]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/bio.c
block: drop virtual merging accounting
[net-next-2.6.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
2056a782 28#include <linux/blktrace_api.h>
f1970baf 29#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 30
e18b890b 31static struct kmem_cache *bio_slab __read_mostly;
1da177e4 32
fa3536cc 33mempool_t *bio_split_pool __read_mostly;
1da177e4 34
1da177e4
LT
35/*
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
38 * unsigned short
39 */
40
41#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
6c036527 42static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
44};
45#undef BV
46
1da177e4
LT
47/*
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
50 */
51d654e1 51struct bio_set *fs_bio_set;
1da177e4 52
7ba1ba12
MP
53unsigned int bvec_nr_vecs(unsigned short idx)
54{
55 return bvec_slabs[idx].nr_vecs;
56}
57
51d654e1 58struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
1da177e4
LT
59{
60 struct bio_vec *bvl;
1da177e4
LT
61
62 /*
63 * see comment near bvec_array define!
64 */
65 switch (nr) {
66 case 1 : *idx = 0; break;
67 case 2 ... 4: *idx = 1; break;
68 case 5 ... 16: *idx = 2; break;
69 case 17 ... 64: *idx = 3; break;
70 case 65 ... 128: *idx = 4; break;
71 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
72 default:
73 return NULL;
74 }
75 /*
76 * idx now points to the pool we want to allocate from
77 */
78
1da177e4 79 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
1ac0ae06
DC
80 if (bvl)
81 memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
1da177e4
LT
82
83 return bvl;
84}
85
3676347a 86void bio_free(struct bio *bio, struct bio_set *bio_set)
1da177e4 87{
992c5dda
JA
88 if (bio->bi_io_vec) {
89 const int pool_idx = BIO_POOL_IDX(bio);
1da177e4 90
992c5dda
JA
91 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
92
93 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
94 }
1da177e4 95
7ba1ba12
MP
96 if (bio_integrity(bio))
97 bio_integrity_free(bio, bio_set);
98
3676347a
PO
99 mempool_free(bio, bio_set->bio_pool);
100}
101
102/*
103 * default destructor for a bio allocated with bio_alloc_bioset()
104 */
105static void bio_fs_destructor(struct bio *bio)
106{
107 bio_free(bio, fs_bio_set);
1da177e4
LT
108}
109
858119e1 110void bio_init(struct bio *bio)
1da177e4 111{
2b94de55 112 memset(bio, 0, sizeof(*bio));
1da177e4 113 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 114 atomic_set(&bio->bi_cnt, 1);
1da177e4
LT
115}
116
117/**
118 * bio_alloc_bioset - allocate a bio for I/O
119 * @gfp_mask: the GFP_ mask given to the slab allocator
120 * @nr_iovecs: number of iovecs to pre-allocate
67be2dd1 121 * @bs: the bio_set to allocate from
1da177e4
LT
122 *
123 * Description:
124 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
125 * If %__GFP_WAIT is set then we will block on the internal pool waiting
126 * for a &struct bio to become free.
127 *
128 * allocate bio and iovecs from the memory pools specified by the
129 * bio_set structure.
130 **/
dd0fc66f 131struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4
LT
132{
133 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
134
135 if (likely(bio)) {
136 struct bio_vec *bvl = NULL;
137
138 bio_init(bio);
139 if (likely(nr_iovecs)) {
eeae1d48 140 unsigned long uninitialized_var(idx);
1da177e4
LT
141
142 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
143 if (unlikely(!bvl)) {
144 mempool_free(bio, bs->bio_pool);
145 bio = NULL;
146 goto out;
147 }
148 bio->bi_flags |= idx << BIO_POOL_OFFSET;
1ac0ae06 149 bio->bi_max_vecs = bvec_nr_vecs(idx);
1da177e4
LT
150 }
151 bio->bi_io_vec = bvl;
1da177e4
LT
152 }
153out:
154 return bio;
155}
156
dd0fc66f 157struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
1da177e4 158{
3676347a
PO
159 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
160
161 if (bio)
162 bio->bi_destructor = bio_fs_destructor;
163
164 return bio;
1da177e4
LT
165}
166
167void zero_fill_bio(struct bio *bio)
168{
169 unsigned long flags;
170 struct bio_vec *bv;
171 int i;
172
173 bio_for_each_segment(bv, bio, i) {
174 char *data = bvec_kmap_irq(bv, &flags);
175 memset(data, 0, bv->bv_len);
176 flush_dcache_page(bv->bv_page);
177 bvec_kunmap_irq(data, &flags);
178 }
179}
180EXPORT_SYMBOL(zero_fill_bio);
181
182/**
183 * bio_put - release a reference to a bio
184 * @bio: bio to release reference to
185 *
186 * Description:
187 * Put a reference to a &struct bio, either one you have gotten with
188 * bio_alloc or bio_get. The last put of a bio will free it.
189 **/
190void bio_put(struct bio *bio)
191{
192 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
193
194 /*
195 * last put frees it
196 */
197 if (atomic_dec_and_test(&bio->bi_cnt)) {
198 bio->bi_next = NULL;
199 bio->bi_destructor(bio);
200 }
201}
202
165125e1 203inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
204{
205 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
206 blk_recount_segments(q, bio);
207
208 return bio->bi_phys_segments;
209}
210
165125e1 211inline int bio_hw_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
212{
213 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
214 blk_recount_segments(q, bio);
215
216 return bio->bi_hw_segments;
217}
218
219/**
220 * __bio_clone - clone a bio
221 * @bio: destination bio
222 * @bio_src: bio to clone
223 *
224 * Clone a &bio. Caller will own the returned bio, but not
225 * the actual data it points to. Reference count of returned
226 * bio will be one.
227 */
858119e1 228void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 229{
e525e153
AM
230 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
231 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 232
5d84070e
JA
233 /*
234 * most users will be overriding ->bi_bdev with a new target,
235 * so we don't set nor calculate new physical/hw segment counts here
236 */
1da177e4
LT
237 bio->bi_sector = bio_src->bi_sector;
238 bio->bi_bdev = bio_src->bi_bdev;
239 bio->bi_flags |= 1 << BIO_CLONED;
240 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
241 bio->bi_vcnt = bio_src->bi_vcnt;
242 bio->bi_size = bio_src->bi_size;
a5453be4 243 bio->bi_idx = bio_src->bi_idx;
1da177e4
LT
244}
245
246/**
247 * bio_clone - clone a bio
248 * @bio: bio to clone
249 * @gfp_mask: allocation priority
250 *
251 * Like __bio_clone, only also allocates the returned bio
252 */
dd0fc66f 253struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
254{
255 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
256
7ba1ba12
MP
257 if (!b)
258 return NULL;
259
260 b->bi_destructor = bio_fs_destructor;
261 __bio_clone(b, bio);
262
263 if (bio_integrity(bio)) {
264 int ret;
265
266 ret = bio_integrity_clone(b, bio, fs_bio_set);
267
268 if (ret < 0)
269 return NULL;
3676347a 270 }
1da177e4
LT
271
272 return b;
273}
274
275/**
276 * bio_get_nr_vecs - return approx number of vecs
277 * @bdev: I/O target
278 *
279 * Return the approximate number of pages we can send to this target.
280 * There's no guarantee that you will be able to fit this number of pages
281 * into a bio, it does not account for dynamic restrictions that vary
282 * on offset.
283 */
284int bio_get_nr_vecs(struct block_device *bdev)
285{
165125e1 286 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
287 int nr_pages;
288
289 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
290 if (nr_pages > q->max_phys_segments)
291 nr_pages = q->max_phys_segments;
292 if (nr_pages > q->max_hw_segments)
293 nr_pages = q->max_hw_segments;
294
295 return nr_pages;
296}
297
165125e1 298static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
299 *page, unsigned int len, unsigned int offset,
300 unsigned short max_sectors)
1da177e4
LT
301{
302 int retried_segments = 0;
303 struct bio_vec *bvec;
304
305 /*
306 * cloned bio must not modify vec list
307 */
308 if (unlikely(bio_flagged(bio, BIO_CLONED)))
309 return 0;
310
80cfd548 311 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
312 return 0;
313
80cfd548
JA
314 /*
315 * For filesystems with a blocksize smaller than the pagesize
316 * we will often be called with the same page as last time and
317 * a consecutive offset. Optimize this special case.
318 */
319 if (bio->bi_vcnt > 0) {
320 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
321
322 if (page == prev->bv_page &&
323 offset == prev->bv_offset + prev->bv_len) {
324 prev->bv_len += len;
cc371e66
AK
325
326 if (q->merge_bvec_fn) {
327 struct bvec_merge_data bvm = {
328 .bi_bdev = bio->bi_bdev,
329 .bi_sector = bio->bi_sector,
330 .bi_size = bio->bi_size,
331 .bi_rw = bio->bi_rw,
332 };
333
334 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
335 prev->bv_len -= len;
336 return 0;
337 }
80cfd548
JA
338 }
339
340 goto done;
341 }
342 }
343
344 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
345 return 0;
346
347 /*
348 * we might lose a segment or two here, but rather that than
349 * make this too complex.
350 */
351
352 while (bio->bi_phys_segments >= q->max_phys_segments
b8b3e16c 353 || bio->bi_hw_segments >= q->max_hw_segments) {
1da177e4
LT
354
355 if (retried_segments)
356 return 0;
357
358 retried_segments = 1;
359 blk_recount_segments(q, bio);
360 }
361
362 /*
363 * setup the new entry, we might clear it again later if we
364 * cannot add the page
365 */
366 bvec = &bio->bi_io_vec[bio->bi_vcnt];
367 bvec->bv_page = page;
368 bvec->bv_len = len;
369 bvec->bv_offset = offset;
370
371 /*
372 * if queue has other restrictions (eg varying max sector size
373 * depending on offset), it can specify a merge_bvec_fn in the
374 * queue to get further control
375 */
376 if (q->merge_bvec_fn) {
cc371e66
AK
377 struct bvec_merge_data bvm = {
378 .bi_bdev = bio->bi_bdev,
379 .bi_sector = bio->bi_sector,
380 .bi_size = bio->bi_size,
381 .bi_rw = bio->bi_rw,
382 };
383
1da177e4
LT
384 /*
385 * merge_bvec_fn() returns number of bytes it can accept
386 * at this offset
387 */
cc371e66 388 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
1da177e4
LT
389 bvec->bv_page = NULL;
390 bvec->bv_len = 0;
391 bvec->bv_offset = 0;
392 return 0;
393 }
394 }
395
396 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 397 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
398 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
399
400 bio->bi_vcnt++;
401 bio->bi_phys_segments++;
402 bio->bi_hw_segments++;
80cfd548 403 done:
1da177e4
LT
404 bio->bi_size += len;
405 return len;
406}
407
6e68af66
MC
408/**
409 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 410 * @q: the target queue
6e68af66
MC
411 * @bio: destination bio
412 * @page: page to add
413 * @len: vec entry length
414 * @offset: vec entry offset
415 *
416 * Attempt to add a page to the bio_vec maplist. This can fail for a
417 * number of reasons, such as the bio being full or target block
418 * device limitations. The target block device must allow bio's
419 * smaller than PAGE_SIZE, so it is always possible to add a single
420 * page to an empty bio. This should only be used by REQ_PC bios.
421 */
165125e1 422int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
423 unsigned int len, unsigned int offset)
424{
defd94b7 425 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
6e68af66
MC
426}
427
1da177e4
LT
428/**
429 * bio_add_page - attempt to add page to bio
430 * @bio: destination bio
431 * @page: page to add
432 * @len: vec entry length
433 * @offset: vec entry offset
434 *
435 * Attempt to add a page to the bio_vec maplist. This can fail for a
436 * number of reasons, such as the bio being full or target block
437 * device limitations. The target block device must allow bio's
438 * smaller than PAGE_SIZE, so it is always possible to add a single
439 * page to an empty bio.
440 */
441int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
442 unsigned int offset)
443{
defd94b7
MC
444 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
445 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
1da177e4
LT
446}
447
448struct bio_map_data {
449 struct bio_vec *iovecs;
c5dec1c3
FT
450 int nr_sgvecs;
451 struct sg_iovec *sgvecs;
1da177e4
LT
452};
453
c5dec1c3
FT
454static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
455 struct sg_iovec *iov, int iov_count)
1da177e4
LT
456{
457 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
458 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
459 bmd->nr_sgvecs = iov_count;
1da177e4
LT
460 bio->bi_private = bmd;
461}
462
463static void bio_free_map_data(struct bio_map_data *bmd)
464{
465 kfree(bmd->iovecs);
c5dec1c3 466 kfree(bmd->sgvecs);
1da177e4
LT
467 kfree(bmd);
468}
469
76029ff3
FT
470static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
471 gfp_t gfp_mask)
1da177e4 472{
76029ff3 473 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
474
475 if (!bmd)
476 return NULL;
477
76029ff3 478 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
479 if (!bmd->iovecs) {
480 kfree(bmd);
481 return NULL;
482 }
483
76029ff3 484 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 485 if (bmd->sgvecs)
1da177e4
LT
486 return bmd;
487
c5dec1c3 488 kfree(bmd->iovecs);
1da177e4
LT
489 kfree(bmd);
490 return NULL;
491}
492
aefcc28a
FT
493static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
494 struct sg_iovec *iov, int iov_count, int uncopy)
c5dec1c3
FT
495{
496 int ret = 0, i;
497 struct bio_vec *bvec;
498 int iov_idx = 0;
499 unsigned int iov_off = 0;
500 int read = bio_data_dir(bio) == READ;
501
502 __bio_for_each_segment(bvec, bio, i, 0) {
503 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 504 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
505
506 while (bv_len && iov_idx < iov_count) {
507 unsigned int bytes;
508 char *iov_addr;
509
510 bytes = min_t(unsigned int,
511 iov[iov_idx].iov_len - iov_off, bv_len);
512 iov_addr = iov[iov_idx].iov_base + iov_off;
513
514 if (!ret) {
515 if (!read && !uncopy)
516 ret = copy_from_user(bv_addr, iov_addr,
517 bytes);
518 if (read && uncopy)
519 ret = copy_to_user(iov_addr, bv_addr,
520 bytes);
521
522 if (ret)
523 ret = -EFAULT;
524 }
525
526 bv_len -= bytes;
527 bv_addr += bytes;
528 iov_addr += bytes;
529 iov_off += bytes;
530
531 if (iov[iov_idx].iov_len == iov_off) {
532 iov_idx++;
533 iov_off = 0;
534 }
535 }
536
537 if (uncopy)
538 __free_page(bvec->bv_page);
539 }
540
541 return ret;
542}
543
1da177e4
LT
544/**
545 * bio_uncopy_user - finish previously mapped bio
546 * @bio: bio being terminated
547 *
548 * Free pages allocated from bio_copy_user() and write back data
549 * to user space in case of a read.
550 */
551int bio_uncopy_user(struct bio *bio)
552{
553 struct bio_map_data *bmd = bio->bi_private;
c5dec1c3 554 int ret;
1da177e4 555
aefcc28a 556 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, bmd->nr_sgvecs, 1);
1da177e4 557
1da177e4
LT
558 bio_free_map_data(bmd);
559 bio_put(bio);
560 return ret;
561}
562
563/**
c5dec1c3 564 * bio_copy_user_iov - copy user data to bio
1da177e4 565 * @q: destination block queue
c5dec1c3
FT
566 * @iov: the iovec.
567 * @iov_count: number of elements in the iovec
1da177e4
LT
568 * @write_to_vm: bool indicating writing to pages or not
569 *
570 * Prepares and returns a bio for indirect user io, bouncing data
571 * to/from kernel pages as necessary. Must be paired with
572 * call bio_uncopy_user() on io completion.
573 */
c5dec1c3
FT
574struct bio *bio_copy_user_iov(struct request_queue *q, struct sg_iovec *iov,
575 int iov_count, int write_to_vm)
1da177e4 576{
1da177e4
LT
577 struct bio_map_data *bmd;
578 struct bio_vec *bvec;
579 struct page *page;
580 struct bio *bio;
581 int i, ret;
c5dec1c3
FT
582 int nr_pages = 0;
583 unsigned int len = 0;
1da177e4 584
c5dec1c3
FT
585 for (i = 0; i < iov_count; i++) {
586 unsigned long uaddr;
587 unsigned long end;
588 unsigned long start;
589
590 uaddr = (unsigned long)iov[i].iov_base;
591 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
592 start = uaddr >> PAGE_SHIFT;
593
594 nr_pages += end - start;
595 len += iov[i].iov_len;
596 }
597
76029ff3 598 bmd = bio_alloc_map_data(nr_pages, iov_count, GFP_KERNEL);
1da177e4
LT
599 if (!bmd)
600 return ERR_PTR(-ENOMEM);
601
1da177e4 602 ret = -ENOMEM;
c5dec1c3 603 bio = bio_alloc(GFP_KERNEL, nr_pages);
1da177e4
LT
604 if (!bio)
605 goto out_bmd;
606
607 bio->bi_rw |= (!write_to_vm << BIO_RW);
608
609 ret = 0;
610 while (len) {
611 unsigned int bytes = PAGE_SIZE;
612
613 if (bytes > len)
614 bytes = len;
615
616 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
617 if (!page) {
618 ret = -ENOMEM;
619 break;
620 }
621
0e75f906 622 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1da177e4 623 break;
1da177e4
LT
624
625 len -= bytes;
626 }
627
628 if (ret)
629 goto cleanup;
630
631 /*
632 * success
633 */
634 if (!write_to_vm) {
aefcc28a 635 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0);
c5dec1c3
FT
636 if (ret)
637 goto cleanup;
1da177e4
LT
638 }
639
c5dec1c3 640 bio_set_map_data(bmd, bio, iov, iov_count);
1da177e4
LT
641 return bio;
642cleanup:
643 bio_for_each_segment(bvec, bio, i)
644 __free_page(bvec->bv_page);
645
646 bio_put(bio);
647out_bmd:
648 bio_free_map_data(bmd);
649 return ERR_PTR(ret);
650}
651
c5dec1c3
FT
652/**
653 * bio_copy_user - copy user data to bio
654 * @q: destination block queue
655 * @uaddr: start of user address
656 * @len: length in bytes
657 * @write_to_vm: bool indicating writing to pages or not
658 *
659 * Prepares and returns a bio for indirect user io, bouncing data
660 * to/from kernel pages as necessary. Must be paired with
661 * call bio_uncopy_user() on io completion.
662 */
663struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr,
664 unsigned int len, int write_to_vm)
665{
666 struct sg_iovec iov;
667
668 iov.iov_base = (void __user *)uaddr;
669 iov.iov_len = len;
670
671 return bio_copy_user_iov(q, &iov, 1, write_to_vm);
672}
673
165125e1 674static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
675 struct block_device *bdev,
676 struct sg_iovec *iov, int iov_count,
677 int write_to_vm)
1da177e4 678{
f1970baf
JB
679 int i, j;
680 int nr_pages = 0;
1da177e4
LT
681 struct page **pages;
682 struct bio *bio;
f1970baf
JB
683 int cur_page = 0;
684 int ret, offset;
1da177e4 685
f1970baf
JB
686 for (i = 0; i < iov_count; i++) {
687 unsigned long uaddr = (unsigned long)iov[i].iov_base;
688 unsigned long len = iov[i].iov_len;
689 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
690 unsigned long start = uaddr >> PAGE_SHIFT;
691
692 nr_pages += end - start;
693 /*
ad2d7225 694 * buffer must be aligned to at least hardsector size for now
f1970baf 695 */
ad2d7225 696 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
697 return ERR_PTR(-EINVAL);
698 }
699
700 if (!nr_pages)
1da177e4
LT
701 return ERR_PTR(-EINVAL);
702
703 bio = bio_alloc(GFP_KERNEL, nr_pages);
704 if (!bio)
705 return ERR_PTR(-ENOMEM);
706
707 ret = -ENOMEM;
11b0b5ab 708 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
1da177e4
LT
709 if (!pages)
710 goto out;
711
f1970baf
JB
712 for (i = 0; i < iov_count; i++) {
713 unsigned long uaddr = (unsigned long)iov[i].iov_base;
714 unsigned long len = iov[i].iov_len;
715 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
716 unsigned long start = uaddr >> PAGE_SHIFT;
717 const int local_nr_pages = end - start;
718 const int page_limit = cur_page + local_nr_pages;
719
f5dd33c4
NP
720 ret = get_user_pages_fast(uaddr, local_nr_pages,
721 write_to_vm, &pages[cur_page]);
99172157
JA
722 if (ret < local_nr_pages) {
723 ret = -EFAULT;
f1970baf 724 goto out_unmap;
99172157 725 }
f1970baf
JB
726
727 offset = uaddr & ~PAGE_MASK;
728 for (j = cur_page; j < page_limit; j++) {
729 unsigned int bytes = PAGE_SIZE - offset;
730
731 if (len <= 0)
732 break;
733
734 if (bytes > len)
735 bytes = len;
736
737 /*
738 * sorry...
739 */
defd94b7
MC
740 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
741 bytes)
f1970baf
JB
742 break;
743
744 len -= bytes;
745 offset = 0;
746 }
1da177e4 747
f1970baf 748 cur_page = j;
1da177e4 749 /*
f1970baf 750 * release the pages we didn't map into the bio, if any
1da177e4 751 */
f1970baf
JB
752 while (j < page_limit)
753 page_cache_release(pages[j++]);
1da177e4
LT
754 }
755
1da177e4
LT
756 kfree(pages);
757
758 /*
759 * set data direction, and check if mapped pages need bouncing
760 */
761 if (!write_to_vm)
762 bio->bi_rw |= (1 << BIO_RW);
763
f1970baf 764 bio->bi_bdev = bdev;
1da177e4
LT
765 bio->bi_flags |= (1 << BIO_USER_MAPPED);
766 return bio;
f1970baf
JB
767
768 out_unmap:
769 for (i = 0; i < nr_pages; i++) {
770 if(!pages[i])
771 break;
772 page_cache_release(pages[i]);
773 }
774 out:
1da177e4
LT
775 kfree(pages);
776 bio_put(bio);
777 return ERR_PTR(ret);
778}
779
780/**
781 * bio_map_user - map user address into bio
165125e1 782 * @q: the struct request_queue for the bio
1da177e4
LT
783 * @bdev: destination block device
784 * @uaddr: start of user address
785 * @len: length in bytes
786 * @write_to_vm: bool indicating writing to pages or not
787 *
788 * Map the user space address into a bio suitable for io to a block
789 * device. Returns an error pointer in case of error.
790 */
165125e1 791struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1da177e4 792 unsigned long uaddr, unsigned int len, int write_to_vm)
f1970baf
JB
793{
794 struct sg_iovec iov;
795
3f70353e 796 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
797 iov.iov_len = len;
798
799 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
800}
801
802/**
803 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 804 * @q: the struct request_queue for the bio
f1970baf
JB
805 * @bdev: destination block device
806 * @iov: the iovec.
807 * @iov_count: number of elements in the iovec
808 * @write_to_vm: bool indicating writing to pages or not
809 *
810 * Map the user space address into a bio suitable for io to a block
811 * device. Returns an error pointer in case of error.
812 */
165125e1 813struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf
JB
814 struct sg_iovec *iov, int iov_count,
815 int write_to_vm)
1da177e4
LT
816{
817 struct bio *bio;
818
f1970baf 819 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
1da177e4
LT
820
821 if (IS_ERR(bio))
822 return bio;
823
824 /*
825 * subtle -- if __bio_map_user() ended up bouncing a bio,
826 * it would normally disappear when its bi_end_io is run.
827 * however, we need it for the unmap, so grab an extra
828 * reference to it
829 */
830 bio_get(bio);
831
0e75f906 832 return bio;
1da177e4
LT
833}
834
835static void __bio_unmap_user(struct bio *bio)
836{
837 struct bio_vec *bvec;
838 int i;
839
840 /*
841 * make sure we dirty pages we wrote to
842 */
843 __bio_for_each_segment(bvec, bio, i, 0) {
844 if (bio_data_dir(bio) == READ)
845 set_page_dirty_lock(bvec->bv_page);
846
847 page_cache_release(bvec->bv_page);
848 }
849
850 bio_put(bio);
851}
852
853/**
854 * bio_unmap_user - unmap a bio
855 * @bio: the bio being unmapped
856 *
857 * Unmap a bio previously mapped by bio_map_user(). Must be called with
858 * a process context.
859 *
860 * bio_unmap_user() may sleep.
861 */
862void bio_unmap_user(struct bio *bio)
863{
864 __bio_unmap_user(bio);
865 bio_put(bio);
866}
867
6712ecf8 868static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 869{
b823825e 870 bio_put(bio);
b823825e
JA
871}
872
873
165125e1 874static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 875 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
876{
877 unsigned long kaddr = (unsigned long)data;
878 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
879 unsigned long start = kaddr >> PAGE_SHIFT;
880 const int nr_pages = end - start;
881 int offset, i;
882 struct bio *bio;
883
884 bio = bio_alloc(gfp_mask, nr_pages);
885 if (!bio)
886 return ERR_PTR(-ENOMEM);
887
888 offset = offset_in_page(kaddr);
889 for (i = 0; i < nr_pages; i++) {
890 unsigned int bytes = PAGE_SIZE - offset;
891
892 if (len <= 0)
893 break;
894
895 if (bytes > len)
896 bytes = len;
897
defd94b7
MC
898 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
899 offset) < bytes)
df46b9a4
MC
900 break;
901
902 data += bytes;
903 len -= bytes;
904 offset = 0;
905 }
906
b823825e 907 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
908 return bio;
909}
910
911/**
912 * bio_map_kern - map kernel address into bio
165125e1 913 * @q: the struct request_queue for the bio
df46b9a4
MC
914 * @data: pointer to buffer to map
915 * @len: length in bytes
916 * @gfp_mask: allocation flags for bio allocation
917 *
918 * Map the kernel address into a bio suitable for io to a block
919 * device. Returns an error pointer in case of error.
920 */
165125e1 921struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 922 gfp_t gfp_mask)
df46b9a4
MC
923{
924 struct bio *bio;
925
926 bio = __bio_map_kern(q, data, len, gfp_mask);
927 if (IS_ERR(bio))
928 return bio;
929
930 if (bio->bi_size == len)
931 return bio;
932
933 /*
934 * Don't support partial mappings.
935 */
936 bio_put(bio);
937 return ERR_PTR(-EINVAL);
938}
939
68154e90
FT
940static void bio_copy_kern_endio(struct bio *bio, int err)
941{
942 struct bio_vec *bvec;
943 const int read = bio_data_dir(bio) == READ;
76029ff3 944 struct bio_map_data *bmd = bio->bi_private;
68154e90 945 int i;
76029ff3 946 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
947
948 __bio_for_each_segment(bvec, bio, i, 0) {
949 char *addr = page_address(bvec->bv_page);
76029ff3 950 int len = bmd->iovecs[i].bv_len;
68154e90
FT
951
952 if (read && !err)
76029ff3 953 memcpy(p, addr, len);
68154e90
FT
954
955 __free_page(bvec->bv_page);
76029ff3 956 p += len;
68154e90
FT
957 }
958
76029ff3 959 bio_free_map_data(bmd);
68154e90
FT
960 bio_put(bio);
961}
962
963/**
964 * bio_copy_kern - copy kernel address into bio
965 * @q: the struct request_queue for the bio
966 * @data: pointer to buffer to copy
967 * @len: length in bytes
968 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 969 * @reading: data direction is READ
68154e90
FT
970 *
971 * copy the kernel address into a bio suitable for io to a block
972 * device. Returns an error pointer in case of error.
973 */
974struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
975 gfp_t gfp_mask, int reading)
976{
977 unsigned long kaddr = (unsigned long)data;
978 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
979 unsigned long start = kaddr >> PAGE_SHIFT;
980 const int nr_pages = end - start;
981 struct bio *bio;
982 struct bio_vec *bvec;
76029ff3 983 struct bio_map_data *bmd;
68154e90 984 int i, ret;
76029ff3
FT
985 struct sg_iovec iov;
986
987 iov.iov_base = data;
988 iov.iov_len = len;
989
990 bmd = bio_alloc_map_data(nr_pages, 1, gfp_mask);
991 if (!bmd)
992 return ERR_PTR(-ENOMEM);
68154e90 993
76029ff3 994 ret = -ENOMEM;
68154e90
FT
995 bio = bio_alloc(gfp_mask, nr_pages);
996 if (!bio)
76029ff3 997 goto out_bmd;
68154e90
FT
998
999 while (len) {
1000 struct page *page;
1001 unsigned int bytes = PAGE_SIZE;
1002
1003 if (bytes > len)
1004 bytes = len;
1005
1006 page = alloc_page(q->bounce_gfp | gfp_mask);
1007 if (!page) {
1008 ret = -ENOMEM;
1009 goto cleanup;
1010 }
1011
1012 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) {
1013 ret = -EINVAL;
1014 goto cleanup;
1015 }
1016
1017 len -= bytes;
1018 }
1019
1020 if (!reading) {
1021 void *p = data;
1022
1023 bio_for_each_segment(bvec, bio, i) {
1024 char *addr = page_address(bvec->bv_page);
1025
1026 memcpy(addr, p, bvec->bv_len);
1027 p += bvec->bv_len;
1028 }
1029 }
1030
76029ff3 1031 bio->bi_private = bmd;
68154e90 1032 bio->bi_end_io = bio_copy_kern_endio;
76029ff3
FT
1033
1034 bio_set_map_data(bmd, bio, &iov, 1);
68154e90
FT
1035 return bio;
1036cleanup:
1037 bio_for_each_segment(bvec, bio, i)
1038 __free_page(bvec->bv_page);
1039
1040 bio_put(bio);
76029ff3
FT
1041out_bmd:
1042 bio_free_map_data(bmd);
68154e90
FT
1043
1044 return ERR_PTR(ret);
1045}
1046
1da177e4
LT
1047/*
1048 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1049 * for performing direct-IO in BIOs.
1050 *
1051 * The problem is that we cannot run set_page_dirty() from interrupt context
1052 * because the required locks are not interrupt-safe. So what we can do is to
1053 * mark the pages dirty _before_ performing IO. And in interrupt context,
1054 * check that the pages are still dirty. If so, fine. If not, redirty them
1055 * in process context.
1056 *
1057 * We special-case compound pages here: normally this means reads into hugetlb
1058 * pages. The logic in here doesn't really work right for compound pages
1059 * because the VM does not uniformly chase down the head page in all cases.
1060 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1061 * handle them at all. So we skip compound pages here at an early stage.
1062 *
1063 * Note that this code is very hard to test under normal circumstances because
1064 * direct-io pins the pages with get_user_pages(). This makes
1065 * is_page_cache_freeable return false, and the VM will not clean the pages.
1066 * But other code (eg, pdflush) could clean the pages if they are mapped
1067 * pagecache.
1068 *
1069 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1070 * deferred bio dirtying paths.
1071 */
1072
1073/*
1074 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1075 */
1076void bio_set_pages_dirty(struct bio *bio)
1077{
1078 struct bio_vec *bvec = bio->bi_io_vec;
1079 int i;
1080
1081 for (i = 0; i < bio->bi_vcnt; i++) {
1082 struct page *page = bvec[i].bv_page;
1083
1084 if (page && !PageCompound(page))
1085 set_page_dirty_lock(page);
1086 }
1087}
1088
86b6c7a7 1089static void bio_release_pages(struct bio *bio)
1da177e4
LT
1090{
1091 struct bio_vec *bvec = bio->bi_io_vec;
1092 int i;
1093
1094 for (i = 0; i < bio->bi_vcnt; i++) {
1095 struct page *page = bvec[i].bv_page;
1096
1097 if (page)
1098 put_page(page);
1099 }
1100}
1101
1102/*
1103 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1104 * If they are, then fine. If, however, some pages are clean then they must
1105 * have been written out during the direct-IO read. So we take another ref on
1106 * the BIO and the offending pages and re-dirty the pages in process context.
1107 *
1108 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1109 * here on. It will run one page_cache_release() against each page and will
1110 * run one bio_put() against the BIO.
1111 */
1112
65f27f38 1113static void bio_dirty_fn(struct work_struct *work);
1da177e4 1114
65f27f38 1115static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1116static DEFINE_SPINLOCK(bio_dirty_lock);
1117static struct bio *bio_dirty_list;
1118
1119/*
1120 * This runs in process context
1121 */
65f27f38 1122static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1123{
1124 unsigned long flags;
1125 struct bio *bio;
1126
1127 spin_lock_irqsave(&bio_dirty_lock, flags);
1128 bio = bio_dirty_list;
1129 bio_dirty_list = NULL;
1130 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1131
1132 while (bio) {
1133 struct bio *next = bio->bi_private;
1134
1135 bio_set_pages_dirty(bio);
1136 bio_release_pages(bio);
1137 bio_put(bio);
1138 bio = next;
1139 }
1140}
1141
1142void bio_check_pages_dirty(struct bio *bio)
1143{
1144 struct bio_vec *bvec = bio->bi_io_vec;
1145 int nr_clean_pages = 0;
1146 int i;
1147
1148 for (i = 0; i < bio->bi_vcnt; i++) {
1149 struct page *page = bvec[i].bv_page;
1150
1151 if (PageDirty(page) || PageCompound(page)) {
1152 page_cache_release(page);
1153 bvec[i].bv_page = NULL;
1154 } else {
1155 nr_clean_pages++;
1156 }
1157 }
1158
1159 if (nr_clean_pages) {
1160 unsigned long flags;
1161
1162 spin_lock_irqsave(&bio_dirty_lock, flags);
1163 bio->bi_private = bio_dirty_list;
1164 bio_dirty_list = bio;
1165 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1166 schedule_work(&bio_dirty_work);
1167 } else {
1168 bio_put(bio);
1169 }
1170}
1171
1172/**
1173 * bio_endio - end I/O on a bio
1174 * @bio: bio
1da177e4
LT
1175 * @error: error, if any
1176 *
1177 * Description:
6712ecf8 1178 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1179 * preferred way to end I/O on a bio, it takes care of clearing
1180 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1181 * established -Exxxx (-EIO, for instance) error values in case
1182 * something went wrong. Noone should call bi_end_io() directly on a
1183 * bio unless they own it and thus know that it has an end_io
1184 * function.
1da177e4 1185 **/
6712ecf8 1186void bio_endio(struct bio *bio, int error)
1da177e4
LT
1187{
1188 if (error)
1189 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1190 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1191 error = -EIO;
1da177e4 1192
5bb23a68 1193 if (bio->bi_end_io)
6712ecf8 1194 bio->bi_end_io(bio, error);
1da177e4
LT
1195}
1196
1197void bio_pair_release(struct bio_pair *bp)
1198{
1199 if (atomic_dec_and_test(&bp->cnt)) {
1200 struct bio *master = bp->bio1.bi_private;
1201
6712ecf8 1202 bio_endio(master, bp->error);
1da177e4
LT
1203 mempool_free(bp, bp->bio2.bi_private);
1204 }
1205}
1206
6712ecf8 1207static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1208{
1209 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1210
1211 if (err)
1212 bp->error = err;
1213
1da177e4 1214 bio_pair_release(bp);
1da177e4
LT
1215}
1216
6712ecf8 1217static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1218{
1219 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1220
1221 if (err)
1222 bp->error = err;
1223
1da177e4 1224 bio_pair_release(bp);
1da177e4
LT
1225}
1226
1227/*
1228 * split a bio - only worry about a bio with a single page
1229 * in it's iovec
1230 */
1231struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1232{
1233 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1234
1235 if (!bp)
1236 return bp;
1237
2056a782
JA
1238 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1239 bi->bi_sector + first_sectors);
1240
1da177e4
LT
1241 BUG_ON(bi->bi_vcnt != 1);
1242 BUG_ON(bi->bi_idx != 0);
1243 atomic_set(&bp->cnt, 3);
1244 bp->error = 0;
1245 bp->bio1 = *bi;
1246 bp->bio2 = *bi;
1247 bp->bio2.bi_sector += first_sectors;
1248 bp->bio2.bi_size -= first_sectors << 9;
1249 bp->bio1.bi_size = first_sectors << 9;
1250
1251 bp->bv1 = bi->bi_io_vec[0];
1252 bp->bv2 = bi->bi_io_vec[0];
1253 bp->bv2.bv_offset += first_sectors << 9;
1254 bp->bv2.bv_len -= first_sectors << 9;
1255 bp->bv1.bv_len = first_sectors << 9;
1256
1257 bp->bio1.bi_io_vec = &bp->bv1;
1258 bp->bio2.bi_io_vec = &bp->bv2;
1259
a2eb0c10
N
1260 bp->bio1.bi_max_vecs = 1;
1261 bp->bio2.bi_max_vecs = 1;
1262
1da177e4
LT
1263 bp->bio1.bi_end_io = bio_pair_end_1;
1264 bp->bio2.bi_end_io = bio_pair_end_2;
1265
1266 bp->bio1.bi_private = bi;
1267 bp->bio2.bi_private = pool;
1268
7ba1ba12
MP
1269 if (bio_integrity(bi))
1270 bio_integrity_split(bi, bp, first_sectors);
1271
1da177e4
LT
1272 return bp;
1273}
1274
1da177e4
LT
1275
1276/*
1277 * create memory pools for biovec's in a bio_set.
1278 * use the global biovec slabs created for general use.
1279 */
5972511b 1280static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4
LT
1281{
1282 int i;
1283
1284 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1285 struct biovec_slab *bp = bvec_slabs + i;
1286 mempool_t **bvp = bs->bvec_pools + i;
1287
93d2341c 1288 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1289 if (!*bvp)
1290 return -ENOMEM;
1291 }
1292 return 0;
1293}
1294
1295static void biovec_free_pools(struct bio_set *bs)
1296{
1297 int i;
1298
1299 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1300 mempool_t *bvp = bs->bvec_pools[i];
1301
1302 if (bvp)
1303 mempool_destroy(bvp);
1304 }
1305
1306}
1307
1308void bioset_free(struct bio_set *bs)
1309{
1310 if (bs->bio_pool)
1311 mempool_destroy(bs->bio_pool);
1312
7ba1ba12 1313 bioset_integrity_free(bs);
1da177e4
LT
1314 biovec_free_pools(bs);
1315
1316 kfree(bs);
1317}
1318
5972511b 1319struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1da177e4 1320{
11b0b5ab 1321 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1322
1323 if (!bs)
1324 return NULL;
1325
93d2341c 1326 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1da177e4
LT
1327 if (!bs->bio_pool)
1328 goto bad;
1329
7ba1ba12
MP
1330 if (bioset_integrity_create(bs, bio_pool_size))
1331 goto bad;
1332
5972511b 1333 if (!biovec_create_pools(bs, bvec_pool_size))
1da177e4
LT
1334 return bs;
1335
1336bad:
1337 bioset_free(bs);
1338 return NULL;
1339}
1340
1341static void __init biovec_init_slabs(void)
1342{
1343 int i;
1344
1345 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1346 int size;
1347 struct biovec_slab *bvs = bvec_slabs + i;
1348
1349 size = bvs->nr_vecs * sizeof(struct bio_vec);
1350 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1351 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1352 }
1353}
1354
1355static int __init init_bio(void)
1356{
0a31bd5f 1357 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4 1358
7ba1ba12 1359 bio_integrity_init_slab();
1da177e4
LT
1360 biovec_init_slabs();
1361
5972511b 1362 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1da177e4
LT
1363 if (!fs_bio_set)
1364 panic("bio: can't allocate bios\n");
1365
0eaae62a
MD
1366 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1367 sizeof(struct bio_pair));
1da177e4
LT
1368 if (!bio_split_pool)
1369 panic("bio: can't create split pool\n");
1370
1371 return 0;
1372}
1373
1374subsys_initcall(init_bio);
1375
1376EXPORT_SYMBOL(bio_alloc);
1377EXPORT_SYMBOL(bio_put);
3676347a 1378EXPORT_SYMBOL(bio_free);
1da177e4
LT
1379EXPORT_SYMBOL(bio_endio);
1380EXPORT_SYMBOL(bio_init);
1381EXPORT_SYMBOL(__bio_clone);
1382EXPORT_SYMBOL(bio_clone);
1383EXPORT_SYMBOL(bio_phys_segments);
1384EXPORT_SYMBOL(bio_hw_segments);
1385EXPORT_SYMBOL(bio_add_page);
6e68af66 1386EXPORT_SYMBOL(bio_add_pc_page);
1da177e4 1387EXPORT_SYMBOL(bio_get_nr_vecs);
40044ce0
JA
1388EXPORT_SYMBOL(bio_map_user);
1389EXPORT_SYMBOL(bio_unmap_user);
df46b9a4 1390EXPORT_SYMBOL(bio_map_kern);
68154e90 1391EXPORT_SYMBOL(bio_copy_kern);
1da177e4
LT
1392EXPORT_SYMBOL(bio_pair_release);
1393EXPORT_SYMBOL(bio_split);
1394EXPORT_SYMBOL(bio_split_pool);
1395EXPORT_SYMBOL(bio_copy_user);
1396EXPORT_SYMBOL(bio_uncopy_user);
1397EXPORT_SYMBOL(bioset_create);
1398EXPORT_SYMBOL(bioset_free);
1399EXPORT_SYMBOL(bio_alloc_bioset);