]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/btrfs/ctree.h
Btrfs: reap dead roots right after commit
[net-next-2.6.git] / fs / btrfs / ctree.h
CommitLineData
234b63a0
CM
1#ifndef __BTRFS__
2#define __BTRFS__
eb60ceac 3
e20d96d6 4#include <linux/fs.h>
d6025579 5#include <linux/buffer_head.h>
08607c1b 6#include <linux/workqueue.h>
8ef97622 7#include "bit-radix.h"
e20d96d6 8
e089f05c 9struct btrfs_trans_handle;
79154b1b 10struct btrfs_transaction;
35b7e476
CM
11extern struct kmem_cache *btrfs_trans_handle_cachep;
12extern struct kmem_cache *btrfs_transaction_cachep;
13extern struct kmem_cache *btrfs_bit_radix_cachep;
2c90e5d6 14extern struct kmem_cache *btrfs_path_cachep;
e089f05c 15
3768f368 16#define BTRFS_MAGIC "_BtRfS_M"
eb60ceac 17
6407bf6d 18#define BTRFS_ROOT_TREE_OBJECTID 1ULL
0bd93ba0
CM
19#define BTRFS_DEV_TREE_OBJECTID 2ULL
20#define BTRFS_EXTENT_TREE_OBJECTID 3ULL
21#define BTRFS_FS_TREE_OBJECTID 4ULL
22#define BTRFS_ROOT_TREE_DIR_OBJECTID 5ULL
23#define BTRFS_FIRST_FREE_OBJECTID 6ULL
3768f368 24
e20d96d6
CM
25/*
26 * we can actually store much bigger names, but lets not confuse the rest
27 * of linux
28 */
29#define BTRFS_NAME_LEN 255
30
f254e52c
CM
31/* 32 bytes in various csum fields */
32#define BTRFS_CSUM_SIZE 32
509659cd
CM
33/* four bytes for CRC32 */
34#define BTRFS_CRC32_SIZE 4
e06afa83 35#define BTRFS_EMPTY_DIR_SIZE 6
f254e52c 36
fabb5681
CM
37#define BTRFS_FT_UNKNOWN 0
38#define BTRFS_FT_REG_FILE 1
39#define BTRFS_FT_DIR 2
40#define BTRFS_FT_CHRDEV 3
41#define BTRFS_FT_BLKDEV 4
42#define BTRFS_FT_FIFO 5
43#define BTRFS_FT_SOCK 6
44#define BTRFS_FT_SYMLINK 7
45#define BTRFS_FT_MAX 8
46
fec577fb
CM
47/*
48 * the key defines the order in the tree, and so it also defines (optimal)
49 * block layout. objectid corresonds to the inode number. The flags
50 * tells us things about the object, and is a kind of stream selector.
51 * so for a given inode, keys with flags of 1 might refer to the inode
52 * data, flags of 2 may point to file data in the btree and flags == 3
53 * may point to extents.
54 *
55 * offset is the starting byte offset for this key in the stream.
e2fa7227
CM
56 *
57 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
58 * in cpu native order. Otherwise they are identical and their sizes
59 * should be the same (ie both packed)
fec577fb 60 */
e2fa7227
CM
61struct btrfs_disk_key {
62 __le64 objectid;
f254e52c 63 __le32 flags;
70b2befd 64 __le64 offset;
e2fa7227
CM
65} __attribute__ ((__packed__));
66
67struct btrfs_key {
eb60ceac 68 u64 objectid;
f254e52c 69 u32 flags;
70b2befd 70 u64 offset;
eb60ceac
CM
71} __attribute__ ((__packed__));
72
fec577fb
CM
73/*
74 * every tree block (leaf or node) starts with this header.
75 */
bb492bb0 76struct btrfs_header {
f254e52c 77 u8 csum[BTRFS_CSUM_SIZE];
3768f368 78 u8 fsid[16]; /* FS specific uuid */
bb492bb0 79 __le64 blocknr; /* which block this node is supposed to live in */
7f5c1516 80 __le64 generation;
4d775673 81 __le64 owner;
bb492bb0
CM
82 __le16 nritems;
83 __le16 flags;
9a6f11ed 84 u8 level;
eb60ceac
CM
85} __attribute__ ((__packed__));
86
234b63a0 87#define BTRFS_MAX_LEVEL 8
123abc88
CM
88#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->blocksize - \
89 sizeof(struct btrfs_header)) / \
90 (sizeof(struct btrfs_disk_key) + sizeof(u64)))
91#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
92#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->blocksize))
236454df
CM
93#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
94 sizeof(struct btrfs_item) - \
95 sizeof(struct btrfs_file_extent_item))
eb60ceac 96
e20d96d6 97struct buffer_head;
fec577fb
CM
98/*
99 * the super block basically lists the main trees of the FS
100 * it currently lacks any block count etc etc
101 */
234b63a0 102struct btrfs_super_block {
f254e52c 103 u8 csum[BTRFS_CSUM_SIZE];
87cbda5c 104 /* the first 3 fields must match struct btrfs_header */
3768f368
CM
105 u8 fsid[16]; /* FS specific uuid */
106 __le64 blocknr; /* this block number */
3768f368 107 __le64 magic;
123abc88 108 __le32 blocksize;
3768f368
CM
109 __le64 generation;
110 __le64 root;
111 __le64 total_blocks;
112 __le64 blocks_used;
2e635a27 113 __le64 root_dir_objectid;
b4100d64 114 __le64 last_device_id;
0bd93ba0
CM
115 /* fields below here vary with the underlying disk */
116 __le64 device_block_start;
117 __le64 device_num_blocks;
118 __le64 device_root;
b4100d64 119 __le64 device_id;
cfaa7295
CM
120} __attribute__ ((__packed__));
121
fec577fb 122/*
62e2749e 123 * A leaf is full of items. offset and size tell us where to find
fec577fb
CM
124 * the item in the leaf (relative to the start of the data area)
125 */
0783fcfc 126struct btrfs_item {
e2fa7227 127 struct btrfs_disk_key key;
123abc88 128 __le32 offset;
0783fcfc 129 __le16 size;
eb60ceac
CM
130} __attribute__ ((__packed__));
131
fec577fb
CM
132/*
133 * leaves have an item area and a data area:
134 * [item0, item1....itemN] [free space] [dataN...data1, data0]
135 *
136 * The data is separate from the items to get the keys closer together
137 * during searches.
138 */
234b63a0 139struct btrfs_leaf {
bb492bb0 140 struct btrfs_header header;
123abc88 141 struct btrfs_item items[];
eb60ceac
CM
142} __attribute__ ((__packed__));
143
fec577fb
CM
144/*
145 * all non-leaf blocks are nodes, they hold only keys and pointers to
146 * other blocks
147 */
123abc88
CM
148struct btrfs_key_ptr {
149 struct btrfs_disk_key key;
150 __le64 blockptr;
151} __attribute__ ((__packed__));
152
234b63a0 153struct btrfs_node {
bb492bb0 154 struct btrfs_header header;
123abc88 155 struct btrfs_key_ptr ptrs[];
eb60ceac
CM
156} __attribute__ ((__packed__));
157
fec577fb 158/*
234b63a0
CM
159 * btrfs_paths remember the path taken from the root down to the leaf.
160 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
fec577fb
CM
161 * to any other levels that are present.
162 *
163 * The slots array records the index of the item or block pointer
164 * used while walking the tree.
165 */
234b63a0 166struct btrfs_path {
e20d96d6 167 struct buffer_head *nodes[BTRFS_MAX_LEVEL];
234b63a0 168 int slots[BTRFS_MAX_LEVEL];
eb60ceac 169};
5de08d7d 170
62e2749e
CM
171/*
172 * items in the extent btree are used to record the objectid of the
173 * owner of the block and the number of references
174 */
175struct btrfs_extent_item {
176 __le32 refs;
4d775673 177 __le64 owner;
62e2749e
CM
178} __attribute__ ((__packed__));
179
1e1d2701 180struct btrfs_inode_timespec {
f254e52c 181 __le64 sec;
1e1d2701
CM
182 __le32 nsec;
183} __attribute__ ((__packed__));
184
185/*
186 * there is no padding here on purpose. If you want to extent the inode,
187 * make a new item type
188 */
189struct btrfs_inode_item {
190 __le64 generation;
191 __le64 size;
192 __le64 nblocks;
31f3c99b 193 __le64 block_group;
1e1d2701
CM
194 __le32 nlink;
195 __le32 uid;
196 __le32 gid;
197 __le32 mode;
198 __le32 rdev;
199 __le16 flags;
200 __le16 compat_flags;
201 struct btrfs_inode_timespec atime;
202 struct btrfs_inode_timespec ctime;
203 struct btrfs_inode_timespec mtime;
204 struct btrfs_inode_timespec otime;
205} __attribute__ ((__packed__));
206
62e2749e 207struct btrfs_dir_item {
d6e4a428 208 struct btrfs_disk_key location;
62e2749e 209 __le16 flags;
a8a2ee0c 210 __le16 name_len;
62e2749e
CM
211 u8 type;
212} __attribute__ ((__packed__));
213
214struct btrfs_root_item {
d6e4a428
CM
215 struct btrfs_inode_item inode;
216 __le64 root_dirid;
62e2749e
CM
217 __le64 blocknr;
218 __le32 flags;
219 __le64 block_limit;
220 __le64 blocks_used;
221 __le32 refs;
9f5fae2f 222} __attribute__ ((__packed__));
62e2749e 223
236454df
CM
224#define BTRFS_FILE_EXTENT_REG 0
225#define BTRFS_FILE_EXTENT_INLINE 1
226
9f5fae2f 227struct btrfs_file_extent_item {
71951f35 228 __le64 generation;
236454df 229 u8 type;
9f5fae2f
CM
230 /*
231 * disk space consumed by the extent, checksum blocks are included
232 * in these numbers
233 */
234 __le64 disk_blocknr;
235 __le64 disk_num_blocks;
236 /*
dee26a9f 237 * the logical offset in file blocks (no csums)
9f5fae2f
CM
238 * this extent record is for. This allows a file extent to point
239 * into the middle of an existing extent on disk, sharing it
240 * between two snapshots (useful if some bytes in the middle of the
241 * extent have changed
242 */
243 __le64 offset;
244 /*
245 * the logical number of file blocks (no csums included)
246 */
247 __le64 num_blocks;
248} __attribute__ ((__packed__));
249
f254e52c 250struct btrfs_csum_item {
509659cd 251 u8 csum;
f254e52c
CM
252} __attribute__ ((__packed__));
253
0bd93ba0
CM
254struct btrfs_device_item {
255 __le16 pathlen;
b4100d64 256 __le64 device_id;
0bd93ba0
CM
257} __attribute__ ((__packed__));
258
9078a3e1
CM
259/* tag for the radix tree of block groups in ram */
260#define BTRFS_BLOCK_GROUP_DIRTY 0
31f3c99b 261#define BTRFS_BLOCK_GROUP_AVAIL 1
9078a3e1 262#define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024)
1e2677e0
CM
263
264
265#define BTRFS_BLOCK_GROUP_DATA 1
9078a3e1
CM
266struct btrfs_block_group_item {
267 __le64 used;
1e2677e0 268 u8 flags;
9078a3e1
CM
269} __attribute__ ((__packed__));
270
271struct btrfs_block_group_cache {
272 struct btrfs_key key;
273 struct btrfs_block_group_item item;
3e1ad54f 274 struct radix_tree_root *radix;
cd1bc465
CM
275 u64 first_free;
276 u64 last_alloc;
be744175 277 u64 pinned;
e37c9e69 278 u64 last_prealloc;
be744175 279 int data;
e37c9e69 280 int cached;
9078a3e1
CM
281};
282
87cbda5c 283struct crypto_hash;
08607c1b 284
9f5fae2f 285struct btrfs_fs_info {
facda1e7 286 spinlock_t hash_lock;
62e2749e
CM
287 struct btrfs_root *extent_root;
288 struct btrfs_root *tree_root;
0bd93ba0 289 struct btrfs_root *dev_root;
0f7d52f4 290 struct radix_tree_root fs_roots_radix;
8ef97622 291 struct radix_tree_root pending_del_radix;
62e2749e 292 struct radix_tree_root pinned_radix;
7eccb903 293 struct radix_tree_root dev_radix;
9078a3e1 294 struct radix_tree_root block_group_radix;
be744175 295 struct radix_tree_root block_group_data_radix;
e37c9e69 296 struct radix_tree_root extent_map_radix;
f2458e1d
CM
297
298 u64 extent_tree_insert[BTRFS_MAX_LEVEL * 3];
299 int extent_tree_insert_nr;
300 u64 extent_tree_prealloc[BTRFS_MAX_LEVEL * 3];
301 int extent_tree_prealloc_nr;
302
293ffd5f 303 u64 generation;
79154b1b 304 struct btrfs_transaction *running_transaction;
1261ec42 305 struct btrfs_super_block *disk_super;
e20d96d6
CM
306 struct buffer_head *sb_buffer;
307 struct super_block *sb;
d98237b3 308 struct inode *btree_inode;
79154b1b 309 struct mutex trans_mutex;
d561c025 310 struct mutex fs_mutex;
8fd17795 311 struct list_head trans_list;
facda1e7 312 struct list_head dead_roots;
87cbda5c 313 struct crypto_hash *hash_tfm;
08607c1b 314 struct delayed_work trans_work;
e66f709b 315 int do_barriers;
facda1e7 316 int closing;
9f5fae2f
CM
317};
318
319/*
320 * in ram representation of the tree. extent_root is used for all allocations
f2458e1d 321 * and for the extent tree extent_root root.
9f5fae2f
CM
322 */
323struct btrfs_root {
e20d96d6
CM
324 struct buffer_head *node;
325 struct buffer_head *commit_root;
62e2749e
CM
326 struct btrfs_root_item root_item;
327 struct btrfs_key root_key;
9f5fae2f 328 struct btrfs_fs_info *fs_info;
0f7d52f4
CM
329 struct inode *inode;
330 u64 objectid;
331 u64 last_trans;
62e2749e 332 u32 blocksize;
9f5fae2f
CM
333 int ref_cows;
334 u32 type;
1b05da2e
CM
335 u64 highest_inode;
336 u64 last_inode_alloc;
62e2749e
CM
337};
338
62e2749e
CM
339/* the lower bits in the key flags defines the item type */
340#define BTRFS_KEY_TYPE_MAX 256
a429e513
CM
341#define BTRFS_KEY_TYPE_SHIFT 24
342#define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
343 BTRFS_KEY_TYPE_SHIFT)
1e1d2701
CM
344
345/*
346 * inode items have the data typically returned from stat and store other
347 * info about object characteristics. There is one for every file and dir in
348 * the FS
349 */
9078a3e1
CM
350#define BTRFS_INODE_ITEM_KEY 1
351
352/* reserve 2-15 close to the inode for later flexibility */
1e1d2701
CM
353
354/*
355 * dir items are the name -> inode pointers in a directory. There is one
356 * for every name in a directory.
357 */
9078a3e1
CM
358#define BTRFS_DIR_ITEM_KEY 16
359#define BTRFS_DIR_INDEX_KEY 17
1e1d2701 360/*
9078a3e1 361 * extent data is for file data
1e1d2701 362 */
9078a3e1 363#define BTRFS_EXTENT_DATA_KEY 18
f254e52c
CM
364/*
365 * csum items have the checksums for data in the extents
366 */
9078a3e1
CM
367#define BTRFS_CSUM_ITEM_KEY 19
368
369/* reserve 20-31 for other file stuff */
f254e52c 370
1e1d2701
CM
371/*
372 * root items point to tree roots. There are typically in the root
373 * tree used by the super block to find all the other trees
374 */
9078a3e1 375#define BTRFS_ROOT_ITEM_KEY 32
1e1d2701
CM
376/*
377 * extent items are in the extent map tree. These record which blocks
378 * are used, and how many references there are to each block
379 */
9078a3e1
CM
380#define BTRFS_EXTENT_ITEM_KEY 33
381
382/*
383 * block groups give us hints into the extent allocation trees. Which
384 * blocks are free etc etc
385 */
386#define BTRFS_BLOCK_GROUP_ITEM_KEY 34
9f5fae2f 387
0bd93ba0
CM
388/*
389 * dev items list the devices that make up the FS
390 */
9078a3e1 391#define BTRFS_DEV_ITEM_KEY 35
0bd93ba0 392
1e1d2701
CM
393/*
394 * string items are for debugging. They just store a short string of
395 * data in the FS
396 */
9078a3e1
CM
397#define BTRFS_STRING_ITEM_KEY 253
398
399
400static inline u64 btrfs_block_group_used(struct btrfs_block_group_item *bi)
401{
402 return le64_to_cpu(bi->used);
403}
404
405static inline void btrfs_set_block_group_used(struct
406 btrfs_block_group_item *bi,
407 u64 val)
408{
409 bi->used = cpu_to_le64(val);
410}
1e1d2701
CM
411
412static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
413{
414 return le64_to_cpu(i->generation);
415}
416
417static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
418 u64 val)
419{
420 i->generation = cpu_to_le64(val);
421}
422
423static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
424{
425 return le64_to_cpu(i->size);
426}
427
428static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
429{
430 i->size = cpu_to_le64(val);
431}
432
433static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
434{
435 return le64_to_cpu(i->nblocks);
436}
437
438static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
439{
440 i->nblocks = cpu_to_le64(val);
441}
442
31f3c99b
CM
443static inline u64 btrfs_inode_block_group(struct btrfs_inode_item *i)
444{
445 return le64_to_cpu(i->block_group);
446}
447
448static inline void btrfs_set_inode_block_group(struct btrfs_inode_item *i,
449 u64 val)
450{
451 i->block_group = cpu_to_le64(val);
452}
453
1e1d2701
CM
454static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
455{
456 return le32_to_cpu(i->nlink);
457}
458
459static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
460{
461 i->nlink = cpu_to_le32(val);
462}
463
464static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
465{
466 return le32_to_cpu(i->uid);
467}
468
469static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
470{
471 i->uid = cpu_to_le32(val);
472}
473
474static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
475{
476 return le32_to_cpu(i->gid);
477}
478
479static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
480{
481 i->gid = cpu_to_le32(val);
482}
483
484static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
485{
486 return le32_to_cpu(i->mode);
487}
488
489static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
490{
491 i->mode = cpu_to_le32(val);
492}
493
494static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
495{
496 return le32_to_cpu(i->rdev);
497}
498
499static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
500{
501 i->rdev = cpu_to_le32(val);
502}
503
504static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
505{
506 return le16_to_cpu(i->flags);
507}
508
509static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
510{
511 i->flags = cpu_to_le16(val);
512}
513
514static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
515{
516 return le16_to_cpu(i->compat_flags);
517}
518
519static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
520 u16 val)
521{
522 i->compat_flags = cpu_to_le16(val);
523}
524
f254e52c 525static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
e20d96d6 526{
f254e52c 527 return le64_to_cpu(ts->sec);
e20d96d6
CM
528}
529
530static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
f254e52c 531 u64 val)
e20d96d6 532{
f254e52c 533 ts->sec = cpu_to_le64(val);
e20d96d6
CM
534}
535
536static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
537{
538 return le32_to_cpu(ts->nsec);
539}
540
541static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
542 u32 val)
543{
544 ts->nsec = cpu_to_le32(val);
545}
546
234b63a0 547static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
cf27e1ee
CM
548{
549 return le32_to_cpu(ei->refs);
550}
551
234b63a0 552static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
cf27e1ee
CM
553{
554 ei->refs = cpu_to_le32(val);
555}
556
4d775673
CM
557static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
558{
559 return le64_to_cpu(ei->owner);
560}
561
562static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
563{
564 ei->owner = cpu_to_le64(val);
565}
566
234b63a0 567static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
1d4f8a0c 568{
123abc88 569 return le64_to_cpu(n->ptrs[nr].blockptr);
1d4f8a0c
CM
570}
571
4d775673 572
234b63a0
CM
573static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
574 u64 val)
1d4f8a0c 575{
123abc88 576 n->ptrs[nr].blockptr = cpu_to_le64(val);
1d4f8a0c
CM
577}
578
123abc88 579static inline u32 btrfs_item_offset(struct btrfs_item *item)
0783fcfc 580{
123abc88 581 return le32_to_cpu(item->offset);
0783fcfc
CM
582}
583
123abc88 584static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
0783fcfc 585{
123abc88 586 item->offset = cpu_to_le32(val);
0783fcfc
CM
587}
588
123abc88 589static inline u32 btrfs_item_end(struct btrfs_item *item)
0783fcfc 590{
123abc88 591 return le32_to_cpu(item->offset) + le16_to_cpu(item->size);
0783fcfc
CM
592}
593
594static inline u16 btrfs_item_size(struct btrfs_item *item)
595{
596 return le16_to_cpu(item->size);
597}
598
599static inline void btrfs_set_item_size(struct btrfs_item *item, u16 val)
600{
601 item->size = cpu_to_le16(val);
602}
603
1d4f6404
CM
604static inline u16 btrfs_dir_flags(struct btrfs_dir_item *d)
605{
606 return le16_to_cpu(d->flags);
607}
608
609static inline void btrfs_set_dir_flags(struct btrfs_dir_item *d, u16 val)
610{
611 d->flags = cpu_to_le16(val);
612}
613
614static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
615{
616 return d->type;
617}
618
619static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
620{
621 d->type = val;
622}
623
a8a2ee0c
CM
624static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
625{
626 return le16_to_cpu(d->name_len);
627}
628
629static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
1d4f6404 630{
a8a2ee0c 631 d->name_len = cpu_to_le16(val);
1d4f6404
CM
632}
633
e2fa7227
CM
634static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
635 struct btrfs_disk_key *disk)
636{
637 cpu->offset = le64_to_cpu(disk->offset);
638 cpu->flags = le32_to_cpu(disk->flags);
639 cpu->objectid = le64_to_cpu(disk->objectid);
640}
641
642static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
643 struct btrfs_key *cpu)
644{
645 disk->offset = cpu_to_le64(cpu->offset);
646 disk->flags = cpu_to_le32(cpu->flags);
647 disk->objectid = cpu_to_le64(cpu->objectid);
648}
649
62e2749e 650static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
e2fa7227
CM
651{
652 return le64_to_cpu(disk->objectid);
653}
654
62e2749e
CM
655static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
656 u64 val)
e2fa7227
CM
657{
658 disk->objectid = cpu_to_le64(val);
659}
660
62e2749e 661static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
e2fa7227
CM
662{
663 return le64_to_cpu(disk->offset);
664}
665
62e2749e
CM
666static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
667 u64 val)
e2fa7227
CM
668{
669 disk->offset = cpu_to_le64(val);
670}
671
62e2749e 672static inline u32 btrfs_disk_key_flags(struct btrfs_disk_key *disk)
e2fa7227
CM
673{
674 return le32_to_cpu(disk->flags);
675}
676
62e2749e
CM
677static inline void btrfs_set_disk_key_flags(struct btrfs_disk_key *disk,
678 u32 val)
e2fa7227
CM
679{
680 disk->flags = cpu_to_le32(val);
681}
682
a429e513 683static inline u32 btrfs_disk_key_type(struct btrfs_disk_key *key)
7fcde0e3 684{
a429e513 685 return le32_to_cpu(key->flags) >> BTRFS_KEY_TYPE_SHIFT;
7fcde0e3
CM
686}
687
a429e513
CM
688static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key,
689 u32 val)
7fcde0e3 690{
a429e513
CM
691 u32 flags = btrfs_disk_key_flags(key);
692 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
693 val = val << BTRFS_KEY_TYPE_SHIFT;
694 flags = (flags & ~BTRFS_KEY_TYPE_MASK) | val;
695 btrfs_set_disk_key_flags(key, flags);
7fcde0e3
CM
696}
697
62e2749e
CM
698static inline u32 btrfs_key_type(struct btrfs_key *key)
699{
a429e513 700 return key->flags >> BTRFS_KEY_TYPE_SHIFT;
62e2749e
CM
701}
702
a429e513 703static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
62e2749e 704{
a429e513
CM
705 BUG_ON(val >= BTRFS_KEY_TYPE_MAX);
706 val = val << BTRFS_KEY_TYPE_SHIFT;
707 key->flags = (key->flags & ~(BTRFS_KEY_TYPE_MASK)) | val;
62e2749e
CM
708}
709
bb492bb0 710static inline u64 btrfs_header_blocknr(struct btrfs_header *h)
7518a238 711{
bb492bb0 712 return le64_to_cpu(h->blocknr);
7518a238
CM
713}
714
bb492bb0 715static inline void btrfs_set_header_blocknr(struct btrfs_header *h, u64 blocknr)
7518a238 716{
bb492bb0 717 h->blocknr = cpu_to_le64(blocknr);
7518a238
CM
718}
719
7f5c1516
CM
720static inline u64 btrfs_header_generation(struct btrfs_header *h)
721{
722 return le64_to_cpu(h->generation);
723}
724
725static inline void btrfs_set_header_generation(struct btrfs_header *h,
726 u64 val)
727{
728 h->generation = cpu_to_le64(val);
729}
730
4d775673
CM
731static inline u64 btrfs_header_owner(struct btrfs_header *h)
732{
733 return le64_to_cpu(h->owner);
734}
735
736static inline void btrfs_set_header_owner(struct btrfs_header *h,
737 u64 val)
738{
739 h->owner = cpu_to_le64(val);
740}
741
bb492bb0 742static inline u16 btrfs_header_nritems(struct btrfs_header *h)
7518a238 743{
bb492bb0 744 return le16_to_cpu(h->nritems);
7518a238
CM
745}
746
bb492bb0 747static inline void btrfs_set_header_nritems(struct btrfs_header *h, u16 val)
7518a238 748{
bb492bb0 749 h->nritems = cpu_to_le16(val);
7518a238
CM
750}
751
bb492bb0 752static inline u16 btrfs_header_flags(struct btrfs_header *h)
7518a238 753{
bb492bb0 754 return le16_to_cpu(h->flags);
7518a238
CM
755}
756
bb492bb0 757static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
7518a238 758{
bb492bb0 759 h->flags = cpu_to_le16(val);
7518a238
CM
760}
761
bb492bb0 762static inline int btrfs_header_level(struct btrfs_header *h)
7518a238 763{
9a6f11ed 764 return h->level;
7518a238
CM
765}
766
bb492bb0 767static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
7518a238 768{
234b63a0 769 BUG_ON(level > BTRFS_MAX_LEVEL);
9a6f11ed 770 h->level = level;
7518a238
CM
771}
772
234b63a0 773static inline int btrfs_is_leaf(struct btrfs_node *n)
7518a238
CM
774{
775 return (btrfs_header_level(&n->header) == 0);
776}
777
3768f368
CM
778static inline u64 btrfs_root_blocknr(struct btrfs_root_item *item)
779{
780 return le64_to_cpu(item->blocknr);
781}
782
783static inline void btrfs_set_root_blocknr(struct btrfs_root_item *item, u64 val)
784{
785 item->blocknr = cpu_to_le64(val);
786}
787
d6e4a428
CM
788static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
789{
790 return le64_to_cpu(item->root_dirid);
791}
792
793static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
794{
795 item->root_dirid = cpu_to_le64(val);
796}
797
3768f368
CM
798static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
799{
800 return le32_to_cpu(item->refs);
801}
802
803static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
804{
805 item->refs = cpu_to_le32(val);
806}
807
808static inline u64 btrfs_super_blocknr(struct btrfs_super_block *s)
809{
810 return le64_to_cpu(s->blocknr);
811}
812
813static inline void btrfs_set_super_blocknr(struct btrfs_super_block *s, u64 val)
814{
815 s->blocknr = cpu_to_le64(val);
816}
817
0f7d52f4
CM
818static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
819{
820 return le64_to_cpu(s->generation);
821}
822
823static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
824 u64 val)
825{
826 s->generation = cpu_to_le64(val);
827}
828
3768f368
CM
829static inline u64 btrfs_super_root(struct btrfs_super_block *s)
830{
831 return le64_to_cpu(s->root);
832}
833
834static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
835{
836 s->root = cpu_to_le64(val);
837}
838
839static inline u64 btrfs_super_total_blocks(struct btrfs_super_block *s)
840{
841 return le64_to_cpu(s->total_blocks);
842}
843
844static inline void btrfs_set_super_total_blocks(struct btrfs_super_block *s,
845 u64 val)
846{
847 s->total_blocks = cpu_to_le64(val);
848}
849
850static inline u64 btrfs_super_blocks_used(struct btrfs_super_block *s)
851{
852 return le64_to_cpu(s->blocks_used);
853}
854
855static inline void btrfs_set_super_blocks_used(struct btrfs_super_block *s,
856 u64 val)
857{
858 s->blocks_used = cpu_to_le64(val);
859}
860
123abc88 861static inline u32 btrfs_super_blocksize(struct btrfs_super_block *s)
3768f368 862{
123abc88 863 return le32_to_cpu(s->blocksize);
3768f368
CM
864}
865
866static inline void btrfs_set_super_blocksize(struct btrfs_super_block *s,
123abc88
CM
867 u32 val)
868{
869 s->blocksize = cpu_to_le32(val);
870}
871
2e635a27
CM
872static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
873{
874 return le64_to_cpu(s->root_dir_objectid);
875}
876
877static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
878 val)
879{
880 s->root_dir_objectid = cpu_to_le64(val);
881}
882
b4100d64
CM
883static inline u64 btrfs_super_last_device_id(struct btrfs_super_block *s)
884{
885 return le64_to_cpu(s->last_device_id);
886}
887
888static inline void btrfs_set_super_last_device_id(struct btrfs_super_block *s,
889 u64 val)
890{
891 s->last_device_id = cpu_to_le64(val);
892}
893
894static inline u64 btrfs_super_device_id(struct btrfs_super_block *s)
895{
896 return le64_to_cpu(s->device_id);
897}
898
899static inline void btrfs_set_super_device_id(struct btrfs_super_block *s,
900 u64 val)
901{
902 s->device_id = cpu_to_le64(val);
903}
904
0bd93ba0
CM
905static inline u64 btrfs_super_device_block_start(struct btrfs_super_block *s)
906{
907 return le64_to_cpu(s->device_block_start);
908}
909
910static inline void btrfs_set_super_device_block_start(struct btrfs_super_block
911 *s, u64 val)
912{
913 s->device_block_start = cpu_to_le64(val);
914}
915
916static inline u64 btrfs_super_device_num_blocks(struct btrfs_super_block *s)
917{
918 return le64_to_cpu(s->device_num_blocks);
919}
920
921static inline void btrfs_set_super_device_num_blocks(struct btrfs_super_block
922 *s, u64 val)
923{
924 s->device_num_blocks = cpu_to_le64(val);
925}
926
927static inline u64 btrfs_super_device_root(struct btrfs_super_block *s)
928{
929 return le64_to_cpu(s->device_root);
930}
931
932static inline void btrfs_set_super_device_root(struct btrfs_super_block
933 *s, u64 val)
934{
935 s->device_root = cpu_to_le64(val);
936}
937
938
123abc88 939static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
3768f368 940{
123abc88 941 return (u8 *)l->items;
3768f368 942}
9f5fae2f 943
236454df
CM
944static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
945{
946 return e->type;
947}
948static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
949 u8 val)
950{
951 e->type = val;
952}
953
954static inline char *btrfs_file_extent_inline_start(struct
955 btrfs_file_extent_item *e)
956{
957 return (char *)(&e->disk_blocknr);
958}
959
960static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
961{
962 return (unsigned long)(&((struct
963 btrfs_file_extent_item *)NULL)->disk_blocknr) + datasize;
964}
965
966static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
967{
968 struct btrfs_file_extent_item *fe = NULL;
969 return btrfs_item_size(e) - (unsigned long)(&fe->disk_blocknr);
970}
971
9f5fae2f
CM
972static inline u64 btrfs_file_extent_disk_blocknr(struct btrfs_file_extent_item
973 *e)
974{
975 return le64_to_cpu(e->disk_blocknr);
976}
977
978static inline void btrfs_set_file_extent_disk_blocknr(struct
979 btrfs_file_extent_item
980 *e, u64 val)
981{
982 e->disk_blocknr = cpu_to_le64(val);
983}
984
71951f35
CM
985static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
986{
987 return le64_to_cpu(e->generation);
988}
989
990static inline void btrfs_set_file_extent_generation(struct
991 btrfs_file_extent_item *e,
992 u64 val)
993{
994 e->generation = cpu_to_le64(val);
995}
996
9f5fae2f
CM
997static inline u64 btrfs_file_extent_disk_num_blocks(struct
998 btrfs_file_extent_item *e)
999{
1000 return le64_to_cpu(e->disk_num_blocks);
1001}
1002
1003static inline void btrfs_set_file_extent_disk_num_blocks(struct
1004 btrfs_file_extent_item
1005 *e, u64 val)
1006{
1007 e->disk_num_blocks = cpu_to_le64(val);
1008}
1009
1010static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
1011{
1012 return le64_to_cpu(e->offset);
1013}
1014
1015static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
1016 *e, u64 val)
1017{
1018 e->offset = cpu_to_le64(val);
1019}
1020
1021static inline u64 btrfs_file_extent_num_blocks(struct btrfs_file_extent_item
1022 *e)
1023{
1024 return le64_to_cpu(e->num_blocks);
1025}
1026
1027static inline void btrfs_set_file_extent_num_blocks(struct
1028 btrfs_file_extent_item *e,
1029 u64 val)
1030{
1031 e->num_blocks = cpu_to_le64(val);
1032}
1033
0bd93ba0
CM
1034static inline u16 btrfs_device_pathlen(struct btrfs_device_item *d)
1035{
1036 return le16_to_cpu(d->pathlen);
1037}
1038
1039static inline void btrfs_set_device_pathlen(struct btrfs_device_item *d,
1040 u16 val)
1041{
1042 d->pathlen = cpu_to_le16(val);
1043}
1044
b4100d64
CM
1045static inline u64 btrfs_device_id(struct btrfs_device_item *d)
1046{
1047 return le64_to_cpu(d->device_id);
1048}
1049
1050static inline void btrfs_set_device_id(struct btrfs_device_item *d,
1051 u64 val)
1052{
1053 d->device_id = cpu_to_le64(val);
1054}
1055
e20d96d6
CM
1056static inline struct btrfs_root *btrfs_sb(struct super_block *sb)
1057{
1058 return sb->s_fs_info;
1059}
1060
d6025579
CM
1061static inline void btrfs_check_bounds(void *vptr, size_t len,
1062 void *vcontainer, size_t container_len)
1063{
1064 char *ptr = vptr;
1065 char *container = vcontainer;
1066 WARN_ON(ptr < container);
1067 WARN_ON(ptr + len > container + container_len);
1068}
1069
1070static inline void btrfs_memcpy(struct btrfs_root *root,
1071 void *dst_block,
1072 void *dst, const void *src, size_t nr)
1073{
1074 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1075 memcpy(dst, src, nr);
1076}
1077
1078static inline void btrfs_memmove(struct btrfs_root *root,
1079 void *dst_block,
1080 void *dst, void *src, size_t nr)
1081{
1082 btrfs_check_bounds(dst, nr, dst_block, root->fs_info->sb->s_blocksize);
1083 memmove(dst, src, nr);
1084}
1085
1086static inline void btrfs_mark_buffer_dirty(struct buffer_head *bh)
1087{
1088 WARN_ON(!atomic_read(&bh->b_count));
1089 mark_buffer_dirty(bh);
1090}
1091
4beb1b8b
CM
1092/* helper function to cast into the data area of the leaf. */
1093#define btrfs_item_ptr(leaf, slot, type) \
123abc88
CM
1094 ((type *)(btrfs_leaf_data(leaf) + \
1095 btrfs_item_offset((leaf)->items + (slot))))
4beb1b8b 1096
b18c6685 1097/* extent-tree.c */
31f3c99b
CM
1098struct btrfs_block_group_cache *btrfs_find_block_group(struct btrfs_root *root,
1099 struct btrfs_block_group_cache
be744175 1100 *hint, u64 search_start,
de428b63 1101 int data, int owner);
c5739bba
CM
1102int btrfs_inc_root_ref(struct btrfs_trans_handle *trans,
1103 struct btrfs_root *root);
e20d96d6 1104struct buffer_head *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
31f3c99b 1105 struct btrfs_root *root, u64 hint);
4d775673
CM
1106int btrfs_alloc_extent(struct btrfs_trans_handle *trans,
1107 struct btrfs_root *root, u64 owner,
c62a1920 1108 u64 num_blocks, u64 search_start,
be08c1b9 1109 u64 search_end, struct btrfs_key *ins, int data);
e089f05c 1110int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e20d96d6 1111 struct buffer_head *buf);
e089f05c
CM
1112int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
1113 *root, u64 blocknr, u64 num_blocks, int pin);
dee26a9f
CM
1114int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
1115 btrfs_root *root);
b18c6685
CM
1116int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1117 struct btrfs_root *root,
1118 u64 blocknr, u64 num_blocks);
9078a3e1
CM
1119int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
1120 struct btrfs_root *root);
1121int btrfs_free_block_groups(struct btrfs_fs_info *info);
1122int btrfs_read_block_groups(struct btrfs_root *root);
dee26a9f 1123/* ctree.c */
6567e837
CM
1124int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
1125 *root, struct btrfs_path *path, u32 data_size);
b18c6685
CM
1126int btrfs_truncate_item(struct btrfs_trans_handle *trans,
1127 struct btrfs_root *root,
1128 struct btrfs_path *path,
1129 u32 new_size);
e089f05c
CM
1130int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1131 *root, struct btrfs_key *key, struct btrfs_path *p, int
1132 ins_len, int cow);
234b63a0 1133void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
2c90e5d6
CM
1134struct btrfs_path *btrfs_alloc_path(void);
1135void btrfs_free_path(struct btrfs_path *p);
234b63a0 1136void btrfs_init_path(struct btrfs_path *p);
e089f05c
CM
1137int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1138 struct btrfs_path *path);
1139int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1140 *root, struct btrfs_key *key, void *data, u32 data_size);
1141int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1142 *root, struct btrfs_path *path, struct btrfs_key
1143 *cpu_key, u32 data_size);
234b63a0 1144int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
123abc88 1145int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
e089f05c 1146int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
e20d96d6 1147 *root, struct buffer_head *snap);
dee26a9f 1148/* root-item.c */
e089f05c
CM
1149int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1150 struct btrfs_key *key);
1151int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
1152 *root, struct btrfs_key *key, struct btrfs_root_item
1153 *item);
1154int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
1155 *root, struct btrfs_key *key, struct btrfs_root_item
1156 *item);
1157int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
1158 btrfs_root_item *item, struct btrfs_key *key);
dee26a9f 1159/* dir-item.c */
e089f05c 1160int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
d6e4a428
CM
1161 *root, const char *name, int name_len, u64 dir,
1162 struct btrfs_key *location, u8 type);
7e38180e
CM
1163struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
1164 struct btrfs_root *root,
1165 struct btrfs_path *path, u64 dir,
1166 const char *name, int name_len,
1167 int mod);
1168struct btrfs_dir_item *
1169btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
1170 struct btrfs_root *root,
1171 struct btrfs_path *path, u64 dir,
1172 u64 objectid, const char *name, int name_len,
1173 int mod);
1174struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
1175 struct btrfs_path *path,
7f5c1516 1176 const char *name, int name_len);
7e38180e
CM
1177int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
1178 struct btrfs_root *root,
1179 struct btrfs_path *path,
1180 struct btrfs_dir_item *di);
dee26a9f 1181/* inode-map.c */
9f5fae2f
CM
1182int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *fs_root,
1184 u64 dirid, u64 *objectid);
5be6f7f1
CM
1185int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid);
1186
dee26a9f 1187/* inode-item.c */
293ffd5f
CM
1188int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
1189 *root, u64 objectid, struct btrfs_inode_item
1190 *inode_item);
1191int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
d6e4a428
CM
1192 *root, struct btrfs_path *path,
1193 struct btrfs_key *location, int mod);
dee26a9f
CM
1194
1195/* file-item.c */
b18c6685 1196int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
dee26a9f 1197 struct btrfs_root *root,
b18c6685 1198 u64 objectid, u64 pos, u64 offset,
3a686375 1199 u64 disk_num_blocks,
b18c6685 1200 u64 num_blocks);
dee26a9f
CM
1201int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
1202 struct btrfs_root *root,
1203 struct btrfs_path *path, u64 objectid,
9773a788 1204 u64 blocknr, int mod);
f254e52c
CM
1205int btrfs_csum_file_block(struct btrfs_trans_handle *trans,
1206 struct btrfs_root *root,
1207 u64 objectid, u64 offset,
1208 char *data, size_t len);
1209int btrfs_csum_verify_file_block(struct btrfs_root *root,
1210 u64 objectid, u64 offset,
1211 char *data, size_t len);
b18c6685
CM
1212struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
1213 struct btrfs_root *root,
1214 struct btrfs_path *path,
1215 u64 objectid, u64 offset,
1216 int cow);
1de037a4
CM
1217int btrfs_csum_truncate(struct btrfs_trans_handle *trans,
1218 struct btrfs_root *root, struct btrfs_path *path,
1219 u64 isize);
d6e4a428 1220/* super.c */
eb60ceac 1221#endif