]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/spi/spi.c
Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[net-next-2.6.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d
DB
1/*
2 * spi.c - SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
8ae12a0d
DB
21#include <linux/kernel.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/cache.h>
94040828 25#include <linux/mutex.h>
2b7a32f7 26#include <linux/of_device.h>
5a0e3ad6 27#include <linux/slab.h>
e0626e38 28#include <linux/mod_devicetable.h>
8ae12a0d 29#include <linux/spi/spi.h>
12b15e83 30#include <linux/of_spi.h>
8ae12a0d
DB
31
32
b885244e
DB
33/* SPI bustype and spi_master class are registered after board init code
34 * provides the SPI device tables, ensuring that both are present by the
35 * time controller driver registration causes spi_devices to "enumerate".
8ae12a0d
DB
36 */
37static void spidev_release(struct device *dev)
38{
0ffa0285 39 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
40
41 /* spi masters may cleanup for released devices */
42 if (spi->master->cleanup)
43 spi->master->cleanup(spi);
44
0c868461 45 spi_master_put(spi->master);
07a389fe 46 kfree(spi);
8ae12a0d
DB
47}
48
49static ssize_t
50modalias_show(struct device *dev, struct device_attribute *a, char *buf)
51{
52 const struct spi_device *spi = to_spi_device(dev);
53
35f74fca 54 return sprintf(buf, "%s\n", spi->modalias);
8ae12a0d
DB
55}
56
57static struct device_attribute spi_dev_attrs[] = {
58 __ATTR_RO(modalias),
59 __ATTR_NULL,
60};
61
62/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
63 * and the sysfs version makes coldplug work too.
64 */
65
75368bf6
AV
66static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
67 const struct spi_device *sdev)
68{
69 while (id->name[0]) {
70 if (!strcmp(sdev->modalias, id->name))
71 return id;
72 id++;
73 }
74 return NULL;
75}
76
77const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
78{
79 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
80
81 return spi_match_id(sdrv->id_table, sdev);
82}
83EXPORT_SYMBOL_GPL(spi_get_device_id);
84
8ae12a0d
DB
85static int spi_match_device(struct device *dev, struct device_driver *drv)
86{
87 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
88 const struct spi_driver *sdrv = to_spi_driver(drv);
89
2b7a32f7
SA
90 /* Attempt an OF style match */
91 if (of_driver_match_device(dev, drv))
92 return 1;
93
75368bf6
AV
94 if (sdrv->id_table)
95 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 96
35f74fca 97 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
98}
99
7eff2e7a 100static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
101{
102 const struct spi_device *spi = to_spi_device(dev);
103
e0626e38 104 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
105 return 0;
106}
107
108#ifdef CONFIG_PM
109
8ae12a0d
DB
110static int spi_suspend(struct device *dev, pm_message_t message)
111{
3c72426f 112 int value = 0;
b885244e 113 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 114
8ae12a0d 115 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
116 if (drv) {
117 if (drv->suspend)
118 value = drv->suspend(to_spi_device(dev), message);
119 else
120 dev_dbg(dev, "... can't suspend\n");
121 }
8ae12a0d
DB
122 return value;
123}
124
125static int spi_resume(struct device *dev)
126{
3c72426f 127 int value = 0;
b885244e 128 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 129
8ae12a0d 130 /* resume may restart the i/o queue */
3c72426f
DB
131 if (drv) {
132 if (drv->resume)
133 value = drv->resume(to_spi_device(dev));
134 else
135 dev_dbg(dev, "... can't resume\n");
136 }
8ae12a0d
DB
137 return value;
138}
139
140#else
141#define spi_suspend NULL
142#define spi_resume NULL
143#endif
144
145struct bus_type spi_bus_type = {
146 .name = "spi",
147 .dev_attrs = spi_dev_attrs,
148 .match = spi_match_device,
149 .uevent = spi_uevent,
150 .suspend = spi_suspend,
151 .resume = spi_resume,
152};
153EXPORT_SYMBOL_GPL(spi_bus_type);
154
b885244e
DB
155
156static int spi_drv_probe(struct device *dev)
157{
158 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
159
160 return sdrv->probe(to_spi_device(dev));
161}
162
163static int spi_drv_remove(struct device *dev)
164{
165 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
166
167 return sdrv->remove(to_spi_device(dev));
168}
169
170static void spi_drv_shutdown(struct device *dev)
171{
172 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
173
174 sdrv->shutdown(to_spi_device(dev));
175}
176
33e34dc6
DB
177/**
178 * spi_register_driver - register a SPI driver
179 * @sdrv: the driver to register
180 * Context: can sleep
181 */
b885244e
DB
182int spi_register_driver(struct spi_driver *sdrv)
183{
184 sdrv->driver.bus = &spi_bus_type;
185 if (sdrv->probe)
186 sdrv->driver.probe = spi_drv_probe;
187 if (sdrv->remove)
188 sdrv->driver.remove = spi_drv_remove;
189 if (sdrv->shutdown)
190 sdrv->driver.shutdown = spi_drv_shutdown;
191 return driver_register(&sdrv->driver);
192}
193EXPORT_SYMBOL_GPL(spi_register_driver);
194
8ae12a0d
DB
195/*-------------------------------------------------------------------------*/
196
197/* SPI devices should normally not be created by SPI device drivers; that
198 * would make them board-specific. Similarly with SPI master drivers.
199 * Device registration normally goes into like arch/.../mach.../board-YYY.c
200 * with other readonly (flashable) information about mainboard devices.
201 */
202
203struct boardinfo {
204 struct list_head list;
205 unsigned n_board_info;
206 struct spi_board_info board_info[0];
207};
208
209static LIST_HEAD(board_list);
94040828 210static DEFINE_MUTEX(board_lock);
8ae12a0d 211
dc87c98e
GL
212/**
213 * spi_alloc_device - Allocate a new SPI device
214 * @master: Controller to which device is connected
215 * Context: can sleep
216 *
217 * Allows a driver to allocate and initialize a spi_device without
218 * registering it immediately. This allows a driver to directly
219 * fill the spi_device with device parameters before calling
220 * spi_add_device() on it.
221 *
222 * Caller is responsible to call spi_add_device() on the returned
223 * spi_device structure to add it to the SPI master. If the caller
224 * needs to discard the spi_device without adding it, then it should
225 * call spi_dev_put() on it.
226 *
227 * Returns a pointer to the new device, or NULL.
228 */
229struct spi_device *spi_alloc_device(struct spi_master *master)
230{
231 struct spi_device *spi;
232 struct device *dev = master->dev.parent;
233
234 if (!spi_master_get(master))
235 return NULL;
236
237 spi = kzalloc(sizeof *spi, GFP_KERNEL);
238 if (!spi) {
239 dev_err(dev, "cannot alloc spi_device\n");
240 spi_master_put(master);
241 return NULL;
242 }
243
244 spi->master = master;
245 spi->dev.parent = dev;
246 spi->dev.bus = &spi_bus_type;
247 spi->dev.release = spidev_release;
248 device_initialize(&spi->dev);
249 return spi;
250}
251EXPORT_SYMBOL_GPL(spi_alloc_device);
252
253/**
254 * spi_add_device - Add spi_device allocated with spi_alloc_device
255 * @spi: spi_device to register
256 *
257 * Companion function to spi_alloc_device. Devices allocated with
258 * spi_alloc_device can be added onto the spi bus with this function.
259 *
e48880e0 260 * Returns 0 on success; negative errno on failure
dc87c98e
GL
261 */
262int spi_add_device(struct spi_device *spi)
263{
e48880e0 264 static DEFINE_MUTEX(spi_add_lock);
dc87c98e 265 struct device *dev = spi->master->dev.parent;
8ec130a0 266 struct device *d;
dc87c98e
GL
267 int status;
268
269 /* Chipselects are numbered 0..max; validate. */
270 if (spi->chip_select >= spi->master->num_chipselect) {
271 dev_err(dev, "cs%d >= max %d\n",
272 spi->chip_select,
273 spi->master->num_chipselect);
274 return -EINVAL;
275 }
276
277 /* Set the bus ID string */
35f74fca 278 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
dc87c98e
GL
279 spi->chip_select);
280
e48880e0
DB
281
282 /* We need to make sure there's no other device with this
283 * chipselect **BEFORE** we call setup(), else we'll trash
284 * its configuration. Lock against concurrent add() calls.
285 */
286 mutex_lock(&spi_add_lock);
287
8ec130a0
RT
288 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
289 if (d != NULL) {
e48880e0
DB
290 dev_err(dev, "chipselect %d already in use\n",
291 spi->chip_select);
8ec130a0 292 put_device(d);
e48880e0
DB
293 status = -EBUSY;
294 goto done;
295 }
296
297 /* Drivers may modify this initial i/o setup, but will
298 * normally rely on the device being setup. Devices
299 * using SPI_CS_HIGH can't coexist well otherwise...
300 */
7d077197 301 status = spi_setup(spi);
dc87c98e
GL
302 if (status < 0) {
303 dev_err(dev, "can't %s %s, status %d\n",
35f74fca 304 "setup", dev_name(&spi->dev), status);
e48880e0 305 goto done;
dc87c98e
GL
306 }
307
e48880e0 308 /* Device may be bound to an active driver when this returns */
dc87c98e 309 status = device_add(&spi->dev);
e48880e0 310 if (status < 0)
dc87c98e 311 dev_err(dev, "can't %s %s, status %d\n",
35f74fca 312 "add", dev_name(&spi->dev), status);
e48880e0 313 else
35f74fca 314 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 315
e48880e0
DB
316done:
317 mutex_unlock(&spi_add_lock);
318 return status;
dc87c98e
GL
319}
320EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 321
33e34dc6
DB
322/**
323 * spi_new_device - instantiate one new SPI device
324 * @master: Controller to which device is connected
325 * @chip: Describes the SPI device
326 * Context: can sleep
327 *
328 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
329 * after board init creates the hard-wired devices. Some development
330 * platforms may not be able to use spi_register_board_info though, and
331 * this is exported so that for example a USB or parport based adapter
332 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
333 *
334 * Returns the new device, or NULL.
8ae12a0d 335 */
e9d5a461
AB
336struct spi_device *spi_new_device(struct spi_master *master,
337 struct spi_board_info *chip)
8ae12a0d
DB
338{
339 struct spi_device *proxy;
8ae12a0d
DB
340 int status;
341
082c8cb4
DB
342 /* NOTE: caller did any chip->bus_num checks necessary.
343 *
344 * Also, unless we change the return value convention to use
345 * error-or-pointer (not NULL-or-pointer), troubleshootability
346 * suggests syslogged diagnostics are best here (ugh).
347 */
348
dc87c98e
GL
349 proxy = spi_alloc_device(master);
350 if (!proxy)
8ae12a0d
DB
351 return NULL;
352
102eb975
GL
353 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
354
8ae12a0d
DB
355 proxy->chip_select = chip->chip_select;
356 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 357 proxy->mode = chip->mode;
8ae12a0d 358 proxy->irq = chip->irq;
102eb975 359 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
360 proxy->dev.platform_data = (void *) chip->platform_data;
361 proxy->controller_data = chip->controller_data;
362 proxy->controller_state = NULL;
8ae12a0d 363
dc87c98e 364 status = spi_add_device(proxy);
8ae12a0d 365 if (status < 0) {
dc87c98e
GL
366 spi_dev_put(proxy);
367 return NULL;
8ae12a0d
DB
368 }
369
8ae12a0d
DB
370 return proxy;
371}
372EXPORT_SYMBOL_GPL(spi_new_device);
373
33e34dc6
DB
374/**
375 * spi_register_board_info - register SPI devices for a given board
376 * @info: array of chip descriptors
377 * @n: how many descriptors are provided
378 * Context: can sleep
379 *
8ae12a0d
DB
380 * Board-specific early init code calls this (probably during arch_initcall)
381 * with segments of the SPI device table. Any device nodes are created later,
382 * after the relevant parent SPI controller (bus_num) is defined. We keep
383 * this table of devices forever, so that reloading a controller driver will
384 * not make Linux forget about these hard-wired devices.
385 *
386 * Other code can also call this, e.g. a particular add-on board might provide
387 * SPI devices through its expansion connector, so code initializing that board
388 * would naturally declare its SPI devices.
389 *
390 * The board info passed can safely be __initdata ... but be careful of
391 * any embedded pointers (platform_data, etc), they're copied as-is.
392 */
393int __init
394spi_register_board_info(struct spi_board_info const *info, unsigned n)
395{
396 struct boardinfo *bi;
397
b885244e 398 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
8ae12a0d
DB
399 if (!bi)
400 return -ENOMEM;
401 bi->n_board_info = n;
b885244e 402 memcpy(bi->board_info, info, n * sizeof *info);
8ae12a0d 403
94040828 404 mutex_lock(&board_lock);
8ae12a0d 405 list_add_tail(&bi->list, &board_list);
94040828 406 mutex_unlock(&board_lock);
8ae12a0d
DB
407 return 0;
408}
8ae12a0d
DB
409
410/* FIXME someone should add support for a __setup("spi", ...) that
411 * creates board info from kernel command lines
412 */
413
149a6501 414static void scan_boardinfo(struct spi_master *master)
8ae12a0d
DB
415{
416 struct boardinfo *bi;
8ae12a0d 417
94040828 418 mutex_lock(&board_lock);
8ae12a0d
DB
419 list_for_each_entry(bi, &board_list, list) {
420 struct spi_board_info *chip = bi->board_info;
421 unsigned n;
422
423 for (n = bi->n_board_info; n > 0; n--, chip++) {
424 if (chip->bus_num != master->bus_num)
425 continue;
082c8cb4
DB
426 /* NOTE: this relies on spi_new_device to
427 * issue diagnostics when given bogus inputs
8ae12a0d 428 */
8ae12a0d
DB
429 (void) spi_new_device(master, chip);
430 }
431 }
94040828 432 mutex_unlock(&board_lock);
8ae12a0d
DB
433}
434
435/*-------------------------------------------------------------------------*/
436
49dce689 437static void spi_master_release(struct device *dev)
8ae12a0d
DB
438{
439 struct spi_master *master;
440
49dce689 441 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
442 kfree(master);
443}
444
445static struct class spi_master_class = {
446 .name = "spi_master",
447 .owner = THIS_MODULE,
49dce689 448 .dev_release = spi_master_release,
8ae12a0d
DB
449};
450
451
452/**
453 * spi_alloc_master - allocate SPI master controller
454 * @dev: the controller, possibly using the platform_bus
33e34dc6 455 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 456 * memory is in the driver_data field of the returned device,
0c868461 457 * accessible with spi_master_get_devdata().
33e34dc6 458 * Context: can sleep
8ae12a0d
DB
459 *
460 * This call is used only by SPI master controller drivers, which are the
461 * only ones directly touching chip registers. It's how they allocate
ba1a0513 462 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
463 *
464 * This must be called from context that can sleep. It returns the SPI
465 * master structure on success, else NULL.
466 *
467 * The caller is responsible for assigning the bus number and initializing
ba1a0513 468 * the master's methods before calling spi_register_master(); and (after errors
0c868461 469 * adding the device) calling spi_master_put() to prevent a memory leak.
8ae12a0d 470 */
e9d5a461 471struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
472{
473 struct spi_master *master;
474
0c868461
DB
475 if (!dev)
476 return NULL;
477
e94b1766 478 master = kzalloc(size + sizeof *master, GFP_KERNEL);
8ae12a0d
DB
479 if (!master)
480 return NULL;
481
49dce689
TJ
482 device_initialize(&master->dev);
483 master->dev.class = &spi_master_class;
484 master->dev.parent = get_device(dev);
0c868461 485 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
486
487 return master;
488}
489EXPORT_SYMBOL_GPL(spi_alloc_master);
490
491/**
492 * spi_register_master - register SPI master controller
493 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 494 * Context: can sleep
8ae12a0d
DB
495 *
496 * SPI master controllers connect to their drivers using some non-SPI bus,
497 * such as the platform bus. The final stage of probe() in that code
498 * includes calling spi_register_master() to hook up to this SPI bus glue.
499 *
500 * SPI controllers use board specific (often SOC specific) bus numbers,
501 * and board-specific addressing for SPI devices combines those numbers
502 * with chip select numbers. Since SPI does not directly support dynamic
503 * device identification, boards need configuration tables telling which
504 * chip is at which address.
505 *
506 * This must be called from context that can sleep. It returns zero on
507 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
508 * After a successful return, the caller is responsible for calling
509 * spi_unregister_master().
8ae12a0d 510 */
e9d5a461 511int spi_register_master(struct spi_master *master)
8ae12a0d 512{
e44a45ae 513 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 514 struct device *dev = master->dev.parent;
8ae12a0d
DB
515 int status = -ENODEV;
516 int dynamic = 0;
517
0c868461
DB
518 if (!dev)
519 return -ENODEV;
520
082c8cb4
DB
521 /* even if it's just one always-selected device, there must
522 * be at least one chipselect
523 */
524 if (master->num_chipselect == 0)
525 return -EINVAL;
526
8ae12a0d 527 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 528 if (master->bus_num < 0) {
082c8cb4
DB
529 /* FIXME switch to an IDR based scheme, something like
530 * I2C now uses, so we can't run out of "dynamic" IDs
531 */
8ae12a0d 532 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 533 dynamic = 1;
8ae12a0d
DB
534 }
535
cf32b71e
ES
536 spin_lock_init(&master->bus_lock_spinlock);
537 mutex_init(&master->bus_lock_mutex);
538 master->bus_lock_flag = 0;
539
8ae12a0d
DB
540 /* register the device, then userspace will see it.
541 * registration fails if the bus ID is in use.
542 */
35f74fca 543 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 544 status = device_add(&master->dev);
b885244e 545 if (status < 0)
8ae12a0d 546 goto done;
35f74fca 547 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
548 dynamic ? " (dynamic)" : "");
549
550 /* populate children from any spi device tables */
551 scan_boardinfo(master);
552 status = 0;
12b15e83
AG
553
554 /* Register devices from the device tree */
555 of_register_spi_devices(master);
8ae12a0d
DB
556done:
557 return status;
558}
559EXPORT_SYMBOL_GPL(spi_register_master);
560
561
34860089 562static int __unregister(struct device *dev, void *null)
8ae12a0d 563{
34860089 564 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
565 return 0;
566}
567
568/**
569 * spi_unregister_master - unregister SPI master controller
570 * @master: the master being unregistered
33e34dc6 571 * Context: can sleep
8ae12a0d
DB
572 *
573 * This call is used only by SPI master controller drivers, which are the
574 * only ones directly touching chip registers.
575 *
576 * This must be called from context that can sleep.
577 */
578void spi_unregister_master(struct spi_master *master)
579{
89fc9a1a
JG
580 int dummy;
581
34860089 582 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 583 device_unregister(&master->dev);
8ae12a0d
DB
584}
585EXPORT_SYMBOL_GPL(spi_unregister_master);
586
5ed2c832
DY
587static int __spi_master_match(struct device *dev, void *data)
588{
589 struct spi_master *m;
590 u16 *bus_num = data;
591
592 m = container_of(dev, struct spi_master, dev);
593 return m->bus_num == *bus_num;
594}
595
8ae12a0d
DB
596/**
597 * spi_busnum_to_master - look up master associated with bus_num
598 * @bus_num: the master's bus number
33e34dc6 599 * Context: can sleep
8ae12a0d
DB
600 *
601 * This call may be used with devices that are registered after
602 * arch init time. It returns a refcounted pointer to the relevant
603 * spi_master (which the caller must release), or NULL if there is
604 * no such master registered.
605 */
606struct spi_master *spi_busnum_to_master(u16 bus_num)
607{
49dce689 608 struct device *dev;
1e9a51dc 609 struct spi_master *master = NULL;
5ed2c832 610
695794ae 611 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
612 __spi_master_match);
613 if (dev)
614 master = container_of(dev, struct spi_master, dev);
615 /* reference got in class_find_device */
1e9a51dc 616 return master;
8ae12a0d
DB
617}
618EXPORT_SYMBOL_GPL(spi_busnum_to_master);
619
620
621/*-------------------------------------------------------------------------*/
622
7d077197
DB
623/* Core methods for SPI master protocol drivers. Some of the
624 * other core methods are currently defined as inline functions.
625 */
626
627/**
628 * spi_setup - setup SPI mode and clock rate
629 * @spi: the device whose settings are being modified
630 * Context: can sleep, and no requests are queued to the device
631 *
632 * SPI protocol drivers may need to update the transfer mode if the
633 * device doesn't work with its default. They may likewise need
634 * to update clock rates or word sizes from initial values. This function
635 * changes those settings, and must be called from a context that can sleep.
636 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
637 * effect the next time the device is selected and data is transferred to
638 * or from it. When this function returns, the spi device is deselected.
639 *
640 * Note that this call will fail if the protocol driver specifies an option
641 * that the underlying controller or its driver does not support. For
642 * example, not all hardware supports wire transfers using nine bit words,
643 * LSB-first wire encoding, or active-high chipselects.
644 */
645int spi_setup(struct spi_device *spi)
646{
e7db06b5 647 unsigned bad_bits;
7d077197
DB
648 int status;
649
e7db06b5
DB
650 /* help drivers fail *cleanly* when they need options
651 * that aren't supported with their current master
652 */
653 bad_bits = spi->mode & ~spi->master->mode_bits;
654 if (bad_bits) {
655 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
656 bad_bits);
657 return -EINVAL;
658 }
659
7d077197
DB
660 if (!spi->bits_per_word)
661 spi->bits_per_word = 8;
662
663 status = spi->master->setup(spi);
664
665 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
666 "%u bits/w, %u Hz max --> %d\n",
667 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
668 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
669 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
670 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
671 (spi->mode & SPI_LOOP) ? "loopback, " : "",
672 spi->bits_per_word, spi->max_speed_hz,
673 status);
674
675 return status;
676}
677EXPORT_SYMBOL_GPL(spi_setup);
678
cf32b71e
ES
679static int __spi_async(struct spi_device *spi, struct spi_message *message)
680{
681 struct spi_master *master = spi->master;
682
683 /* Half-duplex links include original MicroWire, and ones with
684 * only one data pin like SPI_3WIRE (switches direction) or where
685 * either MOSI or MISO is missing. They can also be caused by
686 * software limitations.
687 */
688 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
689 || (spi->mode & SPI_3WIRE)) {
690 struct spi_transfer *xfer;
691 unsigned flags = master->flags;
692
693 list_for_each_entry(xfer, &message->transfers, transfer_list) {
694 if (xfer->rx_buf && xfer->tx_buf)
695 return -EINVAL;
696 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
697 return -EINVAL;
698 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
699 return -EINVAL;
700 }
701 }
702
703 message->spi = spi;
704 message->status = -EINPROGRESS;
705 return master->transfer(spi, message);
706}
707
568d0697
DB
708/**
709 * spi_async - asynchronous SPI transfer
710 * @spi: device with which data will be exchanged
711 * @message: describes the data transfers, including completion callback
712 * Context: any (irqs may be blocked, etc)
713 *
714 * This call may be used in_irq and other contexts which can't sleep,
715 * as well as from task contexts which can sleep.
716 *
717 * The completion callback is invoked in a context which can't sleep.
718 * Before that invocation, the value of message->status is undefined.
719 * When the callback is issued, message->status holds either zero (to
720 * indicate complete success) or a negative error code. After that
721 * callback returns, the driver which issued the transfer request may
722 * deallocate the associated memory; it's no longer in use by any SPI
723 * core or controller driver code.
724 *
725 * Note that although all messages to a spi_device are handled in
726 * FIFO order, messages may go to different devices in other orders.
727 * Some device might be higher priority, or have various "hard" access
728 * time requirements, for example.
729 *
730 * On detection of any fault during the transfer, processing of
731 * the entire message is aborted, and the device is deselected.
732 * Until returning from the associated message completion callback,
733 * no other spi_message queued to that device will be processed.
734 * (This rule applies equally to all the synchronous transfer calls,
735 * which are wrappers around this core asynchronous primitive.)
736 */
737int spi_async(struct spi_device *spi, struct spi_message *message)
738{
739 struct spi_master *master = spi->master;
cf32b71e
ES
740 int ret;
741 unsigned long flags;
568d0697 742
cf32b71e 743 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 744
cf32b71e
ES
745 if (master->bus_lock_flag)
746 ret = -EBUSY;
747 else
748 ret = __spi_async(spi, message);
568d0697 749
cf32b71e
ES
750 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
751
752 return ret;
568d0697
DB
753}
754EXPORT_SYMBOL_GPL(spi_async);
755
cf32b71e
ES
756/**
757 * spi_async_locked - version of spi_async with exclusive bus usage
758 * @spi: device with which data will be exchanged
759 * @message: describes the data transfers, including completion callback
760 * Context: any (irqs may be blocked, etc)
761 *
762 * This call may be used in_irq and other contexts which can't sleep,
763 * as well as from task contexts which can sleep.
764 *
765 * The completion callback is invoked in a context which can't sleep.
766 * Before that invocation, the value of message->status is undefined.
767 * When the callback is issued, message->status holds either zero (to
768 * indicate complete success) or a negative error code. After that
769 * callback returns, the driver which issued the transfer request may
770 * deallocate the associated memory; it's no longer in use by any SPI
771 * core or controller driver code.
772 *
773 * Note that although all messages to a spi_device are handled in
774 * FIFO order, messages may go to different devices in other orders.
775 * Some device might be higher priority, or have various "hard" access
776 * time requirements, for example.
777 *
778 * On detection of any fault during the transfer, processing of
779 * the entire message is aborted, and the device is deselected.
780 * Until returning from the associated message completion callback,
781 * no other spi_message queued to that device will be processed.
782 * (This rule applies equally to all the synchronous transfer calls,
783 * which are wrappers around this core asynchronous primitive.)
784 */
785int spi_async_locked(struct spi_device *spi, struct spi_message *message)
786{
787 struct spi_master *master = spi->master;
788 int ret;
789 unsigned long flags;
790
791 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
792
793 ret = __spi_async(spi, message);
794
795 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
796
797 return ret;
798
799}
800EXPORT_SYMBOL_GPL(spi_async_locked);
801
7d077197
DB
802
803/*-------------------------------------------------------------------------*/
804
805/* Utility methods for SPI master protocol drivers, layered on
806 * top of the core. Some other utility methods are defined as
807 * inline functions.
808 */
809
5d870c8e
AM
810static void spi_complete(void *arg)
811{
812 complete(arg);
813}
814
cf32b71e
ES
815static int __spi_sync(struct spi_device *spi, struct spi_message *message,
816 int bus_locked)
817{
818 DECLARE_COMPLETION_ONSTACK(done);
819 int status;
820 struct spi_master *master = spi->master;
821
822 message->complete = spi_complete;
823 message->context = &done;
824
825 if (!bus_locked)
826 mutex_lock(&master->bus_lock_mutex);
827
828 status = spi_async_locked(spi, message);
829
830 if (!bus_locked)
831 mutex_unlock(&master->bus_lock_mutex);
832
833 if (status == 0) {
834 wait_for_completion(&done);
835 status = message->status;
836 }
837 message->context = NULL;
838 return status;
839}
840
8ae12a0d
DB
841/**
842 * spi_sync - blocking/synchronous SPI data transfers
843 * @spi: device with which data will be exchanged
844 * @message: describes the data transfers
33e34dc6 845 * Context: can sleep
8ae12a0d
DB
846 *
847 * This call may only be used from a context that may sleep. The sleep
848 * is non-interruptible, and has no timeout. Low-overhead controller
849 * drivers may DMA directly into and out of the message buffers.
850 *
851 * Note that the SPI device's chip select is active during the message,
852 * and then is normally disabled between messages. Drivers for some
853 * frequently-used devices may want to minimize costs of selecting a chip,
854 * by leaving it selected in anticipation that the next message will go
855 * to the same chip. (That may increase power usage.)
856 *
0c868461
DB
857 * Also, the caller is guaranteeing that the memory associated with the
858 * message will not be freed before this call returns.
859 *
9b938b74 860 * It returns zero on success, else a negative error code.
8ae12a0d
DB
861 */
862int spi_sync(struct spi_device *spi, struct spi_message *message)
863{
cf32b71e 864 return __spi_sync(spi, message, 0);
8ae12a0d
DB
865}
866EXPORT_SYMBOL_GPL(spi_sync);
867
cf32b71e
ES
868/**
869 * spi_sync_locked - version of spi_sync with exclusive bus usage
870 * @spi: device with which data will be exchanged
871 * @message: describes the data transfers
872 * Context: can sleep
873 *
874 * This call may only be used from a context that may sleep. The sleep
875 * is non-interruptible, and has no timeout. Low-overhead controller
876 * drivers may DMA directly into and out of the message buffers.
877 *
878 * This call should be used by drivers that require exclusive access to the
879 * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
880 * be released by a spi_bus_unlock call when the exclusive access is over.
881 *
882 * It returns zero on success, else a negative error code.
883 */
884int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
885{
886 return __spi_sync(spi, message, 1);
887}
888EXPORT_SYMBOL_GPL(spi_sync_locked);
889
890/**
891 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
892 * @master: SPI bus master that should be locked for exclusive bus access
893 * Context: can sleep
894 *
895 * This call may only be used from a context that may sleep. The sleep
896 * is non-interruptible, and has no timeout.
897 *
898 * This call should be used by drivers that require exclusive access to the
899 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
900 * exclusive access is over. Data transfer must be done by spi_sync_locked
901 * and spi_async_locked calls when the SPI bus lock is held.
902 *
903 * It returns zero on success, else a negative error code.
904 */
905int spi_bus_lock(struct spi_master *master)
906{
907 unsigned long flags;
908
909 mutex_lock(&master->bus_lock_mutex);
910
911 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
912 master->bus_lock_flag = 1;
913 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
914
915 /* mutex remains locked until spi_bus_unlock is called */
916
917 return 0;
918}
919EXPORT_SYMBOL_GPL(spi_bus_lock);
920
921/**
922 * spi_bus_unlock - release the lock for exclusive SPI bus usage
923 * @master: SPI bus master that was locked for exclusive bus access
924 * Context: can sleep
925 *
926 * This call may only be used from a context that may sleep. The sleep
927 * is non-interruptible, and has no timeout.
928 *
929 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
930 * call.
931 *
932 * It returns zero on success, else a negative error code.
933 */
934int spi_bus_unlock(struct spi_master *master)
935{
936 master->bus_lock_flag = 0;
937
938 mutex_unlock(&master->bus_lock_mutex);
939
940 return 0;
941}
942EXPORT_SYMBOL_GPL(spi_bus_unlock);
943
a9948b61
DB
944/* portable code must never pass more than 32 bytes */
945#define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
8ae12a0d
DB
946
947static u8 *buf;
948
949/**
950 * spi_write_then_read - SPI synchronous write followed by read
951 * @spi: device with which data will be exchanged
952 * @txbuf: data to be written (need not be dma-safe)
953 * @n_tx: size of txbuf, in bytes
27570497
JP
954 * @rxbuf: buffer into which data will be read (need not be dma-safe)
955 * @n_rx: size of rxbuf, in bytes
33e34dc6 956 * Context: can sleep
8ae12a0d
DB
957 *
958 * This performs a half duplex MicroWire style transaction with the
959 * device, sending txbuf and then reading rxbuf. The return value
960 * is zero for success, else a negative errno status code.
b885244e 961 * This call may only be used from a context that may sleep.
8ae12a0d 962 *
0c868461 963 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
964 * portable code should never use this for more than 32 bytes.
965 * Performance-sensitive or bulk transfer code should instead use
0c868461 966 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
967 */
968int spi_write_then_read(struct spi_device *spi,
969 const u8 *txbuf, unsigned n_tx,
970 u8 *rxbuf, unsigned n_rx)
971{
068f4070 972 static DEFINE_MUTEX(lock);
8ae12a0d
DB
973
974 int status;
975 struct spi_message message;
bdff549e 976 struct spi_transfer x[2];
8ae12a0d
DB
977 u8 *local_buf;
978
979 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
980 * (as a pure convenience thing), but we can keep heap costs
981 * out of the hot path ...
982 */
983 if ((n_tx + n_rx) > SPI_BUFSIZ)
984 return -EINVAL;
985
8275c642 986 spi_message_init(&message);
bdff549e
DB
987 memset(x, 0, sizeof x);
988 if (n_tx) {
989 x[0].len = n_tx;
990 spi_message_add_tail(&x[0], &message);
991 }
992 if (n_rx) {
993 x[1].len = n_rx;
994 spi_message_add_tail(&x[1], &message);
995 }
8275c642 996
8ae12a0d 997 /* ... unless someone else is using the pre-allocated buffer */
068f4070 998 if (!mutex_trylock(&lock)) {
8ae12a0d
DB
999 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1000 if (!local_buf)
1001 return -ENOMEM;
1002 } else
1003 local_buf = buf;
1004
8ae12a0d 1005 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
1006 x[0].tx_buf = local_buf;
1007 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
1008
1009 /* do the i/o */
8ae12a0d 1010 status = spi_sync(spi, &message);
9b938b74 1011 if (status == 0)
bdff549e 1012 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 1013
bdff549e 1014 if (x[0].tx_buf == buf)
068f4070 1015 mutex_unlock(&lock);
8ae12a0d
DB
1016 else
1017 kfree(local_buf);
1018
1019 return status;
1020}
1021EXPORT_SYMBOL_GPL(spi_write_then_read);
1022
1023/*-------------------------------------------------------------------------*/
1024
1025static int __init spi_init(void)
1026{
b885244e
DB
1027 int status;
1028
e94b1766 1029 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
1030 if (!buf) {
1031 status = -ENOMEM;
1032 goto err0;
1033 }
1034
1035 status = bus_register(&spi_bus_type);
1036 if (status < 0)
1037 goto err1;
8ae12a0d 1038
b885244e
DB
1039 status = class_register(&spi_master_class);
1040 if (status < 0)
1041 goto err2;
8ae12a0d 1042 return 0;
b885244e
DB
1043
1044err2:
1045 bus_unregister(&spi_bus_type);
1046err1:
1047 kfree(buf);
1048 buf = NULL;
1049err0:
1050 return status;
8ae12a0d 1051}
b885244e 1052
8ae12a0d
DB
1053/* board_info is normally registered in arch_initcall(),
1054 * but even essential drivers wait till later
b885244e
DB
1055 *
1056 * REVISIT only boardinfo really needs static linking. the rest (device and
1057 * driver registration) _could_ be dynamically linked (modular) ... costs
1058 * include needing to have boardinfo data structures be much more public.
8ae12a0d 1059 */
673c0c00 1060postcore_initcall(spi_init);
8ae12a0d 1061