FILE_EXTENT_PREALLOC);
5000 BUG_ON(ret);
5001 num_bytes -= ins.offset;
5002 cur_offset += ins.offset;
5003 alloc_hint = ins.objectid + ins.offset;
5004 }
5005out:
5006 if (cur_offset > start) {
5007 inode->i_ctime = CURRENT_TIME;
5008 btrfs_set_flag(inode, PREALLOC);
5009 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5010 cur_offset > i_size_read(inode))
5011 btrfs_i_size_write(inode, cur_offset);
5012 ret = btrfs_update_inode(trans, root, inode);
5013 BUG_ON(ret);
5014 }
5015
d899e052
YZ
5016 return ret;
5017}
5018
5019static long btrfs_fallocate(struct inode *inode, int mode,
5020 loff_t offset, loff_t len)
5021{
5022 u64 cur_offset;
5023 u64 last_byte;
5024 u64 alloc_start;
5025 u64 alloc_end;
5026 u64 alloc_hint = 0;
e980b50c 5027 u64 locked_end;
d899e052
YZ
5028 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5029 struct extent_map *em;
546888da 5030 struct btrfs_trans_handle *trans;
d899e052
YZ
5031 int ret;
5032
5033 alloc_start = offset & ~mask;
5034 alloc_end = (offset + len + mask) & ~mask;
5035
546888da
CM
5036 /*
5037 * wait for ordered IO before we have any locks. We'll loop again
5038 * below with the locks held.
5039 */
5040 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5041
d899e052
YZ
5042 mutex_lock(&inode->i_mutex);
5043 if (alloc_start > inode->i_size) {
5044 ret = btrfs_cont_expand(inode, alloc_start);
5045 if (ret)
5046 goto out;
5047 }
5048
e980b50c 5049 locked_end = alloc_end - 1;
d899e052
YZ
5050 while (1) {
5051 struct btrfs_ordered_extent *ordered;
546888da
CM
5052
5053 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5054 if (!trans) {
5055 ret = -EIO;
5056 goto out;
5057 }
5058
5059 /* the extent lock is ordered inside the running
5060 * transaction
5061 */
e980b50c
CM
5062 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5063 GFP_NOFS);
d899e052
YZ
5064 ordered = btrfs_lookup_first_ordered_extent(inode,
5065 alloc_end - 1);
5066 if (ordered &&
5067 ordered->file_offset + ordered->len > alloc_start &&
5068 ordered->file_offset < alloc_end) {
5069 btrfs_put_ordered_extent(ordered);
5070 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5071 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5072 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5073
5074 /*
5075 * we can't wait on the range with the transaction
5076 * running or with the extent lock held
5077 */
d899e052
YZ
5078 btrfs_wait_ordered_range(inode, alloc_start,
5079 alloc_end - alloc_start);
5080 } else {
5081 if (ordered)
5082 btrfs_put_ordered_extent(ordered);
5083 break;
5084 }
5085 }
5086
5087 cur_offset = alloc_start;
5088 while (1) {
5089 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5090 alloc_end - cur_offset, 0);
5091 BUG_ON(IS_ERR(em) || !em);
5092 last_byte = min(extent_map_end(em), alloc_end);
5093 last_byte = (last_byte + mask) & ~mask;
5094 if (em->block_start == EXTENT_MAP_HOLE) {
546888da 5095 ret = prealloc_file_range(trans, inode, cur_offset,
e980b50c
CM
5096 last_byte, locked_end + 1,
5097 alloc_hint, mode);
d899e052
YZ
5098 if (ret < 0) {
5099 free_extent_map(em);
5100 break;
5101 }
5102 }
5103 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5104 alloc_hint = em->block_start;
5105 free_extent_map(em);
5106
5107 cur_offset = last_byte;
5108 if (cur_offset >= alloc_end) {
5109 ret = 0;
5110 break;
5111 }
5112 }
e980b50c 5113 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5114 GFP_NOFS);
546888da
CM
5115
5116 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
d899e052
YZ
5117out:
5118 mutex_unlock(&inode->i_mutex);
5119 return ret;
5120}
5121
e6dcd2dc
CM
5122static int btrfs_set_page_dirty(struct page *page)
5123{
e6dcd2dc
CM
5124 return __set_page_dirty_nobuffers(page);
5125}
5126
0ee0fda0 5127static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd
Y
5128{
5129 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
5130 return -EACCES;
33268eaf 5131 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5132}
39279cc3
CM
5133
5134static struct inode_operations btrfs_dir_inode_operations = {
3394e160 5135 .getattr = btrfs_getattr,
39279cc3
CM
5136 .lookup = btrfs_lookup,
5137 .create = btrfs_create,
5138 .unlink = btrfs_unlink,
5139 .link = btrfs_link,
5140 .mkdir = btrfs_mkdir,
5141 .rmdir = btrfs_rmdir,
5142 .rename = btrfs_rename,
5143 .symlink = btrfs_symlink,
5144 .setattr = btrfs_setattr,
618e21d5 5145 .mknod = btrfs_mknod,
95819c05
CH
5146 .setxattr = btrfs_setxattr,
5147 .getxattr = btrfs_getxattr,
5103e947 5148 .listxattr = btrfs_listxattr,
95819c05 5149 .removexattr = btrfs_removexattr,
fdebe2bd 5150 .permission = btrfs_permission,
39279cc3 5151};
39279cc3
CM
5152static struct inode_operations btrfs_dir_ro_inode_operations = {
5153 .lookup = btrfs_lookup,
fdebe2bd 5154 .permission = btrfs_permission,
39279cc3 5155};
39279cc3
CM
5156static struct file_operations btrfs_dir_file_operations = {
5157 .llseek = generic_file_llseek,
5158 .read = generic_read_dir,
cbdf5a24 5159 .readdir = btrfs_real_readdir,
34287aa3 5160 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5161#ifdef CONFIG_COMPAT
34287aa3 5162 .compat_ioctl = btrfs_ioctl,
39279cc3 5163#endif
6bf13c0c 5164 .release = btrfs_release_file,
e02119d5 5165 .fsync = btrfs_sync_file,
39279cc3
CM
5166};
5167
d1310b2e 5168static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5169 .fill_delalloc = run_delalloc_range,
065631f6 5170 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5171 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5172 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5173 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5174 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5175 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5176 .set_bit_hook = btrfs_set_bit_hook,
5177 .clear_bit_hook = btrfs_clear_bit_hook,
07157aac
CM
5178};
5179
35054394
CM
5180/*
5181 * btrfs doesn't support the bmap operation because swapfiles
5182 * use bmap to make a mapping of extents in the file. They assume
5183 * these extents won't change over the life of the file and they
5184 * use the bmap result to do IO directly to the drive.
5185 *
5186 * the btrfs bmap call would return logical addresses that aren't
5187 * suitable for IO and they also will change frequently as COW
5188 * operations happen. So, swapfile + btrfs == corruption.
5189 *
5190 * For now we're avoiding this by dropping bmap.
5191 */
39279cc3
CM
5192static struct address_space_operations btrfs_aops = {
5193 .readpage = btrfs_readpage,
5194 .writepage = btrfs_writepage,
b293f02e 5195 .writepages = btrfs_writepages,
3ab2fb5a 5196 .readpages = btrfs_readpages,
39279cc3 5197 .sync_page = block_sync_page,
16432985 5198 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5199 .invalidatepage = btrfs_invalidatepage,
5200 .releasepage = btrfs_releasepage,
e6dcd2dc 5201 .set_page_dirty = btrfs_set_page_dirty,
39279cc3
CM
5202};
5203
5204static struct address_space_operations btrfs_symlink_aops = {
5205 .readpage = btrfs_readpage,
5206 .writepage = btrfs_writepage,
2bf5a725
CM
5207 .invalidatepage = btrfs_invalidatepage,
5208 .releasepage = btrfs_releasepage,
39279cc3
CM
5209};
5210
5211static struct inode_operations btrfs_file_inode_operations = {
5212 .truncate = btrfs_truncate,
5213 .getattr = btrfs_getattr,
5214 .setattr = btrfs_setattr,
95819c05
CH
5215 .setxattr = btrfs_setxattr,
5216 .getxattr = btrfs_getxattr,
5103e947 5217 .listxattr = btrfs_listxattr,
95819c05 5218 .removexattr = btrfs_removexattr,
fdebe2bd 5219 .permission = btrfs_permission,
d899e052 5220 .fallocate = btrfs_fallocate,
1506fcc8 5221 .fiemap = btrfs_fiemap,
39279cc3 5222};
618e21d5
JB
5223static struct inode_operations btrfs_special_inode_operations = {
5224 .getattr = btrfs_getattr,
5225 .setattr = btrfs_setattr,
fdebe2bd 5226 .permission = btrfs_permission,
95819c05
CH
5227 .setxattr = btrfs_setxattr,
5228 .getxattr = btrfs_getxattr,
33268eaf 5229 .listxattr = btrfs_listxattr,
95819c05 5230 .removexattr = btrfs_removexattr,
618e21d5 5231};
39279cc3
CM
5232static struct inode_operations btrfs_symlink_inode_operations = {
5233 .readlink = generic_readlink,
5234 .follow_link = page_follow_link_light,
5235 .put_link = page_put_link,
fdebe2bd 5236 .permission = btrfs_permission,
0279b4cd
JO
5237 .setxattr = btrfs_setxattr,
5238 .getxattr = btrfs_getxattr,
5239 .listxattr = btrfs_listxattr,
5240 .removexattr = btrfs_removexattr,
39279cc3 5241};