]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/scsi/libata-core.c
[PATCH] libata: Conditionally set host->max_cmd_len
[net-next-2.6.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
1da177e4 53#include "scsi_priv.h"
193515d5 54#include <scsi/scsi_cmnd.h>
1da177e4
LT
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
57#include <asm/io.h>
58#include <asm/semaphore.h>
59#include <asm/byteorder.h>
60
61#include "libata.h"
62
d7bb4cc7
TH
63/* debounce timing parameters in msecs { interval, duration, timeout } */
64const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
72
73static unsigned int ata_unique_id = 1;
74static struct workqueue_struct *ata_wq;
75
453b07ac
TH
76struct workqueue_struct *ata_aux_wq;
77
418dc1f5 78int atapi_enabled = 1;
1623c81e
JG
79module_param(atapi_enabled, int, 0444);
80MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81
95de719a
AL
82int atapi_dmadir = 0;
83module_param(atapi_dmadir, int, 0444);
84MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85
c3c013a2
JG
86int libata_fua = 0;
87module_param_named(fua, libata_fua, int, 0444);
88MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89
a8601e5f
AM
90static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
91module_param(ata_probe_timeout, int, 0444);
92MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93
1da177e4
LT
94MODULE_AUTHOR("Jeff Garzik");
95MODULE_DESCRIPTION("Library module for ATA devices");
96MODULE_LICENSE("GPL");
97MODULE_VERSION(DRV_VERSION);
98
0baab86b 99
1da177e4
LT
100/**
101 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
102 * @tf: Taskfile to convert
103 * @fis: Buffer into which data will output
104 * @pmp: Port multiplier port
105 *
106 * Converts a standard ATA taskfile to a Serial ATA
107 * FIS structure (Register - Host to Device).
108 *
109 * LOCKING:
110 * Inherited from caller.
111 */
112
057ace5e 113void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
114{
115 fis[0] = 0x27; /* Register - Host to Device FIS */
116 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
117 bit 7 indicates Command FIS */
118 fis[2] = tf->command;
119 fis[3] = tf->feature;
120
121 fis[4] = tf->lbal;
122 fis[5] = tf->lbam;
123 fis[6] = tf->lbah;
124 fis[7] = tf->device;
125
126 fis[8] = tf->hob_lbal;
127 fis[9] = tf->hob_lbam;
128 fis[10] = tf->hob_lbah;
129 fis[11] = tf->hob_feature;
130
131 fis[12] = tf->nsect;
132 fis[13] = tf->hob_nsect;
133 fis[14] = 0;
134 fis[15] = tf->ctl;
135
136 fis[16] = 0;
137 fis[17] = 0;
138 fis[18] = 0;
139 fis[19] = 0;
140}
141
142/**
143 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
144 * @fis: Buffer from which data will be input
145 * @tf: Taskfile to output
146 *
e12a1be6 147 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
148 *
149 * LOCKING:
150 * Inherited from caller.
151 */
152
057ace5e 153void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
154{
155 tf->command = fis[2]; /* status */
156 tf->feature = fis[3]; /* error */
157
158 tf->lbal = fis[4];
159 tf->lbam = fis[5];
160 tf->lbah = fis[6];
161 tf->device = fis[7];
162
163 tf->hob_lbal = fis[8];
164 tf->hob_lbam = fis[9];
165 tf->hob_lbah = fis[10];
166
167 tf->nsect = fis[12];
168 tf->hob_nsect = fis[13];
169}
170
8cbd6df1
AL
171static const u8 ata_rw_cmds[] = {
172 /* pio multi */
173 ATA_CMD_READ_MULTI,
174 ATA_CMD_WRITE_MULTI,
175 ATA_CMD_READ_MULTI_EXT,
176 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
177 0,
178 0,
179 0,
180 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
181 /* pio */
182 ATA_CMD_PIO_READ,
183 ATA_CMD_PIO_WRITE,
184 ATA_CMD_PIO_READ_EXT,
185 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
186 0,
187 0,
188 0,
189 0,
8cbd6df1
AL
190 /* dma */
191 ATA_CMD_READ,
192 ATA_CMD_WRITE,
193 ATA_CMD_READ_EXT,
9a3dccc4
TH
194 ATA_CMD_WRITE_EXT,
195 0,
196 0,
197 0,
198 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 199};
1da177e4
LT
200
201/**
8cbd6df1
AL
202 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
203 * @qc: command to examine and configure
1da177e4 204 *
2e9edbf8 205 * Examine the device configuration and tf->flags to calculate
8cbd6df1 206 * the proper read/write commands and protocol to use.
1da177e4
LT
207 *
208 * LOCKING:
209 * caller.
210 */
9a3dccc4 211int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 212{
8cbd6df1
AL
213 struct ata_taskfile *tf = &qc->tf;
214 struct ata_device *dev = qc->dev;
9a3dccc4 215 u8 cmd;
1da177e4 216
9a3dccc4 217 int index, fua, lba48, write;
2e9edbf8 218
9a3dccc4 219 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
220 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
221 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 222
8cbd6df1
AL
223 if (dev->flags & ATA_DFLAG_PIO) {
224 tf->protocol = ATA_PROT_PIO;
9a3dccc4 225 index = dev->multi_count ? 0 : 8;
8d238e01
AC
226 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
227 /* Unable to use DMA due to host limitation */
228 tf->protocol = ATA_PROT_PIO;
0565c26d 229 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
230 } else {
231 tf->protocol = ATA_PROT_DMA;
9a3dccc4 232 index = 16;
8cbd6df1 233 }
1da177e4 234
9a3dccc4
TH
235 cmd = ata_rw_cmds[index + fua + lba48 + write];
236 if (cmd) {
237 tf->command = cmd;
238 return 0;
239 }
240 return -1;
1da177e4
LT
241}
242
cb95d562
TH
243/**
244 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
245 * @pio_mask: pio_mask
246 * @mwdma_mask: mwdma_mask
247 * @udma_mask: udma_mask
248 *
249 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
250 * unsigned int xfer_mask.
251 *
252 * LOCKING:
253 * None.
254 *
255 * RETURNS:
256 * Packed xfer_mask.
257 */
258static unsigned int ata_pack_xfermask(unsigned int pio_mask,
259 unsigned int mwdma_mask,
260 unsigned int udma_mask)
261{
262 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
263 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
264 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
265}
266
c0489e4e
TH
267/**
268 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
269 * @xfer_mask: xfer_mask to unpack
270 * @pio_mask: resulting pio_mask
271 * @mwdma_mask: resulting mwdma_mask
272 * @udma_mask: resulting udma_mask
273 *
274 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
275 * Any NULL distination masks will be ignored.
276 */
277static void ata_unpack_xfermask(unsigned int xfer_mask,
278 unsigned int *pio_mask,
279 unsigned int *mwdma_mask,
280 unsigned int *udma_mask)
281{
282 if (pio_mask)
283 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 if (mwdma_mask)
285 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 if (udma_mask)
287 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
288}
289
cb95d562 290static const struct ata_xfer_ent {
be9a50c8 291 int shift, bits;
cb95d562
TH
292 u8 base;
293} ata_xfer_tbl[] = {
294 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
295 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
296 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
297 { -1, },
298};
299
300/**
301 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
302 * @xfer_mask: xfer_mask of interest
303 *
304 * Return matching XFER_* value for @xfer_mask. Only the highest
305 * bit of @xfer_mask is considered.
306 *
307 * LOCKING:
308 * None.
309 *
310 * RETURNS:
311 * Matching XFER_* value, 0 if no match found.
312 */
313static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314{
315 int highbit = fls(xfer_mask) - 1;
316 const struct ata_xfer_ent *ent;
317
318 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
319 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
320 return ent->base + highbit - ent->shift;
321 return 0;
322}
323
324/**
325 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
326 * @xfer_mode: XFER_* of interest
327 *
328 * Return matching xfer_mask for @xfer_mode.
329 *
330 * LOCKING:
331 * None.
332 *
333 * RETURNS:
334 * Matching xfer_mask, 0 if no match found.
335 */
336static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337{
338 const struct ata_xfer_ent *ent;
339
340 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
341 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
342 return 1 << (ent->shift + xfer_mode - ent->base);
343 return 0;
344}
345
346/**
347 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
348 * @xfer_mode: XFER_* of interest
349 *
350 * Return matching xfer_shift for @xfer_mode.
351 *
352 * LOCKING:
353 * None.
354 *
355 * RETURNS:
356 * Matching xfer_shift, -1 if no match found.
357 */
358static int ata_xfer_mode2shift(unsigned int xfer_mode)
359{
360 const struct ata_xfer_ent *ent;
361
362 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
363 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
364 return ent->shift;
365 return -1;
366}
367
1da177e4 368/**
1da7b0d0
TH
369 * ata_mode_string - convert xfer_mask to string
370 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
371 *
372 * Determine string which represents the highest speed
1da7b0d0 373 * (highest bit in @modemask).
1da177e4
LT
374 *
375 * LOCKING:
376 * None.
377 *
378 * RETURNS:
379 * Constant C string representing highest speed listed in
1da7b0d0 380 * @mode_mask, or the constant C string "<n/a>".
1da177e4 381 */
1da7b0d0 382static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 383{
75f554bc
TH
384 static const char * const xfer_mode_str[] = {
385 "PIO0",
386 "PIO1",
387 "PIO2",
388 "PIO3",
389 "PIO4",
390 "MWDMA0",
391 "MWDMA1",
392 "MWDMA2",
393 "UDMA/16",
394 "UDMA/25",
395 "UDMA/33",
396 "UDMA/44",
397 "UDMA/66",
398 "UDMA/100",
399 "UDMA/133",
400 "UDMA7",
401 };
1da7b0d0 402 int highbit;
1da177e4 403
1da7b0d0
TH
404 highbit = fls(xfer_mask) - 1;
405 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
406 return xfer_mode_str[highbit];
1da177e4 407 return "<n/a>";
1da177e4
LT
408}
409
4c360c81
TH
410static const char *sata_spd_string(unsigned int spd)
411{
412 static const char * const spd_str[] = {
413 "1.5 Gbps",
414 "3.0 Gbps",
415 };
416
417 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
418 return "<unknown>";
419 return spd_str[spd - 1];
420}
421
3373efd8 422void ata_dev_disable(struct ata_device *dev)
0b8efb0a 423{
0dd4b21f 424 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 425 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
426 dev->class++;
427 }
428}
429
1da177e4
LT
430/**
431 * ata_pio_devchk - PATA device presence detection
432 * @ap: ATA channel to examine
433 * @device: Device to examine (starting at zero)
434 *
435 * This technique was originally described in
436 * Hale Landis's ATADRVR (www.ata-atapi.com), and
437 * later found its way into the ATA/ATAPI spec.
438 *
439 * Write a pattern to the ATA shadow registers,
440 * and if a device is present, it will respond by
441 * correctly storing and echoing back the
442 * ATA shadow register contents.
443 *
444 * LOCKING:
445 * caller.
446 */
447
448static unsigned int ata_pio_devchk(struct ata_port *ap,
449 unsigned int device)
450{
451 struct ata_ioports *ioaddr = &ap->ioaddr;
452 u8 nsect, lbal;
453
454 ap->ops->dev_select(ap, device);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 outb(0xaa, ioaddr->nsect_addr);
460 outb(0x55, ioaddr->lbal_addr);
461
462 outb(0x55, ioaddr->nsect_addr);
463 outb(0xaa, ioaddr->lbal_addr);
464
465 nsect = inb(ioaddr->nsect_addr);
466 lbal = inb(ioaddr->lbal_addr);
467
468 if ((nsect == 0x55) && (lbal == 0xaa))
469 return 1; /* we found a device */
470
471 return 0; /* nothing found */
472}
473
474/**
475 * ata_mmio_devchk - PATA device presence detection
476 * @ap: ATA channel to examine
477 * @device: Device to examine (starting at zero)
478 *
479 * This technique was originally described in
480 * Hale Landis's ATADRVR (www.ata-atapi.com), and
481 * later found its way into the ATA/ATAPI spec.
482 *
483 * Write a pattern to the ATA shadow registers,
484 * and if a device is present, it will respond by
485 * correctly storing and echoing back the
486 * ATA shadow register contents.
487 *
488 * LOCKING:
489 * caller.
490 */
491
492static unsigned int ata_mmio_devchk(struct ata_port *ap,
493 unsigned int device)
494{
495 struct ata_ioports *ioaddr = &ap->ioaddr;
496 u8 nsect, lbal;
497
498 ap->ops->dev_select(ap, device);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
508
509 nsect = readb((void __iomem *) ioaddr->nsect_addr);
510 lbal = readb((void __iomem *) ioaddr->lbal_addr);
511
512 if ((nsect == 0x55) && (lbal == 0xaa))
513 return 1; /* we found a device */
514
515 return 0; /* nothing found */
516}
517
518/**
519 * ata_devchk - PATA device presence detection
520 * @ap: ATA channel to examine
521 * @device: Device to examine (starting at zero)
522 *
523 * Dispatch ATA device presence detection, depending
524 * on whether we are using PIO or MMIO to talk to the
525 * ATA shadow registers.
526 *
527 * LOCKING:
528 * caller.
529 */
530
531static unsigned int ata_devchk(struct ata_port *ap,
532 unsigned int device)
533{
534 if (ap->flags & ATA_FLAG_MMIO)
535 return ata_mmio_devchk(ap, device);
536 return ata_pio_devchk(ap, device);
537}
538
539/**
540 * ata_dev_classify - determine device type based on ATA-spec signature
541 * @tf: ATA taskfile register set for device to be identified
542 *
543 * Determine from taskfile register contents whether a device is
544 * ATA or ATAPI, as per "Signature and persistence" section
545 * of ATA/PI spec (volume 1, sect 5.14).
546 *
547 * LOCKING:
548 * None.
549 *
550 * RETURNS:
551 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
552 * the event of failure.
553 */
554
057ace5e 555unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
556{
557 /* Apple's open source Darwin code hints that some devices only
558 * put a proper signature into the LBA mid/high registers,
559 * So, we only check those. It's sufficient for uniqueness.
560 */
561
562 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
563 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
564 DPRINTK("found ATA device by sig\n");
565 return ATA_DEV_ATA;
566 }
567
568 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
569 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
570 DPRINTK("found ATAPI device by sig\n");
571 return ATA_DEV_ATAPI;
572 }
573
574 DPRINTK("unknown device\n");
575 return ATA_DEV_UNKNOWN;
576}
577
578/**
579 * ata_dev_try_classify - Parse returned ATA device signature
580 * @ap: ATA channel to examine
581 * @device: Device to examine (starting at zero)
b4dc7623 582 * @r_err: Value of error register on completion
1da177e4
LT
583 *
584 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
585 * an ATA/ATAPI-defined set of values is placed in the ATA
586 * shadow registers, indicating the results of device detection
587 * and diagnostics.
588 *
589 * Select the ATA device, and read the values from the ATA shadow
590 * registers. Then parse according to the Error register value,
591 * and the spec-defined values examined by ata_dev_classify().
592 *
593 * LOCKING:
594 * caller.
b4dc7623
TH
595 *
596 * RETURNS:
597 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
598 */
599
b4dc7623
TH
600static unsigned int
601ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 602{
1da177e4
LT
603 struct ata_taskfile tf;
604 unsigned int class;
605 u8 err;
606
607 ap->ops->dev_select(ap, device);
608
609 memset(&tf, 0, sizeof(tf));
610
1da177e4 611 ap->ops->tf_read(ap, &tf);
0169e284 612 err = tf.feature;
b4dc7623
TH
613 if (r_err)
614 *r_err = err;
1da177e4
LT
615
616 /* see if device passed diags */
617 if (err == 1)
618 /* do nothing */ ;
619 else if ((device == 0) && (err == 0x81))
620 /* do nothing */ ;
621 else
b4dc7623 622 return ATA_DEV_NONE;
1da177e4 623
b4dc7623 624 /* determine if device is ATA or ATAPI */
1da177e4 625 class = ata_dev_classify(&tf);
b4dc7623 626
1da177e4 627 if (class == ATA_DEV_UNKNOWN)
b4dc7623 628 return ATA_DEV_NONE;
1da177e4 629 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
630 return ATA_DEV_NONE;
631 return class;
1da177e4
LT
632}
633
634/**
6a62a04d 635 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
636 * @id: IDENTIFY DEVICE results we will examine
637 * @s: string into which data is output
638 * @ofs: offset into identify device page
639 * @len: length of string to return. must be an even number.
640 *
641 * The strings in the IDENTIFY DEVICE page are broken up into
642 * 16-bit chunks. Run through the string, and output each
643 * 8-bit chunk linearly, regardless of platform.
644 *
645 * LOCKING:
646 * caller.
647 */
648
6a62a04d
TH
649void ata_id_string(const u16 *id, unsigned char *s,
650 unsigned int ofs, unsigned int len)
1da177e4
LT
651{
652 unsigned int c;
653
654 while (len > 0) {
655 c = id[ofs] >> 8;
656 *s = c;
657 s++;
658
659 c = id[ofs] & 0xff;
660 *s = c;
661 s++;
662
663 ofs++;
664 len -= 2;
665 }
666}
667
0e949ff3 668/**
6a62a04d 669 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
670 * @id: IDENTIFY DEVICE results we will examine
671 * @s: string into which data is output
672 * @ofs: offset into identify device page
673 * @len: length of string to return. must be an odd number.
674 *
6a62a04d 675 * This function is identical to ata_id_string except that it
0e949ff3
TH
676 * trims trailing spaces and terminates the resulting string with
677 * null. @len must be actual maximum length (even number) + 1.
678 *
679 * LOCKING:
680 * caller.
681 */
6a62a04d
TH
682void ata_id_c_string(const u16 *id, unsigned char *s,
683 unsigned int ofs, unsigned int len)
0e949ff3
TH
684{
685 unsigned char *p;
686
687 WARN_ON(!(len & 1));
688
6a62a04d 689 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
690
691 p = s + strnlen(s, len - 1);
692 while (p > s && p[-1] == ' ')
693 p--;
694 *p = '\0';
695}
0baab86b 696
2940740b
TH
697static u64 ata_id_n_sectors(const u16 *id)
698{
699 if (ata_id_has_lba(id)) {
700 if (ata_id_has_lba48(id))
701 return ata_id_u64(id, 100);
702 else
703 return ata_id_u32(id, 60);
704 } else {
705 if (ata_id_current_chs_valid(id))
706 return ata_id_u32(id, 57);
707 else
708 return id[1] * id[3] * id[6];
709 }
710}
711
0baab86b
EF
712/**
713 * ata_noop_dev_select - Select device 0/1 on ATA bus
714 * @ap: ATA channel to manipulate
715 * @device: ATA device (numbered from zero) to select
716 *
717 * This function performs no actual function.
718 *
719 * May be used as the dev_select() entry in ata_port_operations.
720 *
721 * LOCKING:
722 * caller.
723 */
1da177e4
LT
724void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
725{
726}
727
0baab86b 728
1da177e4
LT
729/**
730 * ata_std_dev_select - Select device 0/1 on ATA bus
731 * @ap: ATA channel to manipulate
732 * @device: ATA device (numbered from zero) to select
733 *
734 * Use the method defined in the ATA specification to
735 * make either device 0, or device 1, active on the
0baab86b
EF
736 * ATA channel. Works with both PIO and MMIO.
737 *
738 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
739 *
740 * LOCKING:
741 * caller.
742 */
743
744void ata_std_dev_select (struct ata_port *ap, unsigned int device)
745{
746 u8 tmp;
747
748 if (device == 0)
749 tmp = ATA_DEVICE_OBS;
750 else
751 tmp = ATA_DEVICE_OBS | ATA_DEV1;
752
753 if (ap->flags & ATA_FLAG_MMIO) {
754 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
755 } else {
756 outb(tmp, ap->ioaddr.device_addr);
757 }
758 ata_pause(ap); /* needed; also flushes, for mmio */
759}
760
761/**
762 * ata_dev_select - Select device 0/1 on ATA bus
763 * @ap: ATA channel to manipulate
764 * @device: ATA device (numbered from zero) to select
765 * @wait: non-zero to wait for Status register BSY bit to clear
766 * @can_sleep: non-zero if context allows sleeping
767 *
768 * Use the method defined in the ATA specification to
769 * make either device 0, or device 1, active on the
770 * ATA channel.
771 *
772 * This is a high-level version of ata_std_dev_select(),
773 * which additionally provides the services of inserting
774 * the proper pauses and status polling, where needed.
775 *
776 * LOCKING:
777 * caller.
778 */
779
780void ata_dev_select(struct ata_port *ap, unsigned int device,
781 unsigned int wait, unsigned int can_sleep)
782{
88574551 783 if (ata_msg_probe(ap))
0dd4b21f 784 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 785 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
786
787 if (wait)
788 ata_wait_idle(ap);
789
790 ap->ops->dev_select(ap, device);
791
792 if (wait) {
793 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
794 msleep(150);
795 ata_wait_idle(ap);
796 }
797}
798
799/**
800 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 801 * @id: IDENTIFY DEVICE page to dump
1da177e4 802 *
0bd3300a
TH
803 * Dump selected 16-bit words from the given IDENTIFY DEVICE
804 * page.
1da177e4
LT
805 *
806 * LOCKING:
807 * caller.
808 */
809
0bd3300a 810static inline void ata_dump_id(const u16 *id)
1da177e4
LT
811{
812 DPRINTK("49==0x%04x "
813 "53==0x%04x "
814 "63==0x%04x "
815 "64==0x%04x "
816 "75==0x%04x \n",
0bd3300a
TH
817 id[49],
818 id[53],
819 id[63],
820 id[64],
821 id[75]);
1da177e4
LT
822 DPRINTK("80==0x%04x "
823 "81==0x%04x "
824 "82==0x%04x "
825 "83==0x%04x "
826 "84==0x%04x \n",
0bd3300a
TH
827 id[80],
828 id[81],
829 id[82],
830 id[83],
831 id[84]);
1da177e4
LT
832 DPRINTK("88==0x%04x "
833 "93==0x%04x\n",
0bd3300a
TH
834 id[88],
835 id[93]);
1da177e4
LT
836}
837
cb95d562
TH
838/**
839 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
840 * @id: IDENTIFY data to compute xfer mask from
841 *
842 * Compute the xfermask for this device. This is not as trivial
843 * as it seems if we must consider early devices correctly.
844 *
845 * FIXME: pre IDE drive timing (do we care ?).
846 *
847 * LOCKING:
848 * None.
849 *
850 * RETURNS:
851 * Computed xfermask
852 */
853static unsigned int ata_id_xfermask(const u16 *id)
854{
855 unsigned int pio_mask, mwdma_mask, udma_mask;
856
857 /* Usual case. Word 53 indicates word 64 is valid */
858 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
859 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
860 pio_mask <<= 3;
861 pio_mask |= 0x7;
862 } else {
863 /* If word 64 isn't valid then Word 51 high byte holds
864 * the PIO timing number for the maximum. Turn it into
865 * a mask.
866 */
867 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
868
869 /* But wait.. there's more. Design your standards by
870 * committee and you too can get a free iordy field to
871 * process. However its the speeds not the modes that
872 * are supported... Note drivers using the timing API
873 * will get this right anyway
874 */
875 }
876
877 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
878
879 udma_mask = 0;
880 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
881 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
882
883 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
884}
885
86e45b6b
TH
886/**
887 * ata_port_queue_task - Queue port_task
888 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
889 * @fn: workqueue function to be scheduled
890 * @data: data value to pass to workqueue function
891 * @delay: delay time for workqueue function
86e45b6b
TH
892 *
893 * Schedule @fn(@data) for execution after @delay jiffies using
894 * port_task. There is one port_task per port and it's the
895 * user(low level driver)'s responsibility to make sure that only
896 * one task is active at any given time.
897 *
898 * libata core layer takes care of synchronization between
899 * port_task and EH. ata_port_queue_task() may be ignored for EH
900 * synchronization.
901 *
902 * LOCKING:
903 * Inherited from caller.
904 */
905void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
906 unsigned long delay)
907{
908 int rc;
909
2e755f68 910 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
911 return;
912
913 PREPARE_WORK(&ap->port_task, fn, data);
914
915 if (!delay)
916 rc = queue_work(ata_wq, &ap->port_task);
917 else
918 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
919
920 /* rc == 0 means that another user is using port task */
921 WARN_ON(rc == 0);
922}
923
924/**
925 * ata_port_flush_task - Flush port_task
926 * @ap: The ata_port to flush port_task for
927 *
928 * After this function completes, port_task is guranteed not to
929 * be running or scheduled.
930 *
931 * LOCKING:
932 * Kernel thread context (may sleep)
933 */
934void ata_port_flush_task(struct ata_port *ap)
935{
936 unsigned long flags;
937
938 DPRINTK("ENTER\n");
939
ba6a1308 940 spin_lock_irqsave(ap->lock, flags);
2e755f68 941 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
ba6a1308 942 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
943
944 DPRINTK("flush #1\n");
945 flush_workqueue(ata_wq);
946
947 /*
948 * At this point, if a task is running, it's guaranteed to see
949 * the FLUSH flag; thus, it will never queue pio tasks again.
950 * Cancel and flush.
951 */
952 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 953 if (ata_msg_ctl(ap))
88574551
TH
954 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
955 __FUNCTION__);
86e45b6b
TH
956 flush_workqueue(ata_wq);
957 }
958
ba6a1308 959 spin_lock_irqsave(ap->lock, flags);
2e755f68 960 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
ba6a1308 961 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 962
0dd4b21f
BP
963 if (ata_msg_ctl(ap))
964 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
965}
966
77853bf2 967void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 968{
77853bf2 969 struct completion *waiting = qc->private_data;
a2a7a662 970
a2a7a662 971 complete(waiting);
a2a7a662
TH
972}
973
974/**
975 * ata_exec_internal - execute libata internal command
a2a7a662
TH
976 * @dev: Device to which the command is sent
977 * @tf: Taskfile registers for the command and the result
d69cf37d 978 * @cdb: CDB for packet command
a2a7a662
TH
979 * @dma_dir: Data tranfer direction of the command
980 * @buf: Data buffer of the command
981 * @buflen: Length of data buffer
982 *
983 * Executes libata internal command with timeout. @tf contains
984 * command on entry and result on return. Timeout and error
985 * conditions are reported via return value. No recovery action
986 * is taken after a command times out. It's caller's duty to
987 * clean up after timeout.
988 *
989 * LOCKING:
990 * None. Should be called with kernel context, might sleep.
551e8889
TH
991 *
992 * RETURNS:
993 * Zero on success, AC_ERR_* mask on failure
a2a7a662 994 */
3373efd8 995unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
996 struct ata_taskfile *tf, const u8 *cdb,
997 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 998{
3373efd8 999 struct ata_port *ap = dev->ap;
a2a7a662
TH
1000 u8 command = tf->command;
1001 struct ata_queued_cmd *qc;
2ab7db1f 1002 unsigned int tag, preempted_tag;
dedaf2b0 1003 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1004 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1005 unsigned long flags;
77853bf2 1006 unsigned int err_mask;
d95a717f 1007 int rc;
a2a7a662 1008
ba6a1308 1009 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1010
e3180499
TH
1011 /* no internal command while frozen */
1012 if (ap->flags & ATA_FLAG_FROZEN) {
ba6a1308 1013 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1014 return AC_ERR_SYSTEM;
1015 }
1016
2ab7db1f 1017 /* initialize internal qc */
a2a7a662 1018
2ab7db1f
TH
1019 /* XXX: Tag 0 is used for drivers with legacy EH as some
1020 * drivers choke if any other tag is given. This breaks
1021 * ata_tag_internal() test for those drivers. Don't use new
1022 * EH stuff without converting to it.
1023 */
1024 if (ap->ops->error_handler)
1025 tag = ATA_TAG_INTERNAL;
1026 else
1027 tag = 0;
1028
6cec4a39 1029 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1030 BUG();
f69499f4 1031 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1032
1033 qc->tag = tag;
1034 qc->scsicmd = NULL;
1035 qc->ap = ap;
1036 qc->dev = dev;
1037 ata_qc_reinit(qc);
1038
1039 preempted_tag = ap->active_tag;
dedaf2b0
TH
1040 preempted_sactive = ap->sactive;
1041 preempted_qc_active = ap->qc_active;
2ab7db1f 1042 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1043 ap->sactive = 0;
1044 ap->qc_active = 0;
2ab7db1f
TH
1045
1046 /* prepare & issue qc */
a2a7a662 1047 qc->tf = *tf;
d69cf37d
TH
1048 if (cdb)
1049 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1050 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1051 qc->dma_dir = dma_dir;
1052 if (dma_dir != DMA_NONE) {
1053 ata_sg_init_one(qc, buf, buflen);
1054 qc->nsect = buflen / ATA_SECT_SIZE;
1055 }
1056
77853bf2 1057 qc->private_data = &wait;
a2a7a662
TH
1058 qc->complete_fn = ata_qc_complete_internal;
1059
8e0e694a 1060 ata_qc_issue(qc);
a2a7a662 1061
ba6a1308 1062 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1063
a8601e5f 1064 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1065
1066 ata_port_flush_task(ap);
41ade50c 1067
d95a717f 1068 if (!rc) {
ba6a1308 1069 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1070
1071 /* We're racing with irq here. If we lose, the
1072 * following test prevents us from completing the qc
d95a717f
TH
1073 * twice. If we win, the port is frozen and will be
1074 * cleaned up by ->post_internal_cmd().
a2a7a662 1075 */
77853bf2 1076 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1077 qc->err_mask |= AC_ERR_TIMEOUT;
1078
1079 if (ap->ops->error_handler)
1080 ata_port_freeze(ap);
1081 else
1082 ata_qc_complete(qc);
f15a1daf 1083
0dd4b21f
BP
1084 if (ata_msg_warn(ap))
1085 ata_dev_printk(dev, KERN_WARNING,
88574551 1086 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1087 }
1088
ba6a1308 1089 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1090 }
1091
d95a717f
TH
1092 /* do post_internal_cmd */
1093 if (ap->ops->post_internal_cmd)
1094 ap->ops->post_internal_cmd(qc);
1095
1096 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1097 if (ata_msg_warn(ap))
88574551 1098 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1099 "zero err_mask for failed "
88574551 1100 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1101 qc->err_mask |= AC_ERR_OTHER;
1102 }
1103
15869303 1104 /* finish up */
ba6a1308 1105 spin_lock_irqsave(ap->lock, flags);
15869303 1106
e61e0672 1107 *tf = qc->result_tf;
77853bf2
TH
1108 err_mask = qc->err_mask;
1109
1110 ata_qc_free(qc);
2ab7db1f 1111 ap->active_tag = preempted_tag;
dedaf2b0
TH
1112 ap->sactive = preempted_sactive;
1113 ap->qc_active = preempted_qc_active;
77853bf2 1114
1f7dd3e9
TH
1115 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1116 * Until those drivers are fixed, we detect the condition
1117 * here, fail the command with AC_ERR_SYSTEM and reenable the
1118 * port.
1119 *
1120 * Note that this doesn't change any behavior as internal
1121 * command failure results in disabling the device in the
1122 * higher layer for LLDDs without new reset/EH callbacks.
1123 *
1124 * Kill the following code as soon as those drivers are fixed.
1125 */
198e0fed 1126 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1127 err_mask |= AC_ERR_SYSTEM;
1128 ata_port_probe(ap);
1129 }
1130
ba6a1308 1131 spin_unlock_irqrestore(ap->lock, flags);
15869303 1132
77853bf2 1133 return err_mask;
a2a7a662
TH
1134}
1135
977e6b9f
TH
1136/**
1137 * ata_do_simple_cmd - execute simple internal command
1138 * @dev: Device to which the command is sent
1139 * @cmd: Opcode to execute
1140 *
1141 * Execute a 'simple' command, that only consists of the opcode
1142 * 'cmd' itself, without filling any other registers
1143 *
1144 * LOCKING:
1145 * Kernel thread context (may sleep).
1146 *
1147 * RETURNS:
1148 * Zero on success, AC_ERR_* mask on failure
e58eb583 1149 */
77b08fb5 1150unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1151{
1152 struct ata_taskfile tf;
e58eb583
TH
1153
1154 ata_tf_init(dev, &tf);
1155
1156 tf.command = cmd;
1157 tf.flags |= ATA_TFLAG_DEVICE;
1158 tf.protocol = ATA_PROT_NODATA;
1159
977e6b9f 1160 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1161}
1162
1bc4ccff
AC
1163/**
1164 * ata_pio_need_iordy - check if iordy needed
1165 * @adev: ATA device
1166 *
1167 * Check if the current speed of the device requires IORDY. Used
1168 * by various controllers for chip configuration.
1169 */
1170
1171unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1172{
1173 int pio;
1174 int speed = adev->pio_mode - XFER_PIO_0;
1175
1176 if (speed < 2)
1177 return 0;
1178 if (speed > 2)
1179 return 1;
2e9edbf8 1180
1bc4ccff
AC
1181 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1182
1183 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1184 pio = adev->id[ATA_ID_EIDE_PIO];
1185 /* Is the speed faster than the drive allows non IORDY ? */
1186 if (pio) {
1187 /* This is cycle times not frequency - watch the logic! */
1188 if (pio > 240) /* PIO2 is 240nS per cycle */
1189 return 1;
1190 return 0;
1191 }
1192 }
1193 return 0;
1194}
1195
1da177e4 1196/**
49016aca 1197 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1198 * @dev: target device
1199 * @p_class: pointer to class of the target device (may be changed)
1200 * @post_reset: is this read ID post-reset?
fe635c7e 1201 * @id: buffer to read IDENTIFY data into
1da177e4 1202 *
49016aca
TH
1203 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1204 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1205 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1206 * for pre-ATA4 drives.
1da177e4
LT
1207 *
1208 * LOCKING:
49016aca
TH
1209 * Kernel thread context (may sleep)
1210 *
1211 * RETURNS:
1212 * 0 on success, -errno otherwise.
1da177e4 1213 */
a9beec95
TH
1214int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1215 int post_reset, u16 *id)
1da177e4 1216{
3373efd8 1217 struct ata_port *ap = dev->ap;
49016aca 1218 unsigned int class = *p_class;
a0123703 1219 struct ata_taskfile tf;
49016aca
TH
1220 unsigned int err_mask = 0;
1221 const char *reason;
1222 int rc;
1da177e4 1223
0dd4b21f 1224 if (ata_msg_ctl(ap))
88574551
TH
1225 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1226 __FUNCTION__, ap->id, dev->devno);
1da177e4 1227
49016aca 1228 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1229
49016aca 1230 retry:
3373efd8 1231 ata_tf_init(dev, &tf);
a0123703 1232
49016aca
TH
1233 switch (class) {
1234 case ATA_DEV_ATA:
a0123703 1235 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1236 break;
1237 case ATA_DEV_ATAPI:
a0123703 1238 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1239 break;
1240 default:
1241 rc = -ENODEV;
1242 reason = "unsupported class";
1243 goto err_out;
1da177e4
LT
1244 }
1245
a0123703 1246 tf.protocol = ATA_PROT_PIO;
1da177e4 1247
3373efd8 1248 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1249 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1250 if (err_mask) {
49016aca
TH
1251 rc = -EIO;
1252 reason = "I/O error";
1da177e4
LT
1253 goto err_out;
1254 }
1255
49016aca 1256 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1257
49016aca 1258 /* sanity check */
692785e7 1259 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1260 rc = -EINVAL;
1261 reason = "device reports illegal type";
1262 goto err_out;
1263 }
1264
1265 if (post_reset && class == ATA_DEV_ATA) {
1266 /*
1267 * The exact sequence expected by certain pre-ATA4 drives is:
1268 * SRST RESET
1269 * IDENTIFY
1270 * INITIALIZE DEVICE PARAMETERS
1271 * anything else..
1272 * Some drives were very specific about that exact sequence.
1273 */
1274 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1275 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1276 if (err_mask) {
1277 rc = -EIO;
1278 reason = "INIT_DEV_PARAMS failed";
1279 goto err_out;
1280 }
1281
1282 /* current CHS translation info (id[53-58]) might be
1283 * changed. reread the identify device info.
1284 */
1285 post_reset = 0;
1286 goto retry;
1287 }
1288 }
1289
1290 *p_class = class;
fe635c7e 1291
49016aca
TH
1292 return 0;
1293
1294 err_out:
88574551 1295 if (ata_msg_warn(ap))
0dd4b21f 1296 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1297 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1298 return rc;
1299}
1300
3373efd8 1301static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1302{
3373efd8 1303 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1304}
1305
a6e6ce8e
TH
1306static void ata_dev_config_ncq(struct ata_device *dev,
1307 char *desc, size_t desc_sz)
1308{
1309 struct ata_port *ap = dev->ap;
1310 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1311
1312 if (!ata_id_has_ncq(dev->id)) {
1313 desc[0] = '\0';
1314 return;
1315 }
1316
1317 if (ap->flags & ATA_FLAG_NCQ) {
1318 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1319 dev->flags |= ATA_DFLAG_NCQ;
1320 }
1321
1322 if (hdepth >= ddepth)
1323 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1324 else
1325 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1326}
1327
e6d902a3
BK
1328static void ata_set_port_max_cmd_len(struct ata_port *ap)
1329{
1330 int i;
1331
1332 if (ap->host) {
1333 ap->host->max_cmd_len = 0;
1334 for (i = 0; i < ATA_MAX_DEVICES; i++)
1335 ap->host->max_cmd_len = max_t(unsigned int,
1336 ap->host->max_cmd_len,
1337 ap->device[i].cdb_len);
1338 }
1339}
1340
49016aca 1341/**
ffeae418 1342 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1343 * @dev: Target device to configure
4c2d721a 1344 * @print_info: Enable device info printout
ffeae418
TH
1345 *
1346 * Configure @dev according to @dev->id. Generic and low-level
1347 * driver specific fixups are also applied.
49016aca
TH
1348 *
1349 * LOCKING:
ffeae418
TH
1350 * Kernel thread context (may sleep)
1351 *
1352 * RETURNS:
1353 * 0 on success, -errno otherwise
49016aca 1354 */
a9beec95 1355int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1356{
3373efd8 1357 struct ata_port *ap = dev->ap;
1148c3a7 1358 const u16 *id = dev->id;
ff8854b2 1359 unsigned int xfer_mask;
e6d902a3 1360 int rc;
49016aca 1361
0dd4b21f 1362 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1363 ata_dev_printk(dev, KERN_INFO,
1364 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1365 __FUNCTION__, ap->id, dev->devno);
ffeae418 1366 return 0;
49016aca
TH
1367 }
1368
0dd4b21f 1369 if (ata_msg_probe(ap))
88574551
TH
1370 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1371 __FUNCTION__, ap->id, dev->devno);
1da177e4 1372
c39f5ebe 1373 /* print device capabilities */
0dd4b21f 1374 if (ata_msg_probe(ap))
88574551
TH
1375 ata_dev_printk(dev, KERN_DEBUG,
1376 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1377 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1378 __FUNCTION__,
f15a1daf
TH
1379 id[49], id[82], id[83], id[84],
1380 id[85], id[86], id[87], id[88]);
c39f5ebe 1381
208a9933 1382 /* initialize to-be-configured parameters */
ea1dd4e1 1383 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1384 dev->max_sectors = 0;
1385 dev->cdb_len = 0;
1386 dev->n_sectors = 0;
1387 dev->cylinders = 0;
1388 dev->heads = 0;
1389 dev->sectors = 0;
1390
1da177e4
LT
1391 /*
1392 * common ATA, ATAPI feature tests
1393 */
1394
ff8854b2 1395 /* find max transfer mode; for printk only */
1148c3a7 1396 xfer_mask = ata_id_xfermask(id);
1da177e4 1397
0dd4b21f
BP
1398 if (ata_msg_probe(ap))
1399 ata_dump_id(id);
1da177e4
LT
1400
1401 /* ATA-specific feature tests */
1402 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1403 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1404
1148c3a7 1405 if (ata_id_has_lba(id)) {
4c2d721a 1406 const char *lba_desc;
a6e6ce8e 1407 char ncq_desc[20];
8bf62ece 1408
4c2d721a
TH
1409 lba_desc = "LBA";
1410 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1411 if (ata_id_has_lba48(id)) {
8bf62ece 1412 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1413 lba_desc = "LBA48";
1414 }
8bf62ece 1415
a6e6ce8e
TH
1416 /* config NCQ */
1417 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1418
8bf62ece 1419 /* print device info to dmesg */
0dd4b21f 1420 if (ata_msg_info(ap))
f15a1daf 1421 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1422 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1423 ata_id_major_version(id),
1424 ata_mode_string(xfer_mask),
1425 (unsigned long long)dev->n_sectors,
a6e6ce8e 1426 lba_desc, ncq_desc);
ffeae418 1427 } else {
8bf62ece
AL
1428 /* CHS */
1429
1430 /* Default translation */
1148c3a7
TH
1431 dev->cylinders = id[1];
1432 dev->heads = id[3];
1433 dev->sectors = id[6];
8bf62ece 1434
1148c3a7 1435 if (ata_id_current_chs_valid(id)) {
8bf62ece 1436 /* Current CHS translation is valid. */
1148c3a7
TH
1437 dev->cylinders = id[54];
1438 dev->heads = id[55];
1439 dev->sectors = id[56];
8bf62ece
AL
1440 }
1441
1442 /* print device info to dmesg */
0dd4b21f 1443 if (ata_msg_info(ap))
f15a1daf
TH
1444 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1445 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1446 ata_id_major_version(id),
1447 ata_mode_string(xfer_mask),
1448 (unsigned long long)dev->n_sectors,
88574551
TH
1449 dev->cylinders, dev->heads,
1450 dev->sectors);
1da177e4
LT
1451 }
1452
07f6f7d0
AL
1453 if (dev->id[59] & 0x100) {
1454 dev->multi_count = dev->id[59] & 0xff;
0dd4b21f 1455 if (ata_msg_info(ap))
88574551
TH
1456 ata_dev_printk(dev, KERN_INFO,
1457 "ata%u: dev %u multi count %u\n",
1458 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1459 }
1460
6e7846e9 1461 dev->cdb_len = 16;
1da177e4
LT
1462 }
1463
1464 /* ATAPI-specific feature tests */
2c13b7ce 1465 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1466 char *cdb_intr_string = "";
1467
1148c3a7 1468 rc = atapi_cdb_len(id);
1da177e4 1469 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1470 if (ata_msg_warn(ap))
88574551
TH
1471 ata_dev_printk(dev, KERN_WARNING,
1472 "unsupported CDB len\n");
ffeae418 1473 rc = -EINVAL;
1da177e4
LT
1474 goto err_out_nosup;
1475 }
6e7846e9 1476 dev->cdb_len = (unsigned int) rc;
1da177e4 1477
08a556db 1478 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1479 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1480 cdb_intr_string = ", CDB intr";
1481 }
312f7da2 1482
1da177e4 1483 /* print device info to dmesg */
0dd4b21f 1484 if (ata_msg_info(ap))
12436c30
TH
1485 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1486 ata_mode_string(xfer_mask),
1487 cdb_intr_string);
1da177e4
LT
1488 }
1489
e6d902a3 1490 ata_set_port_max_cmd_len(ap);
6e7846e9 1491
4b2f3ede 1492 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1493 if (ata_dev_knobble(dev)) {
0dd4b21f 1494 if (ata_msg_info(ap))
f15a1daf
TH
1495 ata_dev_printk(dev, KERN_INFO,
1496 "applying bridge limits\n");
5a529139 1497 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1498 dev->max_sectors = ATA_MAX_SECTORS;
1499 }
1500
1501 if (ap->ops->dev_config)
1502 ap->ops->dev_config(ap, dev);
1503
0dd4b21f
BP
1504 if (ata_msg_probe(ap))
1505 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1506 __FUNCTION__, ata_chk_status(ap));
ffeae418 1507 return 0;
1da177e4
LT
1508
1509err_out_nosup:
0dd4b21f 1510 if (ata_msg_probe(ap))
88574551
TH
1511 ata_dev_printk(dev, KERN_DEBUG,
1512 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1513 return rc;
1da177e4
LT
1514}
1515
1516/**
1517 * ata_bus_probe - Reset and probe ATA bus
1518 * @ap: Bus to probe
1519 *
0cba632b
JG
1520 * Master ATA bus probing function. Initiates a hardware-dependent
1521 * bus reset, then attempts to identify any devices found on
1522 * the bus.
1523 *
1da177e4 1524 * LOCKING:
0cba632b 1525 * PCI/etc. bus probe sem.
1da177e4
LT
1526 *
1527 * RETURNS:
96072e69 1528 * Zero on success, negative errno otherwise.
1da177e4
LT
1529 */
1530
1531static int ata_bus_probe(struct ata_port *ap)
1532{
28ca5c57 1533 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1534 int tries[ATA_MAX_DEVICES];
1535 int i, rc, down_xfermask;
e82cbdb9 1536 struct ata_device *dev;
1da177e4 1537
28ca5c57 1538 ata_port_probe(ap);
c19ba8af 1539
14d2bac1
TH
1540 for (i = 0; i < ATA_MAX_DEVICES; i++)
1541 tries[i] = ATA_PROBE_MAX_TRIES;
1542
1543 retry:
1544 down_xfermask = 0;
1545
2044470c 1546 /* reset and determine device classes */
52783c5d 1547 ap->ops->phy_reset(ap);
2061a47a 1548
52783c5d
TH
1549 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1550 dev = &ap->device[i];
c19ba8af 1551
52783c5d
TH
1552 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1553 dev->class != ATA_DEV_UNKNOWN)
1554 classes[dev->devno] = dev->class;
1555 else
1556 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1557
52783c5d 1558 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1559 }
1da177e4 1560
52783c5d 1561 ata_port_probe(ap);
2044470c 1562
b6079ca4
AC
1563 /* after the reset the device state is PIO 0 and the controller
1564 state is undefined. Record the mode */
1565
1566 for (i = 0; i < ATA_MAX_DEVICES; i++)
1567 ap->device[i].pio_mode = XFER_PIO_0;
1568
28ca5c57 1569 /* read IDENTIFY page and configure devices */
1da177e4 1570 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1571 dev = &ap->device[i];
28ca5c57 1572
ec573755
TH
1573 if (tries[i])
1574 dev->class = classes[i];
ffeae418 1575
14d2bac1 1576 if (!ata_dev_enabled(dev))
ffeae418 1577 continue;
ffeae418 1578
3373efd8 1579 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1580 if (rc)
1581 goto fail;
1582
3373efd8 1583 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1584 if (rc)
1585 goto fail;
1da177e4
LT
1586 }
1587
e82cbdb9 1588 /* configure transfer mode */
3adcebb2 1589 rc = ata_set_mode(ap, &dev);
51713d35
TH
1590 if (rc) {
1591 down_xfermask = 1;
1592 goto fail;
e82cbdb9 1593 }
1da177e4 1594
e82cbdb9
TH
1595 for (i = 0; i < ATA_MAX_DEVICES; i++)
1596 if (ata_dev_enabled(&ap->device[i]))
1597 return 0;
1da177e4 1598
e82cbdb9
TH
1599 /* no device present, disable port */
1600 ata_port_disable(ap);
1da177e4 1601 ap->ops->port_disable(ap);
96072e69 1602 return -ENODEV;
14d2bac1
TH
1603
1604 fail:
1605 switch (rc) {
1606 case -EINVAL:
1607 case -ENODEV:
1608 tries[dev->devno] = 0;
1609 break;
1610 case -EIO:
3c567b7d 1611 sata_down_spd_limit(ap);
14d2bac1
TH
1612 /* fall through */
1613 default:
1614 tries[dev->devno]--;
1615 if (down_xfermask &&
3373efd8 1616 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1617 tries[dev->devno] = 0;
1618 }
1619
ec573755 1620 if (!tries[dev->devno]) {
3373efd8
TH
1621 ata_down_xfermask_limit(dev, 1);
1622 ata_dev_disable(dev);
ec573755
TH
1623 }
1624
14d2bac1 1625 goto retry;
1da177e4
LT
1626}
1627
1628/**
0cba632b
JG
1629 * ata_port_probe - Mark port as enabled
1630 * @ap: Port for which we indicate enablement
1da177e4 1631 *
0cba632b
JG
1632 * Modify @ap data structure such that the system
1633 * thinks that the entire port is enabled.
1634 *
1635 * LOCKING: host_set lock, or some other form of
1636 * serialization.
1da177e4
LT
1637 */
1638
1639void ata_port_probe(struct ata_port *ap)
1640{
198e0fed 1641 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1642}
1643
3be680b7
TH
1644/**
1645 * sata_print_link_status - Print SATA link status
1646 * @ap: SATA port to printk link status about
1647 *
1648 * This function prints link speed and status of a SATA link.
1649 *
1650 * LOCKING:
1651 * None.
1652 */
1653static void sata_print_link_status(struct ata_port *ap)
1654{
6d5f9732 1655 u32 sstatus, scontrol, tmp;
3be680b7 1656
81952c54 1657 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1658 return;
81952c54 1659 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1660
81952c54 1661 if (ata_port_online(ap)) {
3be680b7 1662 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1663 ata_port_printk(ap, KERN_INFO,
1664 "SATA link up %s (SStatus %X SControl %X)\n",
1665 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1666 } else {
f15a1daf
TH
1667 ata_port_printk(ap, KERN_INFO,
1668 "SATA link down (SStatus %X SControl %X)\n",
1669 sstatus, scontrol);
3be680b7
TH
1670 }
1671}
1672
1da177e4 1673/**
780a87f7
JG
1674 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1675 * @ap: SATA port associated with target SATA PHY.
1da177e4 1676 *
780a87f7
JG
1677 * This function issues commands to standard SATA Sxxx
1678 * PHY registers, to wake up the phy (and device), and
1679 * clear any reset condition.
1da177e4
LT
1680 *
1681 * LOCKING:
0cba632b 1682 * PCI/etc. bus probe sem.
1da177e4
LT
1683 *
1684 */
1685void __sata_phy_reset(struct ata_port *ap)
1686{
1687 u32 sstatus;
1688 unsigned long timeout = jiffies + (HZ * 5);
1689
1690 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1691 /* issue phy wake/reset */
81952c54 1692 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1693 /* Couldn't find anything in SATA I/II specs, but
1694 * AHCI-1.1 10.4.2 says at least 1 ms. */
1695 mdelay(1);
1da177e4 1696 }
81952c54
TH
1697 /* phy wake/clear reset */
1698 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1699
1700 /* wait for phy to become ready, if necessary */
1701 do {
1702 msleep(200);
81952c54 1703 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1704 if ((sstatus & 0xf) != 1)
1705 break;
1706 } while (time_before(jiffies, timeout));
1707
3be680b7
TH
1708 /* print link status */
1709 sata_print_link_status(ap);
656563e3 1710
3be680b7 1711 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1712 if (!ata_port_offline(ap))
1da177e4 1713 ata_port_probe(ap);
3be680b7 1714 else
1da177e4 1715 ata_port_disable(ap);
1da177e4 1716
198e0fed 1717 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1718 return;
1719
1720 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1721 ata_port_disable(ap);
1722 return;
1723 }
1724
1725 ap->cbl = ATA_CBL_SATA;
1726}
1727
1728/**
780a87f7
JG
1729 * sata_phy_reset - Reset SATA bus.
1730 * @ap: SATA port associated with target SATA PHY.
1da177e4 1731 *
780a87f7
JG
1732 * This function resets the SATA bus, and then probes
1733 * the bus for devices.
1da177e4
LT
1734 *
1735 * LOCKING:
0cba632b 1736 * PCI/etc. bus probe sem.
1da177e4
LT
1737 *
1738 */
1739void sata_phy_reset(struct ata_port *ap)
1740{
1741 __sata_phy_reset(ap);
198e0fed 1742 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1743 return;
1744 ata_bus_reset(ap);
1745}
1746
ebdfca6e
AC
1747/**
1748 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1749 * @adev: device
1750 *
1751 * Obtain the other device on the same cable, or if none is
1752 * present NULL is returned
1753 */
2e9edbf8 1754
3373efd8 1755struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1756{
3373efd8 1757 struct ata_port *ap = adev->ap;
ebdfca6e 1758 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1759 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1760 return NULL;
1761 return pair;
1762}
1763
1da177e4 1764/**
780a87f7
JG
1765 * ata_port_disable - Disable port.
1766 * @ap: Port to be disabled.
1da177e4 1767 *
780a87f7
JG
1768 * Modify @ap data structure such that the system
1769 * thinks that the entire port is disabled, and should
1770 * never attempt to probe or communicate with devices
1771 * on this port.
1772 *
1773 * LOCKING: host_set lock, or some other form of
1774 * serialization.
1da177e4
LT
1775 */
1776
1777void ata_port_disable(struct ata_port *ap)
1778{
1779 ap->device[0].class = ATA_DEV_NONE;
1780 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1781 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1782}
1783
1c3fae4d 1784/**
3c567b7d 1785 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1786 * @ap: Port to adjust SATA spd limit for
1787 *
1788 * Adjust SATA spd limit of @ap downward. Note that this
1789 * function only adjusts the limit. The change must be applied
3c567b7d 1790 * using sata_set_spd().
1c3fae4d
TH
1791 *
1792 * LOCKING:
1793 * Inherited from caller.
1794 *
1795 * RETURNS:
1796 * 0 on success, negative errno on failure
1797 */
3c567b7d 1798int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1799{
81952c54
TH
1800 u32 sstatus, spd, mask;
1801 int rc, highbit;
1c3fae4d 1802
81952c54
TH
1803 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1804 if (rc)
1805 return rc;
1c3fae4d
TH
1806
1807 mask = ap->sata_spd_limit;
1808 if (mask <= 1)
1809 return -EINVAL;
1810 highbit = fls(mask) - 1;
1811 mask &= ~(1 << highbit);
1812
81952c54 1813 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1814 if (spd <= 1)
1815 return -EINVAL;
1816 spd--;
1817 mask &= (1 << spd) - 1;
1818 if (!mask)
1819 return -EINVAL;
1820
1821 ap->sata_spd_limit = mask;
1822
f15a1daf
TH
1823 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1824 sata_spd_string(fls(mask)));
1c3fae4d
TH
1825
1826 return 0;
1827}
1828
3c567b7d 1829static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1830{
1831 u32 spd, limit;
1832
1833 if (ap->sata_spd_limit == UINT_MAX)
1834 limit = 0;
1835 else
1836 limit = fls(ap->sata_spd_limit);
1837
1838 spd = (*scontrol >> 4) & 0xf;
1839 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1840
1841 return spd != limit;
1842}
1843
1844/**
3c567b7d 1845 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1846 * @ap: Port in question
1847 *
1848 * Test whether the spd limit in SControl matches
1849 * @ap->sata_spd_limit. This function is used to determine
1850 * whether hardreset is necessary to apply SATA spd
1851 * configuration.
1852 *
1853 * LOCKING:
1854 * Inherited from caller.
1855 *
1856 * RETURNS:
1857 * 1 if SATA spd configuration is needed, 0 otherwise.
1858 */
3c567b7d 1859int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1860{
1861 u32 scontrol;
1862
81952c54 1863 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1864 return 0;
1865
3c567b7d 1866 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1867}
1868
1869/**
3c567b7d 1870 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1871 * @ap: Port to set SATA spd for
1872 *
1873 * Set SATA spd of @ap according to sata_spd_limit.
1874 *
1875 * LOCKING:
1876 * Inherited from caller.
1877 *
1878 * RETURNS:
1879 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1880 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1881 */
3c567b7d 1882int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1883{
1884 u32 scontrol;
81952c54 1885 int rc;
1c3fae4d 1886
81952c54
TH
1887 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1888 return rc;
1c3fae4d 1889
3c567b7d 1890 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1891 return 0;
1892
81952c54
TH
1893 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1894 return rc;
1895
1c3fae4d
TH
1896 return 1;
1897}
1898
452503f9
AC
1899/*
1900 * This mode timing computation functionality is ported over from
1901 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1902 */
1903/*
1904 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1905 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1906 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1907 * is currently supported only by Maxtor drives.
452503f9
AC
1908 */
1909
1910static const struct ata_timing ata_timing[] = {
1911
1912 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1913 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1914 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1915 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1916
1917 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1918 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1919 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1920
1921/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1922
452503f9
AC
1923 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1924 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1925 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1926
452503f9
AC
1927 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1928 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1929 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1930
1931/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1932 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1933 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1934
1935 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1936 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1937 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1938
1939/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1940
1941 { 0xFF }
1942};
1943
1944#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1945#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1946
1947static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1948{
1949 q->setup = EZ(t->setup * 1000, T);
1950 q->act8b = EZ(t->act8b * 1000, T);
1951 q->rec8b = EZ(t->rec8b * 1000, T);
1952 q->cyc8b = EZ(t->cyc8b * 1000, T);
1953 q->active = EZ(t->active * 1000, T);
1954 q->recover = EZ(t->recover * 1000, T);
1955 q->cycle = EZ(t->cycle * 1000, T);
1956 q->udma = EZ(t->udma * 1000, UT);
1957}
1958
1959void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1960 struct ata_timing *m, unsigned int what)
1961{
1962 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1963 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1964 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1965 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1966 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1967 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1968 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1969 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1970}
1971
1972static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1973{
1974 const struct ata_timing *t;
1975
1976 for (t = ata_timing; t->mode != speed; t++)
91190758 1977 if (t->mode == 0xFF)
452503f9 1978 return NULL;
2e9edbf8 1979 return t;
452503f9
AC
1980}
1981
1982int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1983 struct ata_timing *t, int T, int UT)
1984{
1985 const struct ata_timing *s;
1986 struct ata_timing p;
1987
1988 /*
2e9edbf8 1989 * Find the mode.
75b1f2f8 1990 */
452503f9
AC
1991
1992 if (!(s = ata_timing_find_mode(speed)))
1993 return -EINVAL;
1994
75b1f2f8
AL
1995 memcpy(t, s, sizeof(*s));
1996
452503f9
AC
1997 /*
1998 * If the drive is an EIDE drive, it can tell us it needs extended
1999 * PIO/MW_DMA cycle timing.
2000 */
2001
2002 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2003 memset(&p, 0, sizeof(p));
2004 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2005 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2006 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2007 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2008 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2009 }
2010 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2011 }
2012
2013 /*
2014 * Convert the timing to bus clock counts.
2015 */
2016
75b1f2f8 2017 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2018
2019 /*
c893a3ae
RD
2020 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2021 * S.M.A.R.T * and some other commands. We have to ensure that the
2022 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2023 */
2024
2025 if (speed > XFER_PIO_4) {
2026 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2027 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2028 }
2029
2030 /*
c893a3ae 2031 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2032 */
2033
2034 if (t->act8b + t->rec8b < t->cyc8b) {
2035 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2036 t->rec8b = t->cyc8b - t->act8b;
2037 }
2038
2039 if (t->active + t->recover < t->cycle) {
2040 t->active += (t->cycle - (t->active + t->recover)) / 2;
2041 t->recover = t->cycle - t->active;
2042 }
2043
2044 return 0;
2045}
2046
cf176e1a
TH
2047/**
2048 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2049 * @dev: Device to adjust xfer masks
2050 * @force_pio0: Force PIO0
2051 *
2052 * Adjust xfer masks of @dev downward. Note that this function
2053 * does not apply the change. Invoking ata_set_mode() afterwards
2054 * will apply the limit.
2055 *
2056 * LOCKING:
2057 * Inherited from caller.
2058 *
2059 * RETURNS:
2060 * 0 on success, negative errno on failure
2061 */
3373efd8 2062int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2063{
2064 unsigned long xfer_mask;
2065 int highbit;
2066
2067 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2068 dev->udma_mask);
2069
2070 if (!xfer_mask)
2071 goto fail;
2072 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2073 if (xfer_mask & ATA_MASK_UDMA)
2074 xfer_mask &= ~ATA_MASK_MWDMA;
2075
2076 highbit = fls(xfer_mask) - 1;
2077 xfer_mask &= ~(1 << highbit);
2078 if (force_pio0)
2079 xfer_mask &= 1 << ATA_SHIFT_PIO;
2080 if (!xfer_mask)
2081 goto fail;
2082
2083 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2084 &dev->udma_mask);
2085
f15a1daf
TH
2086 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2087 ata_mode_string(xfer_mask));
cf176e1a
TH
2088
2089 return 0;
2090
2091 fail:
2092 return -EINVAL;
2093}
2094
3373efd8 2095static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2096{
83206a29
TH
2097 unsigned int err_mask;
2098 int rc;
1da177e4 2099
e8384607 2100 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2101 if (dev->xfer_shift == ATA_SHIFT_PIO)
2102 dev->flags |= ATA_DFLAG_PIO;
2103
3373efd8 2104 err_mask = ata_dev_set_xfermode(dev);
83206a29 2105 if (err_mask) {
f15a1daf
TH
2106 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2107 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2108 return -EIO;
2109 }
1da177e4 2110
3373efd8 2111 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2112 if (rc)
83206a29 2113 return rc;
48a8a14f 2114
23e71c3d
TH
2115 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2116 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2117
f15a1daf
TH
2118 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2119 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2120 return 0;
1da177e4
LT
2121}
2122
1da177e4
LT
2123/**
2124 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2125 * @ap: port on which timings will be programmed
e82cbdb9 2126 * @r_failed_dev: out paramter for failed device
1da177e4 2127 *
e82cbdb9
TH
2128 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2129 * ata_set_mode() fails, pointer to the failing device is
2130 * returned in @r_failed_dev.
780a87f7 2131 *
1da177e4 2132 * LOCKING:
0cba632b 2133 * PCI/etc. bus probe sem.
e82cbdb9
TH
2134 *
2135 * RETURNS:
2136 * 0 on success, negative errno otherwise
1da177e4 2137 */
1ad8e7f9 2138int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2139{
e8e0619f 2140 struct ata_device *dev;
e82cbdb9 2141 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2142
3adcebb2
TH
2143 /* has private set_mode? */
2144 if (ap->ops->set_mode) {
2145 /* FIXME: make ->set_mode handle no device case and
2146 * return error code and failing device on failure.
2147 */
2148 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2149 if (ata_dev_enabled(&ap->device[i])) {
2150 ap->ops->set_mode(ap);
2151 break;
2152 }
2153 }
2154 return 0;
2155 }
2156
a6d5a51c
TH
2157 /* step 1: calculate xfer_mask */
2158 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2159 unsigned int pio_mask, dma_mask;
a6d5a51c 2160
e8e0619f
TH
2161 dev = &ap->device[i];
2162
e1211e3f 2163 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2164 continue;
2165
3373efd8 2166 ata_dev_xfermask(dev);
1da177e4 2167
acf356b1
TH
2168 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2169 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2170 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2171 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2172
4f65977d 2173 found = 1;
5444a6f4
AC
2174 if (dev->dma_mode)
2175 used_dma = 1;
a6d5a51c 2176 }
4f65977d 2177 if (!found)
e82cbdb9 2178 goto out;
a6d5a51c
TH
2179
2180 /* step 2: always set host PIO timings */
e8e0619f
TH
2181 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2182 dev = &ap->device[i];
2183 if (!ata_dev_enabled(dev))
2184 continue;
2185
2186 if (!dev->pio_mode) {
f15a1daf 2187 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2188 rc = -EINVAL;
e82cbdb9 2189 goto out;
e8e0619f
TH
2190 }
2191
2192 dev->xfer_mode = dev->pio_mode;
2193 dev->xfer_shift = ATA_SHIFT_PIO;
2194 if (ap->ops->set_piomode)
2195 ap->ops->set_piomode(ap, dev);
2196 }
1da177e4 2197
a6d5a51c 2198 /* step 3: set host DMA timings */
e8e0619f
TH
2199 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2200 dev = &ap->device[i];
2201
2202 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2203 continue;
2204
2205 dev->xfer_mode = dev->dma_mode;
2206 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2207 if (ap->ops->set_dmamode)
2208 ap->ops->set_dmamode(ap, dev);
2209 }
1da177e4
LT
2210
2211 /* step 4: update devices' xfer mode */
83206a29 2212 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2213 dev = &ap->device[i];
1da177e4 2214
e1211e3f 2215 if (!ata_dev_enabled(dev))
83206a29
TH
2216 continue;
2217
3373efd8 2218 rc = ata_dev_set_mode(dev);
5bbc53f4 2219 if (rc)
e82cbdb9 2220 goto out;
83206a29 2221 }
1da177e4 2222
e8e0619f
TH
2223 /* Record simplex status. If we selected DMA then the other
2224 * host channels are not permitted to do so.
5444a6f4 2225 */
5444a6f4
AC
2226 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2227 ap->host_set->simplex_claimed = 1;
2228
e8e0619f 2229 /* step5: chip specific finalisation */
1da177e4
LT
2230 if (ap->ops->post_set_mode)
2231 ap->ops->post_set_mode(ap);
2232
e82cbdb9
TH
2233 out:
2234 if (rc)
2235 *r_failed_dev = dev;
2236 return rc;
1da177e4
LT
2237}
2238
1fdffbce
JG
2239/**
2240 * ata_tf_to_host - issue ATA taskfile to host controller
2241 * @ap: port to which command is being issued
2242 * @tf: ATA taskfile register set
2243 *
2244 * Issues ATA taskfile register set to ATA host controller,
2245 * with proper synchronization with interrupt handler and
2246 * other threads.
2247 *
2248 * LOCKING:
2249 * spin_lock_irqsave(host_set lock)
2250 */
2251
2252static inline void ata_tf_to_host(struct ata_port *ap,
2253 const struct ata_taskfile *tf)
2254{
2255 ap->ops->tf_load(ap, tf);
2256 ap->ops->exec_command(ap, tf);
2257}
2258
1da177e4
LT
2259/**
2260 * ata_busy_sleep - sleep until BSY clears, or timeout
2261 * @ap: port containing status register to be polled
2262 * @tmout_pat: impatience timeout
2263 * @tmout: overall timeout
2264 *
780a87f7
JG
2265 * Sleep until ATA Status register bit BSY clears,
2266 * or a timeout occurs.
2267 *
2268 * LOCKING: None.
1da177e4
LT
2269 */
2270
6f8b9958
TH
2271unsigned int ata_busy_sleep (struct ata_port *ap,
2272 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2273{
2274 unsigned long timer_start, timeout;
2275 u8 status;
2276
2277 status = ata_busy_wait(ap, ATA_BUSY, 300);
2278 timer_start = jiffies;
2279 timeout = timer_start + tmout_pat;
2280 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2281 msleep(50);
2282 status = ata_busy_wait(ap, ATA_BUSY, 3);
2283 }
2284
2285 if (status & ATA_BUSY)
f15a1daf
TH
2286 ata_port_printk(ap, KERN_WARNING,
2287 "port is slow to respond, please be patient\n");
1da177e4
LT
2288
2289 timeout = timer_start + tmout;
2290 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2291 msleep(50);
2292 status = ata_chk_status(ap);
2293 }
2294
2295 if (status & ATA_BUSY) {
f15a1daf
TH
2296 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2297 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2298 return 1;
2299 }
2300
2301 return 0;
2302}
2303
2304static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2305{
2306 struct ata_ioports *ioaddr = &ap->ioaddr;
2307 unsigned int dev0 = devmask & (1 << 0);
2308 unsigned int dev1 = devmask & (1 << 1);
2309 unsigned long timeout;
2310
2311 /* if device 0 was found in ata_devchk, wait for its
2312 * BSY bit to clear
2313 */
2314 if (dev0)
2315 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2316
2317 /* if device 1 was found in ata_devchk, wait for
2318 * register access, then wait for BSY to clear
2319 */
2320 timeout = jiffies + ATA_TMOUT_BOOT;
2321 while (dev1) {
2322 u8 nsect, lbal;
2323
2324 ap->ops->dev_select(ap, 1);
2325 if (ap->flags & ATA_FLAG_MMIO) {
2326 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2327 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2328 } else {
2329 nsect = inb(ioaddr->nsect_addr);
2330 lbal = inb(ioaddr->lbal_addr);
2331 }
2332 if ((nsect == 1) && (lbal == 1))
2333 break;
2334 if (time_after(jiffies, timeout)) {
2335 dev1 = 0;
2336 break;
2337 }
2338 msleep(50); /* give drive a breather */
2339 }
2340 if (dev1)
2341 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2342
2343 /* is all this really necessary? */
2344 ap->ops->dev_select(ap, 0);
2345 if (dev1)
2346 ap->ops->dev_select(ap, 1);
2347 if (dev0)
2348 ap->ops->dev_select(ap, 0);
2349}
2350
1da177e4
LT
2351static unsigned int ata_bus_softreset(struct ata_port *ap,
2352 unsigned int devmask)
2353{
2354 struct ata_ioports *ioaddr = &ap->ioaddr;
2355
2356 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2357
2358 /* software reset. causes dev0 to be selected */
2359 if (ap->flags & ATA_FLAG_MMIO) {
2360 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2361 udelay(20); /* FIXME: flush */
2362 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2363 udelay(20); /* FIXME: flush */
2364 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2365 } else {
2366 outb(ap->ctl, ioaddr->ctl_addr);
2367 udelay(10);
2368 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2369 udelay(10);
2370 outb(ap->ctl, ioaddr->ctl_addr);
2371 }
2372
2373 /* spec mandates ">= 2ms" before checking status.
2374 * We wait 150ms, because that was the magic delay used for
2375 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2376 * between when the ATA command register is written, and then
2377 * status is checked. Because waiting for "a while" before
2378 * checking status is fine, post SRST, we perform this magic
2379 * delay here as well.
09c7ad79
AC
2380 *
2381 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2382 */
2383 msleep(150);
2384
2e9edbf8 2385 /* Before we perform post reset processing we want to see if
298a41ca
TH
2386 * the bus shows 0xFF because the odd clown forgets the D7
2387 * pulldown resistor.
2388 */
987d2f05 2389 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2390 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2391 return AC_ERR_OTHER;
987d2f05 2392 }
09c7ad79 2393
1da177e4
LT
2394 ata_bus_post_reset(ap, devmask);
2395
2396 return 0;
2397}
2398
2399/**
2400 * ata_bus_reset - reset host port and associated ATA channel
2401 * @ap: port to reset
2402 *
2403 * This is typically the first time we actually start issuing
2404 * commands to the ATA channel. We wait for BSY to clear, then
2405 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2406 * result. Determine what devices, if any, are on the channel
2407 * by looking at the device 0/1 error register. Look at the signature
2408 * stored in each device's taskfile registers, to determine if
2409 * the device is ATA or ATAPI.
2410 *
2411 * LOCKING:
0cba632b
JG
2412 * PCI/etc. bus probe sem.
2413 * Obtains host_set lock.
1da177e4
LT
2414 *
2415 * SIDE EFFECTS:
198e0fed 2416 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2417 */
2418
2419void ata_bus_reset(struct ata_port *ap)
2420{
2421 struct ata_ioports *ioaddr = &ap->ioaddr;
2422 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2423 u8 err;
aec5c3c1 2424 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2425
2426 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2427
2428 /* determine if device 0/1 are present */
2429 if (ap->flags & ATA_FLAG_SATA_RESET)
2430 dev0 = 1;
2431 else {
2432 dev0 = ata_devchk(ap, 0);
2433 if (slave_possible)
2434 dev1 = ata_devchk(ap, 1);
2435 }
2436
2437 if (dev0)
2438 devmask |= (1 << 0);
2439 if (dev1)
2440 devmask |= (1 << 1);
2441
2442 /* select device 0 again */
2443 ap->ops->dev_select(ap, 0);
2444
2445 /* issue bus reset */
2446 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2447 if (ata_bus_softreset(ap, devmask))
2448 goto err_out;
1da177e4
LT
2449
2450 /*
2451 * determine by signature whether we have ATA or ATAPI devices
2452 */
b4dc7623 2453 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2454 if ((slave_possible) && (err != 0x81))
b4dc7623 2455 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2456
2457 /* re-enable interrupts */
2458 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2459 ata_irq_on(ap);
2460
2461 /* is double-select really necessary? */
2462 if (ap->device[1].class != ATA_DEV_NONE)
2463 ap->ops->dev_select(ap, 1);
2464 if (ap->device[0].class != ATA_DEV_NONE)
2465 ap->ops->dev_select(ap, 0);
2466
2467 /* if no devices were detected, disable this port */
2468 if ((ap->device[0].class == ATA_DEV_NONE) &&
2469 (ap->device[1].class == ATA_DEV_NONE))
2470 goto err_out;
2471
2472 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2473 /* set up device control for ATA_FLAG_SATA_RESET */
2474 if (ap->flags & ATA_FLAG_MMIO)
2475 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2476 else
2477 outb(ap->ctl, ioaddr->ctl_addr);
2478 }
2479
2480 DPRINTK("EXIT\n");
2481 return;
2482
2483err_out:
f15a1daf 2484 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2485 ap->ops->port_disable(ap);
2486
2487 DPRINTK("EXIT\n");
2488}
2489
d7bb4cc7
TH
2490/**
2491 * sata_phy_debounce - debounce SATA phy status
2492 * @ap: ATA port to debounce SATA phy status for
2493 * @params: timing parameters { interval, duratinon, timeout } in msec
2494 *
2495 * Make sure SStatus of @ap reaches stable state, determined by
2496 * holding the same value where DET is not 1 for @duration polled
2497 * every @interval, before @timeout. Timeout constraints the
2498 * beginning of the stable state. Because, after hot unplugging,
2499 * DET gets stuck at 1 on some controllers, this functions waits
2500 * until timeout then returns 0 if DET is stable at 1.
2501 *
2502 * LOCKING:
2503 * Kernel thread context (may sleep)
2504 *
2505 * RETURNS:
2506 * 0 on success, -errno on failure.
2507 */
2508int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2509{
d7bb4cc7
TH
2510 unsigned long interval_msec = params[0];
2511 unsigned long duration = params[1] * HZ / 1000;
2512 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2513 unsigned long last_jiffies;
2514 u32 last, cur;
2515 int rc;
2516
2517 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2518 return rc;
2519 cur &= 0xf;
2520
2521 last = cur;
2522 last_jiffies = jiffies;
2523
2524 while (1) {
2525 msleep(interval_msec);
2526 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2527 return rc;
2528 cur &= 0xf;
2529
2530 /* DET stable? */
2531 if (cur == last) {
2532 if (cur == 1 && time_before(jiffies, timeout))
2533 continue;
2534 if (time_after(jiffies, last_jiffies + duration))
2535 return 0;
2536 continue;
2537 }
2538
2539 /* unstable, start over */
2540 last = cur;
2541 last_jiffies = jiffies;
2542
2543 /* check timeout */
2544 if (time_after(jiffies, timeout))
2545 return -EBUSY;
2546 }
2547}
2548
2549/**
2550 * sata_phy_resume - resume SATA phy
2551 * @ap: ATA port to resume SATA phy for
2552 * @params: timing parameters { interval, duratinon, timeout } in msec
2553 *
2554 * Resume SATA phy of @ap and debounce it.
2555 *
2556 * LOCKING:
2557 * Kernel thread context (may sleep)
2558 *
2559 * RETURNS:
2560 * 0 on success, -errno on failure.
2561 */
2562int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2563{
2564 u32 scontrol;
81952c54
TH
2565 int rc;
2566
2567 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2568 return rc;
7a7921e8 2569
852ee16a 2570 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2571
2572 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2573 return rc;
7a7921e8 2574
d7bb4cc7
TH
2575 /* Some PHYs react badly if SStatus is pounded immediately
2576 * after resuming. Delay 200ms before debouncing.
2577 */
2578 msleep(200);
7a7921e8 2579
d7bb4cc7 2580 return sata_phy_debounce(ap, params);
7a7921e8
TH
2581}
2582
f5914a46
TH
2583static void ata_wait_spinup(struct ata_port *ap)
2584{
2585 struct ata_eh_context *ehc = &ap->eh_context;
2586 unsigned long end, secs;
2587 int rc;
2588
2589 /* first, debounce phy if SATA */
2590 if (ap->cbl == ATA_CBL_SATA) {
2591 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2592
2593 /* if debounced successfully and offline, no need to wait */
2594 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2595 return;
2596 }
2597
2598 /* okay, let's give the drive time to spin up */
2599 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2600 secs = ((end - jiffies) + HZ - 1) / HZ;
2601
2602 if (time_after(jiffies, end))
2603 return;
2604
2605 if (secs > 5)
2606 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2607 "(%lu secs)\n", secs);
2608
2609 schedule_timeout_uninterruptible(end - jiffies);
2610}
2611
2612/**
2613 * ata_std_prereset - prepare for reset
2614 * @ap: ATA port to be reset
2615 *
2616 * @ap is about to be reset. Initialize it.
2617 *
2618 * LOCKING:
2619 * Kernel thread context (may sleep)
2620 *
2621 * RETURNS:
2622 * 0 on success, -errno otherwise.
2623 */
2624int ata_std_prereset(struct ata_port *ap)
2625{
2626 struct ata_eh_context *ehc = &ap->eh_context;
2627 const unsigned long *timing;
2628 int rc;
2629
2630 /* hotplug? */
2631 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2632 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2633 ehc->i.action |= ATA_EH_HARDRESET;
2634 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2635 ata_wait_spinup(ap);
2636 }
2637
2638 /* if we're about to do hardreset, nothing more to do */
2639 if (ehc->i.action & ATA_EH_HARDRESET)
2640 return 0;
2641
2642 /* if SATA, resume phy */
2643 if (ap->cbl == ATA_CBL_SATA) {
2644 if (ap->flags & ATA_FLAG_LOADING)
2645 timing = sata_deb_timing_boot;
2646 else
2647 timing = sata_deb_timing_eh;
2648
2649 rc = sata_phy_resume(ap, timing);
2650 if (rc && rc != -EOPNOTSUPP) {
2651 /* phy resume failed */
2652 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2653 "link for reset (errno=%d)\n", rc);
2654 return rc;
2655 }
2656 }
2657
2658 /* Wait for !BSY if the controller can wait for the first D2H
2659 * Reg FIS and we don't know that no device is attached.
2660 */
2661 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2662 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2663
2664 return 0;
2665}
2666
c2bd5804
TH
2667/**
2668 * ata_std_softreset - reset host port via ATA SRST
2669 * @ap: port to reset
c2bd5804
TH
2670 * @classes: resulting classes of attached devices
2671 *
52783c5d 2672 * Reset host port using ATA SRST.
c2bd5804
TH
2673 *
2674 * LOCKING:
2675 * Kernel thread context (may sleep)
2676 *
2677 * RETURNS:
2678 * 0 on success, -errno otherwise.
2679 */
2bf2cb26 2680int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2681{
2682 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2683 unsigned int devmask = 0, err_mask;
2684 u8 err;
2685
2686 DPRINTK("ENTER\n");
2687
81952c54 2688 if (ata_port_offline(ap)) {
3a39746a
TH
2689 classes[0] = ATA_DEV_NONE;
2690 goto out;
2691 }
2692
c2bd5804
TH
2693 /* determine if device 0/1 are present */
2694 if (ata_devchk(ap, 0))
2695 devmask |= (1 << 0);
2696 if (slave_possible && ata_devchk(ap, 1))
2697 devmask |= (1 << 1);
2698
c2bd5804
TH
2699 /* select device 0 again */
2700 ap->ops->dev_select(ap, 0);
2701
2702 /* issue bus reset */
2703 DPRINTK("about to softreset, devmask=%x\n", devmask);
2704 err_mask = ata_bus_softreset(ap, devmask);
2705 if (err_mask) {
f15a1daf
TH
2706 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2707 err_mask);
c2bd5804
TH
2708 return -EIO;
2709 }
2710
2711 /* determine by signature whether we have ATA or ATAPI devices */
2712 classes[0] = ata_dev_try_classify(ap, 0, &err);
2713 if (slave_possible && err != 0x81)
2714 classes[1] = ata_dev_try_classify(ap, 1, &err);
2715
3a39746a 2716 out:
c2bd5804
TH
2717 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2718 return 0;
2719}
2720
2721/**
2722 * sata_std_hardreset - reset host port via SATA phy reset
2723 * @ap: port to reset
c2bd5804
TH
2724 * @class: resulting class of attached device
2725 *
2726 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2727 *
2728 * LOCKING:
2729 * Kernel thread context (may sleep)
2730 *
2731 * RETURNS:
2732 * 0 on success, -errno otherwise.
2733 */
2bf2cb26 2734int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2735{
852ee16a 2736 u32 scontrol;
81952c54 2737 int rc;
852ee16a 2738
c2bd5804
TH
2739 DPRINTK("ENTER\n");
2740
3c567b7d 2741 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2742 /* SATA spec says nothing about how to reconfigure
2743 * spd. To be on the safe side, turn off phy during
2744 * reconfiguration. This works for at least ICH7 AHCI
2745 * and Sil3124.
2746 */
81952c54
TH
2747 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2748 return rc;
2749
1c3fae4d 2750 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2751
2752 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2753 return rc;
1c3fae4d 2754
3c567b7d 2755 sata_set_spd(ap);
1c3fae4d
TH
2756 }
2757
2758 /* issue phy wake/reset */
81952c54
TH
2759 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2760 return rc;
2761
852ee16a 2762 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2763
2764 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2765 return rc;
c2bd5804 2766
1c3fae4d 2767 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2768 * 10.4.2 says at least 1 ms.
2769 */
2770 msleep(1);
2771
1c3fae4d 2772 /* bring phy back */
d7bb4cc7 2773 sata_phy_resume(ap, sata_deb_timing_eh);
c2bd5804 2774
c2bd5804 2775 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2776 if (ata_port_offline(ap)) {
c2bd5804
TH
2777 *class = ATA_DEV_NONE;
2778 DPRINTK("EXIT, link offline\n");
2779 return 0;
2780 }
2781
2782 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2783 ata_port_printk(ap, KERN_ERR,
2784 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2785 return -EIO;
2786 }
2787
3a39746a
TH
2788 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2789
c2bd5804
TH
2790 *class = ata_dev_try_classify(ap, 0, NULL);
2791
2792 DPRINTK("EXIT, class=%u\n", *class);
2793 return 0;
2794}
2795
2796/**
2797 * ata_std_postreset - standard postreset callback
2798 * @ap: the target ata_port
2799 * @classes: classes of attached devices
2800 *
2801 * This function is invoked after a successful reset. Note that
2802 * the device might have been reset more than once using
2803 * different reset methods before postreset is invoked.
c2bd5804 2804 *
c2bd5804
TH
2805 * LOCKING:
2806 * Kernel thread context (may sleep)
2807 */
2808void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2809{
dc2b3515
TH
2810 u32 serror;
2811
c2bd5804
TH
2812 DPRINTK("ENTER\n");
2813
c2bd5804 2814 /* print link status */
81952c54 2815 sata_print_link_status(ap);
c2bd5804 2816
dc2b3515
TH
2817 /* clear SError */
2818 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2819 sata_scr_write(ap, SCR_ERROR, serror);
2820
3a39746a 2821 /* re-enable interrupts */
e3180499
TH
2822 if (!ap->ops->error_handler) {
2823 /* FIXME: hack. create a hook instead */
2824 if (ap->ioaddr.ctl_addr)
2825 ata_irq_on(ap);
2826 }
c2bd5804
TH
2827
2828 /* is double-select really necessary? */
2829 if (classes[0] != ATA_DEV_NONE)
2830 ap->ops->dev_select(ap, 1);
2831 if (classes[1] != ATA_DEV_NONE)
2832 ap->ops->dev_select(ap, 0);
2833
3a39746a
TH
2834 /* bail out if no device is present */
2835 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2836 DPRINTK("EXIT, no device\n");
2837 return;
2838 }
2839
2840 /* set up device control */
2841 if (ap->ioaddr.ctl_addr) {
2842 if (ap->flags & ATA_FLAG_MMIO)
2843 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2844 else
2845 outb(ap->ctl, ap->ioaddr.ctl_addr);
2846 }
c2bd5804
TH
2847
2848 DPRINTK("EXIT\n");
2849}
2850
623a3128
TH
2851/**
2852 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2853 * @dev: device to compare against
2854 * @new_class: class of the new device
2855 * @new_id: IDENTIFY page of the new device
2856 *
2857 * Compare @new_class and @new_id against @dev and determine
2858 * whether @dev is the device indicated by @new_class and
2859 * @new_id.
2860 *
2861 * LOCKING:
2862 * None.
2863 *
2864 * RETURNS:
2865 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2866 */
3373efd8
TH
2867static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2868 const u16 *new_id)
623a3128
TH
2869{
2870 const u16 *old_id = dev->id;
2871 unsigned char model[2][41], serial[2][21];
2872 u64 new_n_sectors;
2873
2874 if (dev->class != new_class) {
f15a1daf
TH
2875 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2876 dev->class, new_class);
623a3128
TH
2877 return 0;
2878 }
2879
2880 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2881 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2882 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2883 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2884 new_n_sectors = ata_id_n_sectors(new_id);
2885
2886 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2887 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2888 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2889 return 0;
2890 }
2891
2892 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2893 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2894 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2895 return 0;
2896 }
2897
2898 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2899 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2900 "%llu != %llu\n",
2901 (unsigned long long)dev->n_sectors,
2902 (unsigned long long)new_n_sectors);
623a3128
TH
2903 return 0;
2904 }
2905
2906 return 1;
2907}
2908
2909/**
2910 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2911 * @dev: device to revalidate
2912 * @post_reset: is this revalidation after reset?
2913 *
2914 * Re-read IDENTIFY page and make sure @dev is still attached to
2915 * the port.
2916 *
2917 * LOCKING:
2918 * Kernel thread context (may sleep)
2919 *
2920 * RETURNS:
2921 * 0 on success, negative errno otherwise
2922 */
3373efd8 2923int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2924{
5eb45c02 2925 unsigned int class = dev->class;
f15a1daf 2926 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2927 int rc;
2928
5eb45c02
TH
2929 if (!ata_dev_enabled(dev)) {
2930 rc = -ENODEV;
2931 goto fail;
2932 }
623a3128 2933
fe635c7e 2934 /* read ID data */
3373efd8 2935 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2936 if (rc)
2937 goto fail;
2938
2939 /* is the device still there? */
3373efd8 2940 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2941 rc = -ENODEV;
2942 goto fail;
2943 }
2944
fe635c7e 2945 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2946
2947 /* configure device according to the new ID */
3373efd8 2948 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2949 if (rc == 0)
2950 return 0;
623a3128
TH
2951
2952 fail:
f15a1daf 2953 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2954 return rc;
2955}
2956
98ac62de 2957static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2958 "WDC AC11000H", NULL,
2959 "WDC AC22100H", NULL,
2960 "WDC AC32500H", NULL,
2961 "WDC AC33100H", NULL,
2962 "WDC AC31600H", NULL,
2963 "WDC AC32100H", "24.09P07",
2964 "WDC AC23200L", "21.10N21",
2965 "Compaq CRD-8241B", NULL,
2966 "CRD-8400B", NULL,
2967 "CRD-8480B", NULL,
2968 "CRD-8482B", NULL,
2969 "CRD-84", NULL,
2970 "SanDisk SDP3B", NULL,
2971 "SanDisk SDP3B-64", NULL,
2972 "SANYO CD-ROM CRD", NULL,
2973 "HITACHI CDR-8", NULL,
2e9edbf8 2974 "HITACHI CDR-8335", NULL,
f4b15fef 2975 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2976 "Toshiba CD-ROM XM-6202B", NULL,
2977 "TOSHIBA CD-ROM XM-1702BC", NULL,
2978 "CD-532E-A", NULL,
2979 "E-IDE CD-ROM CR-840", NULL,
2980 "CD-ROM Drive/F5A", NULL,
2981 "WPI CDD-820", NULL,
f4b15fef 2982 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2983 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2984 "SanDisk SDP3B-64", NULL,
2985 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2986 "_NEC DV5800A", NULL,
2987 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2988};
2e9edbf8 2989
f4b15fef
AC
2990static int ata_strim(char *s, size_t len)
2991{
2992 len = strnlen(s, len);
2993
2994 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2995 while ((len > 0) && (s[len - 1] == ' ')) {
2996 len--;
2997 s[len] = 0;
2998 }
2999 return len;
3000}
1da177e4 3001
057ace5e 3002static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 3003{
f4b15fef
AC
3004 unsigned char model_num[40];
3005 unsigned char model_rev[16];
3006 unsigned int nlen, rlen;
1da177e4
LT
3007 int i;
3008
3a778275
AL
3009 /* We don't support polling DMA.
3010 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3011 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3012 */
3013 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3014 (dev->flags & ATA_DFLAG_CDB_INTR))
3015 return 1;
3016
f4b15fef
AC
3017 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3018 sizeof(model_num));
3019 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3020 sizeof(model_rev));
3021 nlen = ata_strim(model_num, sizeof(model_num));
3022 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3023
f4b15fef
AC
3024 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3025 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3026 if (ata_dma_blacklist[i+1] == NULL)
3027 return 1;
3028 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3029 return 1;
3030 }
3031 }
1da177e4
LT
3032 return 0;
3033}
3034
a6d5a51c
TH
3035/**
3036 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3037 * @dev: Device to compute xfermask for
3038 *
acf356b1
TH
3039 * Compute supported xfermask of @dev and store it in
3040 * dev->*_mask. This function is responsible for applying all
3041 * known limits including host controller limits, device
3042 * blacklist, etc...
a6d5a51c 3043 *
600511e8
TH
3044 * FIXME: The current implementation limits all transfer modes to
3045 * the fastest of the lowested device on the port. This is not
05c8e0ac 3046 * required on most controllers.
600511e8 3047 *
a6d5a51c
TH
3048 * LOCKING:
3049 * None.
a6d5a51c 3050 */
3373efd8 3051static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3052{
3373efd8 3053 struct ata_port *ap = dev->ap;
5444a6f4 3054 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
3055 unsigned long xfer_mask;
3056 int i;
1da177e4 3057
565083e1
TH
3058 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3059 ap->mwdma_mask, ap->udma_mask);
3060
3061 /* Apply cable rule here. Don't apply it early because when
3062 * we handle hot plug the cable type can itself change.
3063 */
3064 if (ap->cbl == ATA_CBL_PATA40)
3065 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 3066
5444a6f4 3067 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
3068 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3069 struct ata_device *d = &ap->device[i];
565083e1
TH
3070
3071 if (ata_dev_absent(d))
3072 continue;
3073
3074 if (ata_dev_disabled(d)) {
3075 /* to avoid violating device selection timing */
3076 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3077 UINT_MAX, UINT_MAX);
a6d5a51c 3078 continue;
565083e1
TH
3079 }
3080
3081 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3082 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
3083 xfer_mask &= ata_id_xfermask(d->id);
3084 if (ata_dma_blacklisted(d))
3085 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
3086 }
3087
a6d5a51c 3088 if (ata_dma_blacklisted(dev))
f15a1daf
TH
3089 ata_dev_printk(dev, KERN_WARNING,
3090 "device is on DMA blacklist, disabling DMA\n");
a6d5a51c 3091
5444a6f4
AC
3092 if (hs->flags & ATA_HOST_SIMPLEX) {
3093 if (hs->simplex_claimed)
3094 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3095 }
565083e1 3096
5444a6f4
AC
3097 if (ap->ops->mode_filter)
3098 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3099
565083e1
TH
3100 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3101 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3102}
3103
1da177e4
LT
3104/**
3105 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3106 * @dev: Device to which command will be sent
3107 *
780a87f7
JG
3108 * Issue SET FEATURES - XFER MODE command to device @dev
3109 * on port @ap.
3110 *
1da177e4 3111 * LOCKING:
0cba632b 3112 * PCI/etc. bus probe sem.
83206a29
TH
3113 *
3114 * RETURNS:
3115 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3116 */
3117
3373efd8 3118static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3119{
a0123703 3120 struct ata_taskfile tf;
83206a29 3121 unsigned int err_mask;
1da177e4
LT
3122
3123 /* set up set-features taskfile */
3124 DPRINTK("set features - xfer mode\n");
3125
3373efd8 3126 ata_tf_init(dev, &tf);
a0123703
TH
3127 tf.command = ATA_CMD_SET_FEATURES;
3128 tf.feature = SETFEATURES_XFER;
3129 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3130 tf.protocol = ATA_PROT_NODATA;
3131 tf.nsect = dev->xfer_mode;
1da177e4 3132
3373efd8 3133 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3134
83206a29
TH
3135 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3136 return err_mask;
1da177e4
LT
3137}
3138
8bf62ece
AL
3139/**
3140 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3141 * @dev: Device to which command will be sent
e2a7f77a
RD
3142 * @heads: Number of heads (taskfile parameter)
3143 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3144 *
3145 * LOCKING:
6aff8f1f
TH
3146 * Kernel thread context (may sleep)
3147 *
3148 * RETURNS:
3149 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3150 */
3373efd8
TH
3151static unsigned int ata_dev_init_params(struct ata_device *dev,
3152 u16 heads, u16 sectors)
8bf62ece 3153{
a0123703 3154 struct ata_taskfile tf;
6aff8f1f 3155 unsigned int err_mask;
8bf62ece
AL
3156
3157 /* Number of sectors per track 1-255. Number of heads 1-16 */
3158 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3159 return AC_ERR_INVALID;
8bf62ece
AL
3160
3161 /* set up init dev params taskfile */
3162 DPRINTK("init dev params \n");
3163
3373efd8 3164 ata_tf_init(dev, &tf);
a0123703
TH
3165 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3166 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3167 tf.protocol = ATA_PROT_NODATA;
3168 tf.nsect = sectors;
3169 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3170
3373efd8 3171 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3172
6aff8f1f
TH
3173 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3174 return err_mask;
8bf62ece
AL
3175}
3176
1da177e4 3177/**
0cba632b
JG
3178 * ata_sg_clean - Unmap DMA memory associated with command
3179 * @qc: Command containing DMA memory to be released
3180 *
3181 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3182 *
3183 * LOCKING:
0cba632b 3184 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3185 */
3186
3187static void ata_sg_clean(struct ata_queued_cmd *qc)
3188{
3189 struct ata_port *ap = qc->ap;
cedc9a47 3190 struct scatterlist *sg = qc->__sg;
1da177e4 3191 int dir = qc->dma_dir;
cedc9a47 3192 void *pad_buf = NULL;
1da177e4 3193
a4631474
TH
3194 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3195 WARN_ON(sg == NULL);
1da177e4
LT
3196
3197 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3198 WARN_ON(qc->n_elem > 1);
1da177e4 3199
2c13b7ce 3200 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3201
cedc9a47
JG
3202 /* if we padded the buffer out to 32-bit bound, and data
3203 * xfer direction is from-device, we must copy from the
3204 * pad buffer back into the supplied buffer
3205 */
3206 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3207 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3208
3209 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3210 if (qc->n_elem)
2f1f610b 3211 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3212 /* restore last sg */
3213 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3214 if (pad_buf) {
3215 struct scatterlist *psg = &qc->pad_sgent;
3216 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3217 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3218 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3219 }
3220 } else {
2e242fa9 3221 if (qc->n_elem)
2f1f610b 3222 dma_unmap_single(ap->dev,
e1410f2d
JG
3223 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3224 dir);
cedc9a47
JG
3225 /* restore sg */
3226 sg->length += qc->pad_len;
3227 if (pad_buf)
3228 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3229 pad_buf, qc->pad_len);
3230 }
1da177e4
LT
3231
3232 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3233 qc->__sg = NULL;
1da177e4
LT
3234}
3235
3236/**
3237 * ata_fill_sg - Fill PCI IDE PRD table
3238 * @qc: Metadata associated with taskfile to be transferred
3239 *
780a87f7
JG
3240 * Fill PCI IDE PRD (scatter-gather) table with segments
3241 * associated with the current disk command.
3242 *
1da177e4 3243 * LOCKING:
780a87f7 3244 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3245 *
3246 */
3247static void ata_fill_sg(struct ata_queued_cmd *qc)
3248{
1da177e4 3249 struct ata_port *ap = qc->ap;
cedc9a47
JG
3250 struct scatterlist *sg;
3251 unsigned int idx;
1da177e4 3252
a4631474 3253 WARN_ON(qc->__sg == NULL);
f131883e 3254 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3255
3256 idx = 0;
cedc9a47 3257 ata_for_each_sg(sg, qc) {
1da177e4
LT
3258 u32 addr, offset;
3259 u32 sg_len, len;
3260
3261 /* determine if physical DMA addr spans 64K boundary.
3262 * Note h/w doesn't support 64-bit, so we unconditionally
3263 * truncate dma_addr_t to u32.
3264 */
3265 addr = (u32) sg_dma_address(sg);
3266 sg_len = sg_dma_len(sg);
3267
3268 while (sg_len) {
3269 offset = addr & 0xffff;
3270 len = sg_len;
3271 if ((offset + sg_len) > 0x10000)
3272 len = 0x10000 - offset;
3273
3274 ap->prd[idx].addr = cpu_to_le32(addr);
3275 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3276 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3277
3278 idx++;
3279 sg_len -= len;
3280 addr += len;
3281 }
3282 }
3283
3284 if (idx)
3285 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3286}
3287/**
3288 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3289 * @qc: Metadata associated with taskfile to check
3290 *
780a87f7
JG
3291 * Allow low-level driver to filter ATA PACKET commands, returning
3292 * a status indicating whether or not it is OK to use DMA for the
3293 * supplied PACKET command.
3294 *
1da177e4 3295 * LOCKING:
0cba632b
JG
3296 * spin_lock_irqsave(host_set lock)
3297 *
1da177e4
LT
3298 * RETURNS: 0 when ATAPI DMA can be used
3299 * nonzero otherwise
3300 */
3301int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3302{
3303 struct ata_port *ap = qc->ap;
3304 int rc = 0; /* Assume ATAPI DMA is OK by default */
3305
3306 if (ap->ops->check_atapi_dma)
3307 rc = ap->ops->check_atapi_dma(qc);
3308
3309 return rc;
3310}
3311/**
3312 * ata_qc_prep - Prepare taskfile for submission
3313 * @qc: Metadata associated with taskfile to be prepared
3314 *
780a87f7
JG
3315 * Prepare ATA taskfile for submission.
3316 *
1da177e4
LT
3317 * LOCKING:
3318 * spin_lock_irqsave(host_set lock)
3319 */
3320void ata_qc_prep(struct ata_queued_cmd *qc)
3321{
3322 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3323 return;
3324
3325 ata_fill_sg(qc);
3326}
3327
e46834cd
BK
3328void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3329
0cba632b
JG
3330/**
3331 * ata_sg_init_one - Associate command with memory buffer
3332 * @qc: Command to be associated
3333 * @buf: Memory buffer
3334 * @buflen: Length of memory buffer, in bytes.
3335 *
3336 * Initialize the data-related elements of queued_cmd @qc
3337 * to point to a single memory buffer, @buf of byte length @buflen.
3338 *
3339 * LOCKING:
3340 * spin_lock_irqsave(host_set lock)
3341 */
3342
1da177e4
LT
3343void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3344{
3345 struct scatterlist *sg;
3346
3347 qc->flags |= ATA_QCFLAG_SINGLE;
3348
3349 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3350 qc->__sg = &qc->sgent;
1da177e4 3351 qc->n_elem = 1;
cedc9a47 3352 qc->orig_n_elem = 1;
1da177e4 3353 qc->buf_virt = buf;
233277ca 3354 qc->nbytes = buflen;
1da177e4 3355
cedc9a47 3356 sg = qc->__sg;
f0612bbc 3357 sg_init_one(sg, buf, buflen);
1da177e4
LT
3358}
3359
0cba632b
JG
3360/**
3361 * ata_sg_init - Associate command with scatter-gather table.
3362 * @qc: Command to be associated
3363 * @sg: Scatter-gather table.
3364 * @n_elem: Number of elements in s/g table.
3365 *
3366 * Initialize the data-related elements of queued_cmd @qc
3367 * to point to a scatter-gather table @sg, containing @n_elem
3368 * elements.
3369 *
3370 * LOCKING:
3371 * spin_lock_irqsave(host_set lock)
3372 */
3373
1da177e4
LT
3374void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3375 unsigned int n_elem)
3376{
3377 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3378 qc->__sg = sg;
1da177e4 3379 qc->n_elem = n_elem;
cedc9a47 3380 qc->orig_n_elem = n_elem;
1da177e4
LT
3381}
3382
3383/**
0cba632b
JG
3384 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3385 * @qc: Command with memory buffer to be mapped.
3386 *
3387 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3388 *
3389 * LOCKING:
3390 * spin_lock_irqsave(host_set lock)
3391 *
3392 * RETURNS:
0cba632b 3393 * Zero on success, negative on error.
1da177e4
LT
3394 */
3395
3396static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3397{
3398 struct ata_port *ap = qc->ap;
3399 int dir = qc->dma_dir;
cedc9a47 3400 struct scatterlist *sg = qc->__sg;
1da177e4 3401 dma_addr_t dma_address;
2e242fa9 3402 int trim_sg = 0;
1da177e4 3403
cedc9a47
JG
3404 /* we must lengthen transfers to end on a 32-bit boundary */
3405 qc->pad_len = sg->length & 3;
3406 if (qc->pad_len) {
3407 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3408 struct scatterlist *psg = &qc->pad_sgent;
3409
a4631474 3410 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3411
3412 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3413
3414 if (qc->tf.flags & ATA_TFLAG_WRITE)
3415 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3416 qc->pad_len);
3417
3418 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3419 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3420 /* trim sg */
3421 sg->length -= qc->pad_len;
2e242fa9
TH
3422 if (sg->length == 0)
3423 trim_sg = 1;
cedc9a47
JG
3424
3425 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3426 sg->length, qc->pad_len);
3427 }
3428
2e242fa9
TH
3429 if (trim_sg) {
3430 qc->n_elem--;
e1410f2d
JG
3431 goto skip_map;
3432 }
3433
2f1f610b 3434 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3435 sg->length, dir);
537a95d9
TH
3436 if (dma_mapping_error(dma_address)) {
3437 /* restore sg */
3438 sg->length += qc->pad_len;
1da177e4 3439 return -1;
537a95d9 3440 }
1da177e4
LT
3441
3442 sg_dma_address(sg) = dma_address;
32529e01 3443 sg_dma_len(sg) = sg->length;
1da177e4 3444
2e242fa9 3445skip_map:
1da177e4
LT
3446 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3447 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3448
3449 return 0;
3450}
3451
3452/**
0cba632b
JG
3453 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3454 * @qc: Command with scatter-gather table to be mapped.
3455 *
3456 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3457 *
3458 * LOCKING:
3459 * spin_lock_irqsave(host_set lock)
3460 *
3461 * RETURNS:
0cba632b 3462 * Zero on success, negative on error.
1da177e4
LT
3463 *
3464 */
3465
3466static int ata_sg_setup(struct ata_queued_cmd *qc)
3467{
3468 struct ata_port *ap = qc->ap;
cedc9a47
JG
3469 struct scatterlist *sg = qc->__sg;
3470 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3471 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3472
3473 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3474 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3475
cedc9a47
JG
3476 /* we must lengthen transfers to end on a 32-bit boundary */
3477 qc->pad_len = lsg->length & 3;
3478 if (qc->pad_len) {
3479 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3480 struct scatterlist *psg = &qc->pad_sgent;
3481 unsigned int offset;
3482
a4631474 3483 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3484
3485 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3486
3487 /*
3488 * psg->page/offset are used to copy to-be-written
3489 * data in this function or read data in ata_sg_clean.
3490 */
3491 offset = lsg->offset + lsg->length - qc->pad_len;
3492 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3493 psg->offset = offset_in_page(offset);
3494
3495 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3496 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3497 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3498 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3499 }
3500
3501 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3502 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3503 /* trim last sg */
3504 lsg->length -= qc->pad_len;
e1410f2d
JG
3505 if (lsg->length == 0)
3506 trim_sg = 1;
cedc9a47
JG
3507
3508 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3509 qc->n_elem - 1, lsg->length, qc->pad_len);
3510 }
3511
e1410f2d
JG
3512 pre_n_elem = qc->n_elem;
3513 if (trim_sg && pre_n_elem)
3514 pre_n_elem--;
3515
3516 if (!pre_n_elem) {
3517 n_elem = 0;
3518 goto skip_map;
3519 }
3520
1da177e4 3521 dir = qc->dma_dir;
2f1f610b 3522 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3523 if (n_elem < 1) {
3524 /* restore last sg */
3525 lsg->length += qc->pad_len;
1da177e4 3526 return -1;
537a95d9 3527 }
1da177e4
LT
3528
3529 DPRINTK("%d sg elements mapped\n", n_elem);
3530
e1410f2d 3531skip_map:
1da177e4
LT
3532 qc->n_elem = n_elem;
3533
3534 return 0;
3535}
3536
0baab86b 3537/**
c893a3ae 3538 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3539 * @buf: Buffer to swap
3540 * @buf_words: Number of 16-bit words in buffer.
3541 *
3542 * Swap halves of 16-bit words if needed to convert from
3543 * little-endian byte order to native cpu byte order, or
3544 * vice-versa.
3545 *
3546 * LOCKING:
6f0ef4fa 3547 * Inherited from caller.
0baab86b 3548 */
1da177e4
LT
3549void swap_buf_le16(u16 *buf, unsigned int buf_words)
3550{
3551#ifdef __BIG_ENDIAN
3552 unsigned int i;
3553
3554 for (i = 0; i < buf_words; i++)
3555 buf[i] = le16_to_cpu(buf[i]);
3556#endif /* __BIG_ENDIAN */
3557}
3558
6ae4cfb5
AL
3559/**
3560 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3561 * @adev: device for this I/O
6ae4cfb5
AL
3562 * @buf: data buffer
3563 * @buflen: buffer length
344babaa 3564 * @write_data: read/write
6ae4cfb5
AL
3565 *
3566 * Transfer data from/to the device data register by MMIO.
3567 *
3568 * LOCKING:
3569 * Inherited from caller.
6ae4cfb5
AL
3570 */
3571
88574551 3572void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3573 unsigned int buflen, int write_data)
1da177e4 3574{
a6b2c5d4 3575 struct ata_port *ap = adev->ap;
1da177e4
LT
3576 unsigned int i;
3577 unsigned int words = buflen >> 1;
3578 u16 *buf16 = (u16 *) buf;
3579 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3580
6ae4cfb5 3581 /* Transfer multiple of 2 bytes */
1da177e4
LT
3582 if (write_data) {
3583 for (i = 0; i < words; i++)
3584 writew(le16_to_cpu(buf16[i]), mmio);
3585 } else {
3586 for (i = 0; i < words; i++)
3587 buf16[i] = cpu_to_le16(readw(mmio));
3588 }
6ae4cfb5
AL
3589
3590 /* Transfer trailing 1 byte, if any. */
3591 if (unlikely(buflen & 0x01)) {
3592 u16 align_buf[1] = { 0 };
3593 unsigned char *trailing_buf = buf + buflen - 1;
3594
3595 if (write_data) {
3596 memcpy(align_buf, trailing_buf, 1);
3597 writew(le16_to_cpu(align_buf[0]), mmio);
3598 } else {
3599 align_buf[0] = cpu_to_le16(readw(mmio));
3600 memcpy(trailing_buf, align_buf, 1);
3601 }
3602 }
1da177e4
LT
3603}
3604
6ae4cfb5
AL
3605/**
3606 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3607 * @adev: device to target
6ae4cfb5
AL
3608 * @buf: data buffer
3609 * @buflen: buffer length
344babaa 3610 * @write_data: read/write
6ae4cfb5
AL
3611 *
3612 * Transfer data from/to the device data register by PIO.
3613 *
3614 * LOCKING:
3615 * Inherited from caller.
6ae4cfb5
AL
3616 */
3617
88574551 3618void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3619 unsigned int buflen, int write_data)
1da177e4 3620{
a6b2c5d4 3621 struct ata_port *ap = adev->ap;
6ae4cfb5 3622 unsigned int words = buflen >> 1;
1da177e4 3623
6ae4cfb5 3624 /* Transfer multiple of 2 bytes */
1da177e4 3625 if (write_data)
6ae4cfb5 3626 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3627 else
6ae4cfb5
AL
3628 insw(ap->ioaddr.data_addr, buf, words);
3629
3630 /* Transfer trailing 1 byte, if any. */
3631 if (unlikely(buflen & 0x01)) {
3632 u16 align_buf[1] = { 0 };
3633 unsigned char *trailing_buf = buf + buflen - 1;
3634
3635 if (write_data) {
3636 memcpy(align_buf, trailing_buf, 1);
3637 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3638 } else {
3639 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3640 memcpy(trailing_buf, align_buf, 1);
3641 }
3642 }
1da177e4
LT
3643}
3644
75e99585
AC
3645/**
3646 * ata_pio_data_xfer_noirq - Transfer data by PIO
3647 * @adev: device to target
3648 * @buf: data buffer
3649 * @buflen: buffer length
3650 * @write_data: read/write
3651 *
88574551 3652 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3653 * transfer with interrupts disabled.
3654 *
3655 * LOCKING:
3656 * Inherited from caller.
3657 */
3658
3659void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3660 unsigned int buflen, int write_data)
3661{
3662 unsigned long flags;
3663 local_irq_save(flags);
3664 ata_pio_data_xfer(adev, buf, buflen, write_data);
3665 local_irq_restore(flags);
3666}
3667
3668
6ae4cfb5
AL
3669/**
3670 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3671 * @qc: Command on going
3672 *
3673 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3674 *
3675 * LOCKING:
3676 * Inherited from caller.
3677 */
3678
1da177e4
LT
3679static void ata_pio_sector(struct ata_queued_cmd *qc)
3680{
3681 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3682 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3683 struct ata_port *ap = qc->ap;
3684 struct page *page;
3685 unsigned int offset;
3686 unsigned char *buf;
3687
3688 if (qc->cursect == (qc->nsect - 1))
14be71f4 3689 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3690
3691 page = sg[qc->cursg].page;
3692 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3693
3694 /* get the current page and offset */
3695 page = nth_page(page, (offset >> PAGE_SHIFT));
3696 offset %= PAGE_SIZE;
3697
1da177e4
LT
3698 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3699
91b8b313
AL
3700 if (PageHighMem(page)) {
3701 unsigned long flags;
3702
a6b2c5d4 3703 /* FIXME: use a bounce buffer */
91b8b313
AL
3704 local_irq_save(flags);
3705 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3706
91b8b313 3707 /* do the actual data transfer */
a6b2c5d4 3708 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3709
91b8b313
AL
3710 kunmap_atomic(buf, KM_IRQ0);
3711 local_irq_restore(flags);
3712 } else {
3713 buf = page_address(page);
a6b2c5d4 3714 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3715 }
1da177e4
LT
3716
3717 qc->cursect++;
3718 qc->cursg_ofs++;
3719
32529e01 3720 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3721 qc->cursg++;
3722 qc->cursg_ofs = 0;
3723 }
1da177e4 3724}
1da177e4 3725
07f6f7d0
AL
3726/**
3727 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3728 * @qc: Command on going
3729 *
c81e29b4 3730 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3731 * ATA device for the DRQ request.
3732 *
3733 * LOCKING:
3734 * Inherited from caller.
3735 */
1da177e4 3736
07f6f7d0
AL
3737static void ata_pio_sectors(struct ata_queued_cmd *qc)
3738{
3739 if (is_multi_taskfile(&qc->tf)) {
3740 /* READ/WRITE MULTIPLE */
3741 unsigned int nsect;
3742
587005de 3743 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3744
07f6f7d0
AL
3745 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3746 while (nsect--)
3747 ata_pio_sector(qc);
3748 } else
3749 ata_pio_sector(qc);
3750}
3751
c71c1857
AL
3752/**
3753 * atapi_send_cdb - Write CDB bytes to hardware
3754 * @ap: Port to which ATAPI device is attached.
3755 * @qc: Taskfile currently active
3756 *
3757 * When device has indicated its readiness to accept
3758 * a CDB, this function is called. Send the CDB.
3759 *
3760 * LOCKING:
3761 * caller.
3762 */
3763
3764static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3765{
3766 /* send SCSI cdb */
3767 DPRINTK("send cdb\n");
db024d53 3768 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3769
a6b2c5d4 3770 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3771 ata_altstatus(ap); /* flush */
3772
3773 switch (qc->tf.protocol) {
3774 case ATA_PROT_ATAPI:
3775 ap->hsm_task_state = HSM_ST;
3776 break;
3777 case ATA_PROT_ATAPI_NODATA:
3778 ap->hsm_task_state = HSM_ST_LAST;
3779 break;
3780 case ATA_PROT_ATAPI_DMA:
3781 ap->hsm_task_state = HSM_ST_LAST;
3782 /* initiate bmdma */
3783 ap->ops->bmdma_start(qc);
3784 break;
3785 }
1da177e4
LT
3786}
3787
6ae4cfb5
AL
3788/**
3789 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3790 * @qc: Command on going
3791 * @bytes: number of bytes
3792 *
3793 * Transfer Transfer data from/to the ATAPI device.
3794 *
3795 * LOCKING:
3796 * Inherited from caller.
3797 *
3798 */
3799
1da177e4
LT
3800static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3801{
3802 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3803 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3804 struct ata_port *ap = qc->ap;
3805 struct page *page;
3806 unsigned char *buf;
3807 unsigned int offset, count;
3808
563a6e1f 3809 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3810 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3811
3812next_sg:
563a6e1f 3813 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3814 /*
563a6e1f
AL
3815 * The end of qc->sg is reached and the device expects
3816 * more data to transfer. In order not to overrun qc->sg
3817 * and fulfill length specified in the byte count register,
3818 * - for read case, discard trailing data from the device
3819 * - for write case, padding zero data to the device
3820 */
3821 u16 pad_buf[1] = { 0 };
3822 unsigned int words = bytes >> 1;
3823 unsigned int i;
3824
3825 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3826 ata_dev_printk(qc->dev, KERN_WARNING,
3827 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3828
3829 for (i = 0; i < words; i++)
a6b2c5d4 3830 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3831
14be71f4 3832 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3833 return;
3834 }
3835
cedc9a47 3836 sg = &qc->__sg[qc->cursg];
1da177e4 3837
1da177e4
LT
3838 page = sg->page;
3839 offset = sg->offset + qc->cursg_ofs;
3840
3841 /* get the current page and offset */
3842 page = nth_page(page, (offset >> PAGE_SHIFT));
3843 offset %= PAGE_SIZE;
3844
6952df03 3845 /* don't overrun current sg */
32529e01 3846 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3847
3848 /* don't cross page boundaries */
3849 count = min(count, (unsigned int)PAGE_SIZE - offset);
3850
7282aa4b
AL
3851 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3852
91b8b313
AL
3853 if (PageHighMem(page)) {
3854 unsigned long flags;
3855
a6b2c5d4 3856 /* FIXME: use bounce buffer */
91b8b313
AL
3857 local_irq_save(flags);
3858 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3859
91b8b313 3860 /* do the actual data transfer */
a6b2c5d4 3861 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3862
91b8b313
AL
3863 kunmap_atomic(buf, KM_IRQ0);
3864 local_irq_restore(flags);
3865 } else {
3866 buf = page_address(page);
a6b2c5d4 3867 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3868 }
1da177e4
LT
3869
3870 bytes -= count;
3871 qc->curbytes += count;
3872 qc->cursg_ofs += count;
3873
32529e01 3874 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3875 qc->cursg++;
3876 qc->cursg_ofs = 0;
3877 }
3878
563a6e1f 3879 if (bytes)
1da177e4 3880 goto next_sg;
1da177e4
LT
3881}
3882
6ae4cfb5
AL
3883/**
3884 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3885 * @qc: Command on going
3886 *
3887 * Transfer Transfer data from/to the ATAPI device.
3888 *
3889 * LOCKING:
3890 * Inherited from caller.
6ae4cfb5
AL
3891 */
3892
1da177e4
LT
3893static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3894{
3895 struct ata_port *ap = qc->ap;
3896 struct ata_device *dev = qc->dev;
3897 unsigned int ireason, bc_lo, bc_hi, bytes;
3898 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3899
eec4c3f3
AL
3900 /* Abuse qc->result_tf for temp storage of intermediate TF
3901 * here to save some kernel stack usage.
3902 * For normal completion, qc->result_tf is not relevant. For
3903 * error, qc->result_tf is later overwritten by ata_qc_complete().
3904 * So, the correctness of qc->result_tf is not affected.
3905 */
3906 ap->ops->tf_read(ap, &qc->result_tf);
3907 ireason = qc->result_tf.nsect;
3908 bc_lo = qc->result_tf.lbam;
3909 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3910 bytes = (bc_hi << 8) | bc_lo;
3911
3912 /* shall be cleared to zero, indicating xfer of data */
3913 if (ireason & (1 << 0))
3914 goto err_out;
3915
3916 /* make sure transfer direction matches expected */
3917 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3918 if (do_write != i_write)
3919 goto err_out;
3920
312f7da2
AL
3921 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3922
1da177e4
LT
3923 __atapi_pio_bytes(qc, bytes);
3924
3925 return;
3926
3927err_out:
f15a1daf 3928 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3929 qc->err_mask |= AC_ERR_HSM;
14be71f4 3930 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3931}
3932
3933/**
c234fb00
AL
3934 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3935 * @ap: the target ata_port
3936 * @qc: qc on going
1da177e4 3937 *
c234fb00
AL
3938 * RETURNS:
3939 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3940 */
c234fb00
AL
3941
3942static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3943{
c234fb00
AL
3944 if (qc->tf.flags & ATA_TFLAG_POLLING)
3945 return 1;
1da177e4 3946
c234fb00
AL
3947 if (ap->hsm_task_state == HSM_ST_FIRST) {
3948 if (qc->tf.protocol == ATA_PROT_PIO &&
3949 (qc->tf.flags & ATA_TFLAG_WRITE))
3950 return 1;
1da177e4 3951
c234fb00
AL
3952 if (is_atapi_taskfile(&qc->tf) &&
3953 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3954 return 1;
fe79e683
AL
3955 }
3956
c234fb00
AL
3957 return 0;
3958}
1da177e4 3959
c17ea20d
TH
3960/**
3961 * ata_hsm_qc_complete - finish a qc running on standard HSM
3962 * @qc: Command to complete
3963 * @in_wq: 1 if called from workqueue, 0 otherwise
3964 *
3965 * Finish @qc which is running on standard HSM.
3966 *
3967 * LOCKING:
3968 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3969 * Otherwise, none on entry and grabs host lock.
3970 */
3971static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3972{
3973 struct ata_port *ap = qc->ap;
3974 unsigned long flags;
3975
3976 if (ap->ops->error_handler) {
3977 if (in_wq) {
ba6a1308 3978 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
3979
3980 /* EH might have kicked in while host_set lock
3981 * is released.
3982 */
3983 qc = ata_qc_from_tag(ap, qc->tag);
3984 if (qc) {
3985 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3986 ata_irq_on(ap);
3987 ata_qc_complete(qc);
3988 } else
3989 ata_port_freeze(ap);
3990 }
3991
ba6a1308 3992 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
3993 } else {
3994 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3995 ata_qc_complete(qc);
3996 else
3997 ata_port_freeze(ap);
3998 }
3999 } else {
4000 if (in_wq) {
ba6a1308 4001 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4002 ata_irq_on(ap);
4003 ata_qc_complete(qc);
ba6a1308 4004 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4005 } else
4006 ata_qc_complete(qc);
4007 }
1da177e4 4008
c81e29b4 4009 ata_altstatus(ap); /* flush */
c17ea20d
TH
4010}
4011
bb5cb290
AL
4012/**
4013 * ata_hsm_move - move the HSM to the next state.
4014 * @ap: the target ata_port
4015 * @qc: qc on going
4016 * @status: current device status
4017 * @in_wq: 1 if called from workqueue, 0 otherwise
4018 *
4019 * RETURNS:
4020 * 1 when poll next status needed, 0 otherwise.
4021 */
9a1004d0
TH
4022int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4023 u8 status, int in_wq)
e2cec771 4024{
bb5cb290
AL
4025 unsigned long flags = 0;
4026 int poll_next;
4027
6912ccd5
AL
4028 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4029
bb5cb290
AL
4030 /* Make sure ata_qc_issue_prot() does not throw things
4031 * like DMA polling into the workqueue. Notice that
4032 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4033 */
c234fb00 4034 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4035
e2cec771 4036fsm_start:
999bb6f4
AL
4037 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4038 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4039
e2cec771
AL
4040 switch (ap->hsm_task_state) {
4041 case HSM_ST_FIRST:
bb5cb290
AL
4042 /* Send first data block or PACKET CDB */
4043
4044 /* If polling, we will stay in the work queue after
4045 * sending the data. Otherwise, interrupt handler
4046 * takes over after sending the data.
4047 */
4048 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4049
e2cec771 4050 /* check device status */
3655d1d3
AL
4051 if (unlikely((status & ATA_DRQ) == 0)) {
4052 /* handle BSY=0, DRQ=0 as error */
4053 if (likely(status & (ATA_ERR | ATA_DF)))
4054 /* device stops HSM for abort/error */
4055 qc->err_mask |= AC_ERR_DEV;
4056 else
4057 /* HSM violation. Let EH handle this */
4058 qc->err_mask |= AC_ERR_HSM;
4059
14be71f4 4060 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4061 goto fsm_start;
1da177e4
LT
4062 }
4063
71601958
AL
4064 /* Device should not ask for data transfer (DRQ=1)
4065 * when it finds something wrong.
eee6c32f
AL
4066 * We ignore DRQ here and stop the HSM by
4067 * changing hsm_task_state to HSM_ST_ERR and
4068 * let the EH abort the command or reset the device.
71601958
AL
4069 */
4070 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4071 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4072 ap->id, status);
3655d1d3 4073 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4074 ap->hsm_task_state = HSM_ST_ERR;
4075 goto fsm_start;
71601958 4076 }
1da177e4 4077
bb5cb290
AL
4078 /* Send the CDB (atapi) or the first data block (ata pio out).
4079 * During the state transition, interrupt handler shouldn't
4080 * be invoked before the data transfer is complete and
4081 * hsm_task_state is changed. Hence, the following locking.
4082 */
4083 if (in_wq)
ba6a1308 4084 spin_lock_irqsave(ap->lock, flags);
1da177e4 4085
bb5cb290
AL
4086 if (qc->tf.protocol == ATA_PROT_PIO) {
4087 /* PIO data out protocol.
4088 * send first data block.
4089 */
0565c26d 4090
bb5cb290
AL
4091 /* ata_pio_sectors() might change the state
4092 * to HSM_ST_LAST. so, the state is changed here
4093 * before ata_pio_sectors().
4094 */
4095 ap->hsm_task_state = HSM_ST;
4096 ata_pio_sectors(qc);
4097 ata_altstatus(ap); /* flush */
4098 } else
4099 /* send CDB */
4100 atapi_send_cdb(ap, qc);
4101
4102 if (in_wq)
ba6a1308 4103 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4104
4105 /* if polling, ata_pio_task() handles the rest.
4106 * otherwise, interrupt handler takes over from here.
4107 */
e2cec771 4108 break;
1c848984 4109
e2cec771
AL
4110 case HSM_ST:
4111 /* complete command or read/write the data register */
4112 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4113 /* ATAPI PIO protocol */
4114 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4115 /* No more data to transfer or device error.
4116 * Device error will be tagged in HSM_ST_LAST.
4117 */
e2cec771
AL
4118 ap->hsm_task_state = HSM_ST_LAST;
4119 goto fsm_start;
4120 }
1da177e4 4121
71601958
AL
4122 /* Device should not ask for data transfer (DRQ=1)
4123 * when it finds something wrong.
eee6c32f
AL
4124 * We ignore DRQ here and stop the HSM by
4125 * changing hsm_task_state to HSM_ST_ERR and
4126 * let the EH abort the command or reset the device.
71601958
AL
4127 */
4128 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4129 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4130 ap->id, status);
3655d1d3 4131 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4132 ap->hsm_task_state = HSM_ST_ERR;
4133 goto fsm_start;
71601958 4134 }
1da177e4 4135
e2cec771 4136 atapi_pio_bytes(qc);
7fb6ec28 4137
e2cec771
AL
4138 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4139 /* bad ireason reported by device */
4140 goto fsm_start;
1da177e4 4141
e2cec771
AL
4142 } else {
4143 /* ATA PIO protocol */
4144 if (unlikely((status & ATA_DRQ) == 0)) {
4145 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4146 if (likely(status & (ATA_ERR | ATA_DF)))
4147 /* device stops HSM for abort/error */
4148 qc->err_mask |= AC_ERR_DEV;
4149 else
4150 /* HSM violation. Let EH handle this */
4151 qc->err_mask |= AC_ERR_HSM;
4152
e2cec771
AL
4153 ap->hsm_task_state = HSM_ST_ERR;
4154 goto fsm_start;
4155 }
1da177e4 4156
eee6c32f
AL
4157 /* For PIO reads, some devices may ask for
4158 * data transfer (DRQ=1) alone with ERR=1.
4159 * We respect DRQ here and transfer one
4160 * block of junk data before changing the
4161 * hsm_task_state to HSM_ST_ERR.
4162 *
4163 * For PIO writes, ERR=1 DRQ=1 doesn't make
4164 * sense since the data block has been
4165 * transferred to the device.
71601958
AL
4166 */
4167 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4168 /* data might be corrputed */
4169 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4170
4171 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4172 ata_pio_sectors(qc);
4173 ata_altstatus(ap);
4174 status = ata_wait_idle(ap);
4175 }
4176
3655d1d3
AL
4177 if (status & (ATA_BUSY | ATA_DRQ))
4178 qc->err_mask |= AC_ERR_HSM;
4179
eee6c32f
AL
4180 /* ata_pio_sectors() might change the
4181 * state to HSM_ST_LAST. so, the state
4182 * is changed after ata_pio_sectors().
4183 */
4184 ap->hsm_task_state = HSM_ST_ERR;
4185 goto fsm_start;
71601958
AL
4186 }
4187
e2cec771
AL
4188 ata_pio_sectors(qc);
4189
4190 if (ap->hsm_task_state == HSM_ST_LAST &&
4191 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4192 /* all data read */
4193 ata_altstatus(ap);
52a32205 4194 status = ata_wait_idle(ap);
e2cec771
AL
4195 goto fsm_start;
4196 }
4197 }
4198
4199 ata_altstatus(ap); /* flush */
bb5cb290 4200 poll_next = 1;
1da177e4
LT
4201 break;
4202
14be71f4 4203 case HSM_ST_LAST:
6912ccd5
AL
4204 if (unlikely(!ata_ok(status))) {
4205 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4206 ap->hsm_task_state = HSM_ST_ERR;
4207 goto fsm_start;
4208 }
4209
4210 /* no more data to transfer */
4332a771
AL
4211 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4212 ap->id, qc->dev->devno, status);
e2cec771 4213
6912ccd5
AL
4214 WARN_ON(qc->err_mask);
4215
e2cec771 4216 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4217
e2cec771 4218 /* complete taskfile transaction */
c17ea20d 4219 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4220
4221 poll_next = 0;
1da177e4
LT
4222 break;
4223
14be71f4 4224 case HSM_ST_ERR:
e2cec771
AL
4225 /* make sure qc->err_mask is available to
4226 * know what's wrong and recover
4227 */
4228 WARN_ON(qc->err_mask == 0);
4229
4230 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4231
999bb6f4 4232 /* complete taskfile transaction */
c17ea20d 4233 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4234
4235 poll_next = 0;
e2cec771
AL
4236 break;
4237 default:
bb5cb290 4238 poll_next = 0;
6912ccd5 4239 BUG();
1da177e4
LT
4240 }
4241
bb5cb290 4242 return poll_next;
1da177e4
LT
4243}
4244
1da177e4 4245static void ata_pio_task(void *_data)
8061f5f0 4246{
c91af2c8
TH
4247 struct ata_queued_cmd *qc = _data;
4248 struct ata_port *ap = qc->ap;
8061f5f0 4249 u8 status;
a1af3734 4250 int poll_next;
8061f5f0 4251
7fb6ec28 4252fsm_start:
a1af3734 4253 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4254
a1af3734
AL
4255 /*
4256 * This is purely heuristic. This is a fast path.
4257 * Sometimes when we enter, BSY will be cleared in
4258 * a chk-status or two. If not, the drive is probably seeking
4259 * or something. Snooze for a couple msecs, then
4260 * chk-status again. If still busy, queue delayed work.
4261 */
4262 status = ata_busy_wait(ap, ATA_BUSY, 5);
4263 if (status & ATA_BUSY) {
4264 msleep(2);
4265 status = ata_busy_wait(ap, ATA_BUSY, 10);
4266 if (status & ATA_BUSY) {
31ce6dae 4267 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4268 return;
4269 }
8061f5f0
TH
4270 }
4271
a1af3734
AL
4272 /* move the HSM */
4273 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4274
a1af3734
AL
4275 /* another command or interrupt handler
4276 * may be running at this point.
4277 */
4278 if (poll_next)
7fb6ec28 4279 goto fsm_start;
8061f5f0
TH
4280}
4281
1da177e4
LT
4282/**
4283 * ata_qc_new - Request an available ATA command, for queueing
4284 * @ap: Port associated with device @dev
4285 * @dev: Device from whom we request an available command structure
4286 *
4287 * LOCKING:
0cba632b 4288 * None.
1da177e4
LT
4289 */
4290
4291static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4292{
4293 struct ata_queued_cmd *qc = NULL;
4294 unsigned int i;
4295
e3180499
TH
4296 /* no command while frozen */
4297 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4298 return NULL;
4299
2ab7db1f
TH
4300 /* the last tag is reserved for internal command. */
4301 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4302 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4303 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4304 break;
4305 }
4306
4307 if (qc)
4308 qc->tag = i;
4309
4310 return qc;
4311}
4312
4313/**
4314 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4315 * @dev: Device from whom we request an available command structure
4316 *
4317 * LOCKING:
0cba632b 4318 * None.
1da177e4
LT
4319 */
4320
3373efd8 4321struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4322{
3373efd8 4323 struct ata_port *ap = dev->ap;
1da177e4
LT
4324 struct ata_queued_cmd *qc;
4325
4326 qc = ata_qc_new(ap);
4327 if (qc) {
1da177e4
LT
4328 qc->scsicmd = NULL;
4329 qc->ap = ap;
4330 qc->dev = dev;
1da177e4 4331
2c13b7ce 4332 ata_qc_reinit(qc);
1da177e4
LT
4333 }
4334
4335 return qc;
4336}
4337
1da177e4
LT
4338/**
4339 * ata_qc_free - free unused ata_queued_cmd
4340 * @qc: Command to complete
4341 *
4342 * Designed to free unused ata_queued_cmd object
4343 * in case something prevents using it.
4344 *
4345 * LOCKING:
0cba632b 4346 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4347 */
4348void ata_qc_free(struct ata_queued_cmd *qc)
4349{
4ba946e9
TH
4350 struct ata_port *ap = qc->ap;
4351 unsigned int tag;
4352
a4631474 4353 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4354
4ba946e9
TH
4355 qc->flags = 0;
4356 tag = qc->tag;
4357 if (likely(ata_tag_valid(tag))) {
4ba946e9 4358 qc->tag = ATA_TAG_POISON;
6cec4a39 4359 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4360 }
1da177e4
LT
4361}
4362
76014427 4363void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4364{
dedaf2b0
TH
4365 struct ata_port *ap = qc->ap;
4366
a4631474
TH
4367 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4368 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4369
4370 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4371 ata_sg_clean(qc);
4372
7401abf2 4373 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4374 if (qc->tf.protocol == ATA_PROT_NCQ)
4375 ap->sactive &= ~(1 << qc->tag);
4376 else
4377 ap->active_tag = ATA_TAG_POISON;
7401abf2 4378
3f3791d3
AL
4379 /* atapi: mark qc as inactive to prevent the interrupt handler
4380 * from completing the command twice later, before the error handler
4381 * is called. (when rc != 0 and atapi request sense is needed)
4382 */
4383 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4384 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4385
1da177e4 4386 /* call completion callback */
77853bf2 4387 qc->complete_fn(qc);
1da177e4
LT
4388}
4389
f686bcb8
TH
4390/**
4391 * ata_qc_complete - Complete an active ATA command
4392 * @qc: Command to complete
4393 * @err_mask: ATA Status register contents
4394 *
4395 * Indicate to the mid and upper layers that an ATA
4396 * command has completed, with either an ok or not-ok status.
4397 *
4398 * LOCKING:
4399 * spin_lock_irqsave(host_set lock)
4400 */
4401void ata_qc_complete(struct ata_queued_cmd *qc)
4402{
4403 struct ata_port *ap = qc->ap;
4404
4405 /* XXX: New EH and old EH use different mechanisms to
4406 * synchronize EH with regular execution path.
4407 *
4408 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4409 * Normal execution path is responsible for not accessing a
4410 * failed qc. libata core enforces the rule by returning NULL
4411 * from ata_qc_from_tag() for failed qcs.
4412 *
4413 * Old EH depends on ata_qc_complete() nullifying completion
4414 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4415 * not synchronize with interrupt handler. Only PIO task is
4416 * taken care of.
4417 */
4418 if (ap->ops->error_handler) {
4419 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4420
4421 if (unlikely(qc->err_mask))
4422 qc->flags |= ATA_QCFLAG_FAILED;
4423
4424 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4425 if (!ata_tag_internal(qc->tag)) {
4426 /* always fill result TF for failed qc */
4427 ap->ops->tf_read(ap, &qc->result_tf);
4428 ata_qc_schedule_eh(qc);
4429 return;
4430 }
4431 }
4432
4433 /* read result TF if requested */
4434 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4435 ap->ops->tf_read(ap, &qc->result_tf);
4436
4437 __ata_qc_complete(qc);
4438 } else {
4439 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4440 return;
4441
4442 /* read result TF if failed or requested */
4443 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4444 ap->ops->tf_read(ap, &qc->result_tf);
4445
4446 __ata_qc_complete(qc);
4447 }
4448}
4449
dedaf2b0
TH
4450/**
4451 * ata_qc_complete_multiple - Complete multiple qcs successfully
4452 * @ap: port in question
4453 * @qc_active: new qc_active mask
4454 * @finish_qc: LLDD callback invoked before completing a qc
4455 *
4456 * Complete in-flight commands. This functions is meant to be
4457 * called from low-level driver's interrupt routine to complete
4458 * requests normally. ap->qc_active and @qc_active is compared
4459 * and commands are completed accordingly.
4460 *
4461 * LOCKING:
4462 * spin_lock_irqsave(host_set lock)
4463 *
4464 * RETURNS:
4465 * Number of completed commands on success, -errno otherwise.
4466 */
4467int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4468 void (*finish_qc)(struct ata_queued_cmd *))
4469{
4470 int nr_done = 0;
4471 u32 done_mask;
4472 int i;
4473
4474 done_mask = ap->qc_active ^ qc_active;
4475
4476 if (unlikely(done_mask & qc_active)) {
4477 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4478 "(%08x->%08x)\n", ap->qc_active, qc_active);
4479 return -EINVAL;
4480 }
4481
4482 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4483 struct ata_queued_cmd *qc;
4484
4485 if (!(done_mask & (1 << i)))
4486 continue;
4487
4488 if ((qc = ata_qc_from_tag(ap, i))) {
4489 if (finish_qc)
4490 finish_qc(qc);
4491 ata_qc_complete(qc);
4492 nr_done++;
4493 }
4494 }
4495
4496 return nr_done;
4497}
4498
1da177e4
LT
4499static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4500{
4501 struct ata_port *ap = qc->ap;
4502
4503 switch (qc->tf.protocol) {
3dc1d881 4504 case ATA_PROT_NCQ:
1da177e4
LT
4505 case ATA_PROT_DMA:
4506 case ATA_PROT_ATAPI_DMA:
4507 return 1;
4508
4509 case ATA_PROT_ATAPI:
4510 case ATA_PROT_PIO:
1da177e4
LT
4511 if (ap->flags & ATA_FLAG_PIO_DMA)
4512 return 1;
4513
4514 /* fall through */
4515
4516 default:
4517 return 0;
4518 }
4519
4520 /* never reached */
4521}
4522
4523/**
4524 * ata_qc_issue - issue taskfile to device
4525 * @qc: command to issue to device
4526 *
4527 * Prepare an ATA command to submission to device.
4528 * This includes mapping the data into a DMA-able
4529 * area, filling in the S/G table, and finally
4530 * writing the taskfile to hardware, starting the command.
4531 *
4532 * LOCKING:
4533 * spin_lock_irqsave(host_set lock)
1da177e4 4534 */
8e0e694a 4535void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4536{
4537 struct ata_port *ap = qc->ap;
4538
dedaf2b0
TH
4539 /* Make sure only one non-NCQ command is outstanding. The
4540 * check is skipped for old EH because it reuses active qc to
4541 * request ATAPI sense.
4542 */
4543 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4544
4545 if (qc->tf.protocol == ATA_PROT_NCQ) {
4546 WARN_ON(ap->sactive & (1 << qc->tag));
4547 ap->sactive |= 1 << qc->tag;
4548 } else {
4549 WARN_ON(ap->sactive);
4550 ap->active_tag = qc->tag;
4551 }
4552
e4a70e76 4553 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4554 ap->qc_active |= 1 << qc->tag;
e4a70e76 4555
1da177e4
LT
4556 if (ata_should_dma_map(qc)) {
4557 if (qc->flags & ATA_QCFLAG_SG) {
4558 if (ata_sg_setup(qc))
8e436af9 4559 goto sg_err;
1da177e4
LT
4560 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4561 if (ata_sg_setup_one(qc))
8e436af9 4562 goto sg_err;
1da177e4
LT
4563 }
4564 } else {
4565 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4566 }
4567
4568 ap->ops->qc_prep(qc);
4569
8e0e694a
TH
4570 qc->err_mask |= ap->ops->qc_issue(qc);
4571 if (unlikely(qc->err_mask))
4572 goto err;
4573 return;
1da177e4 4574
8e436af9
TH
4575sg_err:
4576 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4577 qc->err_mask |= AC_ERR_SYSTEM;
4578err:
4579 ata_qc_complete(qc);
1da177e4
LT
4580}
4581
4582/**
4583 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4584 * @qc: command to issue to device
4585 *
4586 * Using various libata functions and hooks, this function
4587 * starts an ATA command. ATA commands are grouped into
4588 * classes called "protocols", and issuing each type of protocol
4589 * is slightly different.
4590 *
0baab86b
EF
4591 * May be used as the qc_issue() entry in ata_port_operations.
4592 *
1da177e4
LT
4593 * LOCKING:
4594 * spin_lock_irqsave(host_set lock)
4595 *
4596 * RETURNS:
9a3d9eb0 4597 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4598 */
4599
9a3d9eb0 4600unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4601{
4602 struct ata_port *ap = qc->ap;
4603
e50362ec
AL
4604 /* Use polling pio if the LLD doesn't handle
4605 * interrupt driven pio and atapi CDB interrupt.
4606 */
4607 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4608 switch (qc->tf.protocol) {
4609 case ATA_PROT_PIO:
4610 case ATA_PROT_ATAPI:
4611 case ATA_PROT_ATAPI_NODATA:
4612 qc->tf.flags |= ATA_TFLAG_POLLING;
4613 break;
4614 case ATA_PROT_ATAPI_DMA:
4615 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4616 /* see ata_dma_blacklisted() */
e50362ec
AL
4617 BUG();
4618 break;
4619 default:
4620 break;
4621 }
4622 }
4623
312f7da2 4624 /* select the device */
1da177e4
LT
4625 ata_dev_select(ap, qc->dev->devno, 1, 0);
4626
312f7da2 4627 /* start the command */
1da177e4
LT
4628 switch (qc->tf.protocol) {
4629 case ATA_PROT_NODATA:
312f7da2
AL
4630 if (qc->tf.flags & ATA_TFLAG_POLLING)
4631 ata_qc_set_polling(qc);
4632
e5338254 4633 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4634 ap->hsm_task_state = HSM_ST_LAST;
4635
4636 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4637 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4638
1da177e4
LT
4639 break;
4640
4641 case ATA_PROT_DMA:
587005de 4642 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4643
1da177e4
LT
4644 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4645 ap->ops->bmdma_setup(qc); /* set up bmdma */
4646 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4647 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4648 break;
4649
312f7da2
AL
4650 case ATA_PROT_PIO:
4651 if (qc->tf.flags & ATA_TFLAG_POLLING)
4652 ata_qc_set_polling(qc);
1da177e4 4653
e5338254 4654 ata_tf_to_host(ap, &qc->tf);
312f7da2 4655
54f00389
AL
4656 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4657 /* PIO data out protocol */
4658 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4659 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4660
4661 /* always send first data block using
e27486db 4662 * the ata_pio_task() codepath.
54f00389 4663 */
312f7da2 4664 } else {
54f00389
AL
4665 /* PIO data in protocol */
4666 ap->hsm_task_state = HSM_ST;
4667
4668 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4669 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4670
4671 /* if polling, ata_pio_task() handles the rest.
4672 * otherwise, interrupt handler takes over from here.
4673 */
312f7da2
AL
4674 }
4675
1da177e4
LT
4676 break;
4677
1da177e4 4678 case ATA_PROT_ATAPI:
1da177e4 4679 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4680 if (qc->tf.flags & ATA_TFLAG_POLLING)
4681 ata_qc_set_polling(qc);
4682
e5338254 4683 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4684
312f7da2
AL
4685 ap->hsm_task_state = HSM_ST_FIRST;
4686
4687 /* send cdb by polling if no cdb interrupt */
4688 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4689 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4690 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4691 break;
4692
4693 case ATA_PROT_ATAPI_DMA:
587005de 4694 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4695
1da177e4
LT
4696 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4697 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4698 ap->hsm_task_state = HSM_ST_FIRST;
4699
4700 /* send cdb by polling if no cdb interrupt */
4701 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4702 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4703 break;
4704
4705 default:
4706 WARN_ON(1);
9a3d9eb0 4707 return AC_ERR_SYSTEM;
1da177e4
LT
4708 }
4709
4710 return 0;
4711}
4712
1da177e4
LT
4713/**
4714 * ata_host_intr - Handle host interrupt for given (port, task)
4715 * @ap: Port on which interrupt arrived (possibly...)
4716 * @qc: Taskfile currently active in engine
4717 *
4718 * Handle host interrupt for given queued command. Currently,
4719 * only DMA interrupts are handled. All other commands are
4720 * handled via polling with interrupts disabled (nIEN bit).
4721 *
4722 * LOCKING:
4723 * spin_lock_irqsave(host_set lock)
4724 *
4725 * RETURNS:
4726 * One if interrupt was handled, zero if not (shared irq).
4727 */
4728
4729inline unsigned int ata_host_intr (struct ata_port *ap,
4730 struct ata_queued_cmd *qc)
4731{
312f7da2 4732 u8 status, host_stat = 0;
1da177e4 4733
312f7da2
AL
4734 VPRINTK("ata%u: protocol %d task_state %d\n",
4735 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4736
312f7da2
AL
4737 /* Check whether we are expecting interrupt in this state */
4738 switch (ap->hsm_task_state) {
4739 case HSM_ST_FIRST:
6912ccd5
AL
4740 /* Some pre-ATAPI-4 devices assert INTRQ
4741 * at this state when ready to receive CDB.
4742 */
1da177e4 4743
312f7da2
AL
4744 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4745 * The flag was turned on only for atapi devices.
4746 * No need to check is_atapi_taskfile(&qc->tf) again.
4747 */
4748 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4749 goto idle_irq;
1da177e4 4750 break;
312f7da2
AL
4751 case HSM_ST_LAST:
4752 if (qc->tf.protocol == ATA_PROT_DMA ||
4753 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4754 /* check status of DMA engine */
4755 host_stat = ap->ops->bmdma_status(ap);
4756 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4757
4758 /* if it's not our irq... */
4759 if (!(host_stat & ATA_DMA_INTR))
4760 goto idle_irq;
4761
4762 /* before we do anything else, clear DMA-Start bit */
4763 ap->ops->bmdma_stop(qc);
a4f16610
AL
4764
4765 if (unlikely(host_stat & ATA_DMA_ERR)) {
4766 /* error when transfering data to/from memory */
4767 qc->err_mask |= AC_ERR_HOST_BUS;
4768 ap->hsm_task_state = HSM_ST_ERR;
4769 }
312f7da2
AL
4770 }
4771 break;
4772 case HSM_ST:
4773 break;
1da177e4
LT
4774 default:
4775 goto idle_irq;
4776 }
4777
312f7da2
AL
4778 /* check altstatus */
4779 status = ata_altstatus(ap);
4780 if (status & ATA_BUSY)
4781 goto idle_irq;
1da177e4 4782
312f7da2
AL
4783 /* check main status, clearing INTRQ */
4784 status = ata_chk_status(ap);
4785 if (unlikely(status & ATA_BUSY))
4786 goto idle_irq;
1da177e4 4787
312f7da2
AL
4788 /* ack bmdma irq events */
4789 ap->ops->irq_clear(ap);
1da177e4 4790
bb5cb290 4791 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4792 return 1; /* irq handled */
4793
4794idle_irq:
4795 ap->stats.idle_irq++;
4796
4797#ifdef ATA_IRQ_TRAP
4798 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4799 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4800 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4801 return 1;
1da177e4
LT
4802 }
4803#endif
4804 return 0; /* irq not handled */
4805}
4806
4807/**
4808 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4809 * @irq: irq line (unused)
4810 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4811 * @regs: unused
4812 *
0cba632b
JG
4813 * Default interrupt handler for PCI IDE devices. Calls
4814 * ata_host_intr() for each port that is not disabled.
4815 *
1da177e4 4816 * LOCKING:
0cba632b 4817 * Obtains host_set lock during operation.
1da177e4
LT
4818 *
4819 * RETURNS:
0cba632b 4820 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4821 */
4822
4823irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4824{
4825 struct ata_host_set *host_set = dev_instance;
4826 unsigned int i;
4827 unsigned int handled = 0;
4828 unsigned long flags;
4829
4830 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4831 spin_lock_irqsave(&host_set->lock, flags);
4832
4833 for (i = 0; i < host_set->n_ports; i++) {
4834 struct ata_port *ap;
4835
4836 ap = host_set->ports[i];
c1389503 4837 if (ap &&
029f5468 4838 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4839 struct ata_queued_cmd *qc;
4840
4841 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4842 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4843 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4844 handled |= ata_host_intr(ap, qc);
4845 }
4846 }
4847
4848 spin_unlock_irqrestore(&host_set->lock, flags);
4849
4850 return IRQ_RETVAL(handled);
4851}
4852
34bf2170
TH
4853/**
4854 * sata_scr_valid - test whether SCRs are accessible
4855 * @ap: ATA port to test SCR accessibility for
4856 *
4857 * Test whether SCRs are accessible for @ap.
4858 *
4859 * LOCKING:
4860 * None.
4861 *
4862 * RETURNS:
4863 * 1 if SCRs are accessible, 0 otherwise.
4864 */
4865int sata_scr_valid(struct ata_port *ap)
4866{
4867 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4868}
4869
4870/**
4871 * sata_scr_read - read SCR register of the specified port
4872 * @ap: ATA port to read SCR for
4873 * @reg: SCR to read
4874 * @val: Place to store read value
4875 *
4876 * Read SCR register @reg of @ap into *@val. This function is
4877 * guaranteed to succeed if the cable type of the port is SATA
4878 * and the port implements ->scr_read.
4879 *
4880 * LOCKING:
4881 * None.
4882 *
4883 * RETURNS:
4884 * 0 on success, negative errno on failure.
4885 */
4886int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4887{
4888 if (sata_scr_valid(ap)) {
4889 *val = ap->ops->scr_read(ap, reg);
4890 return 0;
4891 }
4892 return -EOPNOTSUPP;
4893}
4894
4895/**
4896 * sata_scr_write - write SCR register of the specified port
4897 * @ap: ATA port to write SCR for
4898 * @reg: SCR to write
4899 * @val: value to write
4900 *
4901 * Write @val to SCR register @reg of @ap. This function is
4902 * guaranteed to succeed if the cable type of the port is SATA
4903 * and the port implements ->scr_read.
4904 *
4905 * LOCKING:
4906 * None.
4907 *
4908 * RETURNS:
4909 * 0 on success, negative errno on failure.
4910 */
4911int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4912{
4913 if (sata_scr_valid(ap)) {
4914 ap->ops->scr_write(ap, reg, val);
4915 return 0;
4916 }
4917 return -EOPNOTSUPP;
4918}
4919
4920/**
4921 * sata_scr_write_flush - write SCR register of the specified port and flush
4922 * @ap: ATA port to write SCR for
4923 * @reg: SCR to write
4924 * @val: value to write
4925 *
4926 * This function is identical to sata_scr_write() except that this
4927 * function performs flush after writing to the register.
4928 *
4929 * LOCKING:
4930 * None.
4931 *
4932 * RETURNS:
4933 * 0 on success, negative errno on failure.
4934 */
4935int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4936{
4937 if (sata_scr_valid(ap)) {
4938 ap->ops->scr_write(ap, reg, val);
4939 ap->ops->scr_read(ap, reg);
4940 return 0;
4941 }
4942 return -EOPNOTSUPP;
4943}
4944
4945/**
4946 * ata_port_online - test whether the given port is online
4947 * @ap: ATA port to test
4948 *
4949 * Test whether @ap is online. Note that this function returns 0
4950 * if online status of @ap cannot be obtained, so
4951 * ata_port_online(ap) != !ata_port_offline(ap).
4952 *
4953 * LOCKING:
4954 * None.
4955 *
4956 * RETURNS:
4957 * 1 if the port online status is available and online.
4958 */
4959int ata_port_online(struct ata_port *ap)
4960{
4961 u32 sstatus;
4962
4963 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4964 return 1;
4965 return 0;
4966}
4967
4968/**
4969 * ata_port_offline - test whether the given port is offline
4970 * @ap: ATA port to test
4971 *
4972 * Test whether @ap is offline. Note that this function returns
4973 * 0 if offline status of @ap cannot be obtained, so
4974 * ata_port_online(ap) != !ata_port_offline(ap).
4975 *
4976 * LOCKING:
4977 * None.
4978 *
4979 * RETURNS:
4980 * 1 if the port offline status is available and offline.
4981 */
4982int ata_port_offline(struct ata_port *ap)
4983{
4984 u32 sstatus;
4985
4986 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4987 return 1;
4988 return 0;
4989}
0baab86b 4990
77b08fb5 4991int ata_flush_cache(struct ata_device *dev)
9b847548 4992{
977e6b9f 4993 unsigned int err_mask;
9b847548
JA
4994 u8 cmd;
4995
4996 if (!ata_try_flush_cache(dev))
4997 return 0;
4998
4999 if (ata_id_has_flush_ext(dev->id))
5000 cmd = ATA_CMD_FLUSH_EXT;
5001 else
5002 cmd = ATA_CMD_FLUSH;
5003
977e6b9f
TH
5004 err_mask = ata_do_simple_cmd(dev, cmd);
5005 if (err_mask) {
5006 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5007 return -EIO;
5008 }
5009
5010 return 0;
9b847548
JA
5011}
5012
3373efd8 5013static int ata_standby_drive(struct ata_device *dev)
9b847548 5014{
977e6b9f
TH
5015 unsigned int err_mask;
5016
5017 err_mask = ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
5018 if (err_mask) {
5019 ata_dev_printk(dev, KERN_ERR, "failed to standby drive "
5020 "(err_mask=0x%x)\n", err_mask);
5021 return -EIO;
5022 }
5023
5024 return 0;
9b847548
JA
5025}
5026
3373efd8 5027static int ata_start_drive(struct ata_device *dev)
9b847548 5028{
977e6b9f
TH
5029 unsigned int err_mask;
5030
5031 err_mask = ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5032 if (err_mask) {
5033 ata_dev_printk(dev, KERN_ERR, "failed to start drive "
5034 "(err_mask=0x%x)\n", err_mask);
5035 return -EIO;
5036 }
5037
5038 return 0;
9b847548
JA
5039}
5040
5041/**
5042 * ata_device_resume - wakeup a previously suspended devices
c893a3ae 5043 * @dev: the device to resume
9b847548
JA
5044 *
5045 * Kick the drive back into action, by sending it an idle immediate
5046 * command and making sure its transfer mode matches between drive
5047 * and host.
5048 *
5049 */
3373efd8 5050int ata_device_resume(struct ata_device *dev)
9b847548 5051{
3373efd8
TH
5052 struct ata_port *ap = dev->ap;
5053
9b847548 5054 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 5055 struct ata_device *failed_dev;
e42d7be2 5056
1cca0ebb 5057 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
0737ac89 5058 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
e42d7be2 5059
9b847548 5060 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9 5061 while (ata_set_mode(ap, &failed_dev))
3373efd8 5062 ata_dev_disable(failed_dev);
9b847548 5063 }
e1211e3f 5064 if (!ata_dev_enabled(dev))
9b847548
JA
5065 return 0;
5066 if (dev->class == ATA_DEV_ATA)
3373efd8 5067 ata_start_drive(dev);
9b847548
JA
5068
5069 return 0;
5070}
5071
5072/**
5073 * ata_device_suspend - prepare a device for suspend
c893a3ae 5074 * @dev: the device to suspend
e2a7f77a 5075 * @state: target power management state
9b847548
JA
5076 *
5077 * Flush the cache on the drive, if appropriate, then issue a
5078 * standbynow command.
9b847548 5079 */
3373efd8 5080int ata_device_suspend(struct ata_device *dev, pm_message_t state)
9b847548 5081{
3373efd8
TH
5082 struct ata_port *ap = dev->ap;
5083
e1211e3f 5084 if (!ata_dev_enabled(dev))
9b847548
JA
5085 return 0;
5086 if (dev->class == ATA_DEV_ATA)
3373efd8 5087 ata_flush_cache(dev);
9b847548 5088
082776e4 5089 if (state.event != PM_EVENT_FREEZE)
3373efd8 5090 ata_standby_drive(dev);
9b847548
JA
5091 ap->flags |= ATA_FLAG_SUSPENDED;
5092 return 0;
5093}
5094
c893a3ae
RD
5095/**
5096 * ata_port_start - Set port up for dma.
5097 * @ap: Port to initialize
5098 *
5099 * Called just after data structures for each port are
5100 * initialized. Allocates space for PRD table.
5101 *
5102 * May be used as the port_start() entry in ata_port_operations.
5103 *
5104 * LOCKING:
5105 * Inherited from caller.
5106 */
5107
1da177e4
LT
5108int ata_port_start (struct ata_port *ap)
5109{
2f1f610b 5110 struct device *dev = ap->dev;
6037d6bb 5111 int rc;
1da177e4
LT
5112
5113 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5114 if (!ap->prd)
5115 return -ENOMEM;
5116
6037d6bb
JG
5117 rc = ata_pad_alloc(ap, dev);
5118 if (rc) {
cedc9a47 5119 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5120 return rc;
cedc9a47
JG
5121 }
5122
1da177e4
LT
5123 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5124
5125 return 0;
5126}
5127
0baab86b
EF
5128
5129/**
5130 * ata_port_stop - Undo ata_port_start()
5131 * @ap: Port to shut down
5132 *
5133 * Frees the PRD table.
5134 *
5135 * May be used as the port_stop() entry in ata_port_operations.
5136 *
5137 * LOCKING:
6f0ef4fa 5138 * Inherited from caller.
0baab86b
EF
5139 */
5140
1da177e4
LT
5141void ata_port_stop (struct ata_port *ap)
5142{
2f1f610b 5143 struct device *dev = ap->dev;
1da177e4
LT
5144
5145 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5146 ata_pad_free(ap, dev);
1da177e4
LT
5147}
5148
aa8f0dc6
JG
5149void ata_host_stop (struct ata_host_set *host_set)
5150{
5151 if (host_set->mmio_base)
5152 iounmap(host_set->mmio_base);
5153}
5154
5155
1da177e4
LT
5156/**
5157 * ata_host_remove - Unregister SCSI host structure with upper layers
5158 * @ap: Port to unregister
5159 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5160 *
5161 * LOCKING:
6f0ef4fa 5162 * Inherited from caller.
1da177e4
LT
5163 */
5164
5165static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5166{
5167 struct Scsi_Host *sh = ap->host;
5168
5169 DPRINTK("ENTER\n");
5170
5171 if (do_unregister)
5172 scsi_remove_host(sh);
5173
5174 ap->ops->port_stop(ap);
5175}
5176
3ef3b43d
TH
5177/**
5178 * ata_dev_init - Initialize an ata_device structure
5179 * @dev: Device structure to initialize
5180 *
5181 * Initialize @dev in preparation for probing.
5182 *
5183 * LOCKING:
5184 * Inherited from caller.
5185 */
5186void ata_dev_init(struct ata_device *dev)
5187{
5188 struct ata_port *ap = dev->ap;
72fa4b74
TH
5189 unsigned long flags;
5190
5a04bf4b
TH
5191 /* SATA spd limit is bound to the first device */
5192 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5193
72fa4b74
TH
5194 /* High bits of dev->flags are used to record warm plug
5195 * requests which occur asynchronously. Synchronize using
5196 * host_set lock.
5197 */
ba6a1308 5198 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5199 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5200 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5201
72fa4b74
TH
5202 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5203 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5204 dev->pio_mask = UINT_MAX;
5205 dev->mwdma_mask = UINT_MAX;
5206 dev->udma_mask = UINT_MAX;
5207}
5208
1da177e4
LT
5209/**
5210 * ata_host_init - Initialize an ata_port structure
5211 * @ap: Structure to initialize
5212 * @host: associated SCSI mid-layer structure
5213 * @host_set: Collection of hosts to which @ap belongs
5214 * @ent: Probe information provided by low-level driver
5215 * @port_no: Port number associated with this ata_port
5216 *
0cba632b
JG
5217 * Initialize a new ata_port structure, and its associated
5218 * scsi_host.
5219 *
1da177e4 5220 * LOCKING:
0cba632b 5221 * Inherited from caller.
1da177e4 5222 */
1da177e4
LT
5223static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5224 struct ata_host_set *host_set,
057ace5e 5225 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5226{
5227 unsigned int i;
5228
5229 host->max_id = 16;
5230 host->max_lun = 1;
5231 host->max_channel = 1;
5232 host->unique_id = ata_unique_id++;
5233 host->max_cmd_len = 12;
12413197 5234
ba6a1308 5235 ap->lock = &host_set->lock;
198e0fed 5236 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
5237 ap->id = host->unique_id;
5238 ap->host = host;
5239 ap->ctl = ATA_DEVCTL_OBS;
5240 ap->host_set = host_set;
2f1f610b 5241 ap->dev = ent->dev;
1da177e4
LT
5242 ap->port_no = port_no;
5243 ap->hard_port_no =
5244 ent->legacy_mode ? ent->hard_port_no : port_no;
5245 ap->pio_mask = ent->pio_mask;
5246 ap->mwdma_mask = ent->mwdma_mask;
5247 ap->udma_mask = ent->udma_mask;
5248 ap->flags |= ent->host_flags;
5249 ap->ops = ent->port_ops;
5a04bf4b 5250 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5251 ap->active_tag = ATA_TAG_POISON;
5252 ap->last_ctl = 0xFF;
bd5d825c
BP
5253
5254#if defined(ATA_VERBOSE_DEBUG)
5255 /* turn on all debugging levels */
5256 ap->msg_enable = 0x00FF;
5257#elif defined(ATA_DEBUG)
5258 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5259#else
0dd4b21f 5260 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5261#endif
1da177e4 5262
86e45b6b 5263 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5264 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5265 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5266 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5267 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5268
838df628
TH
5269 /* set cable type */
5270 ap->cbl = ATA_CBL_NONE;
5271 if (ap->flags & ATA_FLAG_SATA)
5272 ap->cbl = ATA_CBL_SATA;
5273
acf356b1
TH
5274 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5275 struct ata_device *dev = &ap->device[i];
38d87234 5276 dev->ap = ap;
72fa4b74 5277 dev->devno = i;
3ef3b43d 5278 ata_dev_init(dev);
acf356b1 5279 }
1da177e4
LT
5280
5281#ifdef ATA_IRQ_TRAP
5282 ap->stats.unhandled_irq = 1;
5283 ap->stats.idle_irq = 1;
5284#endif
5285
5286 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5287}
5288
5289/**
5290 * ata_host_add - Attach low-level ATA driver to system
5291 * @ent: Information provided by low-level driver
5292 * @host_set: Collections of ports to which we add
5293 * @port_no: Port number associated with this host
5294 *
0cba632b
JG
5295 * Attach low-level ATA driver to system.
5296 *
1da177e4 5297 * LOCKING:
0cba632b 5298 * PCI/etc. bus probe sem.
1da177e4
LT
5299 *
5300 * RETURNS:
0cba632b 5301 * New ata_port on success, for NULL on error.
1da177e4
LT
5302 */
5303
057ace5e 5304static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
5305 struct ata_host_set *host_set,
5306 unsigned int port_no)
5307{
5308 struct Scsi_Host *host;
5309 struct ata_port *ap;
5310 int rc;
5311
5312 DPRINTK("ENTER\n");
aec5c3c1 5313
52783c5d 5314 if (!ent->port_ops->error_handler &&
aec5c3c1
TH
5315 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5316 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5317 port_no);
5318 return NULL;
5319 }
5320
1da177e4
LT
5321 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5322 if (!host)
5323 return NULL;
5324
30afc84c
TH
5325 host->transportt = &ata_scsi_transport_template;
5326
35bb94b1 5327 ap = ata_shost_to_port(host);
1da177e4
LT
5328
5329 ata_host_init(ap, host, host_set, ent, port_no);
5330
5331 rc = ap->ops->port_start(ap);
5332 if (rc)
5333 goto err_out;
5334
5335 return ap;
5336
5337err_out:
5338 scsi_host_put(host);
5339 return NULL;
5340}
5341
5342/**
0cba632b
JG
5343 * ata_device_add - Register hardware device with ATA and SCSI layers
5344 * @ent: Probe information describing hardware device to be registered
5345 *
5346 * This function processes the information provided in the probe
5347 * information struct @ent, allocates the necessary ATA and SCSI
5348 * host information structures, initializes them, and registers
5349 * everything with requisite kernel subsystems.
5350 *
5351 * This function requests irqs, probes the ATA bus, and probes
5352 * the SCSI bus.
1da177e4
LT
5353 *
5354 * LOCKING:
0cba632b 5355 * PCI/etc. bus probe sem.
1da177e4
LT
5356 *
5357 * RETURNS:
0cba632b 5358 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5359 */
057ace5e 5360int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
5361{
5362 unsigned int count = 0, i;
5363 struct device *dev = ent->dev;
5364 struct ata_host_set *host_set;
39b07ce6 5365 int rc;
1da177e4
LT
5366
5367 DPRINTK("ENTER\n");
5368 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5369 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5370 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5371 if (!host_set)
5372 return 0;
1da177e4
LT
5373 spin_lock_init(&host_set->lock);
5374
5375 host_set->dev = dev;
5376 host_set->n_ports = ent->n_ports;
5377 host_set->irq = ent->irq;
5378 host_set->mmio_base = ent->mmio_base;
5379 host_set->private_data = ent->private_data;
5380 host_set->ops = ent->port_ops;
5444a6f4 5381 host_set->flags = ent->host_set_flags;
1da177e4
LT
5382
5383 /* register each port bound to this device */
5384 for (i = 0; i < ent->n_ports; i++) {
5385 struct ata_port *ap;
5386 unsigned long xfer_mode_mask;
5387
5388 ap = ata_host_add(ent, host_set, i);
5389 if (!ap)
5390 goto err_out;
5391
5392 host_set->ports[i] = ap;
5393 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5394 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5395 (ap->pio_mask << ATA_SHIFT_PIO);
5396
5397 /* print per-port info to dmesg */
f15a1daf
TH
5398 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5399 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5400 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5401 ata_mode_string(xfer_mode_mask),
5402 ap->ioaddr.cmd_addr,
5403 ap->ioaddr.ctl_addr,
5404 ap->ioaddr.bmdma_addr,
5405 ent->irq);
1da177e4
LT
5406
5407 ata_chk_status(ap);
5408 host_set->ops->irq_clear(ap);
e3180499 5409 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5410 count++;
5411 }
5412
57f3bda8
RD
5413 if (!count)
5414 goto err_free_ret;
1da177e4
LT
5415
5416 /* obtain irq, that is shared between channels */
39b07ce6
JG
5417 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5418 DRV_NAME, host_set);
5419 if (rc) {
5420 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5421 ent->irq, rc);
1da177e4 5422 goto err_out;
39b07ce6 5423 }
1da177e4
LT
5424
5425 /* perform each probe synchronously */
5426 DPRINTK("probe begin\n");
5427 for (i = 0; i < count; i++) {
5428 struct ata_port *ap;
5a04bf4b 5429 u32 scontrol;
1da177e4
LT
5430 int rc;
5431
5432 ap = host_set->ports[i];
5433
5a04bf4b
TH
5434 /* init sata_spd_limit to the current value */
5435 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5436 int spd = (scontrol >> 4) & 0xf;
5437 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5438 }
5439 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5440
1da177e4
LT
5441 rc = scsi_add_host(ap->host, dev);
5442 if (rc) {
f15a1daf 5443 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5444 /* FIXME: do something useful here */
5445 /* FIXME: handle unconditional calls to
5446 * scsi_scan_host and ata_host_remove, below,
5447 * at the very least
5448 */
5449 }
3e706399 5450
52783c5d 5451 if (ap->ops->error_handler) {
3e706399
TH
5452 unsigned long flags;
5453
5454 ata_port_probe(ap);
5455
5456 /* kick EH for boot probing */
ba6a1308 5457 spin_lock_irqsave(ap->lock, flags);
3e706399
TH
5458
5459 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5460 ap->eh_info.action |= ATA_EH_SOFTRESET;
5461
5462 ap->flags |= ATA_FLAG_LOADING;
5463 ata_port_schedule_eh(ap);
5464
ba6a1308 5465 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5466
5467 /* wait for EH to finish */
5468 ata_port_wait_eh(ap);
5469 } else {
5470 DPRINTK("ata%u: bus probe begin\n", ap->id);
5471 rc = ata_bus_probe(ap);
5472 DPRINTK("ata%u: bus probe end\n", ap->id);
5473
5474 if (rc) {
5475 /* FIXME: do something useful here?
5476 * Current libata behavior will
5477 * tear down everything when
5478 * the module is removed
5479 * or the h/w is unplugged.
5480 */
5481 }
5482 }
1da177e4
LT
5483 }
5484
5485 /* probes are done, now scan each port's disk(s) */
c893a3ae 5486 DPRINTK("host probe begin\n");
1da177e4
LT
5487 for (i = 0; i < count; i++) {
5488 struct ata_port *ap = host_set->ports[i];
5489
644dd0cc 5490 ata_scsi_scan_host(ap);
1da177e4
LT
5491 }
5492
5493 dev_set_drvdata(dev, host_set);
5494
5495 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5496 return ent->n_ports; /* success */
5497
5498err_out:
5499 for (i = 0; i < count; i++) {
5500 ata_host_remove(host_set->ports[i], 1);
5501 scsi_host_put(host_set->ports[i]->host);
5502 }
57f3bda8 5503err_free_ret:
1da177e4
LT
5504 kfree(host_set);
5505 VPRINTK("EXIT, returning 0\n");
5506 return 0;
5507}
5508
720ba126
TH
5509/**
5510 * ata_port_detach - Detach ATA port in prepration of device removal
5511 * @ap: ATA port to be detached
5512 *
5513 * Detach all ATA devices and the associated SCSI devices of @ap;
5514 * then, remove the associated SCSI host. @ap is guaranteed to
5515 * be quiescent on return from this function.
5516 *
5517 * LOCKING:
5518 * Kernel thread context (may sleep).
5519 */
5520void ata_port_detach(struct ata_port *ap)
5521{
5522 unsigned long flags;
5523 int i;
5524
5525 if (!ap->ops->error_handler)
5526 return;
5527
5528 /* tell EH we're leaving & flush EH */
ba6a1308 5529 spin_lock_irqsave(ap->lock, flags);
720ba126 5530 ap->flags |= ATA_FLAG_UNLOADING;
ba6a1308 5531 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5532
5533 ata_port_wait_eh(ap);
5534
5535 /* EH is now guaranteed to see UNLOADING, so no new device
5536 * will be attached. Disable all existing devices.
5537 */
ba6a1308 5538 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5539
5540 for (i = 0; i < ATA_MAX_DEVICES; i++)
5541 ata_dev_disable(&ap->device[i]);
5542
ba6a1308 5543 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5544
5545 /* Final freeze & EH. All in-flight commands are aborted. EH
5546 * will be skipped and retrials will be terminated with bad
5547 * target.
5548 */
ba6a1308 5549 spin_lock_irqsave(ap->lock, flags);
720ba126 5550 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5551 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5552
5553 ata_port_wait_eh(ap);
5554
5555 /* Flush hotplug task. The sequence is similar to
5556 * ata_port_flush_task().
5557 */
5558 flush_workqueue(ata_aux_wq);
5559 cancel_delayed_work(&ap->hotplug_task);
5560 flush_workqueue(ata_aux_wq);
5561
5562 /* remove the associated SCSI host */
5563 scsi_remove_host(ap->host);
5564}
5565
17b14451
AC
5566/**
5567 * ata_host_set_remove - PCI layer callback for device removal
5568 * @host_set: ATA host set that was removed
5569 *
2e9edbf8 5570 * Unregister all objects associated with this host set. Free those
17b14451
AC
5571 * objects.
5572 *
5573 * LOCKING:
5574 * Inherited from calling layer (may sleep).
5575 */
5576
17b14451
AC
5577void ata_host_set_remove(struct ata_host_set *host_set)
5578{
17b14451
AC
5579 unsigned int i;
5580
720ba126
TH
5581 for (i = 0; i < host_set->n_ports; i++)
5582 ata_port_detach(host_set->ports[i]);
17b14451
AC
5583
5584 free_irq(host_set->irq, host_set);
5585
5586 for (i = 0; i < host_set->n_ports; i++) {
720ba126 5587 struct ata_port *ap = host_set->ports[i];
17b14451
AC
5588
5589 ata_scsi_release(ap->host);
5590
5591 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5592 struct ata_ioports *ioaddr = &ap->ioaddr;
5593
5594 if (ioaddr->cmd_addr == 0x1f0)
5595 release_region(0x1f0, 8);
5596 else if (ioaddr->cmd_addr == 0x170)
5597 release_region(0x170, 8);
5598 }
5599
5600 scsi_host_put(ap->host);
5601 }
5602
5603 if (host_set->ops->host_stop)
5604 host_set->ops->host_stop(host_set);
5605
5606 kfree(host_set);
5607}
5608
1da177e4
LT
5609/**
5610 * ata_scsi_release - SCSI layer callback hook for host unload
5611 * @host: libata host to be unloaded
5612 *
5613 * Performs all duties necessary to shut down a libata port...
5614 * Kill port kthread, disable port, and release resources.
5615 *
5616 * LOCKING:
5617 * Inherited from SCSI layer.
5618 *
5619 * RETURNS:
5620 * One.
5621 */
5622
5623int ata_scsi_release(struct Scsi_Host *host)
5624{
35bb94b1 5625 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5626
5627 DPRINTK("ENTER\n");
5628
5629 ap->ops->port_disable(ap);
5630 ata_host_remove(ap, 0);
5631
5632 DPRINTK("EXIT\n");
5633 return 1;
5634}
5635
5636/**
5637 * ata_std_ports - initialize ioaddr with standard port offsets.
5638 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5639 *
5640 * Utility function which initializes data_addr, error_addr,
5641 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5642 * device_addr, status_addr, and command_addr to standard offsets
5643 * relative to cmd_addr.
5644 *
5645 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5646 */
0baab86b 5647
1da177e4
LT
5648void ata_std_ports(struct ata_ioports *ioaddr)
5649{
5650 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5651 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5652 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5653 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5654 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5655 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5656 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5657 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5658 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5659 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5660}
5661
0baab86b 5662
374b1873
JG
5663#ifdef CONFIG_PCI
5664
5665void ata_pci_host_stop (struct ata_host_set *host_set)
5666{
5667 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5668
5669 pci_iounmap(pdev, host_set->mmio_base);
5670}
5671
1da177e4
LT
5672/**
5673 * ata_pci_remove_one - PCI layer callback for device removal
5674 * @pdev: PCI device that was removed
5675 *
5676 * PCI layer indicates to libata via this hook that
6f0ef4fa 5677 * hot-unplug or module unload event has occurred.
1da177e4
LT
5678 * Handle this by unregistering all objects associated
5679 * with this PCI device. Free those objects. Then finally
5680 * release PCI resources and disable device.
5681 *
5682 * LOCKING:
5683 * Inherited from PCI layer (may sleep).
5684 */
5685
5686void ata_pci_remove_one (struct pci_dev *pdev)
5687{
5688 struct device *dev = pci_dev_to_dev(pdev);
5689 struct ata_host_set *host_set = dev_get_drvdata(dev);
f0eb62b8 5690 struct ata_host_set *host_set2 = host_set->next;
1da177e4 5691
17b14451 5692 ata_host_set_remove(host_set);
f0eb62b8
TH
5693 if (host_set2)
5694 ata_host_set_remove(host_set2);
5695
1da177e4
LT
5696 pci_release_regions(pdev);
5697 pci_disable_device(pdev);
5698 dev_set_drvdata(dev, NULL);
5699}
5700
5701/* move to PCI subsystem */
057ace5e 5702int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5703{
5704 unsigned long tmp = 0;
5705
5706 switch (bits->width) {
5707 case 1: {
5708 u8 tmp8 = 0;
5709 pci_read_config_byte(pdev, bits->reg, &tmp8);
5710 tmp = tmp8;
5711 break;
5712 }
5713 case 2: {
5714 u16 tmp16 = 0;
5715 pci_read_config_word(pdev, bits->reg, &tmp16);
5716 tmp = tmp16;
5717 break;
5718 }
5719 case 4: {
5720 u32 tmp32 = 0;
5721 pci_read_config_dword(pdev, bits->reg, &tmp32);
5722 tmp = tmp32;
5723 break;
5724 }
5725
5726 default:
5727 return -EINVAL;
5728 }
5729
5730 tmp &= bits->mask;
5731
5732 return (tmp == bits->val) ? 1 : 0;
5733}
9b847548
JA
5734
5735int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5736{
5737 pci_save_state(pdev);
5738 pci_disable_device(pdev);
5739 pci_set_power_state(pdev, PCI_D3hot);
5740 return 0;
5741}
5742
5743int ata_pci_device_resume(struct pci_dev *pdev)
5744{
5745 pci_set_power_state(pdev, PCI_D0);
5746 pci_restore_state(pdev);
5747 pci_enable_device(pdev);
5748 pci_set_master(pdev);
5749 return 0;
5750}
1da177e4
LT
5751#endif /* CONFIG_PCI */
5752
5753
1da177e4
LT
5754static int __init ata_init(void)
5755{
a8601e5f 5756 ata_probe_timeout *= HZ;
1da177e4
LT
5757 ata_wq = create_workqueue("ata");
5758 if (!ata_wq)
5759 return -ENOMEM;
5760
453b07ac
TH
5761 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5762 if (!ata_aux_wq) {
5763 destroy_workqueue(ata_wq);
5764 return -ENOMEM;
5765 }
5766
1da177e4
LT
5767 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5768 return 0;
5769}
5770
5771static void __exit ata_exit(void)
5772{
5773 destroy_workqueue(ata_wq);
453b07ac 5774 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5775}
5776
5777module_init(ata_init);
5778module_exit(ata_exit);
5779
67846b30 5780static unsigned long ratelimit_time;
34af946a 5781static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
5782
5783int ata_ratelimit(void)
5784{
5785 int rc;
5786 unsigned long flags;
5787
5788 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5789
5790 if (time_after(jiffies, ratelimit_time)) {
5791 rc = 1;
5792 ratelimit_time = jiffies + (HZ/5);
5793 } else
5794 rc = 0;
5795
5796 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5797
5798 return rc;
5799}
5800
c22daff4
TH
5801/**
5802 * ata_wait_register - wait until register value changes
5803 * @reg: IO-mapped register
5804 * @mask: Mask to apply to read register value
5805 * @val: Wait condition
5806 * @interval_msec: polling interval in milliseconds
5807 * @timeout_msec: timeout in milliseconds
5808 *
5809 * Waiting for some bits of register to change is a common
5810 * operation for ATA controllers. This function reads 32bit LE
5811 * IO-mapped register @reg and tests for the following condition.
5812 *
5813 * (*@reg & mask) != val
5814 *
5815 * If the condition is met, it returns; otherwise, the process is
5816 * repeated after @interval_msec until timeout.
5817 *
5818 * LOCKING:
5819 * Kernel thread context (may sleep)
5820 *
5821 * RETURNS:
5822 * The final register value.
5823 */
5824u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5825 unsigned long interval_msec,
5826 unsigned long timeout_msec)
5827{
5828 unsigned long timeout;
5829 u32 tmp;
5830
5831 tmp = ioread32(reg);
5832
5833 /* Calculate timeout _after_ the first read to make sure
5834 * preceding writes reach the controller before starting to
5835 * eat away the timeout.
5836 */
5837 timeout = jiffies + (timeout_msec * HZ) / 1000;
5838
5839 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5840 msleep(interval_msec);
5841 tmp = ioread32(reg);
5842 }
5843
5844 return tmp;
5845}
5846
1da177e4
LT
5847/*
5848 * libata is essentially a library of internal helper functions for
5849 * low-level ATA host controller drivers. As such, the API/ABI is
5850 * likely to change as new drivers are added and updated.
5851 * Do not depend on ABI/API stability.
5852 */
5853
d7bb4cc7
TH
5854EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5855EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5856EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
1da177e4
LT
5857EXPORT_SYMBOL_GPL(ata_std_bios_param);
5858EXPORT_SYMBOL_GPL(ata_std_ports);
5859EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 5860EXPORT_SYMBOL_GPL(ata_port_detach);
17b14451 5861EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5862EXPORT_SYMBOL_GPL(ata_sg_init);
5863EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 5864EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 5865EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5866EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5867EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5868EXPORT_SYMBOL_GPL(ata_tf_load);
5869EXPORT_SYMBOL_GPL(ata_tf_read);
5870EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5871EXPORT_SYMBOL_GPL(ata_std_dev_select);
5872EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5873EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5874EXPORT_SYMBOL_GPL(ata_check_status);
5875EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5876EXPORT_SYMBOL_GPL(ata_exec_command);
5877EXPORT_SYMBOL_GPL(ata_port_start);
5878EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5879EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 5880EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
5881EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5882EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 5883EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 5884EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5885EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5886EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5887EXPORT_SYMBOL_GPL(ata_bmdma_start);
5888EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5889EXPORT_SYMBOL_GPL(ata_bmdma_status);
5890EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5891EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5892EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5893EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5894EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5895EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5896EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5897EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
5898EXPORT_SYMBOL_GPL(sata_phy_debounce);
5899EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
5900EXPORT_SYMBOL_GPL(sata_phy_reset);
5901EXPORT_SYMBOL_GPL(__sata_phy_reset);
5902EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 5903EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
5904EXPORT_SYMBOL_GPL(ata_std_softreset);
5905EXPORT_SYMBOL_GPL(sata_std_hardreset);
5906EXPORT_SYMBOL_GPL(ata_std_postreset);
623a3128 5907EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5908EXPORT_SYMBOL_GPL(ata_dev_classify);
5909EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5910EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5911EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 5912EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 5913EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5914EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5915EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5916EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 5917EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 5918EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 5919EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
5920EXPORT_SYMBOL_GPL(ata_scsi_release);
5921EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
5922EXPORT_SYMBOL_GPL(sata_scr_valid);
5923EXPORT_SYMBOL_GPL(sata_scr_read);
5924EXPORT_SYMBOL_GPL(sata_scr_write);
5925EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5926EXPORT_SYMBOL_GPL(ata_port_online);
5927EXPORT_SYMBOL_GPL(ata_port_offline);
6a62a04d
TH
5928EXPORT_SYMBOL_GPL(ata_id_string);
5929EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
5930EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5931
1bc4ccff 5932EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5933EXPORT_SYMBOL_GPL(ata_timing_compute);
5934EXPORT_SYMBOL_GPL(ata_timing_merge);
5935
1da177e4
LT
5936#ifdef CONFIG_PCI
5937EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5938EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5939EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5940EXPORT_SYMBOL_GPL(ata_pci_init_one);
5941EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5942EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5943EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5944EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5945EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5946#endif /* CONFIG_PCI */
9b847548
JA
5947
5948EXPORT_SYMBOL_GPL(ata_device_suspend);
5949EXPORT_SYMBOL_GPL(ata_device_resume);
5950EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5951EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 5952
ece1d636 5953EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
5954EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5955EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
5956EXPORT_SYMBOL_GPL(ata_port_freeze);
5957EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5958EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
5959EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5960EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 5961EXPORT_SYMBOL_GPL(ata_do_eh);