]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/spi/spi.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[net-next-2.6.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d
DB
1/*
2 * spi.c - SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
8ae12a0d
DB
21#include <linux/kernel.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/cache.h>
94040828 25#include <linux/mutex.h>
5a0e3ad6 26#include <linux/slab.h>
e0626e38 27#include <linux/mod_devicetable.h>
8ae12a0d 28#include <linux/spi/spi.h>
12b15e83 29#include <linux/of_spi.h>
8ae12a0d
DB
30
31
b885244e
DB
32/* SPI bustype and spi_master class are registered after board init code
33 * provides the SPI device tables, ensuring that both are present by the
34 * time controller driver registration causes spi_devices to "enumerate".
8ae12a0d
DB
35 */
36static void spidev_release(struct device *dev)
37{
0ffa0285 38 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
39
40 /* spi masters may cleanup for released devices */
41 if (spi->master->cleanup)
42 spi->master->cleanup(spi);
43
0c868461 44 spi_master_put(spi->master);
07a389fe 45 kfree(spi);
8ae12a0d
DB
46}
47
48static ssize_t
49modalias_show(struct device *dev, struct device_attribute *a, char *buf)
50{
51 const struct spi_device *spi = to_spi_device(dev);
52
35f74fca 53 return sprintf(buf, "%s\n", spi->modalias);
8ae12a0d
DB
54}
55
56static struct device_attribute spi_dev_attrs[] = {
57 __ATTR_RO(modalias),
58 __ATTR_NULL,
59};
60
61/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
62 * and the sysfs version makes coldplug work too.
63 */
64
75368bf6
AV
65static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
66 const struct spi_device *sdev)
67{
68 while (id->name[0]) {
69 if (!strcmp(sdev->modalias, id->name))
70 return id;
71 id++;
72 }
73 return NULL;
74}
75
76const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
77{
78 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
79
80 return spi_match_id(sdrv->id_table, sdev);
81}
82EXPORT_SYMBOL_GPL(spi_get_device_id);
83
8ae12a0d
DB
84static int spi_match_device(struct device *dev, struct device_driver *drv)
85{
86 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
87 const struct spi_driver *sdrv = to_spi_driver(drv);
88
89 if (sdrv->id_table)
90 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 91
35f74fca 92 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
93}
94
7eff2e7a 95static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
96{
97 const struct spi_device *spi = to_spi_device(dev);
98
e0626e38 99 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
100 return 0;
101}
102
103#ifdef CONFIG_PM
104
8ae12a0d
DB
105static int spi_suspend(struct device *dev, pm_message_t message)
106{
3c72426f 107 int value = 0;
b885244e 108 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 109
8ae12a0d 110 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
111 if (drv) {
112 if (drv->suspend)
113 value = drv->suspend(to_spi_device(dev), message);
114 else
115 dev_dbg(dev, "... can't suspend\n");
116 }
8ae12a0d
DB
117 return value;
118}
119
120static int spi_resume(struct device *dev)
121{
3c72426f 122 int value = 0;
b885244e 123 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 124
8ae12a0d 125 /* resume may restart the i/o queue */
3c72426f
DB
126 if (drv) {
127 if (drv->resume)
128 value = drv->resume(to_spi_device(dev));
129 else
130 dev_dbg(dev, "... can't resume\n");
131 }
8ae12a0d
DB
132 return value;
133}
134
135#else
136#define spi_suspend NULL
137#define spi_resume NULL
138#endif
139
140struct bus_type spi_bus_type = {
141 .name = "spi",
142 .dev_attrs = spi_dev_attrs,
143 .match = spi_match_device,
144 .uevent = spi_uevent,
145 .suspend = spi_suspend,
146 .resume = spi_resume,
147};
148EXPORT_SYMBOL_GPL(spi_bus_type);
149
b885244e
DB
150
151static int spi_drv_probe(struct device *dev)
152{
153 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
154
155 return sdrv->probe(to_spi_device(dev));
156}
157
158static int spi_drv_remove(struct device *dev)
159{
160 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
161
162 return sdrv->remove(to_spi_device(dev));
163}
164
165static void spi_drv_shutdown(struct device *dev)
166{
167 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
168
169 sdrv->shutdown(to_spi_device(dev));
170}
171
33e34dc6
DB
172/**
173 * spi_register_driver - register a SPI driver
174 * @sdrv: the driver to register
175 * Context: can sleep
176 */
b885244e
DB
177int spi_register_driver(struct spi_driver *sdrv)
178{
179 sdrv->driver.bus = &spi_bus_type;
180 if (sdrv->probe)
181 sdrv->driver.probe = spi_drv_probe;
182 if (sdrv->remove)
183 sdrv->driver.remove = spi_drv_remove;
184 if (sdrv->shutdown)
185 sdrv->driver.shutdown = spi_drv_shutdown;
186 return driver_register(&sdrv->driver);
187}
188EXPORT_SYMBOL_GPL(spi_register_driver);
189
8ae12a0d
DB
190/*-------------------------------------------------------------------------*/
191
192/* SPI devices should normally not be created by SPI device drivers; that
193 * would make them board-specific. Similarly with SPI master drivers.
194 * Device registration normally goes into like arch/.../mach.../board-YYY.c
195 * with other readonly (flashable) information about mainboard devices.
196 */
197
198struct boardinfo {
199 struct list_head list;
200 unsigned n_board_info;
201 struct spi_board_info board_info[0];
202};
203
204static LIST_HEAD(board_list);
94040828 205static DEFINE_MUTEX(board_lock);
8ae12a0d 206
dc87c98e
GL
207/**
208 * spi_alloc_device - Allocate a new SPI device
209 * @master: Controller to which device is connected
210 * Context: can sleep
211 *
212 * Allows a driver to allocate and initialize a spi_device without
213 * registering it immediately. This allows a driver to directly
214 * fill the spi_device with device parameters before calling
215 * spi_add_device() on it.
216 *
217 * Caller is responsible to call spi_add_device() on the returned
218 * spi_device structure to add it to the SPI master. If the caller
219 * needs to discard the spi_device without adding it, then it should
220 * call spi_dev_put() on it.
221 *
222 * Returns a pointer to the new device, or NULL.
223 */
224struct spi_device *spi_alloc_device(struct spi_master *master)
225{
226 struct spi_device *spi;
227 struct device *dev = master->dev.parent;
228
229 if (!spi_master_get(master))
230 return NULL;
231
232 spi = kzalloc(sizeof *spi, GFP_KERNEL);
233 if (!spi) {
234 dev_err(dev, "cannot alloc spi_device\n");
235 spi_master_put(master);
236 return NULL;
237 }
238
239 spi->master = master;
240 spi->dev.parent = dev;
241 spi->dev.bus = &spi_bus_type;
242 spi->dev.release = spidev_release;
243 device_initialize(&spi->dev);
244 return spi;
245}
246EXPORT_SYMBOL_GPL(spi_alloc_device);
247
248/**
249 * spi_add_device - Add spi_device allocated with spi_alloc_device
250 * @spi: spi_device to register
251 *
252 * Companion function to spi_alloc_device. Devices allocated with
253 * spi_alloc_device can be added onto the spi bus with this function.
254 *
e48880e0 255 * Returns 0 on success; negative errno on failure
dc87c98e
GL
256 */
257int spi_add_device(struct spi_device *spi)
258{
e48880e0 259 static DEFINE_MUTEX(spi_add_lock);
dc87c98e 260 struct device *dev = spi->master->dev.parent;
8ec130a0 261 struct device *d;
dc87c98e
GL
262 int status;
263
264 /* Chipselects are numbered 0..max; validate. */
265 if (spi->chip_select >= spi->master->num_chipselect) {
266 dev_err(dev, "cs%d >= max %d\n",
267 spi->chip_select,
268 spi->master->num_chipselect);
269 return -EINVAL;
270 }
271
272 /* Set the bus ID string */
35f74fca 273 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
dc87c98e
GL
274 spi->chip_select);
275
e48880e0
DB
276
277 /* We need to make sure there's no other device with this
278 * chipselect **BEFORE** we call setup(), else we'll trash
279 * its configuration. Lock against concurrent add() calls.
280 */
281 mutex_lock(&spi_add_lock);
282
8ec130a0
RT
283 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
284 if (d != NULL) {
e48880e0
DB
285 dev_err(dev, "chipselect %d already in use\n",
286 spi->chip_select);
8ec130a0 287 put_device(d);
e48880e0
DB
288 status = -EBUSY;
289 goto done;
290 }
291
292 /* Drivers may modify this initial i/o setup, but will
293 * normally rely on the device being setup. Devices
294 * using SPI_CS_HIGH can't coexist well otherwise...
295 */
7d077197 296 status = spi_setup(spi);
dc87c98e
GL
297 if (status < 0) {
298 dev_err(dev, "can't %s %s, status %d\n",
35f74fca 299 "setup", dev_name(&spi->dev), status);
e48880e0 300 goto done;
dc87c98e
GL
301 }
302
e48880e0 303 /* Device may be bound to an active driver when this returns */
dc87c98e 304 status = device_add(&spi->dev);
e48880e0 305 if (status < 0)
dc87c98e 306 dev_err(dev, "can't %s %s, status %d\n",
35f74fca 307 "add", dev_name(&spi->dev), status);
e48880e0 308 else
35f74fca 309 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 310
e48880e0
DB
311done:
312 mutex_unlock(&spi_add_lock);
313 return status;
dc87c98e
GL
314}
315EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 316
33e34dc6
DB
317/**
318 * spi_new_device - instantiate one new SPI device
319 * @master: Controller to which device is connected
320 * @chip: Describes the SPI device
321 * Context: can sleep
322 *
323 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
324 * after board init creates the hard-wired devices. Some development
325 * platforms may not be able to use spi_register_board_info though, and
326 * this is exported so that for example a USB or parport based adapter
327 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
328 *
329 * Returns the new device, or NULL.
8ae12a0d 330 */
e9d5a461
AB
331struct spi_device *spi_new_device(struct spi_master *master,
332 struct spi_board_info *chip)
8ae12a0d
DB
333{
334 struct spi_device *proxy;
8ae12a0d
DB
335 int status;
336
082c8cb4
DB
337 /* NOTE: caller did any chip->bus_num checks necessary.
338 *
339 * Also, unless we change the return value convention to use
340 * error-or-pointer (not NULL-or-pointer), troubleshootability
341 * suggests syslogged diagnostics are best here (ugh).
342 */
343
dc87c98e
GL
344 proxy = spi_alloc_device(master);
345 if (!proxy)
8ae12a0d
DB
346 return NULL;
347
102eb975
GL
348 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
349
8ae12a0d
DB
350 proxy->chip_select = chip->chip_select;
351 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 352 proxy->mode = chip->mode;
8ae12a0d 353 proxy->irq = chip->irq;
102eb975 354 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
355 proxy->dev.platform_data = (void *) chip->platform_data;
356 proxy->controller_data = chip->controller_data;
357 proxy->controller_state = NULL;
8ae12a0d 358
dc87c98e 359 status = spi_add_device(proxy);
8ae12a0d 360 if (status < 0) {
dc87c98e
GL
361 spi_dev_put(proxy);
362 return NULL;
8ae12a0d
DB
363 }
364
8ae12a0d
DB
365 return proxy;
366}
367EXPORT_SYMBOL_GPL(spi_new_device);
368
33e34dc6
DB
369/**
370 * spi_register_board_info - register SPI devices for a given board
371 * @info: array of chip descriptors
372 * @n: how many descriptors are provided
373 * Context: can sleep
374 *
8ae12a0d
DB
375 * Board-specific early init code calls this (probably during arch_initcall)
376 * with segments of the SPI device table. Any device nodes are created later,
377 * after the relevant parent SPI controller (bus_num) is defined. We keep
378 * this table of devices forever, so that reloading a controller driver will
379 * not make Linux forget about these hard-wired devices.
380 *
381 * Other code can also call this, e.g. a particular add-on board might provide
382 * SPI devices through its expansion connector, so code initializing that board
383 * would naturally declare its SPI devices.
384 *
385 * The board info passed can safely be __initdata ... but be careful of
386 * any embedded pointers (platform_data, etc), they're copied as-is.
387 */
388int __init
389spi_register_board_info(struct spi_board_info const *info, unsigned n)
390{
391 struct boardinfo *bi;
392
b885244e 393 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
8ae12a0d
DB
394 if (!bi)
395 return -ENOMEM;
396 bi->n_board_info = n;
b885244e 397 memcpy(bi->board_info, info, n * sizeof *info);
8ae12a0d 398
94040828 399 mutex_lock(&board_lock);
8ae12a0d 400 list_add_tail(&bi->list, &board_list);
94040828 401 mutex_unlock(&board_lock);
8ae12a0d
DB
402 return 0;
403}
8ae12a0d
DB
404
405/* FIXME someone should add support for a __setup("spi", ...) that
406 * creates board info from kernel command lines
407 */
408
149a6501 409static void scan_boardinfo(struct spi_master *master)
8ae12a0d
DB
410{
411 struct boardinfo *bi;
8ae12a0d 412
94040828 413 mutex_lock(&board_lock);
8ae12a0d
DB
414 list_for_each_entry(bi, &board_list, list) {
415 struct spi_board_info *chip = bi->board_info;
416 unsigned n;
417
418 for (n = bi->n_board_info; n > 0; n--, chip++) {
419 if (chip->bus_num != master->bus_num)
420 continue;
082c8cb4
DB
421 /* NOTE: this relies on spi_new_device to
422 * issue diagnostics when given bogus inputs
8ae12a0d 423 */
8ae12a0d
DB
424 (void) spi_new_device(master, chip);
425 }
426 }
94040828 427 mutex_unlock(&board_lock);
8ae12a0d
DB
428}
429
430/*-------------------------------------------------------------------------*/
431
49dce689 432static void spi_master_release(struct device *dev)
8ae12a0d
DB
433{
434 struct spi_master *master;
435
49dce689 436 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
437 kfree(master);
438}
439
440static struct class spi_master_class = {
441 .name = "spi_master",
442 .owner = THIS_MODULE,
49dce689 443 .dev_release = spi_master_release,
8ae12a0d
DB
444};
445
446
447/**
448 * spi_alloc_master - allocate SPI master controller
449 * @dev: the controller, possibly using the platform_bus
33e34dc6 450 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 451 * memory is in the driver_data field of the returned device,
0c868461 452 * accessible with spi_master_get_devdata().
33e34dc6 453 * Context: can sleep
8ae12a0d
DB
454 *
455 * This call is used only by SPI master controller drivers, which are the
456 * only ones directly touching chip registers. It's how they allocate
ba1a0513 457 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
458 *
459 * This must be called from context that can sleep. It returns the SPI
460 * master structure on success, else NULL.
461 *
462 * The caller is responsible for assigning the bus number and initializing
ba1a0513 463 * the master's methods before calling spi_register_master(); and (after errors
0c868461 464 * adding the device) calling spi_master_put() to prevent a memory leak.
8ae12a0d 465 */
e9d5a461 466struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
467{
468 struct spi_master *master;
469
0c868461
DB
470 if (!dev)
471 return NULL;
472
e94b1766 473 master = kzalloc(size + sizeof *master, GFP_KERNEL);
8ae12a0d
DB
474 if (!master)
475 return NULL;
476
49dce689
TJ
477 device_initialize(&master->dev);
478 master->dev.class = &spi_master_class;
479 master->dev.parent = get_device(dev);
0c868461 480 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
481
482 return master;
483}
484EXPORT_SYMBOL_GPL(spi_alloc_master);
485
486/**
487 * spi_register_master - register SPI master controller
488 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 489 * Context: can sleep
8ae12a0d
DB
490 *
491 * SPI master controllers connect to their drivers using some non-SPI bus,
492 * such as the platform bus. The final stage of probe() in that code
493 * includes calling spi_register_master() to hook up to this SPI bus glue.
494 *
495 * SPI controllers use board specific (often SOC specific) bus numbers,
496 * and board-specific addressing for SPI devices combines those numbers
497 * with chip select numbers. Since SPI does not directly support dynamic
498 * device identification, boards need configuration tables telling which
499 * chip is at which address.
500 *
501 * This must be called from context that can sleep. It returns zero on
502 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
503 * After a successful return, the caller is responsible for calling
504 * spi_unregister_master().
8ae12a0d 505 */
e9d5a461 506int spi_register_master(struct spi_master *master)
8ae12a0d 507{
e44a45ae 508 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 509 struct device *dev = master->dev.parent;
8ae12a0d
DB
510 int status = -ENODEV;
511 int dynamic = 0;
512
0c868461
DB
513 if (!dev)
514 return -ENODEV;
515
082c8cb4
DB
516 /* even if it's just one always-selected device, there must
517 * be at least one chipselect
518 */
519 if (master->num_chipselect == 0)
520 return -EINVAL;
521
8ae12a0d 522 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 523 if (master->bus_num < 0) {
082c8cb4
DB
524 /* FIXME switch to an IDR based scheme, something like
525 * I2C now uses, so we can't run out of "dynamic" IDs
526 */
8ae12a0d 527 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 528 dynamic = 1;
8ae12a0d
DB
529 }
530
cf32b71e
ES
531 spin_lock_init(&master->bus_lock_spinlock);
532 mutex_init(&master->bus_lock_mutex);
533 master->bus_lock_flag = 0;
534
8ae12a0d
DB
535 /* register the device, then userspace will see it.
536 * registration fails if the bus ID is in use.
537 */
35f74fca 538 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 539 status = device_add(&master->dev);
b885244e 540 if (status < 0)
8ae12a0d 541 goto done;
35f74fca 542 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
543 dynamic ? " (dynamic)" : "");
544
545 /* populate children from any spi device tables */
546 scan_boardinfo(master);
547 status = 0;
12b15e83
AG
548
549 /* Register devices from the device tree */
550 of_register_spi_devices(master);
8ae12a0d
DB
551done:
552 return status;
553}
554EXPORT_SYMBOL_GPL(spi_register_master);
555
556
350d0076 557static int __unregister(struct device *dev, void *master_dev)
8ae12a0d
DB
558{
559 /* note: before about 2.6.14-rc1 this would corrupt memory: */
350d0076
AN
560 if (dev != master_dev)
561 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
562 return 0;
563}
564
565/**
566 * spi_unregister_master - unregister SPI master controller
567 * @master: the master being unregistered
33e34dc6 568 * Context: can sleep
8ae12a0d
DB
569 *
570 * This call is used only by SPI master controller drivers, which are the
571 * only ones directly touching chip registers.
572 *
573 * This must be called from context that can sleep.
574 */
575void spi_unregister_master(struct spi_master *master)
576{
89fc9a1a
JG
577 int dummy;
578
350d0076
AN
579 dummy = device_for_each_child(master->dev.parent, &master->dev,
580 __unregister);
49dce689 581 device_unregister(&master->dev);
8ae12a0d
DB
582}
583EXPORT_SYMBOL_GPL(spi_unregister_master);
584
5ed2c832
DY
585static int __spi_master_match(struct device *dev, void *data)
586{
587 struct spi_master *m;
588 u16 *bus_num = data;
589
590 m = container_of(dev, struct spi_master, dev);
591 return m->bus_num == *bus_num;
592}
593
8ae12a0d
DB
594/**
595 * spi_busnum_to_master - look up master associated with bus_num
596 * @bus_num: the master's bus number
33e34dc6 597 * Context: can sleep
8ae12a0d
DB
598 *
599 * This call may be used with devices that are registered after
600 * arch init time. It returns a refcounted pointer to the relevant
601 * spi_master (which the caller must release), or NULL if there is
602 * no such master registered.
603 */
604struct spi_master *spi_busnum_to_master(u16 bus_num)
605{
49dce689 606 struct device *dev;
1e9a51dc 607 struct spi_master *master = NULL;
5ed2c832 608
695794ae 609 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
610 __spi_master_match);
611 if (dev)
612 master = container_of(dev, struct spi_master, dev);
613 /* reference got in class_find_device */
1e9a51dc 614 return master;
8ae12a0d
DB
615}
616EXPORT_SYMBOL_GPL(spi_busnum_to_master);
617
618
619/*-------------------------------------------------------------------------*/
620
7d077197
DB
621/* Core methods for SPI master protocol drivers. Some of the
622 * other core methods are currently defined as inline functions.
623 */
624
625/**
626 * spi_setup - setup SPI mode and clock rate
627 * @spi: the device whose settings are being modified
628 * Context: can sleep, and no requests are queued to the device
629 *
630 * SPI protocol drivers may need to update the transfer mode if the
631 * device doesn't work with its default. They may likewise need
632 * to update clock rates or word sizes from initial values. This function
633 * changes those settings, and must be called from a context that can sleep.
634 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
635 * effect the next time the device is selected and data is transferred to
636 * or from it. When this function returns, the spi device is deselected.
637 *
638 * Note that this call will fail if the protocol driver specifies an option
639 * that the underlying controller or its driver does not support. For
640 * example, not all hardware supports wire transfers using nine bit words,
641 * LSB-first wire encoding, or active-high chipselects.
642 */
643int spi_setup(struct spi_device *spi)
644{
e7db06b5 645 unsigned bad_bits;
7d077197
DB
646 int status;
647
e7db06b5
DB
648 /* help drivers fail *cleanly* when they need options
649 * that aren't supported with their current master
650 */
651 bad_bits = spi->mode & ~spi->master->mode_bits;
652 if (bad_bits) {
653 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
654 bad_bits);
655 return -EINVAL;
656 }
657
7d077197
DB
658 if (!spi->bits_per_word)
659 spi->bits_per_word = 8;
660
661 status = spi->master->setup(spi);
662
663 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
664 "%u bits/w, %u Hz max --> %d\n",
665 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
666 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
667 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
668 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
669 (spi->mode & SPI_LOOP) ? "loopback, " : "",
670 spi->bits_per_word, spi->max_speed_hz,
671 status);
672
673 return status;
674}
675EXPORT_SYMBOL_GPL(spi_setup);
676
cf32b71e
ES
677static int __spi_async(struct spi_device *spi, struct spi_message *message)
678{
679 struct spi_master *master = spi->master;
680
681 /* Half-duplex links include original MicroWire, and ones with
682 * only one data pin like SPI_3WIRE (switches direction) or where
683 * either MOSI or MISO is missing. They can also be caused by
684 * software limitations.
685 */
686 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
687 || (spi->mode & SPI_3WIRE)) {
688 struct spi_transfer *xfer;
689 unsigned flags = master->flags;
690
691 list_for_each_entry(xfer, &message->transfers, transfer_list) {
692 if (xfer->rx_buf && xfer->tx_buf)
693 return -EINVAL;
694 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
695 return -EINVAL;
696 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
697 return -EINVAL;
698 }
699 }
700
701 message->spi = spi;
702 message->status = -EINPROGRESS;
703 return master->transfer(spi, message);
704}
705
568d0697
DB
706/**
707 * spi_async - asynchronous SPI transfer
708 * @spi: device with which data will be exchanged
709 * @message: describes the data transfers, including completion callback
710 * Context: any (irqs may be blocked, etc)
711 *
712 * This call may be used in_irq and other contexts which can't sleep,
713 * as well as from task contexts which can sleep.
714 *
715 * The completion callback is invoked in a context which can't sleep.
716 * Before that invocation, the value of message->status is undefined.
717 * When the callback is issued, message->status holds either zero (to
718 * indicate complete success) or a negative error code. After that
719 * callback returns, the driver which issued the transfer request may
720 * deallocate the associated memory; it's no longer in use by any SPI
721 * core or controller driver code.
722 *
723 * Note that although all messages to a spi_device are handled in
724 * FIFO order, messages may go to different devices in other orders.
725 * Some device might be higher priority, or have various "hard" access
726 * time requirements, for example.
727 *
728 * On detection of any fault during the transfer, processing of
729 * the entire message is aborted, and the device is deselected.
730 * Until returning from the associated message completion callback,
731 * no other spi_message queued to that device will be processed.
732 * (This rule applies equally to all the synchronous transfer calls,
733 * which are wrappers around this core asynchronous primitive.)
734 */
735int spi_async(struct spi_device *spi, struct spi_message *message)
736{
737 struct spi_master *master = spi->master;
cf32b71e
ES
738 int ret;
739 unsigned long flags;
568d0697 740
cf32b71e 741 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 742
cf32b71e
ES
743 if (master->bus_lock_flag)
744 ret = -EBUSY;
745 else
746 ret = __spi_async(spi, message);
568d0697 747
cf32b71e
ES
748 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
749
750 return ret;
568d0697
DB
751}
752EXPORT_SYMBOL_GPL(spi_async);
753
cf32b71e
ES
754/**
755 * spi_async_locked - version of spi_async with exclusive bus usage
756 * @spi: device with which data will be exchanged
757 * @message: describes the data transfers, including completion callback
758 * Context: any (irqs may be blocked, etc)
759 *
760 * This call may be used in_irq and other contexts which can't sleep,
761 * as well as from task contexts which can sleep.
762 *
763 * The completion callback is invoked in a context which can't sleep.
764 * Before that invocation, the value of message->status is undefined.
765 * When the callback is issued, message->status holds either zero (to
766 * indicate complete success) or a negative error code. After that
767 * callback returns, the driver which issued the transfer request may
768 * deallocate the associated memory; it's no longer in use by any SPI
769 * core or controller driver code.
770 *
771 * Note that although all messages to a spi_device are handled in
772 * FIFO order, messages may go to different devices in other orders.
773 * Some device might be higher priority, or have various "hard" access
774 * time requirements, for example.
775 *
776 * On detection of any fault during the transfer, processing of
777 * the entire message is aborted, and the device is deselected.
778 * Until returning from the associated message completion callback,
779 * no other spi_message queued to that device will be processed.
780 * (This rule applies equally to all the synchronous transfer calls,
781 * which are wrappers around this core asynchronous primitive.)
782 */
783int spi_async_locked(struct spi_device *spi, struct spi_message *message)
784{
785 struct spi_master *master = spi->master;
786 int ret;
787 unsigned long flags;
788
789 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
790
791 ret = __spi_async(spi, message);
792
793 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
794
795 return ret;
796
797}
798EXPORT_SYMBOL_GPL(spi_async_locked);
799
7d077197
DB
800
801/*-------------------------------------------------------------------------*/
802
803/* Utility methods for SPI master protocol drivers, layered on
804 * top of the core. Some other utility methods are defined as
805 * inline functions.
806 */
807
5d870c8e
AM
808static void spi_complete(void *arg)
809{
810 complete(arg);
811}
812
cf32b71e
ES
813static int __spi_sync(struct spi_device *spi, struct spi_message *message,
814 int bus_locked)
815{
816 DECLARE_COMPLETION_ONSTACK(done);
817 int status;
818 struct spi_master *master = spi->master;
819
820 message->complete = spi_complete;
821 message->context = &done;
822
823 if (!bus_locked)
824 mutex_lock(&master->bus_lock_mutex);
825
826 status = spi_async_locked(spi, message);
827
828 if (!bus_locked)
829 mutex_unlock(&master->bus_lock_mutex);
830
831 if (status == 0) {
832 wait_for_completion(&done);
833 status = message->status;
834 }
835 message->context = NULL;
836 return status;
837}
838
8ae12a0d
DB
839/**
840 * spi_sync - blocking/synchronous SPI data transfers
841 * @spi: device with which data will be exchanged
842 * @message: describes the data transfers
33e34dc6 843 * Context: can sleep
8ae12a0d
DB
844 *
845 * This call may only be used from a context that may sleep. The sleep
846 * is non-interruptible, and has no timeout. Low-overhead controller
847 * drivers may DMA directly into and out of the message buffers.
848 *
849 * Note that the SPI device's chip select is active during the message,
850 * and then is normally disabled between messages. Drivers for some
851 * frequently-used devices may want to minimize costs of selecting a chip,
852 * by leaving it selected in anticipation that the next message will go
853 * to the same chip. (That may increase power usage.)
854 *
0c868461
DB
855 * Also, the caller is guaranteeing that the memory associated with the
856 * message will not be freed before this call returns.
857 *
9b938b74 858 * It returns zero on success, else a negative error code.
8ae12a0d
DB
859 */
860int spi_sync(struct spi_device *spi, struct spi_message *message)
861{
cf32b71e 862 return __spi_sync(spi, message, 0);
8ae12a0d
DB
863}
864EXPORT_SYMBOL_GPL(spi_sync);
865
cf32b71e
ES
866/**
867 * spi_sync_locked - version of spi_sync with exclusive bus usage
868 * @spi: device with which data will be exchanged
869 * @message: describes the data transfers
870 * Context: can sleep
871 *
872 * This call may only be used from a context that may sleep. The sleep
873 * is non-interruptible, and has no timeout. Low-overhead controller
874 * drivers may DMA directly into and out of the message buffers.
875 *
876 * This call should be used by drivers that require exclusive access to the
877 * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
878 * be released by a spi_bus_unlock call when the exclusive access is over.
879 *
880 * It returns zero on success, else a negative error code.
881 */
882int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
883{
884 return __spi_sync(spi, message, 1);
885}
886EXPORT_SYMBOL_GPL(spi_sync_locked);
887
888/**
889 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
890 * @master: SPI bus master that should be locked for exclusive bus access
891 * Context: can sleep
892 *
893 * This call may only be used from a context that may sleep. The sleep
894 * is non-interruptible, and has no timeout.
895 *
896 * This call should be used by drivers that require exclusive access to the
897 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
898 * exclusive access is over. Data transfer must be done by spi_sync_locked
899 * and spi_async_locked calls when the SPI bus lock is held.
900 *
901 * It returns zero on success, else a negative error code.
902 */
903int spi_bus_lock(struct spi_master *master)
904{
905 unsigned long flags;
906
907 mutex_lock(&master->bus_lock_mutex);
908
909 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
910 master->bus_lock_flag = 1;
911 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
912
913 /* mutex remains locked until spi_bus_unlock is called */
914
915 return 0;
916}
917EXPORT_SYMBOL_GPL(spi_bus_lock);
918
919/**
920 * spi_bus_unlock - release the lock for exclusive SPI bus usage
921 * @master: SPI bus master that was locked for exclusive bus access
922 * Context: can sleep
923 *
924 * This call may only be used from a context that may sleep. The sleep
925 * is non-interruptible, and has no timeout.
926 *
927 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
928 * call.
929 *
930 * It returns zero on success, else a negative error code.
931 */
932int spi_bus_unlock(struct spi_master *master)
933{
934 master->bus_lock_flag = 0;
935
936 mutex_unlock(&master->bus_lock_mutex);
937
938 return 0;
939}
940EXPORT_SYMBOL_GPL(spi_bus_unlock);
941
a9948b61
DB
942/* portable code must never pass more than 32 bytes */
943#define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
8ae12a0d
DB
944
945static u8 *buf;
946
947/**
948 * spi_write_then_read - SPI synchronous write followed by read
949 * @spi: device with which data will be exchanged
950 * @txbuf: data to be written (need not be dma-safe)
951 * @n_tx: size of txbuf, in bytes
27570497
JP
952 * @rxbuf: buffer into which data will be read (need not be dma-safe)
953 * @n_rx: size of rxbuf, in bytes
33e34dc6 954 * Context: can sleep
8ae12a0d
DB
955 *
956 * This performs a half duplex MicroWire style transaction with the
957 * device, sending txbuf and then reading rxbuf. The return value
958 * is zero for success, else a negative errno status code.
b885244e 959 * This call may only be used from a context that may sleep.
8ae12a0d 960 *
0c868461 961 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
962 * portable code should never use this for more than 32 bytes.
963 * Performance-sensitive or bulk transfer code should instead use
0c868461 964 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
965 */
966int spi_write_then_read(struct spi_device *spi,
967 const u8 *txbuf, unsigned n_tx,
968 u8 *rxbuf, unsigned n_rx)
969{
068f4070 970 static DEFINE_MUTEX(lock);
8ae12a0d
DB
971
972 int status;
973 struct spi_message message;
bdff549e 974 struct spi_transfer x[2];
8ae12a0d
DB
975 u8 *local_buf;
976
977 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
978 * (as a pure convenience thing), but we can keep heap costs
979 * out of the hot path ...
980 */
981 if ((n_tx + n_rx) > SPI_BUFSIZ)
982 return -EINVAL;
983
8275c642 984 spi_message_init(&message);
bdff549e
DB
985 memset(x, 0, sizeof x);
986 if (n_tx) {
987 x[0].len = n_tx;
988 spi_message_add_tail(&x[0], &message);
989 }
990 if (n_rx) {
991 x[1].len = n_rx;
992 spi_message_add_tail(&x[1], &message);
993 }
8275c642 994
8ae12a0d 995 /* ... unless someone else is using the pre-allocated buffer */
068f4070 996 if (!mutex_trylock(&lock)) {
8ae12a0d
DB
997 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
998 if (!local_buf)
999 return -ENOMEM;
1000 } else
1001 local_buf = buf;
1002
8ae12a0d 1003 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
1004 x[0].tx_buf = local_buf;
1005 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
1006
1007 /* do the i/o */
8ae12a0d 1008 status = spi_sync(spi, &message);
9b938b74 1009 if (status == 0)
bdff549e 1010 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 1011
bdff549e 1012 if (x[0].tx_buf == buf)
068f4070 1013 mutex_unlock(&lock);
8ae12a0d
DB
1014 else
1015 kfree(local_buf);
1016
1017 return status;
1018}
1019EXPORT_SYMBOL_GPL(spi_write_then_read);
1020
1021/*-------------------------------------------------------------------------*/
1022
1023static int __init spi_init(void)
1024{
b885244e
DB
1025 int status;
1026
e94b1766 1027 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
1028 if (!buf) {
1029 status = -ENOMEM;
1030 goto err0;
1031 }
1032
1033 status = bus_register(&spi_bus_type);
1034 if (status < 0)
1035 goto err1;
8ae12a0d 1036
b885244e
DB
1037 status = class_register(&spi_master_class);
1038 if (status < 0)
1039 goto err2;
8ae12a0d 1040 return 0;
b885244e
DB
1041
1042err2:
1043 bus_unregister(&spi_bus_type);
1044err1:
1045 kfree(buf);
1046 buf = NULL;
1047err0:
1048 return status;
8ae12a0d 1049}
b885244e 1050
8ae12a0d
DB
1051/* board_info is normally registered in arch_initcall(),
1052 * but even essential drivers wait till later
b885244e
DB
1053 *
1054 * REVISIT only boardinfo really needs static linking. the rest (device and
1055 * driver registration) _could_ be dynamically linked (modular) ... costs
1056 * include needing to have boardinfo data structures be much more public.
8ae12a0d 1057 */
673c0c00 1058postcore_initcall(spi_init);
8ae12a0d 1059