]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f
TH
64static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
1da177e4 66static void ata_set_mode(struct ata_port *ap);
83206a29
TH
67static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
68 struct ata_device *dev);
acf356b1 69static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
70
71static unsigned int ata_unique_id = 1;
72static struct workqueue_struct *ata_wq;
73
418dc1f5 74int atapi_enabled = 1;
1623c81e
JG
75module_param(atapi_enabled, int, 0444);
76MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
77
c3c013a2
JG
78int libata_fua = 0;
79module_param_named(fua, libata_fua, int, 0444);
80MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
81
1da177e4
LT
82MODULE_AUTHOR("Jeff Garzik");
83MODULE_DESCRIPTION("Library module for ATA devices");
84MODULE_LICENSE("GPL");
85MODULE_VERSION(DRV_VERSION);
86
0baab86b 87
1da177e4
LT
88/**
89 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
90 * @tf: Taskfile to convert
91 * @fis: Buffer into which data will output
92 * @pmp: Port multiplier port
93 *
94 * Converts a standard ATA taskfile to a Serial ATA
95 * FIS structure (Register - Host to Device).
96 *
97 * LOCKING:
98 * Inherited from caller.
99 */
100
057ace5e 101void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
102{
103 fis[0] = 0x27; /* Register - Host to Device FIS */
104 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
105 bit 7 indicates Command FIS */
106 fis[2] = tf->command;
107 fis[3] = tf->feature;
108
109 fis[4] = tf->lbal;
110 fis[5] = tf->lbam;
111 fis[6] = tf->lbah;
112 fis[7] = tf->device;
113
114 fis[8] = tf->hob_lbal;
115 fis[9] = tf->hob_lbam;
116 fis[10] = tf->hob_lbah;
117 fis[11] = tf->hob_feature;
118
119 fis[12] = tf->nsect;
120 fis[13] = tf->hob_nsect;
121 fis[14] = 0;
122 fis[15] = tf->ctl;
123
124 fis[16] = 0;
125 fis[17] = 0;
126 fis[18] = 0;
127 fis[19] = 0;
128}
129
130/**
131 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
132 * @fis: Buffer from which data will be input
133 * @tf: Taskfile to output
134 *
e12a1be6 135 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
136 *
137 * LOCKING:
138 * Inherited from caller.
139 */
140
057ace5e 141void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
142{
143 tf->command = fis[2]; /* status */
144 tf->feature = fis[3]; /* error */
145
146 tf->lbal = fis[4];
147 tf->lbam = fis[5];
148 tf->lbah = fis[6];
149 tf->device = fis[7];
150
151 tf->hob_lbal = fis[8];
152 tf->hob_lbam = fis[9];
153 tf->hob_lbah = fis[10];
154
155 tf->nsect = fis[12];
156 tf->hob_nsect = fis[13];
157}
158
8cbd6df1
AL
159static const u8 ata_rw_cmds[] = {
160 /* pio multi */
161 ATA_CMD_READ_MULTI,
162 ATA_CMD_WRITE_MULTI,
163 ATA_CMD_READ_MULTI_EXT,
164 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
165 0,
166 0,
167 0,
168 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
169 /* pio */
170 ATA_CMD_PIO_READ,
171 ATA_CMD_PIO_WRITE,
172 ATA_CMD_PIO_READ_EXT,
173 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
174 0,
175 0,
176 0,
177 0,
8cbd6df1
AL
178 /* dma */
179 ATA_CMD_READ,
180 ATA_CMD_WRITE,
181 ATA_CMD_READ_EXT,
9a3dccc4
TH
182 ATA_CMD_WRITE_EXT,
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 187};
1da177e4
LT
188
189/**
8cbd6df1
AL
190 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
191 * @qc: command to examine and configure
1da177e4 192 *
2e9edbf8 193 * Examine the device configuration and tf->flags to calculate
8cbd6df1 194 * the proper read/write commands and protocol to use.
1da177e4
LT
195 *
196 * LOCKING:
197 * caller.
198 */
9a3dccc4 199int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 200{
8cbd6df1
AL
201 struct ata_taskfile *tf = &qc->tf;
202 struct ata_device *dev = qc->dev;
9a3dccc4 203 u8 cmd;
1da177e4 204
9a3dccc4 205 int index, fua, lba48, write;
2e9edbf8 206
9a3dccc4 207 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
208 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
209 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 210
8cbd6df1
AL
211 if (dev->flags & ATA_DFLAG_PIO) {
212 tf->protocol = ATA_PROT_PIO;
9a3dccc4 213 index = dev->multi_count ? 0 : 8;
8d238e01
AC
214 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
215 /* Unable to use DMA due to host limitation */
216 tf->protocol = ATA_PROT_PIO;
0565c26d 217 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
218 } else {
219 tf->protocol = ATA_PROT_DMA;
9a3dccc4 220 index = 16;
8cbd6df1 221 }
1da177e4 222
9a3dccc4
TH
223 cmd = ata_rw_cmds[index + fua + lba48 + write];
224 if (cmd) {
225 tf->command = cmd;
226 return 0;
227 }
228 return -1;
1da177e4
LT
229}
230
cb95d562
TH
231/**
232 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
233 * @pio_mask: pio_mask
234 * @mwdma_mask: mwdma_mask
235 * @udma_mask: udma_mask
236 *
237 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
238 * unsigned int xfer_mask.
239 *
240 * LOCKING:
241 * None.
242 *
243 * RETURNS:
244 * Packed xfer_mask.
245 */
246static unsigned int ata_pack_xfermask(unsigned int pio_mask,
247 unsigned int mwdma_mask,
248 unsigned int udma_mask)
249{
250 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
251 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
252 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
253}
254
c0489e4e
TH
255/**
256 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
257 * @xfer_mask: xfer_mask to unpack
258 * @pio_mask: resulting pio_mask
259 * @mwdma_mask: resulting mwdma_mask
260 * @udma_mask: resulting udma_mask
261 *
262 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
263 * Any NULL distination masks will be ignored.
264 */
265static void ata_unpack_xfermask(unsigned int xfer_mask,
266 unsigned int *pio_mask,
267 unsigned int *mwdma_mask,
268 unsigned int *udma_mask)
269{
270 if (pio_mask)
271 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
272 if (mwdma_mask)
273 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
274 if (udma_mask)
275 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
276}
277
cb95d562
TH
278static const struct ata_xfer_ent {
279 unsigned int shift, bits;
280 u8 base;
281} ata_xfer_tbl[] = {
282 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
283 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
284 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
285 { -1, },
286};
287
288/**
289 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
290 * @xfer_mask: xfer_mask of interest
291 *
292 * Return matching XFER_* value for @xfer_mask. Only the highest
293 * bit of @xfer_mask is considered.
294 *
295 * LOCKING:
296 * None.
297 *
298 * RETURNS:
299 * Matching XFER_* value, 0 if no match found.
300 */
301static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
302{
303 int highbit = fls(xfer_mask) - 1;
304 const struct ata_xfer_ent *ent;
305
306 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
307 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
308 return ent->base + highbit - ent->shift;
309 return 0;
310}
311
312/**
313 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
314 * @xfer_mode: XFER_* of interest
315 *
316 * Return matching xfer_mask for @xfer_mode.
317 *
318 * LOCKING:
319 * None.
320 *
321 * RETURNS:
322 * Matching xfer_mask, 0 if no match found.
323 */
324static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
325{
326 const struct ata_xfer_ent *ent;
327
328 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
329 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
330 return 1 << (ent->shift + xfer_mode - ent->base);
331 return 0;
332}
333
334/**
335 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
336 * @xfer_mode: XFER_* of interest
337 *
338 * Return matching xfer_shift for @xfer_mode.
339 *
340 * LOCKING:
341 * None.
342 *
343 * RETURNS:
344 * Matching xfer_shift, -1 if no match found.
345 */
346static int ata_xfer_mode2shift(unsigned int xfer_mode)
347{
348 const struct ata_xfer_ent *ent;
349
350 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
351 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
352 return ent->shift;
353 return -1;
354}
355
1da177e4 356/**
1da7b0d0
TH
357 * ata_mode_string - convert xfer_mask to string
358 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
359 *
360 * Determine string which represents the highest speed
1da7b0d0 361 * (highest bit in @modemask).
1da177e4
LT
362 *
363 * LOCKING:
364 * None.
365 *
366 * RETURNS:
367 * Constant C string representing highest speed listed in
1da7b0d0 368 * @mode_mask, or the constant C string "<n/a>".
1da177e4 369 */
1da7b0d0 370static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 371{
75f554bc
TH
372 static const char * const xfer_mode_str[] = {
373 "PIO0",
374 "PIO1",
375 "PIO2",
376 "PIO3",
377 "PIO4",
378 "MWDMA0",
379 "MWDMA1",
380 "MWDMA2",
381 "UDMA/16",
382 "UDMA/25",
383 "UDMA/33",
384 "UDMA/44",
385 "UDMA/66",
386 "UDMA/100",
387 "UDMA/133",
388 "UDMA7",
389 };
1da7b0d0 390 int highbit;
1da177e4 391
1da7b0d0
TH
392 highbit = fls(xfer_mask) - 1;
393 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
394 return xfer_mode_str[highbit];
1da177e4 395 return "<n/a>";
1da177e4
LT
396}
397
0b8efb0a
TH
398static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
399{
400 if (ata_dev_present(dev)) {
401 printk(KERN_WARNING "ata%u: dev %u disabled\n",
402 ap->id, dev->devno);
403 dev->class++;
404 }
405}
406
1da177e4
LT
407/**
408 * ata_pio_devchk - PATA device presence detection
409 * @ap: ATA channel to examine
410 * @device: Device to examine (starting at zero)
411 *
412 * This technique was originally described in
413 * Hale Landis's ATADRVR (www.ata-atapi.com), and
414 * later found its way into the ATA/ATAPI spec.
415 *
416 * Write a pattern to the ATA shadow registers,
417 * and if a device is present, it will respond by
418 * correctly storing and echoing back the
419 * ATA shadow register contents.
420 *
421 * LOCKING:
422 * caller.
423 */
424
425static unsigned int ata_pio_devchk(struct ata_port *ap,
426 unsigned int device)
427{
428 struct ata_ioports *ioaddr = &ap->ioaddr;
429 u8 nsect, lbal;
430
431 ap->ops->dev_select(ap, device);
432
433 outb(0x55, ioaddr->nsect_addr);
434 outb(0xaa, ioaddr->lbal_addr);
435
436 outb(0xaa, ioaddr->nsect_addr);
437 outb(0x55, ioaddr->lbal_addr);
438
439 outb(0x55, ioaddr->nsect_addr);
440 outb(0xaa, ioaddr->lbal_addr);
441
442 nsect = inb(ioaddr->nsect_addr);
443 lbal = inb(ioaddr->lbal_addr);
444
445 if ((nsect == 0x55) && (lbal == 0xaa))
446 return 1; /* we found a device */
447
448 return 0; /* nothing found */
449}
450
451/**
452 * ata_mmio_devchk - PATA device presence detection
453 * @ap: ATA channel to examine
454 * @device: Device to examine (starting at zero)
455 *
456 * This technique was originally described in
457 * Hale Landis's ATADRVR (www.ata-atapi.com), and
458 * later found its way into the ATA/ATAPI spec.
459 *
460 * Write a pattern to the ATA shadow registers,
461 * and if a device is present, it will respond by
462 * correctly storing and echoing back the
463 * ATA shadow register contents.
464 *
465 * LOCKING:
466 * caller.
467 */
468
469static unsigned int ata_mmio_devchk(struct ata_port *ap,
470 unsigned int device)
471{
472 struct ata_ioports *ioaddr = &ap->ioaddr;
473 u8 nsect, lbal;
474
475 ap->ops->dev_select(ap, device);
476
477 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
478 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
479
480 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
481 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
482
483 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
484 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
485
486 nsect = readb((void __iomem *) ioaddr->nsect_addr);
487 lbal = readb((void __iomem *) ioaddr->lbal_addr);
488
489 if ((nsect == 0x55) && (lbal == 0xaa))
490 return 1; /* we found a device */
491
492 return 0; /* nothing found */
493}
494
495/**
496 * ata_devchk - PATA device presence detection
497 * @ap: ATA channel to examine
498 * @device: Device to examine (starting at zero)
499 *
500 * Dispatch ATA device presence detection, depending
501 * on whether we are using PIO or MMIO to talk to the
502 * ATA shadow registers.
503 *
504 * LOCKING:
505 * caller.
506 */
507
508static unsigned int ata_devchk(struct ata_port *ap,
509 unsigned int device)
510{
511 if (ap->flags & ATA_FLAG_MMIO)
512 return ata_mmio_devchk(ap, device);
513 return ata_pio_devchk(ap, device);
514}
515
516/**
517 * ata_dev_classify - determine device type based on ATA-spec signature
518 * @tf: ATA taskfile register set for device to be identified
519 *
520 * Determine from taskfile register contents whether a device is
521 * ATA or ATAPI, as per "Signature and persistence" section
522 * of ATA/PI spec (volume 1, sect 5.14).
523 *
524 * LOCKING:
525 * None.
526 *
527 * RETURNS:
528 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
529 * the event of failure.
530 */
531
057ace5e 532unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
533{
534 /* Apple's open source Darwin code hints that some devices only
535 * put a proper signature into the LBA mid/high registers,
536 * So, we only check those. It's sufficient for uniqueness.
537 */
538
539 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
540 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
541 DPRINTK("found ATA device by sig\n");
542 return ATA_DEV_ATA;
543 }
544
545 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
546 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
547 DPRINTK("found ATAPI device by sig\n");
548 return ATA_DEV_ATAPI;
549 }
550
551 DPRINTK("unknown device\n");
552 return ATA_DEV_UNKNOWN;
553}
554
555/**
556 * ata_dev_try_classify - Parse returned ATA device signature
557 * @ap: ATA channel to examine
558 * @device: Device to examine (starting at zero)
b4dc7623 559 * @r_err: Value of error register on completion
1da177e4
LT
560 *
561 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
562 * an ATA/ATAPI-defined set of values is placed in the ATA
563 * shadow registers, indicating the results of device detection
564 * and diagnostics.
565 *
566 * Select the ATA device, and read the values from the ATA shadow
567 * registers. Then parse according to the Error register value,
568 * and the spec-defined values examined by ata_dev_classify().
569 *
570 * LOCKING:
571 * caller.
b4dc7623
TH
572 *
573 * RETURNS:
574 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
575 */
576
b4dc7623
TH
577static unsigned int
578ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 579{
1da177e4
LT
580 struct ata_taskfile tf;
581 unsigned int class;
582 u8 err;
583
584 ap->ops->dev_select(ap, device);
585
586 memset(&tf, 0, sizeof(tf));
587
1da177e4 588 ap->ops->tf_read(ap, &tf);
0169e284 589 err = tf.feature;
b4dc7623
TH
590 if (r_err)
591 *r_err = err;
1da177e4
LT
592
593 /* see if device passed diags */
594 if (err == 1)
595 /* do nothing */ ;
596 else if ((device == 0) && (err == 0x81))
597 /* do nothing */ ;
598 else
b4dc7623 599 return ATA_DEV_NONE;
1da177e4 600
b4dc7623 601 /* determine if device is ATA or ATAPI */
1da177e4 602 class = ata_dev_classify(&tf);
b4dc7623 603
1da177e4 604 if (class == ATA_DEV_UNKNOWN)
b4dc7623 605 return ATA_DEV_NONE;
1da177e4 606 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
607 return ATA_DEV_NONE;
608 return class;
1da177e4
LT
609}
610
611/**
6a62a04d 612 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
613 * @id: IDENTIFY DEVICE results we will examine
614 * @s: string into which data is output
615 * @ofs: offset into identify device page
616 * @len: length of string to return. must be an even number.
617 *
618 * The strings in the IDENTIFY DEVICE page are broken up into
619 * 16-bit chunks. Run through the string, and output each
620 * 8-bit chunk linearly, regardless of platform.
621 *
622 * LOCKING:
623 * caller.
624 */
625
6a62a04d
TH
626void ata_id_string(const u16 *id, unsigned char *s,
627 unsigned int ofs, unsigned int len)
1da177e4
LT
628{
629 unsigned int c;
630
631 while (len > 0) {
632 c = id[ofs] >> 8;
633 *s = c;
634 s++;
635
636 c = id[ofs] & 0xff;
637 *s = c;
638 s++;
639
640 ofs++;
641 len -= 2;
642 }
643}
644
0e949ff3 645/**
6a62a04d 646 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
647 * @id: IDENTIFY DEVICE results we will examine
648 * @s: string into which data is output
649 * @ofs: offset into identify device page
650 * @len: length of string to return. must be an odd number.
651 *
6a62a04d 652 * This function is identical to ata_id_string except that it
0e949ff3
TH
653 * trims trailing spaces and terminates the resulting string with
654 * null. @len must be actual maximum length (even number) + 1.
655 *
656 * LOCKING:
657 * caller.
658 */
6a62a04d
TH
659void ata_id_c_string(const u16 *id, unsigned char *s,
660 unsigned int ofs, unsigned int len)
0e949ff3
TH
661{
662 unsigned char *p;
663
664 WARN_ON(!(len & 1));
665
6a62a04d 666 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
667
668 p = s + strnlen(s, len - 1);
669 while (p > s && p[-1] == ' ')
670 p--;
671 *p = '\0';
672}
0baab86b 673
2940740b
TH
674static u64 ata_id_n_sectors(const u16 *id)
675{
676 if (ata_id_has_lba(id)) {
677 if (ata_id_has_lba48(id))
678 return ata_id_u64(id, 100);
679 else
680 return ata_id_u32(id, 60);
681 } else {
682 if (ata_id_current_chs_valid(id))
683 return ata_id_u32(id, 57);
684 else
685 return id[1] * id[3] * id[6];
686 }
687}
688
0baab86b
EF
689/**
690 * ata_noop_dev_select - Select device 0/1 on ATA bus
691 * @ap: ATA channel to manipulate
692 * @device: ATA device (numbered from zero) to select
693 *
694 * This function performs no actual function.
695 *
696 * May be used as the dev_select() entry in ata_port_operations.
697 *
698 * LOCKING:
699 * caller.
700 */
1da177e4
LT
701void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
702{
703}
704
0baab86b 705
1da177e4
LT
706/**
707 * ata_std_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 *
711 * Use the method defined in the ATA specification to
712 * make either device 0, or device 1, active on the
0baab86b
EF
713 * ATA channel. Works with both PIO and MMIO.
714 *
715 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
716 *
717 * LOCKING:
718 * caller.
719 */
720
721void ata_std_dev_select (struct ata_port *ap, unsigned int device)
722{
723 u8 tmp;
724
725 if (device == 0)
726 tmp = ATA_DEVICE_OBS;
727 else
728 tmp = ATA_DEVICE_OBS | ATA_DEV1;
729
730 if (ap->flags & ATA_FLAG_MMIO) {
731 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
732 } else {
733 outb(tmp, ap->ioaddr.device_addr);
734 }
735 ata_pause(ap); /* needed; also flushes, for mmio */
736}
737
738/**
739 * ata_dev_select - Select device 0/1 on ATA bus
740 * @ap: ATA channel to manipulate
741 * @device: ATA device (numbered from zero) to select
742 * @wait: non-zero to wait for Status register BSY bit to clear
743 * @can_sleep: non-zero if context allows sleeping
744 *
745 * Use the method defined in the ATA specification to
746 * make either device 0, or device 1, active on the
747 * ATA channel.
748 *
749 * This is a high-level version of ata_std_dev_select(),
750 * which additionally provides the services of inserting
751 * the proper pauses and status polling, where needed.
752 *
753 * LOCKING:
754 * caller.
755 */
756
757void ata_dev_select(struct ata_port *ap, unsigned int device,
758 unsigned int wait, unsigned int can_sleep)
759{
760 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
761 ap->id, device, wait);
762
763 if (wait)
764 ata_wait_idle(ap);
765
766 ap->ops->dev_select(ap, device);
767
768 if (wait) {
769 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
770 msleep(150);
771 ata_wait_idle(ap);
772 }
773}
774
775/**
776 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 777 * @id: IDENTIFY DEVICE page to dump
1da177e4 778 *
0bd3300a
TH
779 * Dump selected 16-bit words from the given IDENTIFY DEVICE
780 * page.
1da177e4
LT
781 *
782 * LOCKING:
783 * caller.
784 */
785
0bd3300a 786static inline void ata_dump_id(const u16 *id)
1da177e4
LT
787{
788 DPRINTK("49==0x%04x "
789 "53==0x%04x "
790 "63==0x%04x "
791 "64==0x%04x "
792 "75==0x%04x \n",
0bd3300a
TH
793 id[49],
794 id[53],
795 id[63],
796 id[64],
797 id[75]);
1da177e4
LT
798 DPRINTK("80==0x%04x "
799 "81==0x%04x "
800 "82==0x%04x "
801 "83==0x%04x "
802 "84==0x%04x \n",
0bd3300a
TH
803 id[80],
804 id[81],
805 id[82],
806 id[83],
807 id[84]);
1da177e4
LT
808 DPRINTK("88==0x%04x "
809 "93==0x%04x\n",
0bd3300a
TH
810 id[88],
811 id[93]);
1da177e4
LT
812}
813
cb95d562
TH
814/**
815 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
816 * @id: IDENTIFY data to compute xfer mask from
817 *
818 * Compute the xfermask for this device. This is not as trivial
819 * as it seems if we must consider early devices correctly.
820 *
821 * FIXME: pre IDE drive timing (do we care ?).
822 *
823 * LOCKING:
824 * None.
825 *
826 * RETURNS:
827 * Computed xfermask
828 */
829static unsigned int ata_id_xfermask(const u16 *id)
830{
831 unsigned int pio_mask, mwdma_mask, udma_mask;
832
833 /* Usual case. Word 53 indicates word 64 is valid */
834 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
835 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
836 pio_mask <<= 3;
837 pio_mask |= 0x7;
838 } else {
839 /* If word 64 isn't valid then Word 51 high byte holds
840 * the PIO timing number for the maximum. Turn it into
841 * a mask.
842 */
843 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
844
845 /* But wait.. there's more. Design your standards by
846 * committee and you too can get a free iordy field to
847 * process. However its the speeds not the modes that
848 * are supported... Note drivers using the timing API
849 * will get this right anyway
850 */
851 }
852
853 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
854
855 udma_mask = 0;
856 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
857 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
858
859 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
860}
861
86e45b6b
TH
862/**
863 * ata_port_queue_task - Queue port_task
864 * @ap: The ata_port to queue port_task for
865 *
866 * Schedule @fn(@data) for execution after @delay jiffies using
867 * port_task. There is one port_task per port and it's the
868 * user(low level driver)'s responsibility to make sure that only
869 * one task is active at any given time.
870 *
871 * libata core layer takes care of synchronization between
872 * port_task and EH. ata_port_queue_task() may be ignored for EH
873 * synchronization.
874 *
875 * LOCKING:
876 * Inherited from caller.
877 */
878void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
879 unsigned long delay)
880{
881 int rc;
882
2e755f68 883 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
884 return;
885
886 PREPARE_WORK(&ap->port_task, fn, data);
887
888 if (!delay)
889 rc = queue_work(ata_wq, &ap->port_task);
890 else
891 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
892
893 /* rc == 0 means that another user is using port task */
894 WARN_ON(rc == 0);
895}
896
897/**
898 * ata_port_flush_task - Flush port_task
899 * @ap: The ata_port to flush port_task for
900 *
901 * After this function completes, port_task is guranteed not to
902 * be running or scheduled.
903 *
904 * LOCKING:
905 * Kernel thread context (may sleep)
906 */
907void ata_port_flush_task(struct ata_port *ap)
908{
909 unsigned long flags;
910
911 DPRINTK("ENTER\n");
912
913 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 914 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
915 spin_unlock_irqrestore(&ap->host_set->lock, flags);
916
917 DPRINTK("flush #1\n");
918 flush_workqueue(ata_wq);
919
920 /*
921 * At this point, if a task is running, it's guaranteed to see
922 * the FLUSH flag; thus, it will never queue pio tasks again.
923 * Cancel and flush.
924 */
925 if (!cancel_delayed_work(&ap->port_task)) {
926 DPRINTK("flush #2\n");
927 flush_workqueue(ata_wq);
928 }
929
930 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 931 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
933
934 DPRINTK("EXIT\n");
935}
936
77853bf2 937void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 938{
77853bf2 939 struct completion *waiting = qc->private_data;
a2a7a662 940
77853bf2 941 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 942 complete(waiting);
a2a7a662
TH
943}
944
945/**
946 * ata_exec_internal - execute libata internal command
947 * @ap: Port to which the command is sent
948 * @dev: Device to which the command is sent
949 * @tf: Taskfile registers for the command and the result
950 * @dma_dir: Data tranfer direction of the command
951 * @buf: Data buffer of the command
952 * @buflen: Length of data buffer
953 *
954 * Executes libata internal command with timeout. @tf contains
955 * command on entry and result on return. Timeout and error
956 * conditions are reported via return value. No recovery action
957 * is taken after a command times out. It's caller's duty to
958 * clean up after timeout.
959 *
960 * LOCKING:
961 * None. Should be called with kernel context, might sleep.
962 */
963
964static unsigned
965ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
966 struct ata_taskfile *tf,
967 int dma_dir, void *buf, unsigned int buflen)
968{
969 u8 command = tf->command;
970 struct ata_queued_cmd *qc;
971 DECLARE_COMPLETION(wait);
972 unsigned long flags;
77853bf2 973 unsigned int err_mask;
a2a7a662
TH
974
975 spin_lock_irqsave(&ap->host_set->lock, flags);
976
977 qc = ata_qc_new_init(ap, dev);
978 BUG_ON(qc == NULL);
979
980 qc->tf = *tf;
981 qc->dma_dir = dma_dir;
982 if (dma_dir != DMA_NONE) {
983 ata_sg_init_one(qc, buf, buflen);
984 qc->nsect = buflen / ATA_SECT_SIZE;
985 }
986
77853bf2 987 qc->private_data = &wait;
a2a7a662
TH
988 qc->complete_fn = ata_qc_complete_internal;
989
9a3d9eb0
TH
990 qc->err_mask = ata_qc_issue(qc);
991 if (qc->err_mask)
8e436af9 992 ata_qc_complete(qc);
a2a7a662
TH
993
994 spin_unlock_irqrestore(&ap->host_set->lock, flags);
995
996 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
997 ata_port_flush_task(ap);
998
a2a7a662
TH
999 spin_lock_irqsave(&ap->host_set->lock, flags);
1000
1001 /* We're racing with irq here. If we lose, the
1002 * following test prevents us from completing the qc
1003 * again. If completion irq occurs after here but
1004 * before the caller cleans up, it will result in a
1005 * spurious interrupt. We can live with that.
1006 */
77853bf2 1007 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1008 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1009 ata_qc_complete(qc);
1010 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1011 ap->id, command);
1012 }
1013
1014 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1015 }
1016
77853bf2
TH
1017 *tf = qc->tf;
1018 err_mask = qc->err_mask;
1019
1020 ata_qc_free(qc);
1021
1f7dd3e9
TH
1022 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1023 * Until those drivers are fixed, we detect the condition
1024 * here, fail the command with AC_ERR_SYSTEM and reenable the
1025 * port.
1026 *
1027 * Note that this doesn't change any behavior as internal
1028 * command failure results in disabling the device in the
1029 * higher layer for LLDDs without new reset/EH callbacks.
1030 *
1031 * Kill the following code as soon as those drivers are fixed.
1032 */
1033 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1034 err_mask |= AC_ERR_SYSTEM;
1035 ata_port_probe(ap);
1036 }
1037
77853bf2 1038 return err_mask;
a2a7a662
TH
1039}
1040
1bc4ccff
AC
1041/**
1042 * ata_pio_need_iordy - check if iordy needed
1043 * @adev: ATA device
1044 *
1045 * Check if the current speed of the device requires IORDY. Used
1046 * by various controllers for chip configuration.
1047 */
1048
1049unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1050{
1051 int pio;
1052 int speed = adev->pio_mode - XFER_PIO_0;
1053
1054 if (speed < 2)
1055 return 0;
1056 if (speed > 2)
1057 return 1;
2e9edbf8 1058
1bc4ccff
AC
1059 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1060
1061 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1062 pio = adev->id[ATA_ID_EIDE_PIO];
1063 /* Is the speed faster than the drive allows non IORDY ? */
1064 if (pio) {
1065 /* This is cycle times not frequency - watch the logic! */
1066 if (pio > 240) /* PIO2 is 240nS per cycle */
1067 return 1;
1068 return 0;
1069 }
1070 }
1071 return 0;
1072}
1073
1da177e4 1074/**
49016aca
TH
1075 * ata_dev_read_id - Read ID data from the specified device
1076 * @ap: port on which target device resides
1077 * @dev: target device
1078 * @p_class: pointer to class of the target device (may be changed)
1079 * @post_reset: is this read ID post-reset?
d9572b1d 1080 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1081 *
49016aca
TH
1082 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1083 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1084 * devices. This function also takes care of EDD signature
1085 * misreporting (to be removed once EDD support is gone) and
1086 * issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.
1da177e4
LT
1087 *
1088 * LOCKING:
49016aca
TH
1089 * Kernel thread context (may sleep)
1090 *
1091 * RETURNS:
1092 * 0 on success, -errno otherwise.
1da177e4 1093 */
49016aca 1094static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1095 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1096{
49016aca 1097 unsigned int class = *p_class;
1da177e4 1098 unsigned int using_edd;
a0123703 1099 struct ata_taskfile tf;
49016aca 1100 unsigned int err_mask = 0;
d9572b1d 1101 u16 *id;
49016aca
TH
1102 const char *reason;
1103 int rc;
1da177e4 1104
49016aca 1105 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1106
61eb066a
TH
1107 if (ap->ops->probe_reset ||
1108 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1da177e4
LT
1109 using_edd = 0;
1110 else
1111 using_edd = 1;
1112
49016aca 1113 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1114
d9572b1d
TH
1115 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1116 if (id == NULL) {
1117 rc = -ENOMEM;
1118 reason = "out of memory";
1119 goto err_out;
1120 }
1121
49016aca
TH
1122 retry:
1123 ata_tf_init(ap, &tf, dev->devno);
a0123703 1124
49016aca
TH
1125 switch (class) {
1126 case ATA_DEV_ATA:
a0123703 1127 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1128 break;
1129 case ATA_DEV_ATAPI:
a0123703 1130 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1131 break;
1132 default:
1133 rc = -ENODEV;
1134 reason = "unsupported class";
1135 goto err_out;
1da177e4
LT
1136 }
1137
a0123703 1138 tf.protocol = ATA_PROT_PIO;
1da177e4 1139
a0123703 1140 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
49016aca 1141 id, sizeof(id[0]) * ATA_ID_WORDS);
1da177e4 1142
a0123703 1143 if (err_mask) {
49016aca
TH
1144 rc = -EIO;
1145 reason = "I/O error";
1146
a0123703
TH
1147 if (err_mask & ~AC_ERR_DEV)
1148 goto err_out;
0169e284 1149
1da177e4
LT
1150 /*
1151 * arg! EDD works for all test cases, but seems to return
1152 * the ATA signature for some ATAPI devices. Until the
1153 * reason for this is found and fixed, we fix up the mess
1154 * here. If IDENTIFY DEVICE returns command aborted
1155 * (as ATAPI devices do), then we issue an
1156 * IDENTIFY PACKET DEVICE.
1157 *
1158 * ATA software reset (SRST, the default) does not appear
1159 * to have this problem.
1160 */
49016aca 1161 if ((using_edd) && (class == ATA_DEV_ATA)) {
a0123703 1162 u8 err = tf.feature;
1da177e4 1163 if (err & ATA_ABORTED) {
49016aca 1164 class = ATA_DEV_ATAPI;
1da177e4
LT
1165 goto retry;
1166 }
1167 }
1168 goto err_out;
1169 }
1170
49016aca 1171 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1172
49016aca
TH
1173 /* sanity check */
1174 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1175 rc = -EINVAL;
1176 reason = "device reports illegal type";
1177 goto err_out;
1178 }
1179
1180 if (post_reset && class == ATA_DEV_ATA) {
1181 /*
1182 * The exact sequence expected by certain pre-ATA4 drives is:
1183 * SRST RESET
1184 * IDENTIFY
1185 * INITIALIZE DEVICE PARAMETERS
1186 * anything else..
1187 * Some drives were very specific about that exact sequence.
1188 */
1189 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1190 err_mask = ata_dev_init_params(ap, dev);
1191 if (err_mask) {
1192 rc = -EIO;
1193 reason = "INIT_DEV_PARAMS failed";
1194 goto err_out;
1195 }
1196
1197 /* current CHS translation info (id[53-58]) might be
1198 * changed. reread the identify device info.
1199 */
1200 post_reset = 0;
1201 goto retry;
1202 }
1203 }
1204
1205 *p_class = class;
d9572b1d 1206 *p_id = id;
49016aca
TH
1207 return 0;
1208
1209 err_out:
1210 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1211 ap->id, dev->devno, reason);
d9572b1d 1212 kfree(id);
49016aca
TH
1213 return rc;
1214}
1215
4b2f3ede
TH
1216static inline u8 ata_dev_knobble(const struct ata_port *ap,
1217 struct ata_device *dev)
1218{
1219 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1220}
1221
49016aca 1222/**
ffeae418
TH
1223 * ata_dev_configure - Configure the specified ATA/ATAPI device
1224 * @ap: Port on which target device resides
1225 * @dev: Target device to configure
4c2d721a 1226 * @print_info: Enable device info printout
ffeae418
TH
1227 *
1228 * Configure @dev according to @dev->id. Generic and low-level
1229 * driver specific fixups are also applied.
49016aca
TH
1230 *
1231 * LOCKING:
ffeae418
TH
1232 * Kernel thread context (may sleep)
1233 *
1234 * RETURNS:
1235 * 0 on success, -errno otherwise
49016aca 1236 */
4c2d721a
TH
1237static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1238 int print_info)
49016aca 1239{
1148c3a7 1240 const u16 *id = dev->id;
ff8854b2 1241 unsigned int xfer_mask;
49016aca
TH
1242 int i, rc;
1243
1244 if (!ata_dev_present(dev)) {
1245 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1246 ap->id, dev->devno);
1247 return 0;
49016aca
TH
1248 }
1249
ffeae418 1250 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1251
c39f5ebe
TH
1252 /* print device capabilities */
1253 if (print_info)
1254 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1255 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1256 ap->id, dev->devno, id[49], id[82], id[83],
1257 id[84], id[85], id[86], id[87], id[88]);
1258
208a9933
TH
1259 /* initialize to-be-configured parameters */
1260 dev->flags = 0;
1261 dev->max_sectors = 0;
1262 dev->cdb_len = 0;
1263 dev->n_sectors = 0;
1264 dev->cylinders = 0;
1265 dev->heads = 0;
1266 dev->sectors = 0;
1267
1da177e4
LT
1268 /*
1269 * common ATA, ATAPI feature tests
1270 */
1271
ff8854b2 1272 /* find max transfer mode; for printk only */
1148c3a7 1273 xfer_mask = ata_id_xfermask(id);
1da177e4 1274
1148c3a7 1275 ata_dump_id(id);
1da177e4
LT
1276
1277 /* ATA-specific feature tests */
1278 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1279 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1280
1148c3a7 1281 if (ata_id_has_lba(id)) {
4c2d721a 1282 const char *lba_desc;
8bf62ece 1283
4c2d721a
TH
1284 lba_desc = "LBA";
1285 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1286 if (ata_id_has_lba48(id)) {
8bf62ece 1287 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1288 lba_desc = "LBA48";
1289 }
8bf62ece
AL
1290
1291 /* print device info to dmesg */
4c2d721a
TH
1292 if (print_info)
1293 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1294 "max %s, %Lu sectors: %s\n",
1295 ap->id, dev->devno,
1148c3a7 1296 ata_id_major_version(id),
ff8854b2 1297 ata_mode_string(xfer_mask),
4c2d721a
TH
1298 (unsigned long long)dev->n_sectors,
1299 lba_desc);
ffeae418 1300 } else {
8bf62ece
AL
1301 /* CHS */
1302
1303 /* Default translation */
1148c3a7
TH
1304 dev->cylinders = id[1];
1305 dev->heads = id[3];
1306 dev->sectors = id[6];
8bf62ece 1307
1148c3a7 1308 if (ata_id_current_chs_valid(id)) {
8bf62ece 1309 /* Current CHS translation is valid. */
1148c3a7
TH
1310 dev->cylinders = id[54];
1311 dev->heads = id[55];
1312 dev->sectors = id[56];
8bf62ece
AL
1313 }
1314
1315 /* print device info to dmesg */
4c2d721a
TH
1316 if (print_info)
1317 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1318 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1319 ap->id, dev->devno,
1148c3a7 1320 ata_id_major_version(id),
ff8854b2 1321 ata_mode_string(xfer_mask),
4c2d721a
TH
1322 (unsigned long long)dev->n_sectors,
1323 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1324 }
1325
6e7846e9 1326 dev->cdb_len = 16;
1da177e4
LT
1327 }
1328
1329 /* ATAPI-specific feature tests */
2c13b7ce 1330 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1331 rc = atapi_cdb_len(id);
1da177e4
LT
1332 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1333 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1334 rc = -EINVAL;
1da177e4
LT
1335 goto err_out_nosup;
1336 }
6e7846e9 1337 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1338
1339 /* print device info to dmesg */
4c2d721a
TH
1340 if (print_info)
1341 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1342 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1343 }
1344
6e7846e9
TH
1345 ap->host->max_cmd_len = 0;
1346 for (i = 0; i < ATA_MAX_DEVICES; i++)
1347 ap->host->max_cmd_len = max_t(unsigned int,
1348 ap->host->max_cmd_len,
1349 ap->device[i].cdb_len);
1350
4b2f3ede
TH
1351 /* limit bridge transfers to udma5, 200 sectors */
1352 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1353 if (print_info)
1354 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1355 ap->id, dev->devno);
5a529139 1356 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1357 dev->max_sectors = ATA_MAX_SECTORS;
1358 }
1359
1360 if (ap->ops->dev_config)
1361 ap->ops->dev_config(ap, dev);
1362
1da177e4 1363 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1364 return 0;
1da177e4
LT
1365
1366err_out_nosup:
1da177e4 1367 DPRINTK("EXIT, err\n");
ffeae418 1368 return rc;
1da177e4
LT
1369}
1370
1371/**
1372 * ata_bus_probe - Reset and probe ATA bus
1373 * @ap: Bus to probe
1374 *
0cba632b
JG
1375 * Master ATA bus probing function. Initiates a hardware-dependent
1376 * bus reset, then attempts to identify any devices found on
1377 * the bus.
1378 *
1da177e4 1379 * LOCKING:
0cba632b 1380 * PCI/etc. bus probe sem.
1da177e4
LT
1381 *
1382 * RETURNS:
1383 * Zero on success, non-zero on error.
1384 */
1385
1386static int ata_bus_probe(struct ata_port *ap)
1387{
28ca5c57
TH
1388 unsigned int classes[ATA_MAX_DEVICES];
1389 unsigned int i, rc, found = 0;
1da177e4 1390
28ca5c57 1391 ata_port_probe(ap);
c19ba8af 1392
2044470c
TH
1393 /* reset and determine device classes */
1394 for (i = 0; i < ATA_MAX_DEVICES; i++)
1395 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1396
2044470c 1397 if (ap->ops->probe_reset) {
c19ba8af 1398 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1399 if (rc) {
1400 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1401 return rc;
c19ba8af 1402 }
28ca5c57 1403 } else {
c19ba8af
TH
1404 ap->ops->phy_reset(ap);
1405
2044470c
TH
1406 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1407 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1408 classes[i] = ap->device[i].class;
2044470c 1409
28ca5c57
TH
1410 ata_port_probe(ap);
1411 }
1da177e4 1412
2044470c
TH
1413 for (i = 0; i < ATA_MAX_DEVICES; i++)
1414 if (classes[i] == ATA_DEV_UNKNOWN)
1415 classes[i] = ATA_DEV_NONE;
1416
28ca5c57 1417 /* read IDENTIFY page and configure devices */
1da177e4 1418 for (i = 0; i < ATA_MAX_DEVICES; i++) {
ffeae418
TH
1419 struct ata_device *dev = &ap->device[i];
1420
28ca5c57
TH
1421 dev->class = classes[i];
1422
ffeae418
TH
1423 if (!ata_dev_present(dev))
1424 continue;
1425
1426 WARN_ON(dev->id != NULL);
1427 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1428 dev->class = ATA_DEV_NONE;
1429 continue;
1430 }
1431
4c2d721a 1432 if (ata_dev_configure(ap, dev, 1)) {
fcef978f 1433 ata_dev_disable(ap, dev);
ffeae418 1434 continue;
1da177e4 1435 }
ffeae418 1436
ffeae418 1437 found = 1;
1da177e4
LT
1438 }
1439
28ca5c57 1440 if (!found)
1da177e4
LT
1441 goto err_out_disable;
1442
1443 ata_set_mode(ap);
1444 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1445 goto err_out_disable;
1446
1447 return 0;
1448
1449err_out_disable:
1450 ap->ops->port_disable(ap);
1da177e4
LT
1451 return -1;
1452}
1453
1454/**
0cba632b
JG
1455 * ata_port_probe - Mark port as enabled
1456 * @ap: Port for which we indicate enablement
1da177e4 1457 *
0cba632b
JG
1458 * Modify @ap data structure such that the system
1459 * thinks that the entire port is enabled.
1460 *
1461 * LOCKING: host_set lock, or some other form of
1462 * serialization.
1da177e4
LT
1463 */
1464
1465void ata_port_probe(struct ata_port *ap)
1466{
1467 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1468}
1469
3be680b7
TH
1470/**
1471 * sata_print_link_status - Print SATA link status
1472 * @ap: SATA port to printk link status about
1473 *
1474 * This function prints link speed and status of a SATA link.
1475 *
1476 * LOCKING:
1477 * None.
1478 */
1479static void sata_print_link_status(struct ata_port *ap)
1480{
1481 u32 sstatus, tmp;
1482 const char *speed;
1483
1484 if (!ap->ops->scr_read)
1485 return;
1486
1487 sstatus = scr_read(ap, SCR_STATUS);
1488
1489 if (sata_dev_present(ap)) {
1490 tmp = (sstatus >> 4) & 0xf;
1491 if (tmp & (1 << 0))
1492 speed = "1.5";
1493 else if (tmp & (1 << 1))
1494 speed = "3.0";
1495 else
1496 speed = "<unknown>";
1497 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1498 ap->id, speed, sstatus);
1499 } else {
1500 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1501 ap->id, sstatus);
1502 }
1503}
1504
1da177e4 1505/**
780a87f7
JG
1506 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1507 * @ap: SATA port associated with target SATA PHY.
1da177e4 1508 *
780a87f7
JG
1509 * This function issues commands to standard SATA Sxxx
1510 * PHY registers, to wake up the phy (and device), and
1511 * clear any reset condition.
1da177e4
LT
1512 *
1513 * LOCKING:
0cba632b 1514 * PCI/etc. bus probe sem.
1da177e4
LT
1515 *
1516 */
1517void __sata_phy_reset(struct ata_port *ap)
1518{
1519 u32 sstatus;
1520 unsigned long timeout = jiffies + (HZ * 5);
1521
1522 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1523 /* issue phy wake/reset */
1524 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1525 /* Couldn't find anything in SATA I/II specs, but
1526 * AHCI-1.1 10.4.2 says at least 1 ms. */
1527 mdelay(1);
1da177e4 1528 }
cdcca89e 1529 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1530
1531 /* wait for phy to become ready, if necessary */
1532 do {
1533 msleep(200);
1534 sstatus = scr_read(ap, SCR_STATUS);
1535 if ((sstatus & 0xf) != 1)
1536 break;
1537 } while (time_before(jiffies, timeout));
1538
3be680b7
TH
1539 /* print link status */
1540 sata_print_link_status(ap);
656563e3 1541
3be680b7
TH
1542 /* TODO: phy layer with polling, timeouts, etc. */
1543 if (sata_dev_present(ap))
1da177e4 1544 ata_port_probe(ap);
3be680b7 1545 else
1da177e4 1546 ata_port_disable(ap);
1da177e4
LT
1547
1548 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1549 return;
1550
1551 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1552 ata_port_disable(ap);
1553 return;
1554 }
1555
1556 ap->cbl = ATA_CBL_SATA;
1557}
1558
1559/**
780a87f7
JG
1560 * sata_phy_reset - Reset SATA bus.
1561 * @ap: SATA port associated with target SATA PHY.
1da177e4 1562 *
780a87f7
JG
1563 * This function resets the SATA bus, and then probes
1564 * the bus for devices.
1da177e4
LT
1565 *
1566 * LOCKING:
0cba632b 1567 * PCI/etc. bus probe sem.
1da177e4
LT
1568 *
1569 */
1570void sata_phy_reset(struct ata_port *ap)
1571{
1572 __sata_phy_reset(ap);
1573 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1574 return;
1575 ata_bus_reset(ap);
1576}
1577
ebdfca6e
AC
1578/**
1579 * ata_dev_pair - return other device on cable
1580 * @ap: port
1581 * @adev: device
1582 *
1583 * Obtain the other device on the same cable, or if none is
1584 * present NULL is returned
1585 */
2e9edbf8 1586
ebdfca6e
AC
1587struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1588{
1589 struct ata_device *pair = &ap->device[1 - adev->devno];
1590 if (!ata_dev_present(pair))
1591 return NULL;
1592 return pair;
1593}
1594
1da177e4 1595/**
780a87f7
JG
1596 * ata_port_disable - Disable port.
1597 * @ap: Port to be disabled.
1da177e4 1598 *
780a87f7
JG
1599 * Modify @ap data structure such that the system
1600 * thinks that the entire port is disabled, and should
1601 * never attempt to probe or communicate with devices
1602 * on this port.
1603 *
1604 * LOCKING: host_set lock, or some other form of
1605 * serialization.
1da177e4
LT
1606 */
1607
1608void ata_port_disable(struct ata_port *ap)
1609{
1610 ap->device[0].class = ATA_DEV_NONE;
1611 ap->device[1].class = ATA_DEV_NONE;
1612 ap->flags |= ATA_FLAG_PORT_DISABLED;
1613}
1614
452503f9
AC
1615/*
1616 * This mode timing computation functionality is ported over from
1617 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1618 */
1619/*
1620 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1621 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1622 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1623 * is currently supported only by Maxtor drives.
452503f9
AC
1624 */
1625
1626static const struct ata_timing ata_timing[] = {
1627
1628 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1629 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1630 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1631 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1632
1633 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1634 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1635 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1636
1637/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1638
452503f9
AC
1639 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1640 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1641 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1642
452503f9
AC
1643 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1644 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1645 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1646
1647/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1648 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1649 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1650
1651 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1652 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1653 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1654
1655/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1656
1657 { 0xFF }
1658};
1659
1660#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1661#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1662
1663static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1664{
1665 q->setup = EZ(t->setup * 1000, T);
1666 q->act8b = EZ(t->act8b * 1000, T);
1667 q->rec8b = EZ(t->rec8b * 1000, T);
1668 q->cyc8b = EZ(t->cyc8b * 1000, T);
1669 q->active = EZ(t->active * 1000, T);
1670 q->recover = EZ(t->recover * 1000, T);
1671 q->cycle = EZ(t->cycle * 1000, T);
1672 q->udma = EZ(t->udma * 1000, UT);
1673}
1674
1675void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1676 struct ata_timing *m, unsigned int what)
1677{
1678 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1679 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1680 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1681 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1682 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1683 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1684 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1685 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1686}
1687
1688static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1689{
1690 const struct ata_timing *t;
1691
1692 for (t = ata_timing; t->mode != speed; t++)
91190758 1693 if (t->mode == 0xFF)
452503f9 1694 return NULL;
2e9edbf8 1695 return t;
452503f9
AC
1696}
1697
1698int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1699 struct ata_timing *t, int T, int UT)
1700{
1701 const struct ata_timing *s;
1702 struct ata_timing p;
1703
1704 /*
2e9edbf8 1705 * Find the mode.
75b1f2f8 1706 */
452503f9
AC
1707
1708 if (!(s = ata_timing_find_mode(speed)))
1709 return -EINVAL;
1710
75b1f2f8
AL
1711 memcpy(t, s, sizeof(*s));
1712
452503f9
AC
1713 /*
1714 * If the drive is an EIDE drive, it can tell us it needs extended
1715 * PIO/MW_DMA cycle timing.
1716 */
1717
1718 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1719 memset(&p, 0, sizeof(p));
1720 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1721 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1722 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1723 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1724 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1725 }
1726 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1727 }
1728
1729 /*
1730 * Convert the timing to bus clock counts.
1731 */
1732
75b1f2f8 1733 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1734
1735 /*
c893a3ae
RD
1736 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1737 * S.M.A.R.T * and some other commands. We have to ensure that the
1738 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1739 */
1740
1741 if (speed > XFER_PIO_4) {
1742 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1743 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1744 }
1745
1746 /*
c893a3ae 1747 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1748 */
1749
1750 if (t->act8b + t->rec8b < t->cyc8b) {
1751 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1752 t->rec8b = t->cyc8b - t->act8b;
1753 }
1754
1755 if (t->active + t->recover < t->cycle) {
1756 t->active += (t->cycle - (t->active + t->recover)) / 2;
1757 t->recover = t->cycle - t->active;
1758 }
1759
1760 return 0;
1761}
1762
83206a29 1763static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1764{
83206a29
TH
1765 unsigned int err_mask;
1766 int rc;
1da177e4
LT
1767
1768 if (dev->xfer_shift == ATA_SHIFT_PIO)
1769 dev->flags |= ATA_DFLAG_PIO;
1770
83206a29
TH
1771 err_mask = ata_dev_set_xfermode(ap, dev);
1772 if (err_mask) {
1773 printk(KERN_ERR
1774 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1775 ap->id, err_mask);
1776 return -EIO;
1777 }
1da177e4 1778
83206a29
TH
1779 rc = ata_dev_revalidate(ap, dev, 0);
1780 if (rc) {
1781 printk(KERN_ERR
1782 "ata%u: failed to revalidate after set xfermode\n",
1783 ap->id);
1784 return rc;
48a8a14f
TH
1785 }
1786
23e71c3d
TH
1787 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1788 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1789
1790 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1791 ap->id, dev->devno,
1792 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1793 return 0;
1da177e4
LT
1794}
1795
1796static int ata_host_set_pio(struct ata_port *ap)
1797{
a6d5a51c 1798 int i;
1da177e4
LT
1799
1800 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1801 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1802
1803 if (!ata_dev_present(dev))
1804 continue;
1805
1806 if (!dev->pio_mode) {
88f93a31 1807 printk(KERN_WARNING "ata%u: no PIO support for device %d.\n", ap->id, i);
a6d5a51c 1808 return -1;
1da177e4 1809 }
a6d5a51c
TH
1810
1811 dev->xfer_mode = dev->pio_mode;
1812 dev->xfer_shift = ATA_SHIFT_PIO;
1813 if (ap->ops->set_piomode)
1814 ap->ops->set_piomode(ap, dev);
1da177e4
LT
1815 }
1816
1817 return 0;
1818}
1819
a6d5a51c 1820static void ata_host_set_dma(struct ata_port *ap)
1da177e4
LT
1821{
1822 int i;
1823
1824 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1825 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1826
1827 if (!ata_dev_present(dev) || !dev->dma_mode)
1828 continue;
1829
1830 dev->xfer_mode = dev->dma_mode;
1831 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1832 if (ap->ops->set_dmamode)
1833 ap->ops->set_dmamode(ap, dev);
1da177e4
LT
1834 }
1835}
1836
1837/**
1838 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1839 * @ap: port on which timings will be programmed
1840 *
780a87f7
JG
1841 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1842 *
1da177e4 1843 * LOCKING:
0cba632b 1844 * PCI/etc. bus probe sem.
1da177e4
LT
1845 */
1846static void ata_set_mode(struct ata_port *ap)
1847{
a6d5a51c 1848 int i, rc;
1da177e4 1849
a6d5a51c
TH
1850 /* step 1: calculate xfer_mask */
1851 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1852 struct ata_device *dev = &ap->device[i];
acf356b1 1853 unsigned int pio_mask, dma_mask;
a6d5a51c
TH
1854
1855 if (!ata_dev_present(dev))
1856 continue;
1857
acf356b1 1858 ata_dev_xfermask(ap, dev);
1da177e4 1859
acf356b1
TH
1860 /* TODO: let LLDD filter dev->*_mask here */
1861
1862 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1863 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1864 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1865 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
a6d5a51c
TH
1866 }
1867
1868 /* step 2: always set host PIO timings */
1869 rc = ata_host_set_pio(ap);
1da177e4
LT
1870 if (rc)
1871 goto err_out;
1872
a6d5a51c
TH
1873 /* step 3: set host DMA timings */
1874 ata_host_set_dma(ap);
1da177e4
LT
1875
1876 /* step 4: update devices' xfer mode */
83206a29
TH
1877 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1878 struct ata_device *dev = &ap->device[i];
1da177e4 1879
83206a29
TH
1880 if (!ata_dev_present(dev))
1881 continue;
1882
1883 if (ata_dev_set_mode(ap, dev))
1884 goto err_out;
1885 }
1da177e4
LT
1886
1887 if (ap->ops->post_set_mode)
1888 ap->ops->post_set_mode(ap);
1889
1da177e4
LT
1890 return;
1891
1892err_out:
1893 ata_port_disable(ap);
1894}
1895
1fdffbce
JG
1896/**
1897 * ata_tf_to_host - issue ATA taskfile to host controller
1898 * @ap: port to which command is being issued
1899 * @tf: ATA taskfile register set
1900 *
1901 * Issues ATA taskfile register set to ATA host controller,
1902 * with proper synchronization with interrupt handler and
1903 * other threads.
1904 *
1905 * LOCKING:
1906 * spin_lock_irqsave(host_set lock)
1907 */
1908
1909static inline void ata_tf_to_host(struct ata_port *ap,
1910 const struct ata_taskfile *tf)
1911{
1912 ap->ops->tf_load(ap, tf);
1913 ap->ops->exec_command(ap, tf);
1914}
1915
1da177e4
LT
1916/**
1917 * ata_busy_sleep - sleep until BSY clears, or timeout
1918 * @ap: port containing status register to be polled
1919 * @tmout_pat: impatience timeout
1920 * @tmout: overall timeout
1921 *
780a87f7
JG
1922 * Sleep until ATA Status register bit BSY clears,
1923 * or a timeout occurs.
1924 *
1925 * LOCKING: None.
1da177e4
LT
1926 */
1927
6f8b9958
TH
1928unsigned int ata_busy_sleep (struct ata_port *ap,
1929 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
1930{
1931 unsigned long timer_start, timeout;
1932 u8 status;
1933
1934 status = ata_busy_wait(ap, ATA_BUSY, 300);
1935 timer_start = jiffies;
1936 timeout = timer_start + tmout_pat;
1937 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1938 msleep(50);
1939 status = ata_busy_wait(ap, ATA_BUSY, 3);
1940 }
1941
1942 if (status & ATA_BUSY)
1943 printk(KERN_WARNING "ata%u is slow to respond, "
1944 "please be patient\n", ap->id);
1945
1946 timeout = timer_start + tmout;
1947 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1948 msleep(50);
1949 status = ata_chk_status(ap);
1950 }
1951
1952 if (status & ATA_BUSY) {
1953 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1954 ap->id, tmout / HZ);
1955 return 1;
1956 }
1957
1958 return 0;
1959}
1960
1961static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1962{
1963 struct ata_ioports *ioaddr = &ap->ioaddr;
1964 unsigned int dev0 = devmask & (1 << 0);
1965 unsigned int dev1 = devmask & (1 << 1);
1966 unsigned long timeout;
1967
1968 /* if device 0 was found in ata_devchk, wait for its
1969 * BSY bit to clear
1970 */
1971 if (dev0)
1972 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1973
1974 /* if device 1 was found in ata_devchk, wait for
1975 * register access, then wait for BSY to clear
1976 */
1977 timeout = jiffies + ATA_TMOUT_BOOT;
1978 while (dev1) {
1979 u8 nsect, lbal;
1980
1981 ap->ops->dev_select(ap, 1);
1982 if (ap->flags & ATA_FLAG_MMIO) {
1983 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1984 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1985 } else {
1986 nsect = inb(ioaddr->nsect_addr);
1987 lbal = inb(ioaddr->lbal_addr);
1988 }
1989 if ((nsect == 1) && (lbal == 1))
1990 break;
1991 if (time_after(jiffies, timeout)) {
1992 dev1 = 0;
1993 break;
1994 }
1995 msleep(50); /* give drive a breather */
1996 }
1997 if (dev1)
1998 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1999
2000 /* is all this really necessary? */
2001 ap->ops->dev_select(ap, 0);
2002 if (dev1)
2003 ap->ops->dev_select(ap, 1);
2004 if (dev0)
2005 ap->ops->dev_select(ap, 0);
2006}
2007
2008/**
0cba632b
JG
2009 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
2010 * @ap: Port to reset and probe
2011 *
2012 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
2013 * probe the bus. Not often used these days.
1da177e4
LT
2014 *
2015 * LOCKING:
0cba632b 2016 * PCI/etc. bus probe sem.
e5338254 2017 * Obtains host_set lock.
1da177e4
LT
2018 *
2019 */
2020
2021static unsigned int ata_bus_edd(struct ata_port *ap)
2022{
2023 struct ata_taskfile tf;
e5338254 2024 unsigned long flags;
1da177e4
LT
2025
2026 /* set up execute-device-diag (bus reset) taskfile */
2027 /* also, take interrupts to a known state (disabled) */
2028 DPRINTK("execute-device-diag\n");
2029 ata_tf_init(ap, &tf, 0);
2030 tf.ctl |= ATA_NIEN;
2031 tf.command = ATA_CMD_EDD;
2032 tf.protocol = ATA_PROT_NODATA;
2033
2034 /* do bus reset */
e5338254 2035 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 2036 ata_tf_to_host(ap, &tf);
e5338254 2037 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1da177e4
LT
2038
2039 /* spec says at least 2ms. but who knows with those
2040 * crazy ATAPI devices...
2041 */
2042 msleep(150);
2043
2044 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2045}
2046
2047static unsigned int ata_bus_softreset(struct ata_port *ap,
2048 unsigned int devmask)
2049{
2050 struct ata_ioports *ioaddr = &ap->ioaddr;
2051
2052 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2053
2054 /* software reset. causes dev0 to be selected */
2055 if (ap->flags & ATA_FLAG_MMIO) {
2056 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2057 udelay(20); /* FIXME: flush */
2058 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2059 udelay(20); /* FIXME: flush */
2060 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2061 } else {
2062 outb(ap->ctl, ioaddr->ctl_addr);
2063 udelay(10);
2064 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2065 udelay(10);
2066 outb(ap->ctl, ioaddr->ctl_addr);
2067 }
2068
2069 /* spec mandates ">= 2ms" before checking status.
2070 * We wait 150ms, because that was the magic delay used for
2071 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2072 * between when the ATA command register is written, and then
2073 * status is checked. Because waiting for "a while" before
2074 * checking status is fine, post SRST, we perform this magic
2075 * delay here as well.
09c7ad79
AC
2076 *
2077 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2078 */
2079 msleep(150);
2080
2e9edbf8
JG
2081
2082 /* Before we perform post reset processing we want to see if
09c7ad79
AC
2083 the bus shows 0xFF because the odd clown forgets the D7 pulldown
2084 resistor */
2e9edbf8 2085
09c7ad79
AC
2086 if (ata_check_status(ap) == 0xFF)
2087 return 1; /* Positive is failure for some reason */
2088
1da177e4
LT
2089 ata_bus_post_reset(ap, devmask);
2090
2091 return 0;
2092}
2093
2094/**
2095 * ata_bus_reset - reset host port and associated ATA channel
2096 * @ap: port to reset
2097 *
2098 * This is typically the first time we actually start issuing
2099 * commands to the ATA channel. We wait for BSY to clear, then
2100 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2101 * result. Determine what devices, if any, are on the channel
2102 * by looking at the device 0/1 error register. Look at the signature
2103 * stored in each device's taskfile registers, to determine if
2104 * the device is ATA or ATAPI.
2105 *
2106 * LOCKING:
0cba632b
JG
2107 * PCI/etc. bus probe sem.
2108 * Obtains host_set lock.
1da177e4
LT
2109 *
2110 * SIDE EFFECTS:
2111 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2112 */
2113
2114void ata_bus_reset(struct ata_port *ap)
2115{
2116 struct ata_ioports *ioaddr = &ap->ioaddr;
2117 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2118 u8 err;
2119 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2120
2121 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2122
2123 /* determine if device 0/1 are present */
2124 if (ap->flags & ATA_FLAG_SATA_RESET)
2125 dev0 = 1;
2126 else {
2127 dev0 = ata_devchk(ap, 0);
2128 if (slave_possible)
2129 dev1 = ata_devchk(ap, 1);
2130 }
2131
2132 if (dev0)
2133 devmask |= (1 << 0);
2134 if (dev1)
2135 devmask |= (1 << 1);
2136
2137 /* select device 0 again */
2138 ap->ops->dev_select(ap, 0);
2139
2140 /* issue bus reset */
2141 if (ap->flags & ATA_FLAG_SRST)
2142 rc = ata_bus_softreset(ap, devmask);
2143 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2144 /* set up device control */
2145 if (ap->flags & ATA_FLAG_MMIO)
2146 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2147 else
2148 outb(ap->ctl, ioaddr->ctl_addr);
2149 rc = ata_bus_edd(ap);
2150 }
2151
2152 if (rc)
2153 goto err_out;
2154
2155 /*
2156 * determine by signature whether we have ATA or ATAPI devices
2157 */
b4dc7623 2158 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2159 if ((slave_possible) && (err != 0x81))
b4dc7623 2160 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2161
2162 /* re-enable interrupts */
2163 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2164 ata_irq_on(ap);
2165
2166 /* is double-select really necessary? */
2167 if (ap->device[1].class != ATA_DEV_NONE)
2168 ap->ops->dev_select(ap, 1);
2169 if (ap->device[0].class != ATA_DEV_NONE)
2170 ap->ops->dev_select(ap, 0);
2171
2172 /* if no devices were detected, disable this port */
2173 if ((ap->device[0].class == ATA_DEV_NONE) &&
2174 (ap->device[1].class == ATA_DEV_NONE))
2175 goto err_out;
2176
2177 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2178 /* set up device control for ATA_FLAG_SATA_RESET */
2179 if (ap->flags & ATA_FLAG_MMIO)
2180 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2181 else
2182 outb(ap->ctl, ioaddr->ctl_addr);
2183 }
2184
2185 DPRINTK("EXIT\n");
2186 return;
2187
2188err_out:
2189 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2190 ap->ops->port_disable(ap);
2191
2192 DPRINTK("EXIT\n");
2193}
2194
7a7921e8
TH
2195static int sata_phy_resume(struct ata_port *ap)
2196{
2197 unsigned long timeout = jiffies + (HZ * 5);
2198 u32 sstatus;
2199
2200 scr_write_flush(ap, SCR_CONTROL, 0x300);
2201
2202 /* Wait for phy to become ready, if necessary. */
2203 do {
2204 msleep(200);
2205 sstatus = scr_read(ap, SCR_STATUS);
2206 if ((sstatus & 0xf) != 1)
2207 return 0;
2208 } while (time_before(jiffies, timeout));
2209
2210 return -1;
2211}
2212
8a19ac89
TH
2213/**
2214 * ata_std_probeinit - initialize probing
2215 * @ap: port to be probed
2216 *
2217 * @ap is about to be probed. Initialize it. This function is
2218 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2219 *
2220 * NOTE!!! Do not use this function as probeinit if a low level
2221 * driver implements only hardreset. Just pass NULL as probeinit
2222 * in that case. Using this function is probably okay but doing
2223 * so makes reset sequence different from the original
2224 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89
TH
2225 */
2226extern void ata_std_probeinit(struct ata_port *ap)
2227{
3a39746a 2228 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
8a19ac89 2229 sata_phy_resume(ap);
3a39746a
TH
2230 if (sata_dev_present(ap))
2231 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2232 }
8a19ac89
TH
2233}
2234
c2bd5804
TH
2235/**
2236 * ata_std_softreset - reset host port via ATA SRST
2237 * @ap: port to reset
2238 * @verbose: fail verbosely
2239 * @classes: resulting classes of attached devices
2240 *
2241 * Reset host port using ATA SRST. This function is to be used
2242 * as standard callback for ata_drive_*_reset() functions.
2243 *
2244 * LOCKING:
2245 * Kernel thread context (may sleep)
2246 *
2247 * RETURNS:
2248 * 0 on success, -errno otherwise.
2249 */
2250int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2251{
2252 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2253 unsigned int devmask = 0, err_mask;
2254 u8 err;
2255
2256 DPRINTK("ENTER\n");
2257
3a39746a
TH
2258 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2259 classes[0] = ATA_DEV_NONE;
2260 goto out;
2261 }
2262
c2bd5804
TH
2263 /* determine if device 0/1 are present */
2264 if (ata_devchk(ap, 0))
2265 devmask |= (1 << 0);
2266 if (slave_possible && ata_devchk(ap, 1))
2267 devmask |= (1 << 1);
2268
c2bd5804
TH
2269 /* select device 0 again */
2270 ap->ops->dev_select(ap, 0);
2271
2272 /* issue bus reset */
2273 DPRINTK("about to softreset, devmask=%x\n", devmask);
2274 err_mask = ata_bus_softreset(ap, devmask);
2275 if (err_mask) {
2276 if (verbose)
2277 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2278 ap->id, err_mask);
2279 else
2280 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2281 err_mask);
2282 return -EIO;
2283 }
2284
2285 /* determine by signature whether we have ATA or ATAPI devices */
2286 classes[0] = ata_dev_try_classify(ap, 0, &err);
2287 if (slave_possible && err != 0x81)
2288 classes[1] = ata_dev_try_classify(ap, 1, &err);
2289
3a39746a 2290 out:
c2bd5804
TH
2291 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2292 return 0;
2293}
2294
2295/**
2296 * sata_std_hardreset - reset host port via SATA phy reset
2297 * @ap: port to reset
2298 * @verbose: fail verbosely
2299 * @class: resulting class of attached device
2300 *
2301 * SATA phy-reset host port using DET bits of SControl register.
2302 * This function is to be used as standard callback for
2303 * ata_drive_*_reset().
2304 *
2305 * LOCKING:
2306 * Kernel thread context (may sleep)
2307 *
2308 * RETURNS:
2309 * 0 on success, -errno otherwise.
2310 */
2311int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2312{
c2bd5804
TH
2313 DPRINTK("ENTER\n");
2314
2315 /* Issue phy wake/reset */
2316 scr_write_flush(ap, SCR_CONTROL, 0x301);
2317
2318 /*
2319 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2320 * 10.4.2 says at least 1 ms.
2321 */
2322 msleep(1);
2323
7a7921e8
TH
2324 /* Bring phy back */
2325 sata_phy_resume(ap);
c2bd5804 2326
c2bd5804
TH
2327 /* TODO: phy layer with polling, timeouts, etc. */
2328 if (!sata_dev_present(ap)) {
2329 *class = ATA_DEV_NONE;
2330 DPRINTK("EXIT, link offline\n");
2331 return 0;
2332 }
2333
2334 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2335 if (verbose)
2336 printk(KERN_ERR "ata%u: COMRESET failed "
2337 "(device not ready)\n", ap->id);
2338 else
2339 DPRINTK("EXIT, device not ready\n");
2340 return -EIO;
2341 }
2342
3a39746a
TH
2343 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2344
c2bd5804
TH
2345 *class = ata_dev_try_classify(ap, 0, NULL);
2346
2347 DPRINTK("EXIT, class=%u\n", *class);
2348 return 0;
2349}
2350
2351/**
2352 * ata_std_postreset - standard postreset callback
2353 * @ap: the target ata_port
2354 * @classes: classes of attached devices
2355 *
2356 * This function is invoked after a successful reset. Note that
2357 * the device might have been reset more than once using
2358 * different reset methods before postreset is invoked.
c2bd5804
TH
2359 *
2360 * This function is to be used as standard callback for
2361 * ata_drive_*_reset().
2362 *
2363 * LOCKING:
2364 * Kernel thread context (may sleep)
2365 */
2366void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2367{
2368 DPRINTK("ENTER\n");
2369
56497bd5 2370 /* set cable type if it isn't already set */
c2bd5804
TH
2371 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2372 ap->cbl = ATA_CBL_SATA;
2373
2374 /* print link status */
2375 if (ap->cbl == ATA_CBL_SATA)
2376 sata_print_link_status(ap);
2377
3a39746a
TH
2378 /* re-enable interrupts */
2379 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2380 ata_irq_on(ap);
c2bd5804
TH
2381
2382 /* is double-select really necessary? */
2383 if (classes[0] != ATA_DEV_NONE)
2384 ap->ops->dev_select(ap, 1);
2385 if (classes[1] != ATA_DEV_NONE)
2386 ap->ops->dev_select(ap, 0);
2387
3a39746a
TH
2388 /* bail out if no device is present */
2389 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2390 DPRINTK("EXIT, no device\n");
2391 return;
2392 }
2393
2394 /* set up device control */
2395 if (ap->ioaddr.ctl_addr) {
2396 if (ap->flags & ATA_FLAG_MMIO)
2397 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2398 else
2399 outb(ap->ctl, ap->ioaddr.ctl_addr);
2400 }
c2bd5804
TH
2401
2402 DPRINTK("EXIT\n");
2403}
2404
2405/**
2406 * ata_std_probe_reset - standard probe reset method
2407 * @ap: prot to perform probe-reset
2408 * @classes: resulting classes of attached devices
2409 *
2410 * The stock off-the-shelf ->probe_reset method.
2411 *
2412 * LOCKING:
2413 * Kernel thread context (may sleep)
2414 *
2415 * RETURNS:
2416 * 0 on success, -errno otherwise.
2417 */
2418int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2419{
2420 ata_reset_fn_t hardreset;
2421
2422 hardreset = NULL;
b911fc3a 2423 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2424 hardreset = sata_std_hardreset;
2425
8a19ac89 2426 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2427 ata_std_softreset, hardreset,
c2bd5804
TH
2428 ata_std_postreset, classes);
2429}
2430
a62c0fc5
TH
2431static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2432 ata_postreset_fn_t postreset,
2433 unsigned int *classes)
2434{
2435 int i, rc;
2436
2437 for (i = 0; i < ATA_MAX_DEVICES; i++)
2438 classes[i] = ATA_DEV_UNKNOWN;
2439
2440 rc = reset(ap, 0, classes);
2441 if (rc)
2442 return rc;
2443
2444 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2445 * is complete and convert all ATA_DEV_UNKNOWN to
2446 * ATA_DEV_NONE.
2447 */
2448 for (i = 0; i < ATA_MAX_DEVICES; i++)
2449 if (classes[i] != ATA_DEV_UNKNOWN)
2450 break;
2451
2452 if (i < ATA_MAX_DEVICES)
2453 for (i = 0; i < ATA_MAX_DEVICES; i++)
2454 if (classes[i] == ATA_DEV_UNKNOWN)
2455 classes[i] = ATA_DEV_NONE;
2456
2457 if (postreset)
2458 postreset(ap, classes);
2459
2460 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2461}
2462
2463/**
2464 * ata_drive_probe_reset - Perform probe reset with given methods
2465 * @ap: port to reset
7944ea95 2466 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2467 * @softreset: softreset method (can be NULL)
2468 * @hardreset: hardreset method (can be NULL)
2469 * @postreset: postreset method (can be NULL)
2470 * @classes: resulting classes of attached devices
2471 *
2472 * Reset the specified port and classify attached devices using
2473 * given methods. This function prefers softreset but tries all
2474 * possible reset sequences to reset and classify devices. This
2475 * function is intended to be used for constructing ->probe_reset
2476 * callback by low level drivers.
2477 *
2478 * Reset methods should follow the following rules.
2479 *
2480 * - Return 0 on sucess, -errno on failure.
2481 * - If classification is supported, fill classes[] with
2482 * recognized class codes.
2483 * - If classification is not supported, leave classes[] alone.
2484 * - If verbose is non-zero, print error message on failure;
2485 * otherwise, shut up.
2486 *
2487 * LOCKING:
2488 * Kernel thread context (may sleep)
2489 *
2490 * RETURNS:
2491 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2492 * if classification fails, and any error code from reset
2493 * methods.
2494 */
7944ea95 2495int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2496 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2497 ata_postreset_fn_t postreset, unsigned int *classes)
2498{
2499 int rc = -EINVAL;
2500
7944ea95
TH
2501 if (probeinit)
2502 probeinit(ap);
2503
a62c0fc5
TH
2504 if (softreset) {
2505 rc = do_probe_reset(ap, softreset, postreset, classes);
2506 if (rc == 0)
2507 return 0;
2508 }
2509
2510 if (!hardreset)
2511 return rc;
2512
2513 rc = do_probe_reset(ap, hardreset, postreset, classes);
2514 if (rc == 0 || rc != -ENODEV)
2515 return rc;
2516
2517 if (softreset)
2518 rc = do_probe_reset(ap, softreset, postreset, classes);
2519
2520 return rc;
2521}
2522
623a3128
TH
2523/**
2524 * ata_dev_same_device - Determine whether new ID matches configured device
2525 * @ap: port on which the device to compare against resides
2526 * @dev: device to compare against
2527 * @new_class: class of the new device
2528 * @new_id: IDENTIFY page of the new device
2529 *
2530 * Compare @new_class and @new_id against @dev and determine
2531 * whether @dev is the device indicated by @new_class and
2532 * @new_id.
2533 *
2534 * LOCKING:
2535 * None.
2536 *
2537 * RETURNS:
2538 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2539 */
2540static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2541 unsigned int new_class, const u16 *new_id)
2542{
2543 const u16 *old_id = dev->id;
2544 unsigned char model[2][41], serial[2][21];
2545 u64 new_n_sectors;
2546
2547 if (dev->class != new_class) {
2548 printk(KERN_INFO
2549 "ata%u: dev %u class mismatch %d != %d\n",
2550 ap->id, dev->devno, dev->class, new_class);
2551 return 0;
2552 }
2553
2554 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2555 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2556 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2557 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2558 new_n_sectors = ata_id_n_sectors(new_id);
2559
2560 if (strcmp(model[0], model[1])) {
2561 printk(KERN_INFO
2562 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2563 ap->id, dev->devno, model[0], model[1]);
2564 return 0;
2565 }
2566
2567 if (strcmp(serial[0], serial[1])) {
2568 printk(KERN_INFO
2569 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2570 ap->id, dev->devno, serial[0], serial[1]);
2571 return 0;
2572 }
2573
2574 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2575 printk(KERN_INFO
2576 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2577 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2578 (unsigned long long)new_n_sectors);
2579 return 0;
2580 }
2581
2582 return 1;
2583}
2584
2585/**
2586 * ata_dev_revalidate - Revalidate ATA device
2587 * @ap: port on which the device to revalidate resides
2588 * @dev: device to revalidate
2589 * @post_reset: is this revalidation after reset?
2590 *
2591 * Re-read IDENTIFY page and make sure @dev is still attached to
2592 * the port.
2593 *
2594 * LOCKING:
2595 * Kernel thread context (may sleep)
2596 *
2597 * RETURNS:
2598 * 0 on success, negative errno otherwise
2599 */
2600int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2601 int post_reset)
2602{
2603 unsigned int class;
2604 u16 *id;
2605 int rc;
2606
2607 if (!ata_dev_present(dev))
2608 return -ENODEV;
2609
2610 class = dev->class;
2611 id = NULL;
2612
2613 /* allocate & read ID data */
2614 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2615 if (rc)
2616 goto fail;
2617
2618 /* is the device still there? */
2619 if (!ata_dev_same_device(ap, dev, class, id)) {
2620 rc = -ENODEV;
2621 goto fail;
2622 }
2623
2624 kfree(dev->id);
2625 dev->id = id;
2626
2627 /* configure device according to the new ID */
2628 return ata_dev_configure(ap, dev, 0);
2629
2630 fail:
2631 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2632 ap->id, dev->devno, rc);
2633 kfree(id);
2634 return rc;
2635}
2636
98ac62de 2637static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2638 "WDC AC11000H", NULL,
2639 "WDC AC22100H", NULL,
2640 "WDC AC32500H", NULL,
2641 "WDC AC33100H", NULL,
2642 "WDC AC31600H", NULL,
2643 "WDC AC32100H", "24.09P07",
2644 "WDC AC23200L", "21.10N21",
2645 "Compaq CRD-8241B", NULL,
2646 "CRD-8400B", NULL,
2647 "CRD-8480B", NULL,
2648 "CRD-8482B", NULL,
2649 "CRD-84", NULL,
2650 "SanDisk SDP3B", NULL,
2651 "SanDisk SDP3B-64", NULL,
2652 "SANYO CD-ROM CRD", NULL,
2653 "HITACHI CDR-8", NULL,
2e9edbf8 2654 "HITACHI CDR-8335", NULL,
f4b15fef 2655 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2656 "Toshiba CD-ROM XM-6202B", NULL,
2657 "TOSHIBA CD-ROM XM-1702BC", NULL,
2658 "CD-532E-A", NULL,
2659 "E-IDE CD-ROM CR-840", NULL,
2660 "CD-ROM Drive/F5A", NULL,
2661 "WPI CDD-820", NULL,
f4b15fef 2662 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2663 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2664 "SanDisk SDP3B-64", NULL,
2665 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2666 "_NEC DV5800A", NULL,
2667 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2668};
2e9edbf8 2669
f4b15fef
AC
2670static int ata_strim(char *s, size_t len)
2671{
2672 len = strnlen(s, len);
2673
2674 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2675 while ((len > 0) && (s[len - 1] == ' ')) {
2676 len--;
2677 s[len] = 0;
2678 }
2679 return len;
2680}
1da177e4 2681
057ace5e 2682static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2683{
f4b15fef
AC
2684 unsigned char model_num[40];
2685 unsigned char model_rev[16];
2686 unsigned int nlen, rlen;
1da177e4
LT
2687 int i;
2688
f4b15fef
AC
2689 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2690 sizeof(model_num));
2691 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2692 sizeof(model_rev));
2693 nlen = ata_strim(model_num, sizeof(model_num));
2694 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2695
f4b15fef
AC
2696 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2697 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2698 if (ata_dma_blacklist[i+1] == NULL)
2699 return 1;
2700 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2701 return 1;
2702 }
2703 }
1da177e4
LT
2704 return 0;
2705}
2706
a6d5a51c
TH
2707/**
2708 * ata_dev_xfermask - Compute supported xfermask of the given device
2709 * @ap: Port on which the device to compute xfermask for resides
2710 * @dev: Device to compute xfermask for
2711 *
acf356b1
TH
2712 * Compute supported xfermask of @dev and store it in
2713 * dev->*_mask. This function is responsible for applying all
2714 * known limits including host controller limits, device
2715 * blacklist, etc...
a6d5a51c
TH
2716 *
2717 * LOCKING:
2718 * None.
a6d5a51c 2719 */
acf356b1 2720static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2721{
a6d5a51c
TH
2722 unsigned long xfer_mask;
2723 int i;
1da177e4 2724
a6d5a51c
TH
2725 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2726 ap->udma_mask);
1da177e4 2727
a6d5a51c
TH
2728 /* use port-wide xfermask for now */
2729 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2730 struct ata_device *d = &ap->device[i];
2731 if (!ata_dev_present(d))
2732 continue;
acf356b1
TH
2733 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2734 d->udma_mask);
a6d5a51c
TH
2735 xfer_mask &= ata_id_xfermask(d->id);
2736 if (ata_dma_blacklisted(d))
2737 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2738 }
2739
a6d5a51c
TH
2740 if (ata_dma_blacklisted(dev))
2741 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2742 "disabling DMA\n", ap->id, dev->devno);
2743
acf356b1
TH
2744 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2745 &dev->udma_mask);
1da177e4
LT
2746}
2747
1da177e4
LT
2748/**
2749 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2750 * @ap: Port associated with device @dev
2751 * @dev: Device to which command will be sent
2752 *
780a87f7
JG
2753 * Issue SET FEATURES - XFER MODE command to device @dev
2754 * on port @ap.
2755 *
1da177e4 2756 * LOCKING:
0cba632b 2757 * PCI/etc. bus probe sem.
83206a29
TH
2758 *
2759 * RETURNS:
2760 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2761 */
2762
83206a29
TH
2763static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2764 struct ata_device *dev)
1da177e4 2765{
a0123703 2766 struct ata_taskfile tf;
83206a29 2767 unsigned int err_mask;
1da177e4
LT
2768
2769 /* set up set-features taskfile */
2770 DPRINTK("set features - xfer mode\n");
2771
a0123703
TH
2772 ata_tf_init(ap, &tf, dev->devno);
2773 tf.command = ATA_CMD_SET_FEATURES;
2774 tf.feature = SETFEATURES_XFER;
2775 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2776 tf.protocol = ATA_PROT_NODATA;
2777 tf.nsect = dev->xfer_mode;
1da177e4 2778
83206a29 2779 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
1da177e4 2780
83206a29
TH
2781 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2782 return err_mask;
1da177e4
LT
2783}
2784
8bf62ece
AL
2785/**
2786 * ata_dev_init_params - Issue INIT DEV PARAMS command
2787 * @ap: Port associated with device @dev
2788 * @dev: Device to which command will be sent
2789 *
2790 * LOCKING:
6aff8f1f
TH
2791 * Kernel thread context (may sleep)
2792 *
2793 * RETURNS:
2794 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
2795 */
2796
6aff8f1f
TH
2797static unsigned int ata_dev_init_params(struct ata_port *ap,
2798 struct ata_device *dev)
8bf62ece 2799{
a0123703 2800 struct ata_taskfile tf;
6aff8f1f 2801 unsigned int err_mask;
8bf62ece
AL
2802 u16 sectors = dev->id[6];
2803 u16 heads = dev->id[3];
2804
2805 /* Number of sectors per track 1-255. Number of heads 1-16 */
2806 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
6aff8f1f 2807 return 0;
8bf62ece
AL
2808
2809 /* set up init dev params taskfile */
2810 DPRINTK("init dev params \n");
2811
a0123703
TH
2812 ata_tf_init(ap, &tf, dev->devno);
2813 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2814 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2815 tf.protocol = ATA_PROT_NODATA;
2816 tf.nsect = sectors;
2817 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2818
6aff8f1f 2819 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
8bf62ece 2820
6aff8f1f
TH
2821 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2822 return err_mask;
8bf62ece
AL
2823}
2824
1da177e4 2825/**
0cba632b
JG
2826 * ata_sg_clean - Unmap DMA memory associated with command
2827 * @qc: Command containing DMA memory to be released
2828 *
2829 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2830 *
2831 * LOCKING:
0cba632b 2832 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2833 */
2834
2835static void ata_sg_clean(struct ata_queued_cmd *qc)
2836{
2837 struct ata_port *ap = qc->ap;
cedc9a47 2838 struct scatterlist *sg = qc->__sg;
1da177e4 2839 int dir = qc->dma_dir;
cedc9a47 2840 void *pad_buf = NULL;
1da177e4 2841
a4631474
TH
2842 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2843 WARN_ON(sg == NULL);
1da177e4
LT
2844
2845 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 2846 WARN_ON(qc->n_elem > 1);
1da177e4 2847
2c13b7ce 2848 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2849
cedc9a47
JG
2850 /* if we padded the buffer out to 32-bit bound, and data
2851 * xfer direction is from-device, we must copy from the
2852 * pad buffer back into the supplied buffer
2853 */
2854 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2855 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2856
2857 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 2858 if (qc->n_elem)
2f1f610b 2859 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2860 /* restore last sg */
2861 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2862 if (pad_buf) {
2863 struct scatterlist *psg = &qc->pad_sgent;
2864 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2865 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2866 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2867 }
2868 } else {
2e242fa9 2869 if (qc->n_elem)
2f1f610b 2870 dma_unmap_single(ap->dev,
e1410f2d
JG
2871 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2872 dir);
cedc9a47
JG
2873 /* restore sg */
2874 sg->length += qc->pad_len;
2875 if (pad_buf)
2876 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2877 pad_buf, qc->pad_len);
2878 }
1da177e4
LT
2879
2880 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2881 qc->__sg = NULL;
1da177e4
LT
2882}
2883
2884/**
2885 * ata_fill_sg - Fill PCI IDE PRD table
2886 * @qc: Metadata associated with taskfile to be transferred
2887 *
780a87f7
JG
2888 * Fill PCI IDE PRD (scatter-gather) table with segments
2889 * associated with the current disk command.
2890 *
1da177e4 2891 * LOCKING:
780a87f7 2892 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2893 *
2894 */
2895static void ata_fill_sg(struct ata_queued_cmd *qc)
2896{
1da177e4 2897 struct ata_port *ap = qc->ap;
cedc9a47
JG
2898 struct scatterlist *sg;
2899 unsigned int idx;
1da177e4 2900
a4631474 2901 WARN_ON(qc->__sg == NULL);
f131883e 2902 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
2903
2904 idx = 0;
cedc9a47 2905 ata_for_each_sg(sg, qc) {
1da177e4
LT
2906 u32 addr, offset;
2907 u32 sg_len, len;
2908
2909 /* determine if physical DMA addr spans 64K boundary.
2910 * Note h/w doesn't support 64-bit, so we unconditionally
2911 * truncate dma_addr_t to u32.
2912 */
2913 addr = (u32) sg_dma_address(sg);
2914 sg_len = sg_dma_len(sg);
2915
2916 while (sg_len) {
2917 offset = addr & 0xffff;
2918 len = sg_len;
2919 if ((offset + sg_len) > 0x10000)
2920 len = 0x10000 - offset;
2921
2922 ap->prd[idx].addr = cpu_to_le32(addr);
2923 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2924 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2925
2926 idx++;
2927 sg_len -= len;
2928 addr += len;
2929 }
2930 }
2931
2932 if (idx)
2933 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2934}
2935/**
2936 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2937 * @qc: Metadata associated with taskfile to check
2938 *
780a87f7
JG
2939 * Allow low-level driver to filter ATA PACKET commands, returning
2940 * a status indicating whether or not it is OK to use DMA for the
2941 * supplied PACKET command.
2942 *
1da177e4 2943 * LOCKING:
0cba632b
JG
2944 * spin_lock_irqsave(host_set lock)
2945 *
1da177e4
LT
2946 * RETURNS: 0 when ATAPI DMA can be used
2947 * nonzero otherwise
2948 */
2949int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2950{
2951 struct ata_port *ap = qc->ap;
2952 int rc = 0; /* Assume ATAPI DMA is OK by default */
2953
2954 if (ap->ops->check_atapi_dma)
2955 rc = ap->ops->check_atapi_dma(qc);
2956
2957 return rc;
2958}
2959/**
2960 * ata_qc_prep - Prepare taskfile for submission
2961 * @qc: Metadata associated with taskfile to be prepared
2962 *
780a87f7
JG
2963 * Prepare ATA taskfile for submission.
2964 *
1da177e4
LT
2965 * LOCKING:
2966 * spin_lock_irqsave(host_set lock)
2967 */
2968void ata_qc_prep(struct ata_queued_cmd *qc)
2969{
2970 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2971 return;
2972
2973 ata_fill_sg(qc);
2974}
2975
e46834cd
BK
2976void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2977
0cba632b
JG
2978/**
2979 * ata_sg_init_one - Associate command with memory buffer
2980 * @qc: Command to be associated
2981 * @buf: Memory buffer
2982 * @buflen: Length of memory buffer, in bytes.
2983 *
2984 * Initialize the data-related elements of queued_cmd @qc
2985 * to point to a single memory buffer, @buf of byte length @buflen.
2986 *
2987 * LOCKING:
2988 * spin_lock_irqsave(host_set lock)
2989 */
2990
1da177e4
LT
2991void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2992{
2993 struct scatterlist *sg;
2994
2995 qc->flags |= ATA_QCFLAG_SINGLE;
2996
2997 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2998 qc->__sg = &qc->sgent;
1da177e4 2999 qc->n_elem = 1;
cedc9a47 3000 qc->orig_n_elem = 1;
1da177e4
LT
3001 qc->buf_virt = buf;
3002
cedc9a47 3003 sg = qc->__sg;
f0612bbc 3004 sg_init_one(sg, buf, buflen);
1da177e4
LT
3005}
3006
0cba632b
JG
3007/**
3008 * ata_sg_init - Associate command with scatter-gather table.
3009 * @qc: Command to be associated
3010 * @sg: Scatter-gather table.
3011 * @n_elem: Number of elements in s/g table.
3012 *
3013 * Initialize the data-related elements of queued_cmd @qc
3014 * to point to a scatter-gather table @sg, containing @n_elem
3015 * elements.
3016 *
3017 * LOCKING:
3018 * spin_lock_irqsave(host_set lock)
3019 */
3020
1da177e4
LT
3021void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3022 unsigned int n_elem)
3023{
3024 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3025 qc->__sg = sg;
1da177e4 3026 qc->n_elem = n_elem;
cedc9a47 3027 qc->orig_n_elem = n_elem;
1da177e4
LT
3028}
3029
3030/**
0cba632b
JG
3031 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3032 * @qc: Command with memory buffer to be mapped.
3033 *
3034 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3035 *
3036 * LOCKING:
3037 * spin_lock_irqsave(host_set lock)
3038 *
3039 * RETURNS:
0cba632b 3040 * Zero on success, negative on error.
1da177e4
LT
3041 */
3042
3043static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3044{
3045 struct ata_port *ap = qc->ap;
3046 int dir = qc->dma_dir;
cedc9a47 3047 struct scatterlist *sg = qc->__sg;
1da177e4 3048 dma_addr_t dma_address;
2e242fa9 3049 int trim_sg = 0;
1da177e4 3050
cedc9a47
JG
3051 /* we must lengthen transfers to end on a 32-bit boundary */
3052 qc->pad_len = sg->length & 3;
3053 if (qc->pad_len) {
3054 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3055 struct scatterlist *psg = &qc->pad_sgent;
3056
a4631474 3057 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3058
3059 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3060
3061 if (qc->tf.flags & ATA_TFLAG_WRITE)
3062 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3063 qc->pad_len);
3064
3065 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3066 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3067 /* trim sg */
3068 sg->length -= qc->pad_len;
2e242fa9
TH
3069 if (sg->length == 0)
3070 trim_sg = 1;
cedc9a47
JG
3071
3072 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3073 sg->length, qc->pad_len);
3074 }
3075
2e242fa9
TH
3076 if (trim_sg) {
3077 qc->n_elem--;
e1410f2d
JG
3078 goto skip_map;
3079 }
3080
2f1f610b 3081 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3082 sg->length, dir);
537a95d9
TH
3083 if (dma_mapping_error(dma_address)) {
3084 /* restore sg */
3085 sg->length += qc->pad_len;
1da177e4 3086 return -1;
537a95d9 3087 }
1da177e4
LT
3088
3089 sg_dma_address(sg) = dma_address;
32529e01 3090 sg_dma_len(sg) = sg->length;
1da177e4 3091
2e242fa9 3092skip_map:
1da177e4
LT
3093 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3094 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3095
3096 return 0;
3097}
3098
3099/**
0cba632b
JG
3100 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3101 * @qc: Command with scatter-gather table to be mapped.
3102 *
3103 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3104 *
3105 * LOCKING:
3106 * spin_lock_irqsave(host_set lock)
3107 *
3108 * RETURNS:
0cba632b 3109 * Zero on success, negative on error.
1da177e4
LT
3110 *
3111 */
3112
3113static int ata_sg_setup(struct ata_queued_cmd *qc)
3114{
3115 struct ata_port *ap = qc->ap;
cedc9a47
JG
3116 struct scatterlist *sg = qc->__sg;
3117 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3118 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3119
3120 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3121 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3122
cedc9a47
JG
3123 /* we must lengthen transfers to end on a 32-bit boundary */
3124 qc->pad_len = lsg->length & 3;
3125 if (qc->pad_len) {
3126 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3127 struct scatterlist *psg = &qc->pad_sgent;
3128 unsigned int offset;
3129
a4631474 3130 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3131
3132 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3133
3134 /*
3135 * psg->page/offset are used to copy to-be-written
3136 * data in this function or read data in ata_sg_clean.
3137 */
3138 offset = lsg->offset + lsg->length - qc->pad_len;
3139 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3140 psg->offset = offset_in_page(offset);
3141
3142 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3143 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3144 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3145 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3146 }
3147
3148 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3149 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3150 /* trim last sg */
3151 lsg->length -= qc->pad_len;
e1410f2d
JG
3152 if (lsg->length == 0)
3153 trim_sg = 1;
cedc9a47
JG
3154
3155 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3156 qc->n_elem - 1, lsg->length, qc->pad_len);
3157 }
3158
e1410f2d
JG
3159 pre_n_elem = qc->n_elem;
3160 if (trim_sg && pre_n_elem)
3161 pre_n_elem--;
3162
3163 if (!pre_n_elem) {
3164 n_elem = 0;
3165 goto skip_map;
3166 }
3167
1da177e4 3168 dir = qc->dma_dir;
2f1f610b 3169 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3170 if (n_elem < 1) {
3171 /* restore last sg */
3172 lsg->length += qc->pad_len;
1da177e4 3173 return -1;
537a95d9 3174 }
1da177e4
LT
3175
3176 DPRINTK("%d sg elements mapped\n", n_elem);
3177
e1410f2d 3178skip_map:
1da177e4
LT
3179 qc->n_elem = n_elem;
3180
3181 return 0;
3182}
3183
40e8c82c
TH
3184/**
3185 * ata_poll_qc_complete - turn irq back on and finish qc
3186 * @qc: Command to complete
8e8b77dd 3187 * @err_mask: ATA status register content
40e8c82c
TH
3188 *
3189 * LOCKING:
3190 * None. (grabs host lock)
3191 */
3192
a22e2eb0 3193void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3194{
3195 struct ata_port *ap = qc->ap;
b8f6153e 3196 unsigned long flags;
40e8c82c 3197
b8f6153e 3198 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3199 ap->flags &= ~ATA_FLAG_NOINTR;
3200 ata_irq_on(ap);
a22e2eb0 3201 ata_qc_complete(qc);
b8f6153e 3202 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3203}
3204
1da177e4 3205/**
c893a3ae 3206 * ata_pio_poll - poll using PIO, depending on current state
6f0ef4fa 3207 * @ap: the target ata_port
1da177e4
LT
3208 *
3209 * LOCKING:
0cba632b 3210 * None. (executing in kernel thread context)
1da177e4
LT
3211 *
3212 * RETURNS:
6f0ef4fa 3213 * timeout value to use
1da177e4
LT
3214 */
3215
3216static unsigned long ata_pio_poll(struct ata_port *ap)
3217{
c14b8331 3218 struct ata_queued_cmd *qc;
1da177e4 3219 u8 status;
14be71f4
AL
3220 unsigned int poll_state = HSM_ST_UNKNOWN;
3221 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 3222
c14b8331 3223 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3224 WARN_ON(qc == NULL);
c14b8331 3225
14be71f4
AL
3226 switch (ap->hsm_task_state) {
3227 case HSM_ST:
3228 case HSM_ST_POLL:
3229 poll_state = HSM_ST_POLL;
3230 reg_state = HSM_ST;
1da177e4 3231 break;
14be71f4
AL
3232 case HSM_ST_LAST:
3233 case HSM_ST_LAST_POLL:
3234 poll_state = HSM_ST_LAST_POLL;
3235 reg_state = HSM_ST_LAST;
1da177e4
LT
3236 break;
3237 default:
3238 BUG();
3239 break;
3240 }
3241
3242 status = ata_chk_status(ap);
3243 if (status & ATA_BUSY) {
3244 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3245 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3246 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3247 return 0;
3248 }
14be71f4 3249 ap->hsm_task_state = poll_state;
1da177e4
LT
3250 return ATA_SHORT_PAUSE;
3251 }
3252
14be71f4 3253 ap->hsm_task_state = reg_state;
1da177e4
LT
3254 return 0;
3255}
3256
3257/**
6f0ef4fa
RD
3258 * ata_pio_complete - check if drive is busy or idle
3259 * @ap: the target ata_port
1da177e4
LT
3260 *
3261 * LOCKING:
0cba632b 3262 * None. (executing in kernel thread context)
7fb6ec28
JG
3263 *
3264 * RETURNS:
3265 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
3266 */
3267
7fb6ec28 3268static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
3269{
3270 struct ata_queued_cmd *qc;
3271 u8 drv_stat;
3272
3273 /*
31433ea3
AC
3274 * This is purely heuristic. This is a fast path. Sometimes when
3275 * we enter, BSY will be cleared in a chk-status or two. If not,
3276 * the drive is probably seeking or something. Snooze for a couple
3277 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3278 * HSM_ST_POLL state.
1da177e4 3279 */
fe79e683
AL
3280 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3281 if (drv_stat & ATA_BUSY) {
1da177e4 3282 msleep(2);
fe79e683
AL
3283 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3284 if (drv_stat & ATA_BUSY) {
14be71f4 3285 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3286 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3287 return 0;
1da177e4
LT
3288 }
3289 }
3290
c14b8331 3291 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3292 WARN_ON(qc == NULL);
c14b8331 3293
1da177e4
LT
3294 drv_stat = ata_wait_idle(ap);
3295 if (!ata_ok(drv_stat)) {
1c848984 3296 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3297 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3298 return 0;
1da177e4
LT
3299 }
3300
14be71f4 3301 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3302
a4631474 3303 WARN_ON(qc->err_mask);
a22e2eb0 3304 ata_poll_qc_complete(qc);
7fb6ec28
JG
3305
3306 /* another command may start at this point */
3307
3308 return 1;
1da177e4
LT
3309}
3310
0baab86b
EF
3311
3312/**
c893a3ae 3313 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3314 * @buf: Buffer to swap
3315 * @buf_words: Number of 16-bit words in buffer.
3316 *
3317 * Swap halves of 16-bit words if needed to convert from
3318 * little-endian byte order to native cpu byte order, or
3319 * vice-versa.
3320 *
3321 * LOCKING:
6f0ef4fa 3322 * Inherited from caller.
0baab86b 3323 */
1da177e4
LT
3324void swap_buf_le16(u16 *buf, unsigned int buf_words)
3325{
3326#ifdef __BIG_ENDIAN
3327 unsigned int i;
3328
3329 for (i = 0; i < buf_words; i++)
3330 buf[i] = le16_to_cpu(buf[i]);
3331#endif /* __BIG_ENDIAN */
3332}
3333
6ae4cfb5
AL
3334/**
3335 * ata_mmio_data_xfer - Transfer data by MMIO
3336 * @ap: port to read/write
3337 * @buf: data buffer
3338 * @buflen: buffer length
344babaa 3339 * @write_data: read/write
6ae4cfb5
AL
3340 *
3341 * Transfer data from/to the device data register by MMIO.
3342 *
3343 * LOCKING:
3344 * Inherited from caller.
6ae4cfb5
AL
3345 */
3346
1da177e4
LT
3347static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3348 unsigned int buflen, int write_data)
3349{
3350 unsigned int i;
3351 unsigned int words = buflen >> 1;
3352 u16 *buf16 = (u16 *) buf;
3353 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3354
6ae4cfb5 3355 /* Transfer multiple of 2 bytes */
1da177e4
LT
3356 if (write_data) {
3357 for (i = 0; i < words; i++)
3358 writew(le16_to_cpu(buf16[i]), mmio);
3359 } else {
3360 for (i = 0; i < words; i++)
3361 buf16[i] = cpu_to_le16(readw(mmio));
3362 }
6ae4cfb5
AL
3363
3364 /* Transfer trailing 1 byte, if any. */
3365 if (unlikely(buflen & 0x01)) {
3366 u16 align_buf[1] = { 0 };
3367 unsigned char *trailing_buf = buf + buflen - 1;
3368
3369 if (write_data) {
3370 memcpy(align_buf, trailing_buf, 1);
3371 writew(le16_to_cpu(align_buf[0]), mmio);
3372 } else {
3373 align_buf[0] = cpu_to_le16(readw(mmio));
3374 memcpy(trailing_buf, align_buf, 1);
3375 }
3376 }
1da177e4
LT
3377}
3378
6ae4cfb5
AL
3379/**
3380 * ata_pio_data_xfer - Transfer data by PIO
3381 * @ap: port to read/write
3382 * @buf: data buffer
3383 * @buflen: buffer length
344babaa 3384 * @write_data: read/write
6ae4cfb5
AL
3385 *
3386 * Transfer data from/to the device data register by PIO.
3387 *
3388 * LOCKING:
3389 * Inherited from caller.
6ae4cfb5
AL
3390 */
3391
1da177e4
LT
3392static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3393 unsigned int buflen, int write_data)
3394{
6ae4cfb5 3395 unsigned int words = buflen >> 1;
1da177e4 3396
6ae4cfb5 3397 /* Transfer multiple of 2 bytes */
1da177e4 3398 if (write_data)
6ae4cfb5 3399 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3400 else
6ae4cfb5
AL
3401 insw(ap->ioaddr.data_addr, buf, words);
3402
3403 /* Transfer trailing 1 byte, if any. */
3404 if (unlikely(buflen & 0x01)) {
3405 u16 align_buf[1] = { 0 };
3406 unsigned char *trailing_buf = buf + buflen - 1;
3407
3408 if (write_data) {
3409 memcpy(align_buf, trailing_buf, 1);
3410 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3411 } else {
3412 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3413 memcpy(trailing_buf, align_buf, 1);
3414 }
3415 }
1da177e4
LT
3416}
3417
6ae4cfb5
AL
3418/**
3419 * ata_data_xfer - Transfer data from/to the data register.
3420 * @ap: port to read/write
3421 * @buf: data buffer
3422 * @buflen: buffer length
3423 * @do_write: read/write
3424 *
3425 * Transfer data from/to the device data register.
3426 *
3427 * LOCKING:
3428 * Inherited from caller.
6ae4cfb5
AL
3429 */
3430
1da177e4
LT
3431static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3432 unsigned int buflen, int do_write)
3433{
a1bd9e68
AC
3434 /* Make the crap hardware pay the costs not the good stuff */
3435 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3436 unsigned long flags;
3437 local_irq_save(flags);
3438 if (ap->flags & ATA_FLAG_MMIO)
3439 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3440 else
3441 ata_pio_data_xfer(ap, buf, buflen, do_write);
3442 local_irq_restore(flags);
3443 } else {
3444 if (ap->flags & ATA_FLAG_MMIO)
3445 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3446 else
3447 ata_pio_data_xfer(ap, buf, buflen, do_write);
3448 }
1da177e4
LT
3449}
3450
6ae4cfb5
AL
3451/**
3452 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3453 * @qc: Command on going
3454 *
3455 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3456 *
3457 * LOCKING:
3458 * Inherited from caller.
3459 */
3460
1da177e4
LT
3461static void ata_pio_sector(struct ata_queued_cmd *qc)
3462{
3463 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3464 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3465 struct ata_port *ap = qc->ap;
3466 struct page *page;
3467 unsigned int offset;
3468 unsigned char *buf;
3469
3470 if (qc->cursect == (qc->nsect - 1))
14be71f4 3471 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3472
3473 page = sg[qc->cursg].page;
3474 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3475
3476 /* get the current page and offset */
3477 page = nth_page(page, (offset >> PAGE_SHIFT));
3478 offset %= PAGE_SIZE;
3479
3480 buf = kmap(page) + offset;
3481
3482 qc->cursect++;
3483 qc->cursg_ofs++;
3484
32529e01 3485 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3486 qc->cursg++;
3487 qc->cursg_ofs = 0;
3488 }
3489
3490 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3491
3492 /* do the actual data transfer */
3493 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3494 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3495
3496 kunmap(page);
3497}
3498
6ae4cfb5
AL
3499/**
3500 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3501 * @qc: Command on going
3502 * @bytes: number of bytes
3503 *
3504 * Transfer Transfer data from/to the ATAPI device.
3505 *
3506 * LOCKING:
3507 * Inherited from caller.
3508 *
3509 */
3510
1da177e4
LT
3511static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3512{
3513 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3514 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3515 struct ata_port *ap = qc->ap;
3516 struct page *page;
3517 unsigned char *buf;
3518 unsigned int offset, count;
3519
563a6e1f 3520 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3521 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3522
3523next_sg:
563a6e1f 3524 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3525 /*
563a6e1f
AL
3526 * The end of qc->sg is reached and the device expects
3527 * more data to transfer. In order not to overrun qc->sg
3528 * and fulfill length specified in the byte count register,
3529 * - for read case, discard trailing data from the device
3530 * - for write case, padding zero data to the device
3531 */
3532 u16 pad_buf[1] = { 0 };
3533 unsigned int words = bytes >> 1;
3534 unsigned int i;
3535
3536 if (words) /* warning if bytes > 1 */
7fb6ec28 3537 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3538 ap->id, bytes);
3539
3540 for (i = 0; i < words; i++)
3541 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3542
14be71f4 3543 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3544 return;
3545 }
3546
cedc9a47 3547 sg = &qc->__sg[qc->cursg];
1da177e4 3548
1da177e4
LT
3549 page = sg->page;
3550 offset = sg->offset + qc->cursg_ofs;
3551
3552 /* get the current page and offset */
3553 page = nth_page(page, (offset >> PAGE_SHIFT));
3554 offset %= PAGE_SIZE;
3555
6952df03 3556 /* don't overrun current sg */
32529e01 3557 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3558
3559 /* don't cross page boundaries */
3560 count = min(count, (unsigned int)PAGE_SIZE - offset);
3561
3562 buf = kmap(page) + offset;
3563
3564 bytes -= count;
3565 qc->curbytes += count;
3566 qc->cursg_ofs += count;
3567
32529e01 3568 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3569 qc->cursg++;
3570 qc->cursg_ofs = 0;
3571 }
3572
3573 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3574
3575 /* do the actual data transfer */
3576 ata_data_xfer(ap, buf, count, do_write);
3577
3578 kunmap(page);
3579
563a6e1f 3580 if (bytes)
1da177e4 3581 goto next_sg;
1da177e4
LT
3582}
3583
6ae4cfb5
AL
3584/**
3585 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3586 * @qc: Command on going
3587 *
3588 * Transfer Transfer data from/to the ATAPI device.
3589 *
3590 * LOCKING:
3591 * Inherited from caller.
6ae4cfb5
AL
3592 */
3593
1da177e4
LT
3594static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3595{
3596 struct ata_port *ap = qc->ap;
3597 struct ata_device *dev = qc->dev;
3598 unsigned int ireason, bc_lo, bc_hi, bytes;
3599 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3600
3601 ap->ops->tf_read(ap, &qc->tf);
3602 ireason = qc->tf.nsect;
3603 bc_lo = qc->tf.lbam;
3604 bc_hi = qc->tf.lbah;
3605 bytes = (bc_hi << 8) | bc_lo;
3606
3607 /* shall be cleared to zero, indicating xfer of data */
3608 if (ireason & (1 << 0))
3609 goto err_out;
3610
3611 /* make sure transfer direction matches expected */
3612 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3613 if (do_write != i_write)
3614 goto err_out;
3615
3616 __atapi_pio_bytes(qc, bytes);
3617
3618 return;
3619
3620err_out:
3621 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3622 ap->id, dev->devno);
11a56d24 3623 qc->err_mask |= AC_ERR_HSM;
14be71f4 3624 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3625}
3626
3627/**
6f0ef4fa
RD
3628 * ata_pio_block - start PIO on a block
3629 * @ap: the target ata_port
1da177e4
LT
3630 *
3631 * LOCKING:
0cba632b 3632 * None. (executing in kernel thread context)
1da177e4
LT
3633 */
3634
3635static void ata_pio_block(struct ata_port *ap)
3636{
3637 struct ata_queued_cmd *qc;
3638 u8 status;
3639
3640 /*
6f0ef4fa 3641 * This is purely heuristic. This is a fast path.
1da177e4
LT
3642 * Sometimes when we enter, BSY will be cleared in
3643 * a chk-status or two. If not, the drive is probably seeking
3644 * or something. Snooze for a couple msecs, then
3645 * chk-status again. If still busy, fall back to
14be71f4 3646 * HSM_ST_POLL state.
1da177e4
LT
3647 */
3648 status = ata_busy_wait(ap, ATA_BUSY, 5);
3649 if (status & ATA_BUSY) {
3650 msleep(2);
3651 status = ata_busy_wait(ap, ATA_BUSY, 10);
3652 if (status & ATA_BUSY) {
14be71f4 3653 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3654 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3655 return;
3656 }
3657 }
3658
3659 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3660 WARN_ON(qc == NULL);
1da177e4 3661
fe79e683
AL
3662 /* check error */
3663 if (status & (ATA_ERR | ATA_DF)) {
3664 qc->err_mask |= AC_ERR_DEV;
3665 ap->hsm_task_state = HSM_ST_ERR;
3666 return;
3667 }
3668
3669 /* transfer data if any */
1da177e4 3670 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3671 /* DRQ=0 means no more data to transfer */
1da177e4 3672 if ((status & ATA_DRQ) == 0) {
14be71f4 3673 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3674 return;
3675 }
3676
3677 atapi_pio_bytes(qc);
3678 } else {
3679 /* handle BSY=0, DRQ=0 as error */
3680 if ((status & ATA_DRQ) == 0) {
11a56d24 3681 qc->err_mask |= AC_ERR_HSM;
14be71f4 3682 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3683 return;
3684 }
3685
3686 ata_pio_sector(qc);
3687 }
3688}
3689
3690static void ata_pio_error(struct ata_port *ap)
3691{
3692 struct ata_queued_cmd *qc;
a7dac447 3693
1da177e4 3694 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3695 WARN_ON(qc == NULL);
1da177e4 3696
0565c26d
AL
3697 if (qc->tf.command != ATA_CMD_PACKET)
3698 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3699
2e9edbf8 3700 /* make sure qc->err_mask is available to
1c848984
AL
3701 * know what's wrong and recover
3702 */
a4631474 3703 WARN_ON(qc->err_mask == 0);
1c848984 3704
14be71f4 3705 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3706
a22e2eb0 3707 ata_poll_qc_complete(qc);
1da177e4
LT
3708}
3709
3710static void ata_pio_task(void *_data)
3711{
3712 struct ata_port *ap = _data;
7fb6ec28
JG
3713 unsigned long timeout;
3714 int qc_completed;
3715
3716fsm_start:
3717 timeout = 0;
3718 qc_completed = 0;
1da177e4 3719
14be71f4
AL
3720 switch (ap->hsm_task_state) {
3721 case HSM_ST_IDLE:
1da177e4
LT
3722 return;
3723
14be71f4 3724 case HSM_ST:
1da177e4
LT
3725 ata_pio_block(ap);
3726 break;
3727
14be71f4 3728 case HSM_ST_LAST:
7fb6ec28 3729 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3730 break;
3731
14be71f4
AL
3732 case HSM_ST_POLL:
3733 case HSM_ST_LAST_POLL:
1da177e4
LT
3734 timeout = ata_pio_poll(ap);
3735 break;
3736
14be71f4
AL
3737 case HSM_ST_TMOUT:
3738 case HSM_ST_ERR:
1da177e4
LT
3739 ata_pio_error(ap);
3740 return;
3741 }
3742
3743 if (timeout)
8061f5f0 3744 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
7fb6ec28
JG
3745 else if (!qc_completed)
3746 goto fsm_start;
1da177e4
LT
3747}
3748
8061f5f0
TH
3749/**
3750 * atapi_packet_task - Write CDB bytes to hardware
3751 * @_data: Port to which ATAPI device is attached.
3752 *
3753 * When device has indicated its readiness to accept
3754 * a CDB, this function is called. Send the CDB.
3755 * If DMA is to be performed, exit immediately.
3756 * Otherwise, we are in polling mode, so poll
3757 * status under operation succeeds or fails.
3758 *
3759 * LOCKING:
3760 * Kernel thread context (may sleep)
3761 */
3762
3763static void atapi_packet_task(void *_data)
3764{
3765 struct ata_port *ap = _data;
3766 struct ata_queued_cmd *qc;
3767 u8 status;
3768
3769 qc = ata_qc_from_tag(ap, ap->active_tag);
3770 WARN_ON(qc == NULL);
3771 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3772
3773 /* sleep-wait for BSY to clear */
3774 DPRINTK("busy wait\n");
3775 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3776 qc->err_mask |= AC_ERR_TIMEOUT;
3777 goto err_out;
3778 }
3779
3780 /* make sure DRQ is set */
3781 status = ata_chk_status(ap);
3782 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3783 qc->err_mask |= AC_ERR_HSM;
3784 goto err_out;
3785 }
3786
3787 /* send SCSI cdb */
3788 DPRINTK("send cdb\n");
3789 WARN_ON(qc->dev->cdb_len < 12);
3790
3791 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3792 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3793 unsigned long flags;
3794
3795 /* Once we're done issuing command and kicking bmdma,
3796 * irq handler takes over. To not lose irq, we need
3797 * to clear NOINTR flag before sending cdb, but
3798 * interrupt handler shouldn't be invoked before we're
3799 * finished. Hence, the following locking.
3800 */
3801 spin_lock_irqsave(&ap->host_set->lock, flags);
3802 ap->flags &= ~ATA_FLAG_NOINTR;
3803 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3804 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3805 ap->ops->bmdma_start(qc); /* initiate bmdma */
3806 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3807 } else {
3808 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3809
3810 /* PIO commands are handled by polling */
3811 ap->hsm_task_state = HSM_ST;
3812 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3813 }
3814
3815 return;
3816
3817err_out:
3818 ata_poll_qc_complete(qc);
3819}
3820
1da177e4
LT
3821/**
3822 * ata_qc_timeout - Handle timeout of queued command
3823 * @qc: Command that timed out
3824 *
3825 * Some part of the kernel (currently, only the SCSI layer)
3826 * has noticed that the active command on port @ap has not
3827 * completed after a specified length of time. Handle this
3828 * condition by disabling DMA (if necessary) and completing
3829 * transactions, with error if necessary.
3830 *
3831 * This also handles the case of the "lost interrupt", where
3832 * for some reason (possibly hardware bug, possibly driver bug)
3833 * an interrupt was not delivered to the driver, even though the
3834 * transaction completed successfully.
3835 *
3836 * LOCKING:
0cba632b 3837 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3838 */
3839
3840static void ata_qc_timeout(struct ata_queued_cmd *qc)
3841{
3842 struct ata_port *ap = qc->ap;
b8f6153e 3843 struct ata_host_set *host_set = ap->host_set;
1da177e4 3844 u8 host_stat = 0, drv_stat;
b8f6153e 3845 unsigned long flags;
1da177e4
LT
3846
3847 DPRINTK("ENTER\n");
3848
c18d06f8
TH
3849 ap->hsm_task_state = HSM_ST_IDLE;
3850
b8f6153e
JG
3851 spin_lock_irqsave(&host_set->lock, flags);
3852
1da177e4
LT
3853 switch (qc->tf.protocol) {
3854
3855 case ATA_PROT_DMA:
3856 case ATA_PROT_ATAPI_DMA:
3857 host_stat = ap->ops->bmdma_status(ap);
3858
3859 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3860 ap->ops->bmdma_stop(qc);
1da177e4
LT
3861
3862 /* fall through */
3863
3864 default:
3865 ata_altstatus(ap);
3866 drv_stat = ata_chk_status(ap);
3867
3868 /* ack bmdma irq events */
3869 ap->ops->irq_clear(ap);
3870
3871 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3872 ap->id, qc->tf.command, drv_stat, host_stat);
3873
3874 /* complete taskfile transaction */
a22e2eb0 3875 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
3876 break;
3877 }
b8f6153e
JG
3878
3879 spin_unlock_irqrestore(&host_set->lock, flags);
3880
a72ec4ce
TH
3881 ata_eh_qc_complete(qc);
3882
1da177e4
LT
3883 DPRINTK("EXIT\n");
3884}
3885
3886/**
3887 * ata_eng_timeout - Handle timeout of queued command
3888 * @ap: Port on which timed-out command is active
3889 *
3890 * Some part of the kernel (currently, only the SCSI layer)
3891 * has noticed that the active command on port @ap has not
3892 * completed after a specified length of time. Handle this
3893 * condition by disabling DMA (if necessary) and completing
3894 * transactions, with error if necessary.
3895 *
3896 * This also handles the case of the "lost interrupt", where
3897 * for some reason (possibly hardware bug, possibly driver bug)
3898 * an interrupt was not delivered to the driver, even though the
3899 * transaction completed successfully.
3900 *
3901 * LOCKING:
3902 * Inherited from SCSI layer (none, can sleep)
3903 */
3904
3905void ata_eng_timeout(struct ata_port *ap)
3906{
1da177e4
LT
3907 DPRINTK("ENTER\n");
3908
f6379020 3909 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 3910
1da177e4
LT
3911 DPRINTK("EXIT\n");
3912}
3913
3914/**
3915 * ata_qc_new - Request an available ATA command, for queueing
3916 * @ap: Port associated with device @dev
3917 * @dev: Device from whom we request an available command structure
3918 *
3919 * LOCKING:
0cba632b 3920 * None.
1da177e4
LT
3921 */
3922
3923static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3924{
3925 struct ata_queued_cmd *qc = NULL;
3926 unsigned int i;
3927
3928 for (i = 0; i < ATA_MAX_QUEUE; i++)
3929 if (!test_and_set_bit(i, &ap->qactive)) {
3930 qc = ata_qc_from_tag(ap, i);
3931 break;
3932 }
3933
3934 if (qc)
3935 qc->tag = i;
3936
3937 return qc;
3938}
3939
3940/**
3941 * ata_qc_new_init - Request an available ATA command, and initialize it
3942 * @ap: Port associated with device @dev
3943 * @dev: Device from whom we request an available command structure
3944 *
3945 * LOCKING:
0cba632b 3946 * None.
1da177e4
LT
3947 */
3948
3949struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3950 struct ata_device *dev)
3951{
3952 struct ata_queued_cmd *qc;
3953
3954 qc = ata_qc_new(ap);
3955 if (qc) {
1da177e4
LT
3956 qc->scsicmd = NULL;
3957 qc->ap = ap;
3958 qc->dev = dev;
1da177e4 3959
2c13b7ce 3960 ata_qc_reinit(qc);
1da177e4
LT
3961 }
3962
3963 return qc;
3964}
3965
1da177e4
LT
3966/**
3967 * ata_qc_free - free unused ata_queued_cmd
3968 * @qc: Command to complete
3969 *
3970 * Designed to free unused ata_queued_cmd object
3971 * in case something prevents using it.
3972 *
3973 * LOCKING:
0cba632b 3974 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3975 */
3976void ata_qc_free(struct ata_queued_cmd *qc)
3977{
4ba946e9
TH
3978 struct ata_port *ap = qc->ap;
3979 unsigned int tag;
3980
a4631474 3981 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3982
4ba946e9
TH
3983 qc->flags = 0;
3984 tag = qc->tag;
3985 if (likely(ata_tag_valid(tag))) {
3986 if (tag == ap->active_tag)
3987 ap->active_tag = ATA_TAG_POISON;
3988 qc->tag = ATA_TAG_POISON;
3989 clear_bit(tag, &ap->qactive);
3990 }
1da177e4
LT
3991}
3992
76014427 3993void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3994{
a4631474
TH
3995 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3996 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
3997
3998 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3999 ata_sg_clean(qc);
4000
3f3791d3
AL
4001 /* atapi: mark qc as inactive to prevent the interrupt handler
4002 * from completing the command twice later, before the error handler
4003 * is called. (when rc != 0 and atapi request sense is needed)
4004 */
4005 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4006
1da177e4 4007 /* call completion callback */
77853bf2 4008 qc->complete_fn(qc);
1da177e4
LT
4009}
4010
4011static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4012{
4013 struct ata_port *ap = qc->ap;
4014
4015 switch (qc->tf.protocol) {
4016 case ATA_PROT_DMA:
4017 case ATA_PROT_ATAPI_DMA:
4018 return 1;
4019
4020 case ATA_PROT_ATAPI:
4021 case ATA_PROT_PIO:
1da177e4
LT
4022 if (ap->flags & ATA_FLAG_PIO_DMA)
4023 return 1;
4024
4025 /* fall through */
4026
4027 default:
4028 return 0;
4029 }
4030
4031 /* never reached */
4032}
4033
4034/**
4035 * ata_qc_issue - issue taskfile to device
4036 * @qc: command to issue to device
4037 *
4038 * Prepare an ATA command to submission to device.
4039 * This includes mapping the data into a DMA-able
4040 * area, filling in the S/G table, and finally
4041 * writing the taskfile to hardware, starting the command.
4042 *
4043 * LOCKING:
4044 * spin_lock_irqsave(host_set lock)
4045 *
4046 * RETURNS:
9a3d9eb0 4047 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4048 */
4049
9a3d9eb0 4050unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4051{
4052 struct ata_port *ap = qc->ap;
4053
4054 if (ata_should_dma_map(qc)) {
4055 if (qc->flags & ATA_QCFLAG_SG) {
4056 if (ata_sg_setup(qc))
8e436af9 4057 goto sg_err;
1da177e4
LT
4058 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4059 if (ata_sg_setup_one(qc))
8e436af9 4060 goto sg_err;
1da177e4
LT
4061 }
4062 } else {
4063 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4064 }
4065
4066 ap->ops->qc_prep(qc);
4067
4068 qc->ap->active_tag = qc->tag;
4069 qc->flags |= ATA_QCFLAG_ACTIVE;
4070
4071 return ap->ops->qc_issue(qc);
4072
8e436af9
TH
4073sg_err:
4074 qc->flags &= ~ATA_QCFLAG_DMAMAP;
9a3d9eb0 4075 return AC_ERR_SYSTEM;
1da177e4
LT
4076}
4077
0baab86b 4078
1da177e4
LT
4079/**
4080 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4081 * @qc: command to issue to device
4082 *
4083 * Using various libata functions and hooks, this function
4084 * starts an ATA command. ATA commands are grouped into
4085 * classes called "protocols", and issuing each type of protocol
4086 * is slightly different.
4087 *
0baab86b
EF
4088 * May be used as the qc_issue() entry in ata_port_operations.
4089 *
1da177e4
LT
4090 * LOCKING:
4091 * spin_lock_irqsave(host_set lock)
4092 *
4093 * RETURNS:
9a3d9eb0 4094 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4095 */
4096
9a3d9eb0 4097unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4098{
4099 struct ata_port *ap = qc->ap;
4100
4101 ata_dev_select(ap, qc->dev->devno, 1, 0);
4102
4103 switch (qc->tf.protocol) {
4104 case ATA_PROT_NODATA:
e5338254 4105 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4106 break;
4107
4108 case ATA_PROT_DMA:
4109 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4110 ap->ops->bmdma_setup(qc); /* set up bmdma */
4111 ap->ops->bmdma_start(qc); /* initiate bmdma */
4112 break;
4113
4114 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4115 ata_qc_set_polling(qc);
e5338254 4116 ata_tf_to_host(ap, &qc->tf);
14be71f4 4117 ap->hsm_task_state = HSM_ST;
8061f5f0 4118 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4119 break;
4120
4121 case ATA_PROT_ATAPI:
4122 ata_qc_set_polling(qc);
e5338254 4123 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4124 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4125 break;
4126
4127 case ATA_PROT_ATAPI_NODATA:
c1389503 4128 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4129 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4130 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4131 break;
4132
4133 case ATA_PROT_ATAPI_DMA:
c1389503 4134 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4135 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4136 ap->ops->bmdma_setup(qc); /* set up bmdma */
8061f5f0 4137 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4138 break;
4139
4140 default:
4141 WARN_ON(1);
9a3d9eb0 4142 return AC_ERR_SYSTEM;
1da177e4
LT
4143 }
4144
4145 return 0;
4146}
4147
1da177e4
LT
4148/**
4149 * ata_host_intr - Handle host interrupt for given (port, task)
4150 * @ap: Port on which interrupt arrived (possibly...)
4151 * @qc: Taskfile currently active in engine
4152 *
4153 * Handle host interrupt for given queued command. Currently,
4154 * only DMA interrupts are handled. All other commands are
4155 * handled via polling with interrupts disabled (nIEN bit).
4156 *
4157 * LOCKING:
4158 * spin_lock_irqsave(host_set lock)
4159 *
4160 * RETURNS:
4161 * One if interrupt was handled, zero if not (shared irq).
4162 */
4163
4164inline unsigned int ata_host_intr (struct ata_port *ap,
4165 struct ata_queued_cmd *qc)
4166{
4167 u8 status, host_stat;
4168
4169 switch (qc->tf.protocol) {
4170
4171 case ATA_PROT_DMA:
4172 case ATA_PROT_ATAPI_DMA:
4173 case ATA_PROT_ATAPI:
4174 /* check status of DMA engine */
4175 host_stat = ap->ops->bmdma_status(ap);
4176 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4177
4178 /* if it's not our irq... */
4179 if (!(host_stat & ATA_DMA_INTR))
4180 goto idle_irq;
4181
4182 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4183 ap->ops->bmdma_stop(qc);
1da177e4
LT
4184
4185 /* fall through */
4186
4187 case ATA_PROT_ATAPI_NODATA:
4188 case ATA_PROT_NODATA:
4189 /* check altstatus */
4190 status = ata_altstatus(ap);
4191 if (status & ATA_BUSY)
4192 goto idle_irq;
4193
4194 /* check main status, clearing INTRQ */
4195 status = ata_chk_status(ap);
4196 if (unlikely(status & ATA_BUSY))
4197 goto idle_irq;
4198 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4199 ap->id, qc->tf.protocol, status);
4200
4201 /* ack bmdma irq events */
4202 ap->ops->irq_clear(ap);
4203
4204 /* complete taskfile transaction */
a22e2eb0
AL
4205 qc->err_mask |= ac_err_mask(status);
4206 ata_qc_complete(qc);
1da177e4
LT
4207 break;
4208
4209 default:
4210 goto idle_irq;
4211 }
4212
4213 return 1; /* irq handled */
4214
4215idle_irq:
4216 ap->stats.idle_irq++;
4217
4218#ifdef ATA_IRQ_TRAP
4219 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4220 ata_irq_ack(ap, 0); /* debug trap */
4221 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4222 return 1;
1da177e4
LT
4223 }
4224#endif
4225 return 0; /* irq not handled */
4226}
4227
4228/**
4229 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4230 * @irq: irq line (unused)
4231 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4232 * @regs: unused
4233 *
0cba632b
JG
4234 * Default interrupt handler for PCI IDE devices. Calls
4235 * ata_host_intr() for each port that is not disabled.
4236 *
1da177e4 4237 * LOCKING:
0cba632b 4238 * Obtains host_set lock during operation.
1da177e4
LT
4239 *
4240 * RETURNS:
0cba632b 4241 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4242 */
4243
4244irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4245{
4246 struct ata_host_set *host_set = dev_instance;
4247 unsigned int i;
4248 unsigned int handled = 0;
4249 unsigned long flags;
4250
4251 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4252 spin_lock_irqsave(&host_set->lock, flags);
4253
4254 for (i = 0; i < host_set->n_ports; i++) {
4255 struct ata_port *ap;
4256
4257 ap = host_set->ports[i];
c1389503
TH
4258 if (ap &&
4259 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4260 struct ata_queued_cmd *qc;
4261
4262 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4263 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4264 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4265 handled |= ata_host_intr(ap, qc);
4266 }
4267 }
4268
4269 spin_unlock_irqrestore(&host_set->lock, flags);
4270
4271 return IRQ_RETVAL(handled);
4272}
4273
0baab86b 4274
9b847548
JA
4275/*
4276 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4277 * without filling any other registers
4278 */
4279static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4280 u8 cmd)
4281{
4282 struct ata_taskfile tf;
4283 int err;
4284
4285 ata_tf_init(ap, &tf, dev->devno);
4286
4287 tf.command = cmd;
4288 tf.flags |= ATA_TFLAG_DEVICE;
4289 tf.protocol = ATA_PROT_NODATA;
4290
4291 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4292 if (err)
4293 printk(KERN_ERR "%s: ata command failed: %d\n",
4294 __FUNCTION__, err);
4295
4296 return err;
4297}
4298
4299static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4300{
4301 u8 cmd;
4302
4303 if (!ata_try_flush_cache(dev))
4304 return 0;
4305
4306 if (ata_id_has_flush_ext(dev->id))
4307 cmd = ATA_CMD_FLUSH_EXT;
4308 else
4309 cmd = ATA_CMD_FLUSH;
4310
4311 return ata_do_simple_cmd(ap, dev, cmd);
4312}
4313
4314static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4315{
4316 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4317}
4318
4319static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4320{
4321 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4322}
4323
4324/**
4325 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4326 * @ap: port the device is connected to
4327 * @dev: the device to resume
9b847548
JA
4328 *
4329 * Kick the drive back into action, by sending it an idle immediate
4330 * command and making sure its transfer mode matches between drive
4331 * and host.
4332 *
4333 */
4334int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4335{
4336 if (ap->flags & ATA_FLAG_SUSPENDED) {
4337 ap->flags &= ~ATA_FLAG_SUSPENDED;
4338 ata_set_mode(ap);
4339 }
4340 if (!ata_dev_present(dev))
4341 return 0;
4342 if (dev->class == ATA_DEV_ATA)
4343 ata_start_drive(ap, dev);
4344
4345 return 0;
4346}
4347
4348/**
4349 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4350 * @ap: port the device is connected to
4351 * @dev: the device to suspend
9b847548
JA
4352 *
4353 * Flush the cache on the drive, if appropriate, then issue a
4354 * standbynow command.
9b847548 4355 */
082776e4 4356int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548
JA
4357{
4358 if (!ata_dev_present(dev))
4359 return 0;
4360 if (dev->class == ATA_DEV_ATA)
4361 ata_flush_cache(ap, dev);
4362
082776e4
NC
4363 if (state.event != PM_EVENT_FREEZE)
4364 ata_standby_drive(ap, dev);
9b847548
JA
4365 ap->flags |= ATA_FLAG_SUSPENDED;
4366 return 0;
4367}
4368
c893a3ae
RD
4369/**
4370 * ata_port_start - Set port up for dma.
4371 * @ap: Port to initialize
4372 *
4373 * Called just after data structures for each port are
4374 * initialized. Allocates space for PRD table.
4375 *
4376 * May be used as the port_start() entry in ata_port_operations.
4377 *
4378 * LOCKING:
4379 * Inherited from caller.
4380 */
4381
1da177e4
LT
4382int ata_port_start (struct ata_port *ap)
4383{
2f1f610b 4384 struct device *dev = ap->dev;
6037d6bb 4385 int rc;
1da177e4
LT
4386
4387 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4388 if (!ap->prd)
4389 return -ENOMEM;
4390
6037d6bb
JG
4391 rc = ata_pad_alloc(ap, dev);
4392 if (rc) {
cedc9a47 4393 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4394 return rc;
cedc9a47
JG
4395 }
4396
1da177e4
LT
4397 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4398
4399 return 0;
4400}
4401
0baab86b
EF
4402
4403/**
4404 * ata_port_stop - Undo ata_port_start()
4405 * @ap: Port to shut down
4406 *
4407 * Frees the PRD table.
4408 *
4409 * May be used as the port_stop() entry in ata_port_operations.
4410 *
4411 * LOCKING:
6f0ef4fa 4412 * Inherited from caller.
0baab86b
EF
4413 */
4414
1da177e4
LT
4415void ata_port_stop (struct ata_port *ap)
4416{
2f1f610b 4417 struct device *dev = ap->dev;
1da177e4
LT
4418
4419 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4420 ata_pad_free(ap, dev);
1da177e4
LT
4421}
4422
aa8f0dc6
JG
4423void ata_host_stop (struct ata_host_set *host_set)
4424{
4425 if (host_set->mmio_base)
4426 iounmap(host_set->mmio_base);
4427}
4428
4429
1da177e4
LT
4430/**
4431 * ata_host_remove - Unregister SCSI host structure with upper layers
4432 * @ap: Port to unregister
4433 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4434 *
4435 * LOCKING:
6f0ef4fa 4436 * Inherited from caller.
1da177e4
LT
4437 */
4438
4439static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4440{
4441 struct Scsi_Host *sh = ap->host;
4442
4443 DPRINTK("ENTER\n");
4444
4445 if (do_unregister)
4446 scsi_remove_host(sh);
4447
4448 ap->ops->port_stop(ap);
4449}
4450
4451/**
4452 * ata_host_init - Initialize an ata_port structure
4453 * @ap: Structure to initialize
4454 * @host: associated SCSI mid-layer structure
4455 * @host_set: Collection of hosts to which @ap belongs
4456 * @ent: Probe information provided by low-level driver
4457 * @port_no: Port number associated with this ata_port
4458 *
0cba632b
JG
4459 * Initialize a new ata_port structure, and its associated
4460 * scsi_host.
4461 *
1da177e4 4462 * LOCKING:
0cba632b 4463 * Inherited from caller.
1da177e4
LT
4464 */
4465
4466static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4467 struct ata_host_set *host_set,
057ace5e 4468 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4469{
4470 unsigned int i;
4471
4472 host->max_id = 16;
4473 host->max_lun = 1;
4474 host->max_channel = 1;
4475 host->unique_id = ata_unique_id++;
4476 host->max_cmd_len = 12;
12413197 4477
1da177e4
LT
4478 ap->flags = ATA_FLAG_PORT_DISABLED;
4479 ap->id = host->unique_id;
4480 ap->host = host;
4481 ap->ctl = ATA_DEVCTL_OBS;
4482 ap->host_set = host_set;
2f1f610b 4483 ap->dev = ent->dev;
1da177e4
LT
4484 ap->port_no = port_no;
4485 ap->hard_port_no =
4486 ent->legacy_mode ? ent->hard_port_no : port_no;
4487 ap->pio_mask = ent->pio_mask;
4488 ap->mwdma_mask = ent->mwdma_mask;
4489 ap->udma_mask = ent->udma_mask;
4490 ap->flags |= ent->host_flags;
4491 ap->ops = ent->port_ops;
4492 ap->cbl = ATA_CBL_NONE;
4493 ap->active_tag = ATA_TAG_POISON;
4494 ap->last_ctl = 0xFF;
4495
86e45b6b 4496 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4497 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4498
acf356b1
TH
4499 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4500 struct ata_device *dev = &ap->device[i];
4501 dev->devno = i;
4502 dev->pio_mask = UINT_MAX;
4503 dev->mwdma_mask = UINT_MAX;
4504 dev->udma_mask = UINT_MAX;
4505 }
1da177e4
LT
4506
4507#ifdef ATA_IRQ_TRAP
4508 ap->stats.unhandled_irq = 1;
4509 ap->stats.idle_irq = 1;
4510#endif
4511
4512 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4513}
4514
4515/**
4516 * ata_host_add - Attach low-level ATA driver to system
4517 * @ent: Information provided by low-level driver
4518 * @host_set: Collections of ports to which we add
4519 * @port_no: Port number associated with this host
4520 *
0cba632b
JG
4521 * Attach low-level ATA driver to system.
4522 *
1da177e4 4523 * LOCKING:
0cba632b 4524 * PCI/etc. bus probe sem.
1da177e4
LT
4525 *
4526 * RETURNS:
0cba632b 4527 * New ata_port on success, for NULL on error.
1da177e4
LT
4528 */
4529
057ace5e 4530static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4531 struct ata_host_set *host_set,
4532 unsigned int port_no)
4533{
4534 struct Scsi_Host *host;
4535 struct ata_port *ap;
4536 int rc;
4537
4538 DPRINTK("ENTER\n");
4539 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4540 if (!host)
4541 return NULL;
4542
30afc84c
TH
4543 host->transportt = &ata_scsi_transport_template;
4544
1da177e4
LT
4545 ap = (struct ata_port *) &host->hostdata[0];
4546
4547 ata_host_init(ap, host, host_set, ent, port_no);
4548
4549 rc = ap->ops->port_start(ap);
4550 if (rc)
4551 goto err_out;
4552
4553 return ap;
4554
4555err_out:
4556 scsi_host_put(host);
4557 return NULL;
4558}
4559
4560/**
0cba632b
JG
4561 * ata_device_add - Register hardware device with ATA and SCSI layers
4562 * @ent: Probe information describing hardware device to be registered
4563 *
4564 * This function processes the information provided in the probe
4565 * information struct @ent, allocates the necessary ATA and SCSI
4566 * host information structures, initializes them, and registers
4567 * everything with requisite kernel subsystems.
4568 *
4569 * This function requests irqs, probes the ATA bus, and probes
4570 * the SCSI bus.
1da177e4
LT
4571 *
4572 * LOCKING:
0cba632b 4573 * PCI/etc. bus probe sem.
1da177e4
LT
4574 *
4575 * RETURNS:
0cba632b 4576 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4577 */
4578
057ace5e 4579int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4580{
4581 unsigned int count = 0, i;
4582 struct device *dev = ent->dev;
4583 struct ata_host_set *host_set;
4584
4585 DPRINTK("ENTER\n");
4586 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4587 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4588 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4589 if (!host_set)
4590 return 0;
1da177e4
LT
4591 spin_lock_init(&host_set->lock);
4592
4593 host_set->dev = dev;
4594 host_set->n_ports = ent->n_ports;
4595 host_set->irq = ent->irq;
4596 host_set->mmio_base = ent->mmio_base;
4597 host_set->private_data = ent->private_data;
4598 host_set->ops = ent->port_ops;
4599
4600 /* register each port bound to this device */
4601 for (i = 0; i < ent->n_ports; i++) {
4602 struct ata_port *ap;
4603 unsigned long xfer_mode_mask;
4604
4605 ap = ata_host_add(ent, host_set, i);
4606 if (!ap)
4607 goto err_out;
4608
4609 host_set->ports[i] = ap;
4610 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4611 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4612 (ap->pio_mask << ATA_SHIFT_PIO);
4613
4614 /* print per-port info to dmesg */
4615 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4616 "bmdma 0x%lX irq %lu\n",
4617 ap->id,
4618 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4619 ata_mode_string(xfer_mode_mask),
4620 ap->ioaddr.cmd_addr,
4621 ap->ioaddr.ctl_addr,
4622 ap->ioaddr.bmdma_addr,
4623 ent->irq);
4624
4625 ata_chk_status(ap);
4626 host_set->ops->irq_clear(ap);
4627 count++;
4628 }
4629
57f3bda8
RD
4630 if (!count)
4631 goto err_free_ret;
1da177e4
LT
4632
4633 /* obtain irq, that is shared between channels */
4634 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4635 DRV_NAME, host_set))
4636 goto err_out;
4637
4638 /* perform each probe synchronously */
4639 DPRINTK("probe begin\n");
4640 for (i = 0; i < count; i++) {
4641 struct ata_port *ap;
4642 int rc;
4643
4644 ap = host_set->ports[i];
4645
c893a3ae 4646 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4647 rc = ata_bus_probe(ap);
c893a3ae 4648 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4649
4650 if (rc) {
4651 /* FIXME: do something useful here?
4652 * Current libata behavior will
4653 * tear down everything when
4654 * the module is removed
4655 * or the h/w is unplugged.
4656 */
4657 }
4658
4659 rc = scsi_add_host(ap->host, dev);
4660 if (rc) {
4661 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4662 ap->id);
4663 /* FIXME: do something useful here */
4664 /* FIXME: handle unconditional calls to
4665 * scsi_scan_host and ata_host_remove, below,
4666 * at the very least
4667 */
4668 }
4669 }
4670
4671 /* probes are done, now scan each port's disk(s) */
c893a3ae 4672 DPRINTK("host probe begin\n");
1da177e4
LT
4673 for (i = 0; i < count; i++) {
4674 struct ata_port *ap = host_set->ports[i];
4675
644dd0cc 4676 ata_scsi_scan_host(ap);
1da177e4
LT
4677 }
4678
4679 dev_set_drvdata(dev, host_set);
4680
4681 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4682 return ent->n_ports; /* success */
4683
4684err_out:
4685 for (i = 0; i < count; i++) {
4686 ata_host_remove(host_set->ports[i], 1);
4687 scsi_host_put(host_set->ports[i]->host);
4688 }
57f3bda8 4689err_free_ret:
1da177e4
LT
4690 kfree(host_set);
4691 VPRINTK("EXIT, returning 0\n");
4692 return 0;
4693}
4694
17b14451
AC
4695/**
4696 * ata_host_set_remove - PCI layer callback for device removal
4697 * @host_set: ATA host set that was removed
4698 *
2e9edbf8 4699 * Unregister all objects associated with this host set. Free those
17b14451
AC
4700 * objects.
4701 *
4702 * LOCKING:
4703 * Inherited from calling layer (may sleep).
4704 */
4705
17b14451
AC
4706void ata_host_set_remove(struct ata_host_set *host_set)
4707{
4708 struct ata_port *ap;
4709 unsigned int i;
4710
4711 for (i = 0; i < host_set->n_ports; i++) {
4712 ap = host_set->ports[i];
4713 scsi_remove_host(ap->host);
4714 }
4715
4716 free_irq(host_set->irq, host_set);
4717
4718 for (i = 0; i < host_set->n_ports; i++) {
4719 ap = host_set->ports[i];
4720
4721 ata_scsi_release(ap->host);
4722
4723 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4724 struct ata_ioports *ioaddr = &ap->ioaddr;
4725
4726 if (ioaddr->cmd_addr == 0x1f0)
4727 release_region(0x1f0, 8);
4728 else if (ioaddr->cmd_addr == 0x170)
4729 release_region(0x170, 8);
4730 }
4731
4732 scsi_host_put(ap->host);
4733 }
4734
4735 if (host_set->ops->host_stop)
4736 host_set->ops->host_stop(host_set);
4737
4738 kfree(host_set);
4739}
4740
1da177e4
LT
4741/**
4742 * ata_scsi_release - SCSI layer callback hook for host unload
4743 * @host: libata host to be unloaded
4744 *
4745 * Performs all duties necessary to shut down a libata port...
4746 * Kill port kthread, disable port, and release resources.
4747 *
4748 * LOCKING:
4749 * Inherited from SCSI layer.
4750 *
4751 * RETURNS:
4752 * One.
4753 */
4754
4755int ata_scsi_release(struct Scsi_Host *host)
4756{
4757 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4758 int i;
1da177e4
LT
4759
4760 DPRINTK("ENTER\n");
4761
4762 ap->ops->port_disable(ap);
4763 ata_host_remove(ap, 0);
d9572b1d
TH
4764 for (i = 0; i < ATA_MAX_DEVICES; i++)
4765 kfree(ap->device[i].id);
1da177e4
LT
4766
4767 DPRINTK("EXIT\n");
4768 return 1;
4769}
4770
4771/**
4772 * ata_std_ports - initialize ioaddr with standard port offsets.
4773 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4774 *
4775 * Utility function which initializes data_addr, error_addr,
4776 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4777 * device_addr, status_addr, and command_addr to standard offsets
4778 * relative to cmd_addr.
4779 *
4780 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4781 */
0baab86b 4782
1da177e4
LT
4783void ata_std_ports(struct ata_ioports *ioaddr)
4784{
4785 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4786 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4787 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4788 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4789 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4790 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4791 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4792 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4793 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4794 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4795}
4796
0baab86b 4797
374b1873
JG
4798#ifdef CONFIG_PCI
4799
4800void ata_pci_host_stop (struct ata_host_set *host_set)
4801{
4802 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4803
4804 pci_iounmap(pdev, host_set->mmio_base);
4805}
4806
1da177e4
LT
4807/**
4808 * ata_pci_remove_one - PCI layer callback for device removal
4809 * @pdev: PCI device that was removed
4810 *
4811 * PCI layer indicates to libata via this hook that
6f0ef4fa 4812 * hot-unplug or module unload event has occurred.
1da177e4
LT
4813 * Handle this by unregistering all objects associated
4814 * with this PCI device. Free those objects. Then finally
4815 * release PCI resources and disable device.
4816 *
4817 * LOCKING:
4818 * Inherited from PCI layer (may sleep).
4819 */
4820
4821void ata_pci_remove_one (struct pci_dev *pdev)
4822{
4823 struct device *dev = pci_dev_to_dev(pdev);
4824 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4825
17b14451 4826 ata_host_set_remove(host_set);
1da177e4
LT
4827 pci_release_regions(pdev);
4828 pci_disable_device(pdev);
4829 dev_set_drvdata(dev, NULL);
4830}
4831
4832/* move to PCI subsystem */
057ace5e 4833int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4834{
4835 unsigned long tmp = 0;
4836
4837 switch (bits->width) {
4838 case 1: {
4839 u8 tmp8 = 0;
4840 pci_read_config_byte(pdev, bits->reg, &tmp8);
4841 tmp = tmp8;
4842 break;
4843 }
4844 case 2: {
4845 u16 tmp16 = 0;
4846 pci_read_config_word(pdev, bits->reg, &tmp16);
4847 tmp = tmp16;
4848 break;
4849 }
4850 case 4: {
4851 u32 tmp32 = 0;
4852 pci_read_config_dword(pdev, bits->reg, &tmp32);
4853 tmp = tmp32;
4854 break;
4855 }
4856
4857 default:
4858 return -EINVAL;
4859 }
4860
4861 tmp &= bits->mask;
4862
4863 return (tmp == bits->val) ? 1 : 0;
4864}
9b847548
JA
4865
4866int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4867{
4868 pci_save_state(pdev);
4869 pci_disable_device(pdev);
4870 pci_set_power_state(pdev, PCI_D3hot);
4871 return 0;
4872}
4873
4874int ata_pci_device_resume(struct pci_dev *pdev)
4875{
4876 pci_set_power_state(pdev, PCI_D0);
4877 pci_restore_state(pdev);
4878 pci_enable_device(pdev);
4879 pci_set_master(pdev);
4880 return 0;
4881}
1da177e4
LT
4882#endif /* CONFIG_PCI */
4883
4884
1da177e4
LT
4885static int __init ata_init(void)
4886{
4887 ata_wq = create_workqueue("ata");
4888 if (!ata_wq)
4889 return -ENOMEM;
4890
4891 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4892 return 0;
4893}
4894
4895static void __exit ata_exit(void)
4896{
4897 destroy_workqueue(ata_wq);
4898}
4899
4900module_init(ata_init);
4901module_exit(ata_exit);
4902
67846b30
JG
4903static unsigned long ratelimit_time;
4904static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4905
4906int ata_ratelimit(void)
4907{
4908 int rc;
4909 unsigned long flags;
4910
4911 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4912
4913 if (time_after(jiffies, ratelimit_time)) {
4914 rc = 1;
4915 ratelimit_time = jiffies + (HZ/5);
4916 } else
4917 rc = 0;
4918
4919 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4920
4921 return rc;
4922}
4923
1da177e4
LT
4924/*
4925 * libata is essentially a library of internal helper functions for
4926 * low-level ATA host controller drivers. As such, the API/ABI is
4927 * likely to change as new drivers are added and updated.
4928 * Do not depend on ABI/API stability.
4929 */
4930
4931EXPORT_SYMBOL_GPL(ata_std_bios_param);
4932EXPORT_SYMBOL_GPL(ata_std_ports);
4933EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4934EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4935EXPORT_SYMBOL_GPL(ata_sg_init);
4936EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 4937EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
4938EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4939EXPORT_SYMBOL_GPL(ata_eng_timeout);
4940EXPORT_SYMBOL_GPL(ata_tf_load);
4941EXPORT_SYMBOL_GPL(ata_tf_read);
4942EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4943EXPORT_SYMBOL_GPL(ata_std_dev_select);
4944EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4945EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4946EXPORT_SYMBOL_GPL(ata_check_status);
4947EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
4948EXPORT_SYMBOL_GPL(ata_exec_command);
4949EXPORT_SYMBOL_GPL(ata_port_start);
4950EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4951EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4952EXPORT_SYMBOL_GPL(ata_interrupt);
4953EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 4954EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
4955EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4956EXPORT_SYMBOL_GPL(ata_bmdma_start);
4957EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4958EXPORT_SYMBOL_GPL(ata_bmdma_status);
4959EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4960EXPORT_SYMBOL_GPL(ata_port_probe);
4961EXPORT_SYMBOL_GPL(sata_phy_reset);
4962EXPORT_SYMBOL_GPL(__sata_phy_reset);
4963EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 4964EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
4965EXPORT_SYMBOL_GPL(ata_std_softreset);
4966EXPORT_SYMBOL_GPL(sata_std_hardreset);
4967EXPORT_SYMBOL_GPL(ata_std_postreset);
4968EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 4969EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 4970EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
4971EXPORT_SYMBOL_GPL(ata_dev_classify);
4972EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 4973EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 4974EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 4975EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 4976EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
4977EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4978EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4979EXPORT_SYMBOL_GPL(ata_scsi_error);
4980EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4981EXPORT_SYMBOL_GPL(ata_scsi_release);
4982EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
4983EXPORT_SYMBOL_GPL(ata_id_string);
4984EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 4985EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
4986EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4987EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 4988
1bc4ccff 4989EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
4990EXPORT_SYMBOL_GPL(ata_timing_compute);
4991EXPORT_SYMBOL_GPL(ata_timing_merge);
4992
1da177e4
LT
4993#ifdef CONFIG_PCI
4994EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 4995EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
4996EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4997EXPORT_SYMBOL_GPL(ata_pci_init_one);
4998EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
4999EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5000EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5001EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5002EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5003#endif /* CONFIG_PCI */
9b847548
JA
5004
5005EXPORT_SYMBOL_GPL(ata_device_suspend);
5006EXPORT_SYMBOL_GPL(ata_device_resume);
5007EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5008EXPORT_SYMBOL_GPL(ata_scsi_device_resume);