]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/sym53c8xx_2/sym_hipd.h
[PATCH] fix missing includes
[net-next-2.6.git] / drivers / scsi / sym53c8xx_2 / sym_hipd.h
CommitLineData
1da177e4
LT
1/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 *
7 * This driver is derived from the Linux sym53c8xx driver.
8 * Copyright (C) 1998-2000 Gerard Roudier
9 *
10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11 * a port of the FreeBSD ncr driver to Linux-1.2.13.
12 *
13 * The original ncr driver has been written for 386bsd and FreeBSD by
14 * Wolfgang Stanglmeier <wolf@cologne.de>
15 * Stefan Esser <se@mi.Uni-Koeln.de>
16 * Copyright (C) 1994 Wolfgang Stanglmeier
17 *
18 * Other major contributions:
19 *
20 * NVRAM detection and reading.
21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22 *
23 *-----------------------------------------------------------------------------
24 *
25 * This program is free software; you can redistribute it and/or modify
26 * it under the terms of the GNU General Public License as published by
27 * the Free Software Foundation; either version 2 of the License, or
28 * (at your option) any later version.
29 *
30 * This program is distributed in the hope that it will be useful,
31 * but WITHOUT ANY WARRANTY; without even the implied warranty of
32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 * GNU General Public License for more details.
34 *
35 * You should have received a copy of the GNU General Public License
36 * along with this program; if not, write to the Free Software
37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
38 */
39
4e57b681
TS
40#include <linux/gfp.h>
41
1da177e4
LT
42#ifndef SYM_HIPD_H
43#define SYM_HIPD_H
44
45/*
46 * Generic driver options.
47 *
48 * They may be defined in platform specific headers, if they
49 * are useful.
50 *
51 * SYM_OPT_HANDLE_DIR_UNKNOWN
52 * When this option is set, the SCRIPTS used by the driver
53 * are able to handle SCSI transfers with direction not
54 * supplied by user.
55 * (set for Linux-2.0.X)
56 *
57 * SYM_OPT_HANDLE_DEVICE_QUEUEING
58 * When this option is set, the driver will use a queue per
59 * device and handle QUEUE FULL status requeuing internally.
60 *
61 * SYM_OPT_LIMIT_COMMAND_REORDERING
62 * When this option is set, the driver tries to limit tagged
63 * command reordering to some reasonnable value.
64 * (set for Linux)
65 */
66#if 0
67#define SYM_OPT_HANDLE_DIR_UNKNOWN
68#define SYM_OPT_HANDLE_DEVICE_QUEUEING
69#define SYM_OPT_LIMIT_COMMAND_REORDERING
70#endif
71
72/*
73 * Active debugging tags and verbosity.
74 * Both DEBUG_FLAGS and sym_verbose can be redefined
75 * by the platform specific code to something else.
76 */
77#define DEBUG_ALLOC (0x0001)
78#define DEBUG_PHASE (0x0002)
79#define DEBUG_POLL (0x0004)
80#define DEBUG_QUEUE (0x0008)
81#define DEBUG_RESULT (0x0010)
82#define DEBUG_SCATTER (0x0020)
83#define DEBUG_SCRIPT (0x0040)
84#define DEBUG_TINY (0x0080)
85#define DEBUG_TIMING (0x0100)
86#define DEBUG_NEGO (0x0200)
87#define DEBUG_TAGS (0x0400)
88#define DEBUG_POINTER (0x0800)
89
90#ifndef DEBUG_FLAGS
91#define DEBUG_FLAGS (0x0000)
92#endif
93
94#ifndef sym_verbose
95#define sym_verbose (np->verbose)
96#endif
97
98/*
99 * These ones should have been already defined.
100 */
101#ifndef assert
102#define assert(expression) { \
103 if (!(expression)) { \
104 (void)panic( \
105 "assertion \"%s\" failed: file \"%s\", line %d\n", \
106 #expression, \
107 __FILE__, __LINE__); \
108 } \
109}
110#endif
111
112/*
113 * Number of tasks per device we want to handle.
114 */
115#if SYM_CONF_MAX_TAG_ORDER > 8
116#error "more than 256 tags per logical unit not allowed."
117#endif
118#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER)
119
120/*
121 * Donnot use more tasks that we can handle.
122 */
123#ifndef SYM_CONF_MAX_TAG
124#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
125#endif
126#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
127#undef SYM_CONF_MAX_TAG
128#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK
129#endif
130
131/*
132 * This one means 'NO TAG for this job'
133 */
134#define NO_TAG (256)
135
136/*
137 * Number of SCSI targets.
138 */
139#if SYM_CONF_MAX_TARGET > 16
140#error "more than 16 targets not allowed."
141#endif
142
143/*
144 * Number of logical units per target.
145 */
146#if SYM_CONF_MAX_LUN > 64
147#error "more than 64 logical units per target not allowed."
148#endif
149
150/*
151 * Asynchronous pre-scaler (ns). Shall be 40 for
152 * the SCSI timings to be compliant.
153 */
154#define SYM_CONF_MIN_ASYNC (40)
155
44456d37
OH
156
157/*
158 * MEMORY ALLOCATOR.
159 */
160
161#define SYM_MEM_WARN 1 /* Warn on failed operations */
162
163#define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */
164#define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
165#define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */
1da177e4
LT
166/*
167 * Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
168 * Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
169 * (1 PAGE at a time is just fine).
170 */
171#define SYM_MEM_SHIFT 4
172#define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT)
173#define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1)
174
175/*
176 * Number of entries in the START and DONE queues.
177 *
178 * We limit to 1 PAGE in order to succeed allocation of
179 * these queues. Each entry is 8 bytes long (2 DWORDS).
180 */
181#ifdef SYM_CONF_MAX_START
182#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
183#else
184#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
185#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
186#endif
187
188#if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
189#undef SYM_CONF_MAX_QUEUE
190#define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
191#undef SYM_CONF_MAX_START
192#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
193#endif
194
195/*
196 * For this one, we want a short name :-)
197 */
198#define MAX_QUEUE SYM_CONF_MAX_QUEUE
199
200/*
201 * Common definitions for both bus space based and legacy IO methods.
202 */
203
204#define INB_OFF(np, o) ioread8(np->s.ioaddr + (o))
205#define INW_OFF(np, o) ioread16(np->s.ioaddr + (o))
206#define INL_OFF(np, o) ioread32(np->s.ioaddr + (o))
207
208#define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o))
209#define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o))
210#define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o))
211
212#define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r))
213#define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r))
214#define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r))
215
216#define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
217#define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
218#define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
219
220#define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m))
221#define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m))
222#define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m))
223#define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m))
224#define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m))
225#define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m))
226
227/*
228 * We normally want the chip to have a consistent view
229 * of driver internal data structures when we restart it.
230 * Thus these macros.
231 */
232#define OUTL_DSP(np, v) \
233 do { \
234 MEMORY_WRITE_BARRIER(); \
235 OUTL(np, nc_dsp, (v)); \
236 } while (0)
237
238#define OUTONB_STD() \
239 do { \
240 MEMORY_WRITE_BARRIER(); \
241 OUTONB(np, nc_dcntl, (STD|NOCOM)); \
242 } while (0)
243
244/*
245 * Command control block states.
246 */
247#define HS_IDLE (0)
248#define HS_BUSY (1)
249#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
250#define HS_DISCONNECT (3) /* Disconnected by target */
251#define HS_WAIT (4) /* waiting for resource */
252
253#define HS_DONEMASK (0x80)
254#define HS_COMPLETE (4|HS_DONEMASK)
255#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
256#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */
257#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */
258
259/*
260 * Software Interrupt Codes
261 */
262#define SIR_BAD_SCSI_STATUS (1)
263#define SIR_SEL_ATN_NO_MSG_OUT (2)
264#define SIR_MSG_RECEIVED (3)
265#define SIR_MSG_WEIRD (4)
266#define SIR_NEGO_FAILED (5)
267#define SIR_NEGO_PROTO (6)
268#define SIR_SCRIPT_STOPPED (7)
269#define SIR_REJECT_TO_SEND (8)
270#define SIR_SWIDE_OVERRUN (9)
271#define SIR_SODL_UNDERRUN (10)
272#define SIR_RESEL_NO_MSG_IN (11)
273#define SIR_RESEL_NO_IDENTIFY (12)
274#define SIR_RESEL_BAD_LUN (13)
275#define SIR_TARGET_SELECTED (14)
276#define SIR_RESEL_BAD_I_T_L (15)
277#define SIR_RESEL_BAD_I_T_L_Q (16)
278#define SIR_ABORT_SENT (17)
279#define SIR_RESEL_ABORTED (18)
280#define SIR_MSG_OUT_DONE (19)
281#define SIR_COMPLETE_ERROR (20)
282#define SIR_DATA_OVERRUN (21)
283#define SIR_BAD_PHASE (22)
284#if SYM_CONF_DMA_ADDRESSING_MODE == 2
285#define SIR_DMAP_DIRTY (23)
286#define SIR_MAX (23)
287#else
288#define SIR_MAX (22)
289#endif
290
291/*
292 * Extended error bit codes.
293 * xerr_status field of struct sym_ccb.
294 */
295#define XE_EXTRA_DATA (1) /* unexpected data phase */
296#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */
297#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */
298#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */
299#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */
300
301/*
302 * Negotiation status.
303 * nego_status field of struct sym_ccb.
304 */
305#define NS_SYNC (1)
306#define NS_WIDE (2)
307#define NS_PPR (3)
308
309/*
310 * A CCB hashed table is used to retrieve CCB address
311 * from DSA value.
312 */
313#define CCB_HASH_SHIFT 8
314#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT)
315#define CCB_HASH_MASK (CCB_HASH_SIZE-1)
316#if 1
317#define CCB_HASH_CODE(dsa) \
318 (((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
319#else
320#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK)
321#endif
322
323#if SYM_CONF_DMA_ADDRESSING_MODE == 2
324/*
325 * We may want to use segment registers for 64 bit DMA.
326 * 16 segments registers -> up to 64 GB addressable.
327 */
328#define SYM_DMAP_SHIFT (4)
329#define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT)
330#define SYM_DMAP_MASK (SYM_DMAP_SIZE-1)
331#endif
332
333/*
334 * Device flags.
335 */
336#define SYM_DISC_ENABLED (1)
337#define SYM_TAGS_ENABLED (1<<1)
338#define SYM_SCAN_BOOT_DISABLED (1<<2)
339#define SYM_SCAN_LUNS_DISABLED (1<<3)
340
341/*
342 * Host adapter miscellaneous flags.
343 */
344#define SYM_AVOID_BUS_RESET (1)
345
346/*
347 * Misc.
348 */
349#define SYM_SNOOP_TIMEOUT (10000000)
350#define BUS_8_BIT 0
351#define BUS_16_BIT 1
352
353/*
354 * Gather negotiable parameters value
355 */
356struct sym_trans {
357 u8 period;
358 u8 offset;
359 unsigned int width:1;
360 unsigned int iu:1;
361 unsigned int dt:1;
362 unsigned int qas:1;
363 unsigned int check_nego:1;
364};
365
366/*
367 * Global TCB HEADER.
368 *
369 * Due to lack of indirect addressing on earlier NCR chips,
370 * this substructure is copied from the TCB to a global
371 * address after selection.
372 * For SYMBIOS chips that support LOAD/STORE this copy is
373 * not needed and thus not performed.
374 */
375struct sym_tcbh {
376 /*
377 * Scripts bus addresses of LUN table accessed from scripts.
378 * LUN #0 is a special case, since multi-lun devices are rare,
379 * and we we want to speed-up the general case and not waste
380 * resources.
381 */
382 u32 luntbl_sa; /* bus address of this table */
383 u32 lun0_sa; /* bus address of LCB #0 */
384 /*
385 * Actual SYNC/WIDE IO registers value for this target.
386 * 'sval', 'wval' and 'uval' are read from SCRIPTS and
387 * so have alignment constraints.
388 */
389/*0*/ u_char uval; /* -> SCNTL4 register */
390/*1*/ u_char sval; /* -> SXFER io register */
391/*2*/ u_char filler1;
392/*3*/ u_char wval; /* -> SCNTL3 io register */
393};
394
395/*
396 * Target Control Block
397 */
398struct sym_tcb {
399 /*
400 * TCB header.
401 * Assumed at offset 0.
402 */
403/*0*/ struct sym_tcbh head;
404
405 /*
406 * LUN table used by the SCRIPTS processor.
407 * An array of bus addresses is used on reselection.
408 */
409 u32 *luntbl; /* LCBs bus address table */
410
411 /*
412 * LUN table used by the C code.
413 */
414 struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */
415#if SYM_CONF_MAX_LUN > 1
416 struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */
417#endif
418
419 /*
420 * Bitmap that tells about LUNs that succeeded at least
421 * 1 IO and therefore assumed to be a real device.
422 * Avoid useless allocation of the LCB structure.
423 */
424 u32 lun_map[(SYM_CONF_MAX_LUN+31)/32];
425
426 /*
427 * Bitmap that tells about LUNs that haven't yet an LCB
428 * allocated (not discovered or LCB allocation failed).
429 */
430 u32 busy0_map[(SYM_CONF_MAX_LUN+31)/32];
431
432#ifdef SYM_HAVE_STCB
433 /*
434 * O/S specific data structure.
435 */
436 struct sym_stcb s;
437#endif
438
439 /* Transfer goal */
440 struct sym_trans tgoal;
441
442 /*
443 * Keep track of the CCB used for the negotiation in order
444 * to ensure that only 1 negotiation is queued at a time.
445 */
446 struct sym_ccb * nego_cp; /* CCB used for the nego */
447
448 /*
449 * Set when we want to reset the device.
450 */
451 u_char to_reset;
452
453 /*
454 * Other user settable limits and options.
455 * These limits are read from the NVRAM if present.
456 */
457 u_char usrflags;
458 u_short usrtags;
53222b90 459 struct scsi_target *starget;
1da177e4
LT
460};
461
462/*
463 * Global LCB HEADER.
464 *
465 * Due to lack of indirect addressing on earlier NCR chips,
466 * this substructure is copied from the LCB to a global
467 * address after selection.
468 * For SYMBIOS chips that support LOAD/STORE this copy is
469 * not needed and thus not performed.
470 */
471struct sym_lcbh {
472 /*
473 * SCRIPTS address jumped by SCRIPTS on reselection.
474 * For not probed logical units, this address points to
475 * SCRIPTS that deal with bad LU handling (must be at
476 * offset zero of the LCB for that reason).
477 */
478/*0*/ u32 resel_sa;
479
480 /*
481 * Task (bus address of a CCB) read from SCRIPTS that points
482 * to the unique ITL nexus allowed to be disconnected.
483 */
484 u32 itl_task_sa;
485
486 /*
487 * Task table bus address (read from SCRIPTS).
488 */
489 u32 itlq_tbl_sa;
490};
491
492/*
493 * Logical Unit Control Block
494 */
495struct sym_lcb {
496 /*
497 * TCB header.
498 * Assumed at offset 0.
499 */
500/*0*/ struct sym_lcbh head;
501
502 /*
503 * Task table read from SCRIPTS that contains pointers to
504 * ITLQ nexuses. The bus address read from SCRIPTS is
505 * inside the header.
506 */
507 u32 *itlq_tbl; /* Kernel virtual address */
508
509 /*
510 * Busy CCBs management.
511 */
512 u_short busy_itlq; /* Number of busy tagged CCBs */
513 u_short busy_itl; /* Number of busy untagged CCBs */
514
515 /*
516 * Circular tag allocation buffer.
517 */
518 u_short ia_tag; /* Tag allocation index */
519 u_short if_tag; /* Tag release index */
520 u_char *cb_tags; /* Circular tags buffer */
521
522 /*
523 * O/S specific data structure.
524 */
525#ifdef SYM_HAVE_SLCB
526 struct sym_slcb s;
527#endif
528
529#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
530 /*
531 * Optionnaly the driver can handle device queueing,
532 * and requeues internally command to redo.
533 */
534 SYM_QUEHEAD waiting_ccbq;
535 SYM_QUEHEAD started_ccbq;
536 int num_sgood;
537 u_short started_tags;
538 u_short started_no_tag;
539 u_short started_max;
540 u_short started_limit;
541#endif
542
543#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
544 /*
545 * Optionally the driver can try to prevent SCSI
546 * IOs from being reordered too much.
547 */
548 u_char tags_si; /* Current index to tags sum */
549 u_short tags_sum[2]; /* Tags sum counters */
550 u_short tags_since; /* # of tags since last switch */
551#endif
552
553 /*
554 * Set when we want to clear all tasks.
555 */
556 u_char to_clear;
557
558 /*
559 * Capabilities.
560 */
561 u_char user_flags;
562 u_char curr_flags;
563};
564
565/*
566 * Action from SCRIPTS on a task.
567 * Is part of the CCB, but is also used separately to plug
568 * error handling action to perform from SCRIPTS.
569 */
570struct sym_actscr {
571 u32 start; /* Jumped by SCRIPTS after selection */
572 u32 restart; /* Jumped by SCRIPTS on relection */
573};
574
575/*
576 * Phase mismatch context.
577 *
578 * It is part of the CCB and is used as parameters for the
579 * DATA pointer. We need two contexts to handle correctly the
580 * SAVED DATA POINTER.
581 */
582struct sym_pmc {
583 struct sym_tblmove sg; /* Updated interrupted SG block */
584 u32 ret; /* SCRIPT return address */
585};
586
587/*
588 * LUN control block lookup.
589 * We use a direct pointer for LUN #0, and a table of
590 * pointers which is only allocated for devices that support
591 * LUN(s) > 0.
592 */
593#if SYM_CONF_MAX_LUN <= 1
594#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
595#else
596#define sym_lp(tp, lun) \
597 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL
598#endif
599
600/*
601 * Status are used by the host and the script processor.
602 *
603 * The last four bytes (status[4]) are copied to the
604 * scratchb register (declared as scr0..scr3) just after the
605 * select/reselect, and copied back just after disconnecting.
606 * Inside the script the XX_REG are used.
607 */
608
609/*
610 * Last four bytes (script)
611 */
612#define HX_REG scr0
613#define HX_PRT nc_scr0
614#define HS_REG scr1
615#define HS_PRT nc_scr1
616#define SS_REG scr2
617#define SS_PRT nc_scr2
618#define HF_REG scr3
619#define HF_PRT nc_scr3
620
621/*
622 * Last four bytes (host)
623 */
624#define host_xflags phys.head.status[0]
625#define host_status phys.head.status[1]
626#define ssss_status phys.head.status[2]
627#define host_flags phys.head.status[3]
628
629/*
630 * Host flags
631 */
632#define HF_IN_PM0 1u
633#define HF_IN_PM1 (1u<<1)
634#define HF_ACT_PM (1u<<2)
635#define HF_DP_SAVED (1u<<3)
636#define HF_SENSE (1u<<4)
637#define HF_EXT_ERR (1u<<5)
638#define HF_DATA_IN (1u<<6)
639#ifdef SYM_CONF_IARB_SUPPORT
640#define HF_HINT_IARB (1u<<7)
641#endif
642
643/*
644 * More host flags
645 */
646#if SYM_CONF_DMA_ADDRESSING_MODE == 2
647#define HX_DMAP_DIRTY (1u<<7)
648#endif
649
650/*
651 * Global CCB HEADER.
652 *
653 * Due to lack of indirect addressing on earlier NCR chips,
654 * this substructure is copied from the ccb to a global
655 * address after selection (or reselection) and copied back
656 * before disconnect.
657 * For SYMBIOS chips that support LOAD/STORE this copy is
658 * not needed and thus not performed.
659 */
660
661struct sym_ccbh {
662 /*
663 * Start and restart SCRIPTS addresses (must be at 0).
664 */
665/*0*/ struct sym_actscr go;
666
667 /*
668 * SCRIPTS jump address that deal with data pointers.
669 * 'savep' points to the position in the script responsible
670 * for the actual transfer of data.
671 * It's written on reception of a SAVE_DATA_POINTER message.
672 */
673 u32 savep; /* Jump address to saved data pointer */
674 u32 lastp; /* SCRIPTS address at end of data */
675#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
676 u32 wlastp;
677#endif
678
679 /*
680 * Status fields.
681 */
682 u8 status[4];
683};
684
685/*
686 * GET/SET the value of the data pointer used by SCRIPTS.
687 *
688 * We must distinguish between the LOAD/STORE-based SCRIPTS
689 * that use directly the header in the CCB, and the NCR-GENERIC
690 * SCRIPTS that use the copy of the header in the HCB.
691 */
692#if SYM_CONF_GENERIC_SUPPORT
693#define sym_set_script_dp(np, cp, dp) \
694 do { \
695 if (np->features & FE_LDSTR) \
696 cp->phys.head.lastp = cpu_to_scr(dp); \
697 else \
698 np->ccb_head.lastp = cpu_to_scr(dp); \
699 } while (0)
700#define sym_get_script_dp(np, cp) \
701 scr_to_cpu((np->features & FE_LDSTR) ? \
702 cp->phys.head.lastp : np->ccb_head.lastp)
703#else
704#define sym_set_script_dp(np, cp, dp) \
705 do { \
706 cp->phys.head.lastp = cpu_to_scr(dp); \
707 } while (0)
708
709#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
710#endif
711
712/*
713 * Data Structure Block
714 *
715 * During execution of a ccb by the script processor, the
716 * DSA (data structure address) register points to this
717 * substructure of the ccb.
718 */
719struct sym_dsb {
720 /*
721 * CCB header.
722 * Also assumed at offset 0 of the sym_ccb structure.
723 */
724/*0*/ struct sym_ccbh head;
725
726 /*
727 * Phase mismatch contexts.
728 * We need two to handle correctly the SAVED DATA POINTER.
729 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
730 * for address calculation from SCRIPTS.
731 */
732 struct sym_pmc pm0;
733 struct sym_pmc pm1;
734
735 /*
736 * Table data for Script
737 */
738 struct sym_tblsel select;
739 struct sym_tblmove smsg;
740 struct sym_tblmove smsg_ext;
741 struct sym_tblmove cmd;
742 struct sym_tblmove sense;
743 struct sym_tblmove wresid;
744 struct sym_tblmove data [SYM_CONF_MAX_SG];
745};
746
747/*
748 * Our Command Control Block
749 */
750struct sym_ccb {
751 /*
752 * This is the data structure which is pointed by the DSA
753 * register when it is executed by the script processor.
754 * It must be the first entry.
755 */
756 struct sym_dsb phys;
757
758 /*
759 * Pointer to CAM ccb and related stuff.
760 */
761 struct scsi_cmnd *cmd; /* CAM scsiio ccb */
762 u8 cdb_buf[16]; /* Copy of CDB */
763#define SYM_SNS_BBUF_LEN 32
764 u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
765 int data_len; /* Total data length */
766 int segments; /* Number of SG segments */
767
768 u8 order; /* Tag type (if tagged command) */
53222b90 769 unsigned char odd_byte_adjustment; /* odd-sized req on wide bus */
1da177e4 770
1da177e4
LT
771 u_char nego_status; /* Negotiation status */
772 u_char xerr_status; /* Extended error flags */
773 u32 extra_bytes; /* Extraneous bytes transferred */
774
775 /*
776 * Message areas.
777 * We prepare a message to be sent after selection.
778 * We may use a second one if the command is rescheduled
779 * due to CHECK_CONDITION or COMMAND TERMINATED.
780 * Contents are IDENTIFY and SIMPLE_TAG.
781 * While negotiating sync or wide transfer,
782 * a SDTR or WDTR message is appended.
783 */
784 u_char scsi_smsg [12];
785 u_char scsi_smsg2[12];
786
787 /*
788 * Auto request sense related fields.
789 */
790 u_char sensecmd[6]; /* Request Sense command */
791 u_char sv_scsi_status; /* Saved SCSI status */
792 u_char sv_xerr_status; /* Saved extended status */
793 int sv_resid; /* Saved residual */
794
795 /*
796 * Other fields.
797 */
798 u32 ccb_ba; /* BUS address of this CCB */
799 u_short tag; /* Tag for this transfer */
800 /* NO_TAG means no tag */
801 u_char target;
802 u_char lun;
803 struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */
804 SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */
805 u32 startp; /* Initial data pointer */
806 u32 goalp; /* Expected last data pointer */
807#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
808 u32 wgoalp;
809#endif
810 int ext_sg; /* Extreme data pointer, used */
811 int ext_ofs; /* to calculate the residual. */
812#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
813 SYM_QUEHEAD link2_ccbq; /* Link for device queueing */
814 u_char started; /* CCB queued to the squeue */
815#endif
816 u_char to_abort; /* Want this IO to be aborted */
817#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
818 u_char tags_si; /* Lun tags sum index (0,1) */
819#endif
820};
821
53222b90 822#define CCB_BA(cp,lbl) cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
1da177e4
LT
823
824#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
825#define sym_goalp(cp) ((cp->host_flags & HF_DATA_IN) ? cp->goalp : cp->wgoalp)
826#else
827#define sym_goalp(cp) (cp->goalp)
828#endif
829
830typedef struct device *m_pool_ident_t;
831
832/*
833 * Host Control Block
834 */
835struct sym_hcb {
836 /*
837 * Global headers.
838 * Due to poorness of addressing capabilities, earlier
839 * chips (810, 815, 825) copy part of the data structures
840 * (CCB, TCB and LCB) in fixed areas.
841 */
842#if SYM_CONF_GENERIC_SUPPORT
843 struct sym_ccbh ccb_head;
844 struct sym_tcbh tcb_head;
845 struct sym_lcbh lcb_head;
846#endif
847 /*
848 * Idle task and invalid task actions and
849 * their bus addresses.
850 */
851 struct sym_actscr idletask, notask, bad_itl, bad_itlq;
852 u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
853
854 /*
855 * Dummy lun table to protect us against target
856 * returning bad lun number on reselection.
857 */
858 u32 *badluntbl; /* Table physical address */
859 u32 badlun_sa; /* SCRIPT handler BUS address */
860
861 /*
862 * Bus address of this host control block.
863 */
864 u32 hcb_ba;
865
866 /*
867 * Bit 32-63 of the on-chip RAM bus address in LE format.
868 * The START_RAM64 script loads the MMRS and MMWS from this
869 * field.
870 */
871 u32 scr_ram_seg;
872
873 /*
874 * Initial value of some IO register bits.
875 * These values are assumed to have been set by BIOS, and may
876 * be used to probe adapter implementation differences.
877 */
878 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
879 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
880 sv_stest1;
881
882 /*
883 * Actual initial value of IO register bits used by the
884 * driver. They are loaded at initialisation according to
885 * features that are to be enabled/disabled.
886 */
887 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
888 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
889
890 /*
891 * Target data.
892 */
893 struct sym_tcb target[SYM_CONF_MAX_TARGET];
894
895 /*
896 * Target control block bus address array used by the SCRIPT
897 * on reselection.
898 */
899 u32 *targtbl;
900 u32 targtbl_ba;
901
902 /*
903 * DMA pool handle for this HBA.
904 */
905 m_pool_ident_t bus_dmat;
906
907 /*
908 * O/S specific data structure
909 */
910 struct sym_shcb s;
911
912 /*
913 * Physical bus addresses of the chip.
914 */
915 u32 mmio_ba; /* MMIO 32 bit BUS address */
916 int mmio_ws; /* MMIO Window size */
917
918 u32 ram_ba; /* RAM 32 bit BUS address */
919 int ram_ws; /* RAM window size */
920
921 /*
922 * SCRIPTS virtual and physical bus addresses.
923 * 'script' is loaded in the on-chip RAM if present.
924 * 'scripth' stays in main memory for all chips except the
925 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
926 */
927 u_char *scripta0; /* Copy of scripts A, B, Z */
928 u_char *scriptb0;
929 u_char *scriptz0;
930 u32 scripta_ba; /* Actual scripts A, B, Z */
931 u32 scriptb_ba; /* 32 bit bus addresses. */
932 u32 scriptz_ba;
933 u_short scripta_sz; /* Actual size of script A, B, Z*/
934 u_short scriptb_sz;
935 u_short scriptz_sz;
936
937 /*
938 * Bus addresses, setup and patch methods for
939 * the selected firmware.
940 */
941 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */
942 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */
943 struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */
944 void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
945 void (*fw_patch)(struct sym_hcb *np);
946 char *fw_name;
947
948 /*
949 * General controller parameters and configuration.
950 */
951 u_short device_id; /* PCI device id */
952 u_char revision_id; /* PCI device revision id */
953 u_int features; /* Chip features map */
954 u_char myaddr; /* SCSI id of the adapter */
955 u_char maxburst; /* log base 2 of dwords burst */
956 u_char maxwide; /* Maximum transfer width */
957 u_char minsync; /* Min sync period factor (ST) */
958 u_char maxsync; /* Max sync period factor (ST) */
959 u_char maxoffs; /* Max scsi offset (ST) */
960 u_char minsync_dt; /* Min sync period factor (DT) */
961 u_char maxsync_dt; /* Max sync period factor (DT) */
962 u_char maxoffs_dt; /* Max scsi offset (DT) */
963 u_char multiplier; /* Clock multiplier (1,2,4) */
964 u_char clock_divn; /* Number of clock divisors */
965 u32 clock_khz; /* SCSI clock frequency in KHz */
966 u32 pciclk_khz; /* Estimated PCI clock in KHz */
967 /*
968 * Start queue management.
969 * It is filled up by the host processor and accessed by the
970 * SCRIPTS processor in order to start SCSI commands.
971 */
972 volatile /* Prevent code optimizations */
973 u32 *squeue; /* Start queue virtual address */
974 u32 squeue_ba; /* Start queue BUS address */
975 u_short squeueput; /* Next free slot of the queue */
976 u_short actccbs; /* Number of allocated CCBs */
977
978 /*
979 * Command completion queue.
980 * It is the same size as the start queue to avoid overflow.
981 */
982 u_short dqueueget; /* Next position to scan */
983 volatile /* Prevent code optimizations */
984 u32 *dqueue; /* Completion (done) queue */
985 u32 dqueue_ba; /* Done queue BUS address */
986
987 /*
988 * Miscellaneous buffers accessed by the scripts-processor.
989 * They shall be DWORD aligned, because they may be read or
990 * written with a script command.
991 */
992 u_char msgout[8]; /* Buffer for MESSAGE OUT */
993 u_char msgin [8]; /* Buffer for MESSAGE IN */
994 u32 lastmsg; /* Last SCSI message sent */
995 u32 scratch; /* Scratch for SCSI receive */
996 /* Also used for cache test */
997 /*
998 * Miscellaneous configuration and status parameters.
999 */
1000 u_char usrflags; /* Miscellaneous user flags */
1001 u_char scsi_mode; /* Current SCSI BUS mode */
1002 u_char verbose; /* Verbosity for this controller*/
1003
1004 /*
1005 * CCB lists and queue.
1006 */
1007 struct sym_ccb **ccbh; /* CCBs hashed by DSA value */
1008 /* CCB_HASH_SIZE lists of CCBs */
1009 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */
1010 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */
1011
1012 /*
1013 * During error handling and/or recovery,
1014 * active CCBs that are to be completed with
1015 * error or requeued are moved from the busy_ccbq
1016 * to the comp_ccbq prior to completion.
1017 */
1018 SYM_QUEHEAD comp_ccbq;
1019
1020#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1021 SYM_QUEHEAD dummy_ccbq;
1022#endif
1023
1024 /*
1025 * IMMEDIATE ARBITRATION (IARB) control.
1026 *
1027 * We keep track in 'last_cp' of the last CCB that has been
1028 * queued to the SCRIPTS processor and clear 'last_cp' when
1029 * this CCB completes. If last_cp is not zero at the moment
1030 * we queue a new CCB, we set a flag in 'last_cp' that is
1031 * used by the SCRIPTS as a hint for setting IARB.
1032 * We donnot set more than 'iarb_max' consecutive hints for
1033 * IARB in order to leave devices a chance to reselect.
1034 * By the way, any non zero value of 'iarb_max' is unfair. :)
1035 */
1036#ifdef SYM_CONF_IARB_SUPPORT
1037 u_short iarb_max; /* Max. # consecutive IARB hints*/
1038 u_short iarb_count; /* Actual # of these hints */
1039 struct sym_ccb * last_cp;
1040#endif
1041
1042 /*
1043 * Command abort handling.
1044 * We need to synchronize tightly with the SCRIPTS
1045 * processor in order to handle things correctly.
1046 */
1047 u_char abrt_msg[4]; /* Message to send buffer */
1048 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */
1049 struct sym_tblsel abrt_sel; /* Sync params for selection */
1050 u_char istat_sem; /* Tells the chip to stop (SEM) */
1051
1052 /*
1053 * 64 bit DMA handling.
1054 */
1055#if SYM_CONF_DMA_ADDRESSING_MODE != 0
1056 u_char use_dac; /* Use PCI DAC cycles */
1057#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1058 u_char dmap_dirty; /* Dma segments registers dirty */
1059 u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */
1060#endif
1061#endif
1062};
1063
1064#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
1065
1066
1067/*
1068 * FIRMWARES (sym_fw.c)
1069 */
1070struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1071void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1072
1073/*
1074 * Driver methods called from O/S specific code.
1075 */
1076char *sym_driver_name(void);
1077void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1078int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1079struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1080void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1081#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1082void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1083#endif
1084void sym_start_up(struct sym_hcb *np, int reason);
1085void sym_interrupt(struct sym_hcb *np);
1086int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1087struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1088void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1089struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1090int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1091int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1092int sym_reset_scsi_target(struct sym_hcb *np, int target);
1093void sym_hcb_free(struct sym_hcb *np);
1094int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1095
1096/*
1097 * Build a scatter/gather entry.
1098 *
1099 * For 64 bit systems, we use the 8 upper bits of the size field
1100 * to provide bus address bits 32-39 to the SCRIPTS processor.
1101 * This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1102 */
1103
1104#if SYM_CONF_DMA_ADDRESSING_MODE == 0
1105#define sym_build_sge(np, data, badd, len) \
1106do { \
1107 (data)->addr = cpu_to_scr(badd); \
1108 (data)->size = cpu_to_scr(len); \
1109} while (0)
1110#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1111#define sym_build_sge(np, data, badd, len) \
1112do { \
1113 (data)->addr = cpu_to_scr(badd); \
1114 (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \
1115} while (0)
1116#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1117int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1118static __inline void
1119sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1120{
1121 u32 h = (badd>>32);
1122 int s = (h&SYM_DMAP_MASK);
1123
1124 if (h != np->dmap_bah[s])
1125 goto bad;
1126good:
1127 (data)->addr = cpu_to_scr(badd);
1128 (data)->size = cpu_to_scr((s<<24) + len);
1129 return;
1130bad:
1131 s = sym_lookup_dmap(np, h, s);
1132 goto good;
1133}
1134#else
1135#error "Unsupported DMA addressing mode"
1136#endif
1137
1138/*
1139 * Set up data pointers used by SCRIPTS.
1140 * Called from O/S specific code.
1141 */
1142static inline void sym_setup_data_pointers(struct sym_hcb *np,
1143 struct sym_ccb *cp, int dir)
1144{
1145 u32 lastp, goalp;
1146
1147 /*
1148 * No segments means no data.
1149 */
1150 if (!cp->segments)
53222b90 1151 dir = DMA_NONE;
1da177e4
LT
1152
1153 /*
1154 * Set the data pointer.
1155 */
1156 switch(dir) {
1157#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
53222b90 1158 case DMA_BIDIRECTIONAL:
1da177e4 1159#endif
53222b90 1160 case DMA_TO_DEVICE:
1da177e4
LT
1161 goalp = SCRIPTA_BA(np, data_out2) + 8;
1162 lastp = goalp - 8 - (cp->segments * (2*4));
1163#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
1164 cp->wgoalp = cpu_to_scr(goalp);
53222b90 1165 if (dir != DMA_BIDIRECTIONAL)
1da177e4
LT
1166 break;
1167 cp->phys.head.wlastp = cpu_to_scr(lastp);
1168 /* fall through */
1169#else
1170 break;
1171#endif
53222b90 1172 case DMA_FROM_DEVICE:
1da177e4
LT
1173 cp->host_flags |= HF_DATA_IN;
1174 goalp = SCRIPTA_BA(np, data_in2) + 8;
1175 lastp = goalp - 8 - (cp->segments * (2*4));
1176 break;
53222b90 1177 case DMA_NONE:
1da177e4
LT
1178 default:
1179#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
1180 cp->host_flags |= HF_DATA_IN;
1181#endif
1182 lastp = goalp = SCRIPTB_BA(np, no_data);
1183 break;
1184 }
1185
1186 /*
1187 * Set all pointers values needed by SCRIPTS.
1188 */
1189 cp->phys.head.lastp = cpu_to_scr(lastp);
1190 cp->phys.head.savep = cpu_to_scr(lastp);
1191 cp->startp = cp->phys.head.savep;
1192 cp->goalp = cpu_to_scr(goalp);
1193
1194#ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
1195 /*
1196 * If direction is unknown, start at data_io.
1197 */
53222b90 1198 if (dir == DMA_BIDIRECTIONAL)
1da177e4
LT
1199 cp->phys.head.savep = cpu_to_scr(SCRIPTB_BA(np, data_io));
1200#endif
1201}
1202
1203/*
1204 * MEMORY ALLOCATOR.
1205 */
1206
1da177e4
LT
1207#define sym_get_mem_cluster() \
1208 (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1209#define sym_free_mem_cluster(p) \
1210 free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1211
1212/*
1213 * Link between free memory chunks of a given size.
1214 */
1215typedef struct sym_m_link {
1216 struct sym_m_link *next;
1217} *m_link_p;
1218
1219/*
1220 * Virtual to bus physical translation for a given cluster.
1221 * Such a structure is only useful with DMA abstraction.
1222 */
1223typedef struct sym_m_vtob { /* Virtual to Bus address translation */
1224 struct sym_m_vtob *next;
1225 void *vaddr; /* Virtual address */
1226 dma_addr_t baddr; /* Bus physical address */
1227} *m_vtob_p;
1228
1229/* Hash this stuff a bit to speed up translations */
1230#define VTOB_HASH_SHIFT 5
1231#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
1232#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
1233#define VTOB_HASH_CODE(m) \
1234 ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1235
1236/*
1237 * Memory pool of a given kind.
1238 * Ideally, we want to use:
1239 * 1) 1 pool for memory we donnot need to involve in DMA.
1240 * 2) The same pool for controllers that require same DMA
1241 * constraints and features.
1242 * The OS specific m_pool_id_t thing and the sym_m_pool_match()
1243 * method are expected to tell the driver about.
1244 */
1245typedef struct sym_m_pool {
1246 m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */
1247 void * (*get_mem_cluster)(struct sym_m_pool *);
1248#ifdef SYM_MEM_FREE_UNUSED
1249 void (*free_mem_cluster)(struct sym_m_pool *, void *);
1250#endif
1251#define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp)
1252#define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p)
1253 int nump;
1254 m_vtob_p vtob[VTOB_HASH_SIZE];
1255 struct sym_m_pool *next;
1256 struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1257} *m_pool_p;
1258
1259/*
1260 * Alloc, free and translate addresses to bus physical
1261 * for DMAable memory.
1262 */
1263void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1264void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1265dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1266
1267/*
1268 * Verbs used by the driver code for DMAable memory handling.
1269 * The _uvptv_ macro avoids a nasty warning about pointer to volatile
1270 * being discarded.
1271 */
1272#define _uvptv_(p) ((void *)((u_long)(p)))
1273
1274#define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n)
1275#define _sym_mfree_dma(np, p, l, n) \
1276 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1277#define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n)
1278#define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n)
1279#define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p))
1280
1281/*
1282 * We have to provide the driver memory allocator with methods for
1283 * it to maintain virtual to bus physical address translations.
1284 */
1285
1286#define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2)
1287
1288static __inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1289{
1290 void *vaddr = NULL;
1291 dma_addr_t baddr = 0;
1292
1293 vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1294 GFP_ATOMIC);
1295 if (vaddr) {
1296 vbp->vaddr = vaddr;
1297 vbp->baddr = baddr;
1298 }
1299 return vaddr;
1300}
1301
1302static __inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1303{
1304 dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1305 vbp->baddr);
1306}
1307
1308#endif /* SYM_HIPD_H */